
Can a Content Management System Provide a
Good User Experience to Teachers?
Yannik Bauer #

DCC – FCUP, Porto, Portugal
CRACS – INESC TEC, Porto, Portugal

José Paulo Leal #Ñ

CRACS – INESC TEC, Porto, Portugal
DCC – FCUP, Porto, Portugal

Ricardo Queirós # Ñ

CRACS – INESC TEC, Porto, Portugal
uniMAD – ESMAD, Polytechnic of Porto, Portugal

Abstract
The paper discusses an ongoing project that aims to enhance the UX of teachers while using
e-learning systems. Specifically, the project focuses on developing the teacher’s user interface (UI)
for Agni, a web-based code playground for learning JavaScript. The goal is to design an intuitive UI
with valuable features that will encourage more teachers to use the system. To achieve this goal,
the paper explores the use of a headless Content Management System (CMS) called Strapi. The
primary research question the paper seeks to answer is whether a headless CMS, specifically Strapi,
can provide a good UX to teachers. A usability evaluation of the built-in Strapi UI for content
creation and management reveals it to be generally consistent and user-friendly but challenging and
unintuitive to create courses with programming exercises. As a result, the decision was made to
develop a new teacher’s UI based on the existing Agni UI for students in an editable version. Once
the development is complete, a new usability evaluation of the fully developed teacher’s UI will be
conducted with the Strapi UI evaluation as a baseline for comparison.

2012 ACM Subject Classification Applied computing → Interactive learning environments

Keywords and phrases learning environment, programming exercises, programming learning, auto-
matic assessment, headless CMS, CMS, user experience

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.4

Category Short Paper

Funding This research was conducted within the “FGPE Plus: Learning tools interoperability
for gamified programming education” project supported by the European Union’s Erasmus Plus
programme (agreement no. 2020-1-PL01-KA226-HE-095786), and financed by National Funds
through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within
project LA/P/0063/2020.

1 Introduction

Learning programming can be challenging for beginners. Winslow [13] noted that many
novice programmers might know the syntax and semantics of individual statements but
struggle with combining these features into valid programs. His and other studies [11, 3]
have emphasized the importance of practice through exercises, which is most effective with
immediate feedback. However, it is impossible for teachers to manually provide immediate
feedback for every exercise. Automated assessment systems for programming exercises
emerged as a solution, freeing teachers to focus on students needing additional support.

© Yannik Bauer, José Paulo Leal, and Ricardo Queirós;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 4; pp. 4:1–4:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yannikbauer.1@gmail.com
https://orcid.org/0000-0001-8987-2419
mailto:zp@dcc.fc.up.pt
https://www.dcc.fc.up.pt/~zp/about/
https://orcid.org/0000-0002-8409-0300
mailto:ricardoqueiros@esmad.ipp.pt
https://www.ricardoqueiros.com/
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.ICPEC.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 Can a CMS Provide a Good User Experience to Teachers?

While there are e-learning systems that offer the ability to create and manage courses
with automated assessment, many of them were designed to focus on the UX of students and
less on the teacher’s UX, which can result in fewer teachers utilizing them.

This paper presents the design and development of a UI to manage and author course
contents with automated assessment for Agni, a code playground for learning JavaScript.
Previously, Agni consisted only of a UI for students. The course contents were saved in
configuration files without the ability to alter or create them through an interface. The
main objectives for the UI are 1) a good user experience for teachers; 2) an effective way of
creating, adapting, and managing course contents with automated assessment; 3) a repository
of exercises with the possibility of extending it with other repositories and 4) allowing for
sequencing the course content.

The idea was to use a headless CMS to achieve the goal. This offers the flexibility to use
a separate UI for displaying the content (in our case, the Agni Student UI) without being
tied to a specific model, as with traditional CMSs. Also, headless CMSs provide a UI to
manage and create the contents, which the teachers could use. Strapi was selected for this
task. However, a usability evaluation showed that the UI for creating and managing content
was generally consistent and user-friendly but challenging and unintuitive for creating course
content with programming exercises. This, and the inability to customize the UI, led to the
decision to develop a new UI for the teachers. The design approach was to leverage the Agni
student‘s UI and make it editable. This means having input fields instead of text boxes, for
example, for lesson names, and adding missing functionalities, such as the addition of new
modules. The work is ongoing, and once development is complete, a usability evaluation of
the fully developed teacher’s UI will be conducted and assessed its effectiveness with the
previous evaluation as a benchmark.

