A Systematic Review of Formative Assessment to
Support Students Learning Computer
Programming

Jagadeeswaran Thangaraj &
School of Computing, Dublin City University, Ireland

Monica Ward &
School of Computing, Dublin City University, Ireland

Fiona O’Riordan &
Teaching Enhancement Unit, Dublin City University, Ireland

—— Abstract

Formative assessment aims to increase student understanding, instructor instruction, and learning
by providing feedback on students’ progress. The goal of this systematic review is to discover trends
on formative assessment techniques used to support computer programming learners by synthesizing
literature published between 2013 and 2023. 17 articles that were peer-reviewed and published in
journals were examined from the initial search of 197 studies. According to the findings, all the
studies were conducted at the higher education level and only a small number at the secondary
school level. Overall, most studies found that motivation, scaffolding, and engagement were the
three main goals of feedback, with less research finding that metacognitive goals were the intended
outcomes. The two techniques for facilitating formative feedback that were used most frequently
were compiler or testing based error messages and customised error messages. The importance of
formative feedback is highlighted in the reviewed articles, supporting the contention that assessments
used in programming courses should place a heavy emphasis on motivating students to increase
their level of proficiency. This study also suggests a formative assessment that employs an adaptive
strategy to evaluate the ability level of the novice students and motivate them to learn programming
to acquire the necessary knowledge.

2012 ACM Subject Classification Applied computing — Education; Social and professional topics
— Computing education; Social and professional topics — Student assessment

Keywords and phrases Automatic assessment, Computer programming, Formative assessment,
Higher education, Novice programmer, Systematic review

Digital Object Identifier 10.4230/0ASIcs.ICPEC.2023.7

1 Introduction

Any course in a higher education institution worldwide that is concerned with software
development requires programming modules. By introducing syntax and semantics, these
modules aim to impart fundamental knowledge of programming languages [58]. Novice
programmers are those taking their first computer programming courses or those with no
prior programming experience. Independent components of programming will increase the
difficulties of novices [42, 32]. Novice programmers are unable to interpret program code
and have a lack of understanding of programming principles [27]. Although the computer
science courses are in high demand, introductory programming modules frequently have
dropout and failure rates as high as 50% [36, 34]. These modules play an important role
to make them comfortable in continuing their education in computing [46]. Their interest
in programming will rise once pedagogical methods motivate their confidence, and dropout
rates will reduce [36].
? Jagadeeswaran Th.angaraj, Monica? Ward, and Fiona O’Riordan;

37 icensed under Creative Commons License CC-BY 4.0
4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirés and Mario Paulo Teixeira Pinto; Article No.7; pp. 7:1-7:13

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:Jagadeeswaran.Thangaraj2@mail.dcu.ie
https://orcid.org/0000-0002-2721-0898
mailto:Monica.Ward@dcu.ie
https://orcid.org/0000-0001-7327-1395
mailto:Fiona.m.Oriordan@dcu.ie
https://orcid.org/0000-0002-0139-5169
https://doi.org/10.4230/OASIcs.ICPEC.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2

A Systematic Review of Formative Assessment

An essential component of education that promotes learning is assessment [48]. Addi-
tionally crucial for assisting and motivating their programming abilities are assessment and
feedback [57]. Formative assessment aims to increase student understanding, instructor
instruction, and learning by providing feedback on students’ progress[12]. Formative pro-
gramming assessment system evaluates student program submissions and provides timely
feedback [42]. The impact of feedback on learning and assessment is significant [55]. Form-
ative feedback is information given to a student with the goal of changing their way of
thinking or acting to enhance learning [50]. Formative assessment is one of the approaches
for effective programming learning [53]. To ensure that students receive the correct results,
the assessment and feedback systems must examine the programs’ small aspects and point
out any areas where mistakes were made by the students. Beyond assessment, it increases
novice programmers’ self-confidence and metacognitive awareness [41, 49, 29]. Additionally,
checking a participant’s knowledge depending on their prior attempts during the assessment
process is referred to as adaptive assessment [39]. It varies from typical assessment in that
each participant receives a separate set of questions instead of everyone receiving the same
set of questions [56]. This enables everyone to assess the knowledge at their own pace and
helps in assessing each element of the topic. While some systematic reviews have been
undertaken on automated assessments in computer programming, this study is interested in
knowing whether formative assessment is used to scaffold or encourage novice programmers
as feedback is essential to learning programming. It also examines any assessment system
that makes use of an adaptive strategy.

2 Related Works

Recent systematic literature reviews on assessment systems for programming courses tend
to concentrate on how useful they are for automatic assessment techniques [24, 40, 20]
or on the kind of feedback generated by assessment tools for evaluating programming
languages or programming paradigms [25, 9, 28]. Further, other research reviews examined
the assessment process, finding that it was primarily concentrated on advanced courses [35]
or other computing subjects [16]. Studies that use automatic assessment programming as
a pedagogical strategy typically focus solely on teaching and learning and do not examine
findings on inspiring or motivating novices. In summary, there are no studies that concentrate
on the formative assessment of introductory programming courses and no research reports
that motivate novice programmers. Since motivation, scaffolding, and metacognitive support
are important for learning programming modules, this research therefore examines formative
assessment methods in these areas.

