
Hierarchical Data-Flow Graphs
José Pereira #

Checkmarx, Braga, Portugal

Vitor Vieira #

Checkmarx, Braga, Portugal

Alberto Simões #

Checkmarx, Braga, Portugal
2Ai, School of Technology, IPCA, Barcelos, Portugal

Abstract
Data-Flows are crucial to detect the dependency of statements and expressions in a programming
language program. In the context of Static Application Security Testing (SAST), they are heavily
used in different aspects, from detecting tainted data to understanding code dependency.

In Checkmarx, these data flows are currently computed on the fly, but their efficiency is not the
desired, especially when dealing with large projects. With this in mind, a new caching mechanism is
being developed, based on hierarchical graphs.

In this document, we discuss the basic idea behind this approach, the challenges found and
the decisions put in place for the implementation. We will also share the first insights on speed
improvements for a proof of concept implementation.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Software and its engineering → Compilers; Theory of computation → Graph algorithms analysis

Keywords and phrases Data Flow, Static Application Security Testing, Hierarchical Graphs

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.11

Funding Alberto Simões: This paper was partially funded by national funds, through the FCT/
MCTES of the projects UIDB/05549/2020 and UIDP/05549/2020.

1 Introduction

SAST (Static Application Security Testing) [8] is one of the different techniques employed
by Checkmarx for analyzing source code and scanning it for security vulnerabilities. As the
name implies, SAST tools scan the source code without executing it. The identification of
potential security weaknesses is performed after constructing an abstract syntax tree (AST)
for the code being analyzed and using a query system to find specific code patterns. SAST
can be used to detect vulnerabilities such as SQL injection, cross-site scripting, or buffer
overflow situations.

One important feature of SAST tools is the possibility to compute data flows. Data flows
allow the understanding of which expressions have their values affected by the values of
variable declarations or other expressions. This is useful, as an example, to understand if a
query to a database might be influenced directly by the user input, or if, during the data
flow, there is any kind of sanitization1 preventing SQL Injection. One of the first works using
data flows to analyze software reliability was conducted by Fosdick and Osterweil (1974) [4].
Their work includes a comprehensive explanation of what are data flows and how to represent
them as a graph. Data flows are an important part of SAST implementations [7].

1 Sanitization is the term used to any code that prevents the vulnerability to occur, remediating it.

© José Pereira, Vitor Vieira, and Alberto Simões;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 11; pp. 11:1–11:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jose.pereira@checkmarx.com
mailto:vitor.vieira@checkmarx.com
mailto:alberto.simoes@checkmarx.com
https://orcid.org/0000-0001-6961-2660
https://doi.org/10.4230/OASIcs.SLATE.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


11:2 Hierarchical Data-Flow Graphs

The Checkmarx SAST engine does data flow analysis on demand, meaning that, whenever
a calculation is requested, rather than traversing a graph looking for paths between sources
and sinks2, it computes which are the next AST nodes to visit checking what immediate
data is affected by the first. This process iterates until a destination is eventually reached, or
there are no more adjacent nodes.

This might seem inefficient but, in fact, the traditional strategy of path-finding on an
actual graph was used before and it produced results 30% slower on average than the current
solution. The cause for this is the unnecessary graph expansion for every node on the abstract
syntax tree, even when no flow calculation is requested from them, allied with the fact that
the computational weight of finding a path in a large graph is heavier than computing
adjacency between nodes. Still, the process consumes a considerable portion of scan time,
averaging 30% scan time for most source projects.

The proposal is to cache a graph in which there’s enough context to avoid searching
impossible paths when specific sources and sinks are used. For that, clusters of vertices are
created, each one representing an entry or exit point of a certain context. The idea is to be
able to match any node on the AST to a cluster of vertices and therefore understand if it is
worth exploring for a specific path. There can be several kinds of grouping strategies for the
clusters as we will discuss later. For the Proof-of-Concept (POC) described here, nodes were
grouped functions/methods in which they are encapsulated.