The remainder of this paper is organized as follows. Section 2 presents the state of the art,
covering user experience and existing programming virtual learning systems (VLEs). The
following section describes the main parts of the user interface, a presentation of the data
model, and a subsection about the API. The evaluation method and evaluation of Strapi’s
UI are presented in Section 4. The final section summarizes the paper’s contributions and
highlights future work.

2 State of The Art

The field of programming VLEs is constantly evolving, with emerging trends and innovations
shaping how students interact, and teachers create programming courses. This section starts
with a general review of UX and explores teachers’ UX in VLEs, analyzing their features
and missing potentials.

2.1 User Experience
According to ISO 0241 – 210, the definition of UX is “A person’s perceptions and responses
that result from the use or anticipated use of a product, system or service.”. However, the
concept of UX encompasses various aspects, leading to multiple possible definitions, dynamic
concepts, and theoretical models, including aesthetics, usability, effectiveness, pleasure-based,
and emotional experience. [4, 1, 6] provide more detailed information about the different
concepts and challenges related to UX.

When designing a UI, authors agree that the focus must be on the user’s needs rather than
solely relying on the designer’s perspective. Therefore, evaluation is crucial to gain insights
into the user’s experience. There are several evaluation methods, including questionnaire-
based evaluation, such as the User Experience Questionnaire (UEQ) by Martin Schrepp,



Y. Bauer, J. P. Leal, and R. Queirós 4:3

Bettina Laugwith, and Theo Held [5], or a questionnaire based on the 10 usability heuristics
for User Interface Design described by Jakob Nielsen in [7]. These heuristics include visibility
of system status, match between system and real world, user control and freedom, consistency
and standards, error prevention, recognition rather than recall, flexibility and efficiency of
use, aesthetic and minimalist design, help users recognize/diagnose and recover from errors,
and help and documentation. Other evaluation methods are explained in more detail in [2, 8]

2.2 System Review
Various systems are available to assist teachers in creating and managing programming courses,
including Udemy, Mooshak 2, and Moodle. Typically, the course content is structured within
one or two levels, consisting of modules and lessons where teachers can create materials and
exercises.

The most common exercises with automated assessment are multiple-choice quizzes
and programming exercises, supported by many systems such as Udemy, Mooshak 2, and
Coderbyte. The correctness of the student’s code for programming exercises is being evaluated
dynamically. This means that predefined test cases run on the code to verify its correctness
and efficiency and give immediate feedback to the student. The tests can be divided into
dynamic and static testing [12]. Static testing refers to tests for which the code does not
have to run, for example, checking for expression usage or code design. On the other hand,
dynamic testing is performed on code execution. Unit tests are an example of dynamic tests.
Most e-learning systems with automated assessment only support the creation of dynamic
tests that can either be introduced with an input and wanted output field or a file for the
teacher to write the whole code for unit tests. Other helpful features, such as an exercise
repository, are often missing [10].

Sequencing the course content is another interesting feature. It can be based on time
conditions, where the teacher can define a date or number of weeks/days after which the
students can work on specific content. Alternatively, content can be sequenced based on the
progress of exercises. Mooshak 2, for example, supports the sequencing of all content based
on time and exercises completed.

Although these functionalities are important, they lose their impact with an unintuitive
UI. The majority of systems involve a strategy of “form filling”, where the interface consists
of pairs of field names and inputs to declare the data of the contents. Some systems, such as
Udemy, support the visualization of the created content in a student’s view to see how it will
appear. Moodle‘s teacher UI is more similar to an editable version of the Student UI with
additional functionalities, such as adding lessons and declaring metadata.

3 System Design

Agni is a web-based code playground designed for learning JavaScript and providing students
with a user-friendly interface for programming courses with exercises that are being evaluated
automatically. However, a crucial feature was missing - a dedicated interface for teachers
to create, manage, and customize the course content, along with a backend system to
independently store them. Previously, the content was saved in configuration files with no
interface for editing or creation.

To address this issue, Strapi, a headless CMS, was chosen as the solution for content
management. Strapi offers both a user-friendly interface and an API for quickly creating
a data model and managing/creating content. The API supports CRUD (Create, Read,
Update, Delete) operations and can be customized using hooks. Strapi provides three types

ICPEC 2023



4:4 Can a CMS Provide a Good User Experience to Teachers?

of data structures: single types, collection types, and components. Single types and collection
types have an API endpoint and can be created and edited independently. Components are
reusable structures that can be used in different collections and single types.