Research Questions

This review of formative assessments for introductory programming is guided by the following
research questions:
RQ1: What is the purpose of the formative feedback techniques for programming languages
learning?
RQ2: What is the nature of the formative feedback techniques for programming languages
learning?
RQ3: Does the assessment method prioritize helping novices and influencing their
programming learning?



J. Thangaraj, M. Ward, and F. O’Riordan

Table 1 Key Search Terms.

Key

Concepts Search Terms

“novice computer programmers” or “computer programming”
Computer or “programming skills” or “first year computer programming”
Programming | or “programming concepts” or “introductory programming” or
“automated system” or “Automated assessment”

“formative feedback” or “error correction” or “learner confid-
ence” or “learner efficacy” or “adaptive assessment” or “com-
puter programming assessment system”

Formative
Assessment

3 Research Methodology

More study, according to [14], is necessary to fully understand the inquiry process (formative
assessment) that takes place in a programming learning environment. In order to better
comprehend the current state of research, this study will examine recent articles that were
released between 2013 and 2023. This study used this time frame of the last 10 years because
the review topic is only applicable to contemporary studies [37]. This research was guided
by the following PICO question: “The impact of formative feedback to motivate novices
in learning introductory programming”. The What Works Clearinghouse Procedures and
Standards Handbook, Version 4.0, from the U.S. Department of Education’s Institute of
Education Sciences served as the process [33]. The five stages were as follows: (a) creating
the review methodology; (b) locating pertinent literature; (c) screening studies; (d) reviewing
articles; and (e) reporting findings. This study follows these stages to systematically review
the literature.

3.1 Data Sources and Search Strategies

The terms “Formative assessment” and “Computer programming” were broadly entered into
databases using the Title, Keyword, and Abstract search functions to look for published
publications between the years 2013 and 2023. Table 1 shows the alternative terms for the
key terms in the search. Academic Search Complete, ERIC Library, ACM, IEEE and Science
Direct were the databases combined. This research used search engines like Google Scholar,
ResearchGate, and Academia to find manuscripts [22]. Additionally, core conferences in
computer education such as SIGCSE, CompEd, ITiCSE, UKICER and ICPEC are taken
into account. 197 articles were found in the initial search results since 1998. Based on the
inclusion and exclusion criteria, these papers were evaluated at the title, abstract, and full
text levels. 17 articles were produced as a result out of 22, and they were coded for the
systematic review. As they concentrated on basic computer science, summative assessment,
or gaming techniques rather than clearly focusing on introductory programming, formative
assessment, or evaluation approaches, 5 articles were eliminated [51, 54, 43, 21, 15].

3.2 Inclusion and Exclusion Criteria

Each study must meet these screening requirements to be considered for this systematic
review: Computer programming and formative assessment are the article’s primary foci,
and its publication dates range from 2013 to 2023. Its publication type is original research
from peer-reviewed journals, and its research methodology includes both quantitative and
qualitative approaches with a clear methods section and results presentation. Its language

7:3

ICPEC 2023



7:4 A Systematic Review of Formative Assessment

Table 2 Inclusion and Exclusion Criteria.

Criterion Inclusion Exclusion
Prior to 2013 the focus in literature
Timeframe 2013-2023 prior to this time was primarily on
plagiarism.
Language English Non-English
Access Full-text availability only Only titles or abstracts available
Programming languages, Web design,
. model development, advanced pro-
Sample Novice programmers . .
gramming, visual or scratch program-
ming
Type of Peer-reviewed, original research, con- | Content that was not peer-reviewed
publication ference papers or original
Presenting findings that help design | Studies that present findings on sum-
Focus of an enhanced formative assessment | mative assessment. Systems designed
literature system for novice programmers (what | for gifted programmers.
works and doesn’t work, and why).

is English, and its emphasis on formative assessments that are being used to support their
programming learning. If a research study did not satisfy one or more of the inclusion
requirements that shows in Table 2, it was excluded.

4 Data Coding

Content analysis was used to find categorical themes from narrative data used to inform
research focus and feedback strategy. In order to draw logical conclusions, content analysis
aims to organize and interpret the data collected [6, 26]. The data gathering method across
all research was formative or automated assessment. All studies took place in either a higher
education or secondary context. All of the research was carried out globally, primarily in
Northern America and Europe.

4.1 Formative Feedback Purpose: (RQ1)

Using the main subcategories of formative feedback found in the chosen publications, authors
expand the following categories as they are interrelated in achieving learning goals [1].

4.1.1 Scaffold

The term “scaffolding” describes how an assessment plan might lead students through the
steps of a larger project, with the teacher acting as an experienced leader who offers advice
along the way [44]. The design of an assessment can scaffold the steps of a larger project by
asking students to complete the steps so they can receive formative feedback in between [19].

4.1.2 Motivation

A student’s motivation is defined as their “willingness, need, desire, and necessity to engage
in and be successful in the learning process” [52]. The two main categories of motivational
factors are intrinsic and extrinsic [2]. Self-motivation is another name for intrinsic motivation,
which is the strong desire to learn a subject. Extrinsic motivation occurs when actions are



J. Thangaraj, M. Ward, and F. O’Riordan

Table 3 Purpose of formative feedback.

