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Abstract
This paper explores the possibility of large language models as a fourth generation programming
language compiler. This is based on the idea that large language models are able to translate a
natural language specification into a program written in a particular programming language. In
other words, just as high-level languages provided an additional language abstraction to assembly
code, large language models can provide an additional language abstraction to high-level languages.
This interpretation allows large language models to be thought of through the lens of compiler
theory, leading to insightful conclusions.
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1 Introduction

As the title suggests, this is a speculative paper discussing whether large language models
could be considered a higher level of programming language in relation to current high-level
languages. In short, assembly language (2nd generation) replaced punch-card programming
(1st generation) by introducing mnemonics. These allowed larger and more complex programs
to be created in less time. High level languages (3rd generation) in turn replaced assembly
language by introducing structured English constraints.

The hypothesis explored in this paper is that large language models could be a 4th

generation language, replacing high-level languages by allowing natural language specifications.
The aim is then to discuss the strengths and weaknesses of large language models running as
natural to high-level language compilers. Other natural language processing tasks that would
be associated with an interpreter are therefore beyond the scope of this paper. The question
that arises is whether large language models can provide an additional level of abstraction
for programming [10] similar to the high-level languages provided for assembly language.

As a disclaimer, this paper uses ChatGPT as a basis for discussion, but does not consider
ChatGPT to be a compiler. A 4th generation compiler, as well as a 3rd generation compiler,
is expected to produce executable code as a result, not intermediate code as ChatGPT does.
Note that there are fine-tuned solutions for programming, such as the GitHub co-pilot, but
due to its current paywall ChatGPT 3.5 is used in this paper. Although ChatGPT is used
to support this discussion, a proper setup should be designed for proper use of the large
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10:2 Compilers Based on Large Language Models?

language model as a compiler. In this setup, a programmer is not expected to interfere with
the lower-level code any more than a programmer is expected to modify the assembly code
generated by a high-level language compiler.

Furthermore, a single prompt is not expected to be sufficient to produce industrial-scale
software, nor is a single specification sufficient to achieve the same end. A typical requirement
analysis takes several months and results in thousands of mutable requirements whose
complexity is managed by interactive and incrementally throughout the project [14]. There
is no reason to believe that this will change with the replacement of compiler technology.
Therefore, industrial-scale software would require several mutable prompts in order to properly
specify an industry level software product.

It is also worth noting that this proposal is not related to no-code or low-code initiatives.
In short, these initiatives aim to provide a different way of doing traditional programming,
but without providing the higher level language abstraction that large language models do.
Despite several papers are addressing large language models for code synthesis, it was not
possible to find any discussing it from the compiling perspective [16]. It was also not possible
to find papers referring to 4th or next generation compilers linked with large language models;
most are linked with model-driven [12] or domain-specific [17] approaches.

2 Theoretical Foundations

Current large language models are based on Transformers (see figure 1). Perhaps the core
element in Transformers is the attention mechanism [5]. In brief, given an input embedding,
the attention mechanism reweights the embeddings for each token in the input to match
the context of the input sentence. For example, let bank be a token in the input sentence
whose sense is equidistant from river and money in the embedding model. Multiplying the
embedding values of bank by the embeddings of the other words in the input sentence is
expected to bias the bank token towards the appropriate sense.

(a) Overall Architecture. (b) Multi-head attention. (c) Scaled dot-product attention.

Figure 1 Transformers cf. [13]. Note that (c) is in (b), which is in (a).
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The attention mechanism is the underlying principle of prompt engineering. In a nutshell,
prompt engineering is concerned with designing a prompt that, when queried by a large
language model, returns the best possible answer. As a rule of thumb, a prompt cf. [9]
consists of: a) instruction; b) context; c) input data; and d) output indicator. Prompt
engineering is therefore less about acting out a natural language conversation, and more
about describing specific instructions aimed at an output.

This leads to the almost straightforward conclusion that large language models can be
understood as a natural language processor (see [1]). A compiler, or translator, is a type
of language processor that converts sentences from a usually high-level source language to
an often low-level target language. The compiled sentences are interpretable by the target
machine, which behaves accordingly. Considering that Transformers was built with the
goal of natural language translation in mind [13], a relationship between Transformers and
compilers can be suggested, with the source language being a natural language and the target
language being a high-level language.

3 Proof of Concept

For reference, consider the introductory programming class problem:

The soldiers of the queen of hearts have a problem: once again the queen has sent
them to fetch cookies for tea. Five of the soldiers went to get the cookies and returned.
Since only one of the soldiers can enter the tea room with the cookies, they need to
choose one of them. The problem is that the queen is greedy and has very little patience.
Either they quickly figure out which soldier brought the most cookies or they will lose
their heads. Your task is to write a program to find the answer.

