
Characterization and Identification of
Programming Languages
Júlio Alves #

ALGORITMI Research Centre/LASI, University of Minho, Braga, Portugal

Alvaro Costa Neto #

Federal Institute of Education, Science and Technology of São Paulo, Barretos, Brazil

Maria João Varanda Pereira # Ñ

Research Centre in Digitalization and Intelligent Robotics, Polythechnic Insitute of Bragança,
Portugal

Pedro Rangel Henriques #Ñ

ALGORITMI Research Centre/LASI, University of Minho, Braga, Portugal

Abstract
This paper presents and discusses a research work whose main goal is to identify which characteristics
influence the recognition and identification, by a programmer, of a programming language, specifically
analysing a program source code and its linguistic style. In other words, the study that is described
aims at answering the following questions: which grammatical elements – including lexical, syntactic,
and semantic details – contribute the most for the characterization of a language? How many
structural elements of a language may be modified without losing its identity? The long term
objective of such research is to acquire new insights on the factors that can lead language engineers to
design new programming languages that reduce the cognitive load of both learners and programmers.
To elaborate on that subject, the paper starts with a brief explanation of programming languages
fundamentals. Then, a list of the main syntactic characteristics of a set of programming languages,
chosen for the study, is presented. Those characteristics outcome from the analysis we carried on at
first phase of our project. To go deeper on the investigation we decided to collect and analyze the
opinion of other programmers. So, the design of a survey to address that task is discussed. The
answers obtained from the application of the questionnaire are analysed to present an overall picture
of programming languages characteristics and their relative influence to their identification from the
programmers’ perspective.

2012 ACM Subject Classification Software and its engineering → Language types; Software and its
engineering → Formal language definitions

Keywords and phrases Programming Languages, Programming Language Characterization, Pro-
gramming Language Design, Programming Language Identification

Digital Object Identifier 10.4230/OASIcs.SLATE.2023.13

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Computers have evolved to be capable of recognizing and translating sentences, written
according to formal rules, to machine code, which enables them to execute the tasks they
are being asked to do. These sets of sentences are called programming languages. Every
programming language has its own syntactic and semantic rules that make them unique [8],
and that must be strictly followed in order to construct valid programs.

Each programming language has been developed with certain goals in mind, the so called
programming paradigm, with some being being applied to specific fields of application, such
as artificial intelligence or web development, while many others have been denominated as

© Júlio Alves, Alvaro Costa Neto, Maria João Varanda Pereira, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY 4.0

12th Symposium on Languages, Applications and Technologies (SLATE 2023).
Editors: Alberto Simões, Mario Marcelo Berón, and Filipe Portela; Article No. 13; pp. 13:1–13:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pg47390@alunos.uminho.pt
mailto:alvaro@ifsp.edu.br
https://orcid.org/0000-0003-1861-3545
mailto:mjoao@ipb.pt
http://www.ipb.pt/~mjoao/
https://orcid.org/0000-0001-6323-0071
mailto:prh@di.uminho.pt
https://www.di.uminho.pt/~prh/
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.SLATE.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Characterization and Identification of Programming Languages

general purpose languages. It can be said that behind the design of a programming language
lies a philosophy of problem solving, usually suited for its intended area of application [9]. It
is also evident that all languages have different characteristics, that can become obstacles
not only to the development process, but also in teaching, sometimes creating such a mixture
of diversified technologies applied to a system’s construction that one could denominate as a
technological cocktail. Due to each language’s nature, it may be harder for programmers and
students to understand how to properly apply the language rules to meet their needs [13].
The study of these differences and the identification of languages’ main characteristics are
not common practices in typical academia courses, making it a very important subject to be
tackled.

It is then possible to raise some interesting questions that deserve further research: what
indicates that two programming languages are different if what distinguishes them is not
clear? What characterizes and identifies a language? Is it a syntax driven feature, such as
the opening and closing symbols of code blocks? Could it be how a variable is declared? If a
programming language is incrementally modified, at what point does it lose its identity?