Instructional strategies # Studies
Scaffolding 5 [17][5][45][8][29]
Motivation 6 [19][38][4][3][23][31]
Engagement 4 [18][7][11][13]
Metacognitive/ Self-efficacy 2 [29][49]

taken to satiate an outside demand or receive an outside-imposed reward. Instead of just
enjoying the activity or engaging in it for its own sake, they may be performed for their
instrumental benefit.

4.1.3 Metacognitive and Self-efficacy

Understanding how to learn, participating actively, and reflecting on that engagement is
defined as metacognition [10]. An individual’s belief in their own ability to do well is known
as self-efficacy [2]. For successful learning programming, metacognition and self-efficacy are
crucial abilities [30].

4.1.4 Engagement

Engagement promotes learning and forecasts students’ success [1]. It is a multidimensional
meta-construct with elements of behavior, emotion, and cognition. Formative assessment
helps students become more engaged in their learning and that makes them more confident
in the subject [47].

4.2 Nature of Formative Feedback: (RQ2)

Authors distinguish between the studies using feedback techniques tailored to engage students
in learning programming as follows:

4.2.1 Assessment Approach

This defines the assessment approaches to generate the feedback such as, self-assessment,
peer assessment, (semi-) automated assessment on programming assignment.

4.2.2 Feedback Types

It defines what type of feedback the tool or system provides such as, standard error messages,
customised error messages, testing report or grades.

4.2.3 Feedback Mechanism

It defines how the feedback is generated to notify such as unit testing, test cases, verification
and validation, guided instructions or directions of tests.

7:5

ICPEC 2023



7:6

Table 4 Nature of formative feedback.

A Systematic Review of Formative Assessment

. Assessment Feedback

# Studies approaches Feedback types Mechanisms

4 [5, 13, 17, 4] Automatic Test case reports Automated testing
w/grade

1 [18] Automatic Unit test results Automated testing

2 (3, 11] Automatic Verification report (Static) Verifier

generated

Customised error | Peer (Lecturer/

2 1 P

[31, 53] et messages fellow) feedback

1 [29] Self Customised — error Rubric-based
messages

3 [19, 38, §] Automatic Standard error Compiler
messages

1 [49] Peer Customised  error Guided inquiry
messages

9 (23, 7] Semi- Customised error | Feedback about code

’ Automatic messages quality
1 [45] Semi- . Customised error Manual feedback
Automatic messages
5 Results

5.1 Purpose of Formative Feedback (RQ1)

In order to determine the aim and different kinds of formative feedback strategies for learning
programming languages, authors examined the relevant research studies in order to get the
answers to the research questions. Overall, the majority of studies found that motivation,
scaffolding, and engagement were the purposes of feedback, with metacognitive purposes
being recognized in fewer studies (see Table 3). In general, the goal of all these studies is to
inspire students who are learning programming at various levels.

5.2 Feedback Strategies (RQ2)

Automated assessment was more commonly employed to generate feedback rather of using
other approaches. Customised error messages were provided for facilitating formative feedback
that were most frequently used in addition to automated testing results and compiler-based
standard error messages. They were customised by peer, manual feedback and rubric-based
feedback. Guided inquiry, feedback on the quality of the code, and chatbot interaction are
among the assessment mechanisms (see Table 4). In general, most systems offer customized
error messages to help students comprehend the errors they committed.

5.3 Novices’ Support (RQ3)

All of these studies generally aim to motivate students learning programming at different
stages. This analysis found that, with the exception of one, no studies have focused especially
on novices [45]. The assessment system that aids novices, however, makes use of Teaching
Assistants’ (TA’s) feedback rather than automatic feedback [45]. As a result, no automatic
formative feedback is primarily emphasizing novices to encourage their learning programming.



J. Thangaraj, M. Ward, and F. O’Riordan

6 Discussion

Formative assessment systems offer automatic formative feedback to students who submit

their solutions or programs. These systems use various technologies to provide this feedback.

Students can receive automatic formative feedback based on automated unit and system
tests in this system if the code is valid [18]; otherwise, they receive error messages so they
can change it. This system tested how well formative feedback connects with students of
diverse backgrounds and showed how it facilitated their learning of programming. Another
system [17] employed laboratory exercises were accompanied by automated test cases created
by the lecturer using solely free software testing tools that match industry standards in order
to provide students with formative feedback as they were working. The immediate feedback
and continued efforts to close the performance gap between actual and expected performance
were lauded by the students, and the efficacy was determined to be successful [17].

The autoCOREctor, a tool for automated student-centered assessment, was created to be
easily connected with learning management systems (LMSs)[5]. It encourages the development
of a problem-statement scaffold for programming assignments and a straightforward test
set with test cases to assist teachers in using it in diverse situations. Regarding the codes
they entered, which they must attempt several times to pass, students receive grades and
feedback. Because of this, the autoCOREctor’s feedback was helpful, easy to understand,
helped students improve their assignments, and increased their motivation. The work’s
drawback was that it was unclear whether it would be helpful for novice programmers or the
introductory programming module.