(1)

The above problem has been prompted in ChatGPT as is. The result is shown in the figure
2a. Recall that a prompt cf. [9] is composed of: a) instruction; b) context; c) input data; and
d) output indicator. These are the elements being required by the model. ChatGPT does
not always give the same output for the same prompt, this is due to the Q, K, V (stands for
query, key and value) weight matrices used by the attention mechanism (see figure 1). On a
second run of this prompt in a different ChatGPT instance, the language model adopted the
previously requested parameters and returned the source code shown in 2b. Therefore, in
order to reduce variation, it is necessary to be as specific as possible on prompt building.

Note that the code in figure 2b is well-structured Python source code, capable of running
on a Python machine. An immediate assumption is that by providing a formal specification,
the resulting code would be enhanced. Prompt (1) is then rewritten as prompt (2) using
simple set notation and submitted to ChatGPT, resulting in the code shown in figure 3. Note
that the code in figure 3 is not necessarily better or more readable than the code in figure 2b.
Such an assumption is therefore not necessarily true in the domain of large language models.

Let S = {s1, ..., sn|n = 5} be a set of soldiers, C = {c1, ..., cn|n = 5} be the number of
cookies brought by each soldier, and f : S → C is a function that returns the number
of cookies of each soldier. The soldier with the maximum number of cookies is given
by max({f(s)|∀s ∈ S}) ⊢ min(s). Write a program to implement this algorithm.

(2)

The formal assumption is probably based on the idea that since natural language is ambiguous,
some mathematical notation is necessary. This is true in so far as it is not possible to go
through a process of clarification by asking questions, which is not the case in ChatGPT, as
shown in figure 2a. This does not mean that formal expressions should be avoided, but, as
suggested after figure 3, that it is necessary to understand how to use them in this context.
Also, that (2) may not be the best way to provide formal specification on ChatGPT.
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(a) First response.

(b) Second response.

Figure 2 ChatGPT’s responses for the same prompt on different instances.

Figure 3 Source code produced by ChatGPT for the formal specification on prompt (2) with
circumventing text removed.
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4 Insights on a 4th Generation Compiler

At this point it is possible to suggest that ChatGPT (i.e. large language models) can be
considered as a translation device. Figure 4 shows a bird’s eye view of a compiler as defined
by Aho et al. in [1] and a translator as defined by Jurafsky et al. in [5]. The word “translator”
is accepted as a synonym for “compiler”, so the former can be considered a deterministic
translator and the latter a probabilistic one.

(a) A compiler instance as presented in [1].

(b) A translator instance as presented in [5].

Figure 4 Deterministic and probabilistic translator instances.

It can also be argued that the deterministic translator is primarily concerned with syntax
(i.e. the structure of sentences based on the Chomsky hierarchy) and the probabilistic
translator with semantics (i.e. the relationship between words based on the distributional
hypothesis). Therefore, it is not a case of replacement, but of composing these two translation
strategies. As a result, if a source is generated with syntactic errors, the generator would
produce an improved source by using the error messages as feedback. Note that the use
of examples is an important prompt feature due to the few-shot learning property of large
language models [2]. This in turn can be manifested as unit tests [11]. In this sense, not
only syntactic errors but also behavioural errors eventually introduced by the generator can
be automatically corrected. Note also that, not all information may be provided in a prompt.
There are two situations to consider. One is the prompt within a project, from which the
additional information can be retrieved (e.g. elements of a class, UML blueprints, etc.). If
the required information is ambiguous or missing, the compiler is expected to prompt the
programmer as shown in figure 2a with each interaction improving either the context or the
specification. Note that the correct definition of the prompt is the cornerstone of improved
generation; a context with more information than necessary is just as harmful as a context
with no information at all. A structured as such is depicted on figure 5.

It is worth noting that if the complexity of the specification becomes unmanageable, it
can be split or simply deleted to start again. Splitting opens up the possibility of tackling
increasingly large software. Regardless of the development process used (prescriptive or
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Figure 5 Suggested structure for a 4th generation compiler based on large language models.

agile), the overall organization of the project elements ends up being arranged in a tree-like
structure. The same structure can be applied to a series of prompts that make up the
software, helping to establish the correct context for each prompt. Consider the following
Use Case 2.0 [4] partial scenario:

Use-case: Registering to SLATE
1. Authentication Flow

a. The enrollee provides its e-mail, the SuD sends an e-mail with a confirmation link
b. The SuD receives a confirmation and set the status to “authenticated enrolee”

2. [authenticated enrolee] Basic Flow for Author Registration
a. ...