While Strapi’s UI for content management was initially considered a hypothesis for
teachers to create and manage content, a usability evaluation (explained more in Section 4)
revealed that it was generally consistent and user-friendly but challenging and unintuitive for
creating course content with programming exercises. Additionally, the lack of customization
options in the UI led to the decision to develop a new UI to ensure a better UX for the teachers.
The design of this UI, the data model to support it, and the API for the communication
between the UI and the server will be explained in the following subsections.

3.1 User Interface
The teacher’s UI consists of two main parts: class management and content management.
The former is to import, create, and manage students and their work, which is not fully
developed yet, and the latter is to create and modify courses with their materials. To ensure
a positive UX for teachers and provide an intuitive interface for creating and editing courses,
the Agni student‘s UI was transformed into an editable version (see Figure 1). This approach
enables teachers to see exactly what they are modifying and how it will look to students.
Currently, the system only supports course creation.

Figure 1 displays a screenshot of the UI in the state of editing or creating a course. It
is divided into three panels. The left panel is a navigation menu. The right panel shows
buttons for actions on the middle panel, such as save the course or exit. The middle part is
the main panel where teachers are able to see the different courses, classes, etc., and edit
them. In the main panel of Figure 1, the editable Agni student interface for creating or
editing courses can be seen. In order to make the student UI editable, text fields, such
as module name and lesson description, were transformed into input fields. Additionally,
buttons add functionalities, such as creating or deleting lessons, exercises, and other elements.
Furthermore, the edit icons in the menu open dialog boxes to introduce information, such as
conditions for when a student can work on a lesson that the student cannot see directly in
the UI.

Figure 1 UI while editing or creating a course.



Y. Bauer, J. P. Leal, and R. Queirós 4:5

3.2 Data Model
The data model for the content created by teachers and viewed by students is illustrated in
Figure 2. It has been implemented in Strapi and can be divided into two substructures: one
for managing the classes, which teachers can access in the class management navigation, and
the other for managing courses and their contents, which teachers can access in the content
management navigation.

A Course is composed of Modules, which contain Lessons, that can include multiple
Expositive and Evaluative contents. Expositives are used to present information to students
and can be in the form of PDF files or video files. Evaluatives, on the other hand, are
exercises that can be in the form of multiple-choice quizzes or programming exercises. To
automatically evaluate these programming exercises, teachers can create Tests with input,
expected output, type (log, expression, metric, function), and subtype (error for expression,
occurrences, and lines for metric) parameters. This provides teachers with a quick way to
create different types of tests without having to write complex code for unit tests. In order
to sequence Modules and Lessons, they contain conditions with fields named “afterWeek” to
specify after which week the student can work on a Module or Lesson, and “afterPercDone”
to define a percentage of completed exercises after which the student can progress.

Occurrences, Classes, Students, and Statuses, form the structure for managing classes.
Occurrences are linked to a Course and have a start date, determining when students can
start accessing the Course. The “afterWeek” condition for Modules and Lessons is based on
this start date. Classes and Students have fields for declaring delays that may occur during
the year. The grade and solution to a programming exercise done by the student are saved
in the Status.

Course, Expositive, Evaluative, and Question were chosen as collection types for easy
reuse and individual editing. Similarly, Occurrence, Class, Student, and Status were chosen
as collection types for quick and convenient access and creation.

Figure 2 Main parts of the Data Model.

3.3 API
Strapi offers a RESTful API as the primary means for communication between UI and server.
The API supports the full range of CRUD operations, including creating, reading, updating,
and deleting content within collection types. These operations can be customized to the

ICPEC 2023



4:6 Can a CMS Provide a Good User Experience to Teachers?

specific needs of individual collection types through hooks. Additionally, the API supports
a wide range of query parameters, which can be utilized to filter, sort, and paginate data
within requests.

To optimize performance and reduce communication between the UI and server, the
possibility of creating multiple instances of collection types with one request was imple-
mented. Furthermore, the creation of a complete course structure encompassing different
collection types, such as Course, Evaluatives, Expositives, and Questions, with one request
was developed.

The API is secured using Strapis’ built-in user-permission plugin, in which user roles
were created for students and teachers. This plugin allows the customization of permissions
for each collection and request type, depending on the user’s role. For instance, only teachers
are authorized to create content. When teachers create content, the author’s identity is also
saved in the data structure. This enables the declaration of permissions for modifying or
getting content created by other teachers. For example, can they only access the data of
their students. As for the students, the API enables them to access only their course, with
the modules and lessons viewable contingent on the conditions established by the teacher.