A study looked at Algo+ and EPFL, two automated evaluation methods for online
introductory programming courses [8]. Based on the discrepancy between the supplied
program and the referent solution that is the closest match, Algo+ delivers comments. This
distinction clarifies to the learner the processes to follow in order to arrive at the correct
response. The feedback given by the EPFL grader is based on test cases and a check style
process. The generated feedback educates students about the test case successes and failures
by displaying the program’s result and the anticipated output. The student’s understanding
of why the programs don’t provide the right responses even though they are syntactically
correct is improved by the feedback on the most well-liked incorrect programs.

Incorporating online coding tasks into formative assessment is examined in an article to
determine its practicality and efficacy [4]. Positive results from the experimental investigation
back up the use of online coding environments in introductory programming and algorithm
courses. It argues that formative rather than summative assessments enhance the learning
process for students. As tutoring systems, chatbots have been used in a variety of settings. A
system aims to use chatbots to teach basic CS concepts while increasing work completion and
engagement among students, especially female students [7]. Because they produce formative
feedback immediately at the task level and use the input to guide students toward learning
programming, chatbots are useful tools for formative feedback.

Another formative assessments technique is that formative evaluation is combined with
automatic source code verification and validation feedback [3]. With the use of this system,
formative assessments will be able to provide feedback on the verification outcomes. When
errors are discovered during the automatic verification phase, students will be given a

report, enabling them to both fix the errors and gain a deeper understanding of the code.

Similar system evaluated a library for automated assessments created especially for static
analysis [11]. The lecturer can personalize exercises, reuse verification, and modify the lesson
for each student using the library. It showed how flexible feedback on verification helps
students identify inefficient and incorrect code fragments and encourages them to adopt good
programming techniques.

17

ICPEC 2023



7:8

A Systematic Review of Formative Assessment

Guided inquiry learning (GIL), an illustration of an inductive collaborative learning
strategy. Students are expected to complete the learning objectives and provide their peers
and the instructor comments on the problem [31]. It showed how receiving peer feedback
improved their programming skills. Another system that used formative evaluation based on
peer code review caused students’ programming abilities to consistently improve [53]. Peer
code review and inspection is an effective strategy to ensure the high quality of a software
by methodically examining the source code. With the use of peer feedback, the students
were able to identify and correct their errors. Similarly, a study looked at how students
in introductory courses who are not majoring in computer science respond to evaluation
situations [45]. The automatic evaluation system was utilized with TA’s support. Because of
this, the manual’s (TA’s) input was useful but not always practical to access.

A framework for understanding the what, why, and how of formative assessment of
inroductory programming in K—12 computer science was developed in order to answer the
overall need for understanding formative assessment [19]. Thus, CS research on assessment
design and programming learning, particularly student misconceptions, has an impact on the
formative assessment questions’ design [19]. Another study focused on how repeat questions
can give students rapid feedback by using an internet platform called HERA [38]. It argues
that the formative feedback was important and helpful for computational thinking [38].
According to another study [23], suggestions about unit length, unit complexity, and code
duplication were the most beneficial to students. While this feedback does not help with the
assignment, it enhances understanding [23].

A study [29] looked at the role of self-assessment in computer programming. Interest
in learning is developing as a result of self-efficacy. The results of this study indicate that
formative self-assessment may improve students’ performance in an introductory programming
course. Exercises in self-assessment with a rubric might be beneficial for first-year students.
It was found that students who got comprehensive feedback on their learning were more
motivated than those who merely got a rubric-based evaluation. According to this study,
however, it was discovered that the self- assessment intervention had a practically significant
impact on students’ performance on programming projects. Another study [49] looked at the
effects of open-ended assessment on students learning introductory programming in terms of
performance and self-efficacy. Students who routinely completed the open-ended versions
had higher average self-efficacy scores and assignment marks, though not by a statistically
significant amount.

Because they can accommodate an endless number of students and submissions, Auto-
mated Testing and Feedback (ATF) systems were examined in this study to meet the
demand [13]. The learning process can be completed by the student by submitting a novel
answer and promptly receiving feedback. Feedback can address syntax errors, output accur-
acy, code performance, and if the code adheres to instructions exactly. The engagement and
learning behaviors of learners in massive open online course (MOOCSs) are examined in this
study. This study found that code feedback is one of the most crucial aspects of MOOCs
for programming and that there might be a positive trend toward ATF users getting better
grades.

7 Conclusion

This systematic review revealed that most systems used customised feedback for formative
assessment which adds more scaffolding to support learners’ progression to the next level
[13, 19]. In these systems, if the code is correct, students can receive automatic formative



J. Thangaraj, M. Ward, and F. O’Riordan

feedback based on automated unit and system tests; if not, they receive error messages to
fix it out [18, 5]. Students praised the quick feedback and the ongoing drive to decrease
the performance gap between actual and intended performance, and the efficacy was rated
successful [17]. The study’s positive findings support the use of formative assessments
for introductory programming courses, and it makes the case that formative rather than
summative assessments improve student experience [4]. Verifier generated feedback enabled
the students to recognize and fix the errors using verification techniques [11, 3]. Students’
programming skills steadily increased because of formative assessment based on peer code
review [53, 31]. When an automated assessment system was incorporated with manual
feedback, the result was more beneficial, but it was not always realistically accessible [45].
Self-efficacy has attracted growing interest in learning. The findings of this study suggest
that formative self-assessment may enhance students’ performance in a course on basic
programming [49]. It was discovered that students who received granular feedback during
their learning were more motivated than those who only received evaluation using a rubric
and open-ended questions [29]. The positive is all these studies found the formative feedback
(customised or standard error messages) were helpful to motivate, scaffold, engage or self-assess
the learners in learning programming [23, 7, 29, 49, 45].