In the next Section, a small literature review is presented focusing on the main concepts
used in the implementation of this solution. Follows Section 3 where the current data flow
engine algorithm is explained, allowing a better understanding of the proposed approach.
Section 4 describes the POC, including a first evaluation of the obtained results. Section 5
concludes with some final remarks and describes future work.

2 Literature Review

As a first note, Data Flows and Static Application Security Testing are not new concepts.
As shown in this section, most of the concepts have more than 50 years. Nevertheless, these
concepts are the base that support the development of the Proof-of-Concept here described.

In 1976, Allen and Cocke [1] present multiple situations in which a program data flow
can be of use. One of the most relevant for this work is to know what data use might be
affected by a particular variable definition, and the inverse, for a given use of a variable, the
definitions which can potentially supply values to it. They provide a formal definition of
what a data flow is, which might be summarized as a connected, directed graph with a single
entry point (usually a variable declaration), and where each vertex3 represents a statement
or expression whose value depends on the graph entry point or an expression or part of an
expression which modifies that data item.

As referred to in the introduction, Fosdick and Osterweil [4] present in their paper the
definition of a data flow, including a couple of examples of how to represent them as directed
graphs, as well as how these flows can be used to detect software implementation problems.
They present a system to analyze Fortran code, called DAVE, that detects some of the most
common data flow anomalies. DAVE performs this analysis by computing a flow graph
search for each variable in a given unit and analyzing subprograms. This is, probably, one of
the first SAST implementations.

2 The term source or input are traditionally used as the first node in the flow search, while the sink is the
target node (or target nodes).

3 For clearness, the term node will be used to refer to an item in the Abstract Syntax Tree, and the term
vertex will be used to refer to graph vertices. In most cases, a vertex represents a node, and therefore,
some confusion may arise.



J. Pereira, V. Vieira, and A. Simões 11:3

In their book [6], Khedker, et al. describe many different approaches for data flow analysis,
and how they can be used to find different situations. The book finishes with a chapter on
implementing data flow analysis in C programs using the GCC C compiler.

There are other examples of data flow analysis, that are not listed here, as they are
focused on a single programming language, as the examples shown above.

3 Checkmarx Lazy Flow

Checkmarx SAST solution supports data flow computation. It is executed on demand, every
time a specific flow is required. The flow can be computed in the flow direction (execution
flow) or backwards. This allows the engine to choose the direction that promises a relatively
smaller number of paths. This feature is known as Lazy Flow and is used by most queries
used to find vulnerabilities.

The Lazy Flow process receives a set of input nodes from the Domain Object Model4
(DOM), and a set of sink nodes. The algorithm is also able to deal with a set of sanitizer
nodes. These nodes are user-defined and consist of a set of specific instructions that should
be considered a flow barrier. As an example, consider the storage of personal information as
a password in a database. The flow could be discarded if the password gets encrypted (thus
making the flow not vulnerable). The encryption functions act as barriers and are considered
sanitizers.

The Lazy Flow algorithm considers each expression or statement as a potential hop in
the flow. Each hop has two visitors that decide the possible next (or previous) nodes to look
up, according to the flow direction. The search ends whenever a sanitiser node is found or
when a maximum number of hops was visited. The algorithm only considers the shorter
path between two specific nodes for efficiency.

This flow computation is performed on-the-fly, every time a flow is requested as shortly
described in the Section 1. This means that highly reused code blocks are scanned over and
over again for different vulnerability detection, producing a time overhead. This is the main
problem the proposed POC tries to tackle.

Note that the fact that the graph is not persistent (there is not a proper graph repres-
entation for the possible flows) does not have a real impact in terms of performance, as
the Domain Object Model acts as the graph, and only in very specific situations the edge
computation is not immediate.

4 Data Flow Hypergraph

A common solution for reducing the complexity of a graph is creating an abstraction that
clusters vertices together. Each cluster becomes a new vertex, and edges between these
clusters are aggregations of the original edges. Inside each cluster, a vertex is a graph.