4 Validation

The evaluation is an essential part of creating a UI with a good UX. Strapi‘s UI, which
was the first idea for the teachers, was evaluated using a satisfaction questionnaire. Since
the result was not satisfactory, the decision was made to develop a new UI for the teacher.
The work is ongoing, and after finishing it, a satisfaction evaluation will be done with the
previous evaluation used as a baseline for comparison and evaluating progress. The evaluation
methodology, results of the Strapi UI evaluation, and its conclusion will be presented next.

4.1 Evaluation Methodology
The evaluation was done using a satisfaction questionnaire based on the ten usability heuristics
for User Interface Design from Jakob Nielsen [7]. These are visibility of system status, match
between the system and the real world, user control and freedom, consistency and standards,
error prevention, recognition rather than recall, flexibility and efficiency of use, aesthetic
and minimalist design, help users recognize/diagnose and recover from errors, and help
and documentation. These ten heuristics and additional the easiness of learning, speed,
and reliability of functions and tasks that the system wants to solve were evaluated with
multiple questions on a five-point Likert scale (1 - Never, 2 - Almost Never, 3 - Regular, 4
- Almost always, 5 - Always). The questionnaire also included an overall classification of
the system on a five-point scale (1 - Bad, 2 - Insufficient, 3 - Sufficient, 4 - Good, 5 - Very
Good) and text fields to describe strong points, weak points, and improvement suggestions.
Before completing the questionnaire, the respondents were required to carry out typical tasks
performed by a professor, such as creating courses, reusing course materials, and associating
them with students. Following Jakob Nielsen’s proposal [9], five computer science master
students from the University of Porto were selected to evaluate Strapi’s UI, as this number
is sufficient to identify the majority of usability issues.

4.2 Results Strapi UI
Figure 3 shows the evaluation heuristics with its average mean score and standard deviation
of their questions. Many of them leading to a positive spectrum, especially speed, consistency,
and emphasis, with a mean score of about 4, were evaluated positively. On the other hand,



Y. Bauer, J. P. Leal, and R. Queirós 4:7

flexibility, easiness, reliability, and overall classification, with a medium score of 2, 2.2, 2.9,
and 2.8, respectively, were evaluated negatively. As strong points were mentioned, easy
creation of a Course with Modules and Lessons, excluding Expositives and Evaluatives, and
also the generally easy-to-use and fast UI. Weak points described were the need to create
collection types like Course, Expositive, Evaluative, and Question individually and only after
that being able to associate them with each other, which is unintuitive and time-consuming.
The lack of a help system, a landing page without helpful information, and no explanation of
some fields were also critiqued. A tutorial was added as an improvement suggestion.

The overall more positive evaluation of the 10 usability heuristics for Strapi‘s UI was
expected due to it being one of the positive aspects of why people use Strapi. However,
the Strapi UI is too generic for the specific necessities of managing programming courses.
Different collection types can only be created separately, which makes the creation of a whole
course time-consuming and not effective. Also, the inability to create a hierarchy of collection
types or define different sizes for fields makes it difficult to organize and use the space in an
efficient way. This led to the conclusion that the Strapi UI is not sufficient to achieve the
objective of a good UX for the teacher. Nevertheless, the API and database can be used due
to the ability to customize using hooks.

While students provided valuable insights into the UX, selecting teachers as respondents
for the evaluation would have been more appropriate. Teachers possess a deeper understanding
of the specific needs and requirements associated with their role within the system.

Category Mean SD
1. Visibility 3.25 0.94
2. Compatibility 3.17 0.82
3. Freedom 3.14 0.73
4. Consistency 3.94 0.87
5. Prevention 3.11 0.48
6. Emphasis 3.93 0.59
7. Flexibility 2 0.80
8. Aesthetics 3.25 0.43
9. Help to Users 3.2 0.53
10. Help with documentation 3.25 1.04
11. Easiness 2.25 1.12
12. Speed 4.2 0.49
13. Reliability 2.91 1.19
14. Classification 2.8 0.61

Figure 3 Strapi‘s UI evaluation results.

5 Conclusion and Future Work

This paper highlights the advancements made in the development of a UI with a good
UX and useful functionalities for teachers to manage and create courses. One of the main
contributions of this paper is the examination of whether a headless CMS, specifically Strapi,
can adequately serve this purpose. The usability evaluation indicated it to be too generic
and not flexible for effectively creating and managing programming courses.