7.1 Limitations

However, only a few studies focused on novice learners and introductory programming
[29, 45, 8]. There is no clear evidence that these formative assessments were helpful in
motivating specifically the novice learners in programming assignments. By showing the
result of the program that was submitted and the anticipated output, the generated feedback
instructs students about the test case’s success or failure [8]. The work’s limitation was
that it did not say whether it was useful for novice programmers who were just starting out
or the introductory programming module [5]. Another limitation is that all these systems
assess the same questions to all students. It does not support students with different abilities.
Adaptive techniques are used in formative assessment to achieve its goals [56]. When a
student provides an erroneous response to a question, the system can progressively lead
the student through a discovery process that results in the proper solution, breaking down
complex concepts one step at a time [35]. When students fail, it aids in providing assistance
and encourages personalised learning [59].

7.2 Implications

This study provides an overall analysis of the formative assessment that underpins the
programming module in various educational settings. For several factors, including scaffold,
motivation, self-confidence, and engagement, enormous amounts of evidence was discovered.
The utilization of feedback techniques and student participation in formative assessment, we
discovered, had an impact. The findings of this review also suggest that several variables
may have an impact on the various formative assessment strategies. To better assist novice
programmers in learning programming, formative assessment needs to improve how it presents
error messages. We could not find any research that addressed formative assessment or the
use of feedback, despite the fact that these elements are probably crucial for inspiring novice
learners. There is also less support for several criteria including adaptive strategy, purely
because fewer research have looked into them. As a conclusion, this study recommends on
how to use an adaptive strategy in the process of formative assessment, in order to especially
motivate novices and boost their knowledge and confidence. Therefore, this study’s next work

7:9

ICPEC 2023



7:10

A Systematic Review of Formative Assessment

will design a formative assessment system that uses the adaptive strategy with enhanced

error messages to evaluate the ability level of the novice students and motivate them to learn
programming to acquire the necessary knowledge.

—— References

1

10

11

12

13

14

15

Elizabeth Acosta-Gonzaga and Aldo Ramirez-Arellano. Scaffolding Matters? Investigat-
ing Its Role in Motivation, Engagement and Learning Achievements in Higher Education.
Sustainability, 14(20), 2022. doi:10.3390/su142013419.

Francisca A. Adamopoulos. Learning Programming, Student Motivation, pages 1-10. Springer
International Publishing, Cham, 2019. doi:10.1007/978-3-319-60013-0_182-1.

Felipe I. Anfurrutia, Ainhoa Alvarez, Mikel Larrafiaga, and Juan-Miguel Lépez-Gil. Integrating
Formative Feedback in Introductory Programming Modules. IEEE Revista Iberoamericana de
Tecnologias del Aprendizaje, 13(1):3-10, 2018. doi:10.1109/RITA.2018.2801898.

Dhakshina Moorthy Anitha and Dhakshina Moorthy Kavitha. Online coding event as a form-
ative assessment tool in introductory programming and algorithmic courses —A exploration
study. Computer Applications in Engineering Education, 28:1580-1590, 2020.

Enrique Barra, Sonsoles Lépez-Pernas, Alvaro Alonso, Juan Fernando Sanchez-Rada, Aldo
Gordillo, and Juan Quemada. Automated Assessment in Programming Courses: A Case Study
during the COVID-19 Era. Sustainability, 12(18), 2020. doi:10.3390/su12187451.

Mariette Bengtsson. How to plan and perform a qualitative study using content analysis.
NursingPlus Open, 2:8-14, 2016. doi:10.1016/j.npls.2016.01.001.

Luciana Benotti, Mara Cecilia Martnez, and Fernando Schapachnik. A Tool for Introducing
Computer Science with Automatic Formative Assessment. IEEE Transactions on Learning
Technologies, 11(2):179-192, 2018. doi:10.1109/TLT.2017.2682084.

Anis Bey, Patrick Jermann, and Pierre Dillenbourg. A Comparison between Two Automatic
Assessment Approaches for Programming: An Empirical Study on MOOCs. Journal of
Educational Technology & Society, 21(2):259-272, 2018. URL: http://www. jstor.org/stable/
26388406.

Sébastien Combéfis. Automated Code Assessment for Education: Review, Classification
and Perspectives on Techniques and Tools. Software, 1(1):3-30, 2022. doi:10.3390/
software1010002.

David T. Conley and Elizabeth M. French. Student Ownership of Learning as a Key Component
of College Readiness. American Behavioral Scientist, 58(8):1018-1034, 2014. doi:10.1177/
0002764213515232.

Pedro Delgado-Pérez and Inmaculada Medina-Bulo. Customizable and scalable automated
assessment of C/C++ programming assignments. Computer Applications in Engineering
Education, 28:1449-1466, 2020.