For this discussion, consider step 1a. Note that this step is a self-contained specification
and is sufficient to understand the desired behaviour. However, it is not a prompt in the
sense that there is much information missing. As a reference, the 4+1 view model [7] suggests
the existence of five views: 1) scenario, 2) logic, 3) development, 4) process and 5) physical.
This step description only satisfies the scenario view. For example, on which server is this
web service expected to run? In addition, a scenario is expected to satisfy the FURPS+ [3];
and this step only satisfies the “F”. For example, what would the content of the confirmation
email be? Therefore, prompting is not equivalent to a requirement analysis yet, as any
development task, derives from it.

Note that steps 1a and 1b form a slice (a coherent part of a use case that can be elaborated
into a deployment [4]). Therefore, to produce a deliverable for this slice, a prompt must be
written from these two steps. Considering the constraints presented, the 4+1 view model
and FURPS+, it becomes clear that only a chat-based structure is not sufficient to express a
whole, industrial-scale software (even a slice of it). One possibility of structure to explore is
that provided by literate programming, see [6].

In this sense, from a human perspective, it is not a matter of producing a single prompt,
but of producing a structured document composed of several prompts addressing different
concerns. Given such a document, the compiler would be expected to make two moves. One
towards the refinement of each prompt, i.e. a chat-based interaction aimed at producing an
improved prompt. Another towards the unfolding of additional prompts, i.e. the creation of
additional slots for prompts to address specific problems. For large software, there could be
several specification files, each for a slice. In this perspective, the compiler would act as a
specification co-pilot. Note that the context window used by ChatGPT is about 2048 tokens,
so managing the context of each prompt is also a feature to be considered.

Another support expected from the compiler is the generation of test cases. Following a
behaviour-driven development rationale [11], this leads the programmer to consider several
scenarios that improve the resulting program. From the perspective of this paper, this means
that the programmer would either refine previous prompts or introduce new prompts.

A possible literate programming early paragraph for the authentication slice could be the
one presented in (3). Note that this is not a proper programming prompt yet, submitting it
to ChatGPT, an excerpt can be seen in 6, it retrieves several suggestions that illustrate what
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the refinement and unfolding moves would look like. For example, validating the email with
regular expressions would be a refinement on (3); describing the appearance of the HTML
form (e.g. colour, logo, etc.) would be an unfolding prompt.

This programme is part of a conference registration platform and is designed to verify
that the email provided by a registrant is a valid one. This requires: 1) a web page that
allows the registrant to enter their email address; 2) a web service that receives this
address and sends the confirmation email; and 3) another web service that generates
the confirmation page and waits for the registrant to retrieve it.

(3)

Figure 6 Excerpt of ChatGPT response when prompting (3).

The presented example is based on plain literate programming. Since large language
models are currently turning into multimodal, it is also possible to enrich the specification
with diagrams and other images [15].

5 Conclusion

This paper introduced the possibility of interpreting large language models as a fourth
generation programming language, based on the notion that large language models are capable
of translating a natural language specification into well-formed source code. This notion
opens up and strengthens a wide range of research areas, including further developments from
the compiler perspective to specific prompt engineering techniques for producing programs.
The key discussion is that the current fears and suspicions raised by this technology are
analogous to those that arose during the transition from the second to the third generation
of programming languages. It is therefore a natural phenomenon that should be resolved on
its own terms, as far as the proposal presented in this paper is concerned.

Comparing this approach with a current compiler raises the question of the probabilistic
nature of large language models (the same prompt produces two outputs). In short, this can
be addressed by a fixed, perhaps optimal, internal state with respect to the compilation task.
However, the strengths and weaknesses of such an approach are a subject for future work.
This is somehow related to explainability, a flourishing area of research that is expected to
provide answers to questions about why a model has generated a particular piece of code.

Note that ChatGPT may produce incorrect code, but also that it is not tuned for
programming, and it will eventually become outdated. However, it is expected that a 4th

generation compiler will be able to deal with such problems, just as 3rd generation compilers
will be able to deal with code with syntactic problems (perhaps one way, inspired by genetic
algorithms, would be to produce a few generations and select the best by a set of parameters).
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10:8 Compilers Based on Large Language Models?

This assertion assumes that the specification has been written properly and correctly, but
it is also necessary to consider that intentional and induction errors will still exist, but at
a higher level of abstraction. In this sense, if the executable doesn’t run as expected, the
programmer should concentrate on fixing the prompt as he currently does with the source.

This leads to issues related to the dataset, which will also need to be addressed in
future work. Then, considering the compilation task, it would be necessary to understand
the composition of the dataset. Also, which setup would perform better: a general large
language model or a fine-tuned one? What would be the fine-tuning parameters? Also,
when considering prompting, which software engineering tools, methods and principles are
appropriate and which are not. Note that multimodal prompting requires a refresh on
model-driven development, see [8]. Finally, this seems to be a promising area of research to
be explored further.
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