These data structures are usually referred to as hierarchical graphs and are well-studied.
The path-finding algorithms perform at the top level and, when a concrete path is required,
look inside the relevant clusters to compute the real path.

These structures are heavily used in navigation, being in artificial or real worlds, and
therefore applications are found in the areas of video games, robotics and geographic
information systems. Examples of applications of Hierarchical Graphs (HG) include Pelechano

4 The Domain Object Model can be perceived as an Abstract Syntax Tree whose structure is shared
among different languages, and that does not mimic exactly the parsed code, but its semantics.

SLATE 2023



11:4 Hierarchical Data-Flow Graphs

and Fuentes (2016) [9] work for path-finding in Meshes, or the work by Antikainen (2013) [2]
use of HG for non-uniform traversal costs. Other examples can be found in the literature [5,
11, 3]. We will use the term Hypergraph to refer to the concrete HG implementation.

For the use case under consideration, one of the first discussions is about the clustering
approach. How to consider two nodes from the DOM to be part of the same cluster? This
discussion will be presented in Section 4.1. Follows Section 4.2 with an in-depth explanation
of the adopted clustering approach. Section 4.3 explains how the HG is being used and
presents some analysis of the obtained results.

4.1 Clustering DOM Nodes
One first decision to take is how to cluster the DOM nodes, to produce the hierarchical
graph. The approach to cluster the nodes can be defined accordingly with different semantic
approaches. The two main ideas discussed were:

Cluster nodes by the file in which they appear. This was the first idea given the parallel
work on an incremental parsing mechanism that deals with the change of a single file in a
project repository. This clustering would make the process of updating the HyperGraph
easy. Nevertheless, there is no clear definition of what a flow inside a file is. While in
some languages or some projects that might exist, a simple file that is just a library would
be hard to be properly grouped as a cluster, as it would have an extremely large number
of inbound and outbound edges.
Cluster nodes by the function in which they appear. This would mean that a vertex in
the Hypergraph would be a function and connections will represent the flows that enter or
exits that function. While the number of vertexes will rise, compared with the previous
approach, there is a clear semantic meaning of edges: they are method invocations or
stack frames. Curiously, this is quite similar to the second approach proposed by Sharir
and Pnueli [10] in 1981.

While the chosen approach was to cluster based on functions, and as it will be seen in the
next sections, some changes on the original idea were performed to encompass different entry
and exit points from methods. This will be described in the next section.

4.2 Method-based Clustering
For this POC, the chosen strategy to cluster vertices was by method/function invocation.
The term method will be used to refer to both functions and methods because the DOM was
designed for object-oriented programming languages and despite being able to also support
other paradigms, functions are wrapped in default classes for the sake of compatibility,
making them static methods.

A DOM node belongs to a specific method cluster if it is under the methods sub-tree.
Therefore, computing the first ancestor which is a method declaration is enough to infer
the vertex the node belongs to. Vertices on the Hypergraph should be entry points of
methods, such as parameters, and exit points, like return statements. Note that data can
flow in and out of methods through other kinds of nodes. Arguments can lead us to other
clusters/methods and method calls can make data flow into a method.

Edges on the Hypergraph are flows between the entry and exit points. Whenever there
are nodes in between this flow, these sequences are stored in the graph, annotating it. This
sequence represents the data flow from the method entry point to an exit point.

Follows a simple example. Consider the C#-like code sample in Listing 1, which describes
a basic program that would take in an input string and execute one SQL command, that is
affected by that same input.



J. Pereira, V. Vieira, and A. Simões 11:5

Listing 1 Sample C# code with interprocedural calls.
void main() {

string someInput = readFromStdIn ();
handleInput(someInput );

}

void handleInput(string someInput) {
if(isBadInput(someInput )) {

printErrorMessage(someInput );
abort ();

}
else {

string preparedStatement = prepareStatement(someInput );
executeSqlStatement(preparedStatement );

}
}

string prepareStatement(someInput) {
return "SELECT␣*␣FROM␣USERS␣WHERE␣USERNAME␣=␣" + someInput;

}

void executeStatement(string sqlStatement) {
printResults(database.Execute(sqlStatement ));

}

Figure 1 shows that same code, where some nodes are highlighted. In green, we have
entry data points, and in red we have exit points. Entry points are, mostly, parameter
declarations (lines 7, 21 and 26) and method calls (lines 3, 9, 16 and 28). Exit points are
return statements (line 23) or parameters inside method calls (lines 4, 9, 11, 16, 17 and 28).