Suzanne W. Dietrich, Don Goelman, Jennifer Broatch, Sharon M. Crook, Becky Ball, Kimberly
Kobojek, and Jennifer Ortiz. Using Formative Assessment for Improving Pedagogy: Reflections
on Feedback Informing Database Visualizations. ACM Inroads, 11(4):27-34, November 2020.
doi:10.1145/3430766.

Hagit Gabbay and Anat Cohen. Investigating the effect of Automated Feedback on learning
behavior in MOOCs for programming. In Proceedings of the 15th International Conference
on Educational Data Mining, pages 376-383. International Educational Data Mining Society,
July 2022. doi:10.5281/zenodo.6853125.

Donn Randy Garrison. E-learning in the 21st century: A community of inquiry framework for
research and practice. Third Edition, October 2016. doi:10.4324/9781315667263.

Ashok Goel and David Joyner. Formative Assessment and Implicit Feedback in Online
Learning. In Proceedings of Learning with MOOCs III, Philadelphia, PA, 2016. URL:
https://www.davidjoyner.net/blog/formative-assessment-and-implicit-feedback-in-

online-learning/.


https://doi.org/10.3390/su142013419
https://doi.org/10.1007/978-3-319-60013-0_182-1
https://doi.org/10.1109/RITA.2018.2801898
https://doi.org/10.3390/su12187451
https://doi.org/10.1016/j.npls.2016.01.001
https://doi.org/10.1109/TLT.2017.2682084
http://www.jstor.org/stable/26388406
http://www.jstor.org/stable/26388406
https://doi.org/10.3390/software1010002
https://doi.org/10.3390/software1010002
https://doi.org/10.1177/0002764213515232
https://doi.org/10.1177/0002764213515232
https://doi.org/10.1145/3430766
https://doi.org/10.5281/zenodo.6853125
https://doi.org/10.4324/9781315667263
https://www.davidjoyner.net/blog/formative-assessment-and-implicit-feedback-in-online-learning/
https://www.davidjoyner.net/blog/formative-assessment-and-implicit-feedback-in-online-learning/

J. Thangaraj, M. Ward, and F. O’Riordan

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Rubén Gonzilez. ICE: An Automated Tool for Teaching Advanced C Programming. Interna-
tional Association for Development of the Information Society, 2017.

Peadar F. Grant. Formative test-driven development for programming practicals. AISHE-J:
The All Ireland Journal of Teaching and Learning in Higher Education, 9, 2017.

Beate Grawemeyer, John Halloran, Matthew England, and David Croft. Feedback and
Engagement on an Introductory Programming Module. CoRR, abs/2201.01240, 2022. arXiv:
2201.01240.

Shuchi Grover. Toward A Framework for Formative Assessment of Conceptual Learning in
K-12 Computer Science Classrooms. In Association for Computing Machinery, SIGCSE ’21,
pages 31-37, New York, NY, USA, 2021. doi:10.1145/3408877.3432460.

Sugandha Gupta and Anamika Gupta. E-Assessment Tools for Programming Languages: A
Review. In International Conference on Information Technology and Knowledge Management,
2018.

Thomas Hainey, Gavin Baxter, Julie Black, Kenneth Yorke, Julius Bernikas, Natalia
Chrzanowska, and Fraser McAulay. Serious games as innovative formative assessment
tools for programming in higher education. In ECGBL, 16th European Conference on
Games Based Learning, 6 - 7 October 2022, Lisbon, Portugal, June 2022. URL: https:
//www.academic-conferences.org/conferences/ecgbl/.

Jared Howland, Thomas Wright, Rebecca Boughan, and Brian Roberts. How Scholarly
Is Google Scholar? A Comparison to Library Databases. College € Research Libraries,
70:227-234, May 2009. doi:10.5860/crl.70.3.227.

Julian Jansen, Ana Oprescu, and Magiel Bruntink. The impact of automated code quality
feedback in programming education. In Post-proceedings of the Tenth Seminar on Advanced
Techniques and Tools for Software Evolution (SATToSE), volume 210, 2017.

Maria Kallia. Assessment in Computer Science courses: A Literature Review. In King’s
College London, 2017.

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. A Systematic Literature Review of
Automated Feedback Generation for Programming Exercises. ACM Transactions on Computing
Education, 19:1-43, September 2018. doi:10.1145/3231711.

Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic Literature
Reviews in Software Engineering. Keele University and University of Durham technical report,
2, January 2007.

Melisa Koorsse, Charmain Cilliers, and André P. Calitz. Programming assistance tools to
support the learning of IT programming in South African secondary schools. Comput. Educ.,
82:162-178, 2015.

Nguyen-Thinh Le. A Classification of Adaptive Feedback in Educational Systems for Program-
ming. Systems, 4(2), 2016. doi:10.3390/systems4020022.

Alex Lishinski and Aman Yadav. Self-evaluation Interventions: Impact on Self-efficacy and
Performance in Introductory Programming. ACM Transactions on Computing Education
(TOCE), 21:1-28, 2021.

Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny, Raymond
Pettit, and James Prather. Metacognition and Self-Regulation in Programming Education:
Theories and Exemplars of Use. ACM Trans. Comput. Educ., 22(4), September 2022. doi:
10.1145/3487050.

Jose Manappattukunnel Lukose and Kuttickattu John Mammen. Enhancing Academic
Achievement in an Introductory Computer Programming Course through the Implementation
of Guided Inquiry-Based Learning and Teaching. In Asia-Pacific Forum on Science Learning
and Teaching, volume 19,2, 2018.

Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio Mirolo,
Andreas Miihling, Andrew Petersen, Kate Sanders, Simon, and Jacqueline Whalley. Devel-
oping Assessments to Determine Mastery of Programming Fundamentals. In Association
for Computing Machinery, ITICSE-WGR ’17, pages 47-69, New York, NY, USA, 2018.
d0i:10.1145/3174781.3174784.

7:11

ICPEC 2023


https://arxiv.org/abs/2201.01240
https://arxiv.org/abs/2201.01240
https://doi.org/10.1145/3408877.3432460
https://www.academic-conferences.org/conferences/ecgbl/
https://www.academic-conferences.org/conferences/ecgbl/
https://doi.org/10.5860/crl.70.3.227
https://doi.org/10.1145/3231711
https://doi.org/10.3390/systems4020022
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3174781.3174784

7:12

A Systematic Review of Formative Assessment

33

34

35

36

37

38

39
40

41

42

43

44

45

46

47

48

49

50

Daniel M. Maggin, Erin Barton, Brian Reichow, Kathleen Lynne Lane, and Karrie A. Shogren.
Commentary on the What Works Clearinghouse Standards and Procedures Handbook (v. 4.1)
for the Review of Single-Case Research. Remedial and Special Education, 43(6):421-433, 2022.
doi:10.1177/07419325211051317.

Sohail Igbal Malik and Jo Coldwell-Neilson. A model for teaching an introductory programming
course using ADRI. Education and Information Technologies, 22:1089-1120, 2017.

Marina Marchisio, Tiziana Margaria, and Matteo Sacchet. Automatic Formative Assessment in
Computer Science: Guidance to Model-Driven Design. In 2020 IEEE 44th Annual Computers,
Software, and Applications Conference (COMPSAC), pages 201-206, 2020.

Lauren E. Margulieux, Briana B. Morrison, and Adrienne Decker. Reducing withdrawal and
failure rates in introductory programming with subgoal labeled worked examples. International
Journal of STEM Education, 7:1-16, 2020.

Timothy Meline. Selecting Studies for Systemic Review: Inclusion and Exclusion Criteria.
Contemporary Issues in Communication Science and Disorders, 33(Spring):21-27, 2006. doi:
10.1044/cicsd_33_S_21.

Laura Orozco-Garcia, Carolina Gonzalez, Juan Montano, Cristian Mondragon, and Hendrys
Tobar-Munoz. A Formative Assessment Tool to Support Computational Thinking in the
Classroom. In 2019 International Conference on Virtual Reality and Visualization (ICVRV),
pages 185-188, 2019. doi:10.1109/ICVRV47840.2019.00043.

Elena C. Papanastasiou. Adaptive Assessment, pages 18-19. Springer Verlag, 2015.
Raymond Pettit, J.D. Homer, K.M. Holcomb, N. Simone, and Susan Mengel. Are automated
assessment tools helpful in programming courses? ASEE Annual Conference and Exposition,
Conference Proceedings, 122, January 2015.

James E. Prather. Beyond Automated Assessment: Building Metacognitive Awareness in
Novice Programmers in CS1. In Nova Southeastern University, 2018.

Yizhou Qian and James Lehman. Students’ Misconceptions and Other Difficulties in Intro-
ductory Programming: A Literature Review. ACM Trans. Comput. Educ., 18(1), October
2017. doi:10.1145/3077618.

Yizhou Qian and James Lehman. Using an automated assessment tool to explore difficulties
of middle school students in introductory programming. Journal of Research on Technology in
Education, 54:1-17, January 2021. doi:10.1080/15391523.2020.1865220.

Brian J. Reiser and Iris Tabak. Scaffolding, pages 44-62. Cambridge University Press, United
Kingdom, January 2014. doi:10.1017/CB09781139519526.005.

Emma Riese and Stefan Stenbom. Experiences of Assessment in Introductory Programming
From the Perspective of NonComputer Science Majors. In 2020 IEEE Frontiers in Education
Conference (FIE), pages 1-9. IEEE Press, 2020. doi:10.1109/FIE44824.2020.9274060.

Siti Nurulain Mohd Rum and Maizatul Akmar Binti Ismail. Metacognitive Support Accelerates
Computer Assisted Learning for Novice Programmers. J. Educ. Technol. Soc., 20:170-181,
2017.

G. W. Scott. Active engagement with assessment and feedback can improve group-work
outcomes and boost student confidence. Higher Education Pedagogies, 2(1):1-13, 2017.
doi:10.1080/23752696.2017.1307692.

Nicole Shanley, Florence Martin, Nicole Collins, Manuel Perez-Quinones, Lynn Ahlgrim-Delzell,
David Pugalee, and Ellen Hart. Teaching Programming Online: Design, Facilitation and
Assessment Strategies and Recommendations for High School Teachers. TechTrends, 66, April
2022. doi:10.1007/s11528-022-00724~x.