Furthermore, the paper presents a promising approach to leverage the Agni student’s
UI and make it editable by having input fields instead of text boxes and adding missing
functionalities, such as the addition of lessons for the teacher. The UI communicates with
the customized API of Strapi to create and manage the contents of the data model.

ICPEC 2023



4:8 Can a CMS Provide a Good User Experience to Teachers?

In future work, features such as the reuse of exercises will be implemented. The possibility
to import external contents, especially exercises, as well as the design and implementation
of the class managing part, including the import and creation of students, will be finished.
After that, a final evaluation of the UI will be conducted using the Strapi UI evaluation as a
benchmark for comparison and evaluation of the progress.

References
1 Allam Hassan Allam, Ab Razak Che Hussin, and Halina Mohamed Dahlan. User experience:

challenges and opportunities. In Journal of Information Systems Research and Innovation
2013, 2013.

2 D. Benyon. Designing User Experience. Pearson Educación, 2019. URL: https://books.
google.pt/books?id=MXqFDwAAQBAJ.

3 John Dunlosky, Katherine A. Rawson, Elizabeth J. Marsh, Mitchell J. Nathan, and Daniel T.
Willingham. Improving students’ learning with effective learning techniques: Promising
directions from cognitive and educational psychology. Psychological Science in the Public
Interest, 14(1):4–58, 2013. URL: http://www.jstor.org/stable/23484712.

4 Marc Hassenzahl and Noam Tractinsky. User experience – A research agenda. Behaviour &
Information Technology, 25(2):91–97, 2006. doi:10.1080/01449290500330331.

5 Bettina Laugwitz, Theo Held, and Martin Schrepp. Construction and evaluation of a user
experience questionnaire. In HCI and Usability for Education and Work, volume 5298, pages
63–76, November 2008. doi:10.1007/978-3-540-89350-9_6.

6 Effie Lai-Chong Law, Virpi Roto, Marc Hassenzahl, Arnold P.O.S. Vermeeren, and Joke Kort.
Understanding, scoping and defining user experience: A survey approach. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages 719–728, New
York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1518701.1518813.

7 Jakob Nielsen. Enhancing the explanatory power of usability heuristics. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’94, pages 152–158, New
York, NY, USA, 1994. Association for Computing Machinery. doi:10.1145/191666.191729.

8 Jakob Nielsen. Usability inspection methods. In Conference Companion on Human Factors
in Computing Systems, CHI ’94, pages 413–414, New York, NY, USA, 1994. Association for
Computing Machinery. doi:10.1145/259963.260531.

9 Jakob Nielsen. Why you only need to test with 5 users, March 2000. URL: https://www.
nngroup.com/articles/why-you-only-need-to-test-with-5-users/.

10 Ricardo Queiros and José Leal. Programming exercises evaluation systems – An interoperability
survey. In International Conference on Computer Supported Education, volume 1, pages 83–90,
January 2012.

11 Roshni Sabarinath and Choon Lang Gwendoline Quek. A case study investigating programming
students’ peer review of codes and their perceptions of the online learning environment.
Education and Information Technologies, 25(5):3553–3575, September 2020. doi:10.1007/
s10639-020-10111-9.

12 Zarina Shukur, Edmund Burke, and Eric Foxley. The automatic assessment of formal specific-
ation coursework. Journal of Computing in Higher Education, 11(1):86, 1999.

13 Leon E. Winslow. Programming pedagogy – A psychological overview. SIGCSE Bull.,
28(3):17–22, September 1996. doi:10.1145/234867.234872.

https://books.google.pt/books?id=MXqFDwAAQBAJ
https://books.google.pt/books?id=MXqFDwAAQBAJ
http://www.jstor.org/stable/23484712
https://doi.org/10.1080/01449290500330331
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1145/1518701.1518813
https://doi.org/10.1145/191666.191729
https://doi.org/10.1145/259963.260531
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://doi.org/10.1007/s10639-020-10111-9
https://doi.org/10.1007/s10639-020-10111-9
https://doi.org/10.1145/234867.234872

	1 Introduction
	2 State of The Art
	2.1 User Experience
	2.2 System Review

	3 System Design
	3.1 User Interface
	3.2 Data Model
	3.3 API

	4 Validation
	4.1 Evaluation Methodology
	4.2 Results Strapi UI

	5 Conclusion and Future Work