These will be the vertices on the Hypergraph. For the edges, we can compute the data
flow between these nodes and aggregate the sequences between entry and exit points of the
same method. For simplicity, Figure 2 shows only the relevant flows between the entry and
exit nodes. In this image, the purple arrows are edges between an entry point and an exit
point of a method, while the yellow arrows are edges between clusters.

The graph is stored in QuickGraph5 library using specific vertex and edge definitions.
Vertices include the entry or exit node information, and edges include the full path between
these nodes. Looking at Figure 2, purple arrows include paths, while yellow arrows are just
empty edges. The graph is bidirectional, thus allowing the computation of forward and
backward flows.

4.3 Hypergraph Application and metrics

While the final implementation will feature a rewritten flow engine, that will take advantage of
the Hypergraph to decide which paths are worth exploring, following the usual implementation
of hierarchical graphs, currently the POC uses the Hypergraph information as a cache, fast-
forwarding the computation of flows inside methods.

5 https://kernelith.github.io/QuikGraph/

SLATE 2023

https://kernelith.github.io/QuikGraph/


11:6 Hierarchical Data-Flow Graphs

Figure 1 Inbound (green underlines) and outbound flow nodes (red underlines).

Consider an input node and a sink. Given the input node, and considering it is not in
the current function scope, the traditional flow algorithm is computed until a relevant node
is visited: a method call, a parameter declaration, a return statement, or a parameter in a
method call. These are the entry and exit points for the Hypergraph, as stated earlier. At
this point, the Hypergraph is queried. If the sink node is inside the Hypergraph cluster of
nodes, the traditional flow algorithm keeps in charge. If not, the Hypergraph cluster node is
used and the path is fast-forwarded until the end of the flow (next flow jump). While this
process does not reduce the amount of visited paths it reduces the amount of calls to the
path-finding algorithm. This would result in efficiency improvements for large methods, and
little or even an efficiency decrease for small methods.

This prototype implementation was used to measure the performance impact on data
flow calculations of some benchmark projects6, producing the results presented in table 1.

6 These are some open-source projects written in different languages, that are used internally for benchmark
purposes.



J. Pereira, V. Vieira, and A. Simões 11:7

Figure 2 Flows inside functions: purple arrows are paths along lines of code while yellow arrows
are just empty edges.

The first project was the only one with a positive impact from the altered Lazy Flow
algorithm, using the Hypergraph. By correlating flow calculation statistics between these
projects, several things can be observed. AccorStruts is the project leading in terms of time
spent searching for the next references from the total time of flow calculation. Reference
finding is the act of mimicking the program’s control flow in order to understand which
symbol reference is the data flowing into next. This is a costly procedure that has specific
logic for each different DOM node.

One other observation, looking into the paths returned by the Lazy Flow algorithm, is
that the number of resulting flows is different when using the unaltered Lazy Flow and the
version using the Hyperhraph. This is an indicator that the algorithm is probably lacking
context and making some wrong assumptions about node sequences when compared to the
pure Lazy Flow approach. Finally, the only coherent and significant number regarding the
number of path reuses from the Hypergraph is with the AccorStruts project. Every other

SLATE 2023



11:8 Hierarchical Data-Flow Graphs

Table 1 Times before and after the Fast-Forward implementation (LOC=Lines of Code).

Project LOC Query time Query time with FF

AccorStruts 79.857 02:32.3 01:35.7
WebGoat 117.234 10:39.4 11:09.6
Qmxpp 20.478 00:24.0 00:30.3

Bookstore 17.588 00:25.9 00:43.0

project has a very low number of reuse, meaning that either the methods are used only
once per flow, that the clustering approach was not the best, or simply implies bugs in the
implementation.