Sadia Sharmin, Daniel Zingaro, Lisa Zhang, and Clare Brett. Impact of Open-Ended Assign-
ments on Student Self-Efficacy in CS1. In CompEd ’19: Proceedings of the ACM Conference
on Global Computing Education, pages 215-221, April 2019. doi:10.1145/3300115.3309532.
Valerie J. Shute. Focus on Formative Feedback. Review of Educational Research, 78(1):153-189,
2008. doi:10.3102/0034654307313795.


https://doi.org/10.1177/07419325211051317
https://doi.org/10.1044/cicsd_33_S_21
https://doi.org/10.1044/cicsd_33_S_21
https://doi.org/10.1109/ICVRV47840.2019.00043
https://doi.org/10.1145/3077618
https://doi.org/10.1080/15391523.2020.1865220
https://doi.org/10.1017/CBO9781139519526.005
https://doi.org/10.1109/FIE44824.2020.9274060
https://doi.org/10.1080/23752696.2017.1307692
https://doi.org/10.1007/s11528-022-00724-x
https://doi.org/10.1145/3300115.3309532
https://doi.org/10.3102/0034654307313795

J. Thangaraj, M. Ward, and F. O’Riordan

51

52

53

54

55

56

57

58

59

Judith Stanja, Wolfgang Gritz, Johannes Krugel, Anett Hoppe, and Sarah Dannemann.

Formative assessment strategies for students’ conceptions—The potential of learning analytics.
British Journal of Educational Technology, 54(1):58-75, 2023. doi:10.1111/bjet.13288.
Ricarda Steinmayr, Anne F. Weidinger, Malte Schwinger, and Birgit Spinath. The Importance
of Students’ Motivation for Their Academic Achievement — Replicating and Extending Previous
Findings. Frontiers in Psychology, 10, 2019. doi:10.3389/fpsyg.2019.01730.

Qing Sun, Ji Wu, Wenge Rong, and Wenbo Liu. Formative assessment of programming
language learning based on peer code review: Implementation and experience report. Tsinghua
Science and Technology, 24:423-434, August 2019. doi:10.26599/TST.2018.9010109.

Elise Trumbull and Andrea A. Lash. Understanding Formative Assessment Insights from
Learning Theory and Measurement Theory. In WestEd, 2013.

Fabienne M. van der Kleij, Theodorus Johannes Hendrikus Maria Eggen, Caroline F. Timmers,
and Bernard P. Veldkamp. Effects of feedback in a computer-based assessment for learning.
Comput. Educ., 58:263-272, 2012.

Jill-Jénn Vie, Fabrice Popineau, Eric Bruillard, and Yolaine Bourda. A Review of Recent
Advances in Adaptive Assessment, volume 94, pages 113-142. Studies in Systems, Decision
and Control, February 2017. doi:10.1007/978-3-319-52977-6_4.

Xijao-Ming Wang, Gwo-Jen Hwang, Zi-Yun Liang, and Hsiu-Ying Wang. Enhancing students’
computer programming performances, critical thinking awareness and attitudes towards
programming: An online peer assessment attempt. FEducational Technology and Society,
20:58-68, January 2017.

Stelios Xinogalos, Tom&s Pitner, Milos Savié¢, and Mirjana Ivanovié¢. First Programming
Language in Introductory Programming Courses, Role of, pages 1-11. Springer International
Publishing, Cham, 2019. doi:10.1007/978-3-319-60013-0_217-1.

Albert Yang, Brendan Flanagan, and Hiroaki Ogata. Adaptive formative assessment system
based on computerized adaptive testing and the learning memory cycle for personalized
learning. Computers and Education: Artificial Intelligence, 3:100104, October 2022. doi:
10.1016/j.caeai.2022.100104.

7:13

ICPEC 2023


https://doi.org/10.1111/bjet.13288
https://doi.org/10.3389/fpsyg.2019.01730
https://doi.org/10.26599/TST.2018.9010109
https://doi.org/10.1007/978-3-319-52977-6_4
https://doi.org/10.1007/978-3-319-60013-0_217-1
https://doi.org/10.1016/j.caeai.2022.100104
https://doi.org/10.1016/j.caeai.2022.100104

	1 Introduction
	2 Related Works 
	3 Research Methodology 
	3.1 Data Sources and Search Strategies 
	3.2 Inclusion and Exclusion Criteria 

	4 Data Coding
	4.1 Formative Feedback Purpose: (RQ1) 
	4.1.1  Scaffold 
	4.1.2  Motivation
	4.1.3 Metacognitive and Self-efficacy
	4.1.4 Engagement 

	4.2  Nature of Formative Feedback: (RQ2) 
	4.2.1  Assessment Approach
	4.2.2  Feedback Types
	4.2.3  Feedback Mechanism


	5 Results
	5.1  Purpose of Formative Feedback (RQ1)
	5.2  Feedback Strategies (RQ2)
	5.3  Novices' Support (RQ3)

	6 Discussion
	7 Conclusion
	7.1 Limitations
	7.2 Implications