5 Conclusions and Future Work

In this article, we present a first approach to develop a proof of concept for a hierarchical
graph to compute data flows for SAST. We are still in the early stage of the process, with a
prototype that is already allowing the analysis of the graph reuse and its impact on the flow
computation efficiency. Nevertheless, a lot of effort is still required to have a fully operational
solution. And more investment should be put into the POC to extract clearer conclusions.

In the making of this article, the generation of the Hypergraph and its reuse was achieved
by piggybacking the LazyFlow logic. The next steps would be to match the exact same
results as the standard Lazy Flow with the HyperGraph approach, creating a proper base
for a benchmark. After, the actual idea that served as motivation for the POC should be
put into practice. For that, a custom graph path-finding algorithm needs to be developed,
taking into account the same context that Lazy Flow uses. For instance, one cannot leave a
method cluster through means of a return statement into a different instance from where it
was entered.

Another point that requires further improvement is the use of output or reference
parameters, that are available in some languages. At this point, those were deliberately
ignored to have a simpler setup for initial analysis of the improvements resulting from this
approach.

References
1 F. E. Allen and J. Cocke. A program data flow analysis procedure. Communications of the

ACM, 19(3):137, March 1976. doi:10.1145/360018.360025.
2 Harri Antikainen. Using the hierarchical pathfinding a∗ algorithm in GIS to find paths through

rasters with nonuniform traversal cost. ISPRS International Journal of Geo-Information,
2(4):996–1014, October 2013. doi:10.3390/ijgi2040996.

3 Adi Botea, Martin Müller, and Jonathan Schaeffer. Near optimal hierarchical path-finding.
Journal of Game Development, 1(1):1–22, 2004.

4 Lloyd D. Fosdick and Leon J. Osterweil. Data flow analysis in software reliability. ACM
Computing Surveys, 8(3):305–330, September 1976. doi:10.1145/356674.356676.

5 Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. Efficient hierarchical graph-
based video segmentation. In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 2141–2148, 2010. doi:10.1109/CVPR.2010.5539893.

6 Uday P. Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and
Practice. CRC Press, March 2009.

https://doi.org/10.1145/360018.360025
https://doi.org/10.3390/ijgi2040996
https://doi.org/10.1145/356674.356676
https://doi.org/10.1109/CVPR.2010.5539893


J. Pereira, V. Vieira, and A. Simões 11:9

7 Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Data flow analysis. In Prin-
ciples of Program Analysis, pages 35–139. Springer Berlin Heidelberg, 1999. doi:10.1007/
978-3-662-03811-6_2.

8 Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer Berlin Heidelberg, 1999. doi:10.1007/978-3-662-03811-6.

9 Nuria Pelechano and Carlos Fuentes. Hierarchical path-finding for navigation meshes (HNA∗).
Computers & Graphics, 59:68–78, October 2016. doi:10.1016/j.cag.2016.05.023.

10 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. In
Steven S Muchnick and Neil D Jones, editors, Programme Flow Analysis, pages 189–233.
Prentice Hall, April 1981.

11 Edgar-Philipp Stoffel, Korbinian Schoder, and Hans Jürgen Ohlbach. Applying hierarchical
graphs to pedestrian indoor navigation. In Proceedings of the 16th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS ’08, New York,
NY, USA, 2008. Association for Computing Machinery. doi:10.1145/1463434.1463499.

SLATE 2023

https://doi.org/10.1007/978-3-662-03811-6_2
https://doi.org/10.1007/978-3-662-03811-6_2
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1016/j.cag.2016.05.023
https://doi.org/10.1145/1463434.1463499

	1 Introduction
	2 Literature Review
	3 Checkmarx Lazy Flow
	4 Data Flow Hypergraph
	4.1 Clustering DOM Nodes
	4.2 Method-based Clustering
	4.3 Hypergraph Application and metrics

	5 Conclusions and Future Work