This paper starts with a short section regarding fundamentals of programming languages,
where it is explained how a programming language is specified and the role of its formal
grammar. Section 3 presents the most relevant characteristics of a set of programming
languages that have been elected for this study: C, C++, C#, Java, Python and Haskell.
Section 4 discusses the design process of a survey, through which programmers were inquired
about how they identified a programming language through several source code snippets.
Section 5 presents the analysis of results collected using the referred survey. Finally, the paper
concludes emphasizing what was discovered from the study so far conduced and proposes
the potential improvements to be done through future research.

2 Fundamentals in Programming Languages

Programming languages are defined by sets of rules. These rules define both its structure –
syntactic rules – and meaning – semantic rules. A context-free grammar is usually defined
to generate a parser, that checks if a source code abides to these syntactic rules. The
sentences derived from these rules are used to create programs that perform specific tasks,
solve problems, and interact with other systems. A considerable number of programming
languages has been developed, each one portraying its own syntax and features that make
them more suitable to solve problems in a certain domain [2, 5].

As previously stated, the main way to define the syntax of a programming language is
by using a grammar. A formal grammar is composed of a set of rules that must be used
to derive correct, or valid, sentences of that language. In order to specify a grammar, four
elements are needed:

Finite set of tokens - The elementary symbols of the language defined by the grammar,
usually called the Alphabet or Vocabulary;
Finite set of non-terminal symbols - Represent the language concepts that give raise
to, or derive, the sentences and sub-sentences;
Finite set of grammar rules - Substitution rules in which a non-terminal symbol (on
the left) may be substituted by a sequence of terminals and non-terminals defined on the
right side of the derivation operator;
Start non-terminal symbol - The starting point for the derivation process.

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:3

Despite this standard way of designing programming languages, the substitution rules
and the concepts expressed by each non-terminal symbol provide distinct characteristics to
each language, establishing a sense of identity. This sense may also be realised through the
use and application of each language, which allows for their characterization beyond formal
definitions.

3 Characterization of Programming Languages

As it is known by programmers, every programming language is different. These differences
may be on their purpose, the paradigms they realize, features (such as portability or efficiency)
or, and most notably, their lexicon and syntax. Programming languages may be divided in
two groups that are defined by their programming paradigms: declarative and imperative.
The former includes all the languages that are based on a set of declarations or specifications
of several program elements, while the latter is based on a sequence of instructions, or
orders. As can be observed in the following sections, out of all the selected languages the
only language under study that belongs to the declarative paradigm is Haskell. In order to
better understand these differences from the programmers’ points of view and construct a
well founded survey, it was important to collect the main features that define each languages
identity, gathering the syntactic and semantic characteristics that are either uniquely or
commonly recognizable to each of them. In this way, it became easier to determine which
questions to ask and how to ask them, as will be discussed in Section 4.

The main reasons for choosing these languages were:
General similarity (C versus C++, Java versus C#);
General dissimilarity (C versus Python and Haskell);
Variation of paradigms;
Ascendancy (C versus C++, C#, and Java);
Possible familiarity of the respondents.

It is important to note that these reasons were meant to compare similarities and
dissimilarities, in order to raise or lower the linguistic contrast of the snippets in the
questionnaire.

3.1 C
Being one of the most used and recognizable programming languages in history, C was an
important entry point for later comparison in the survey. Many other languages, such as
C++, derived their syntactic and semantic rules from those previously found in C. Some of
the defining characteristics of C are [14]:

C is a Procedural Programming language;
C is strong and statically typed;
A mandatory main function that defines the entry point for execution;
Curly brackets are used to enclose the contents of a code block;
Semi-colons indicate the end of a statement;
Variables and constants must be explicitly declared using the type identifier pattern;
Functions are the structural elements of the source code;
Function signatures must have a return type, followed by its name and a pair of parenthesis
grouping all arguments;
Functions may return nothing (void);

SLATE 2023

13:4 Characterization and Identification of Programming Languages

The fixed-length array is the only data collection built into the language and its declaration
follows the basic variable declaration pattern. Lengths and dimensions are defined using
square brackets after the identifier;
Pointers are memory addresses and are used to indirectly access memory addresses;
A pointer is declared like any other variable, with an added asterisk prefix before the
identifier;
An ampersand is used to fetch the address of a variable;
Characteristic and recognizable functions are present in the standard library, such as
printf and scanf.

3.2 C++
C++ was designed as a super set language of C, inheriting a lot of its syntactic and semantic
characteristics. The concept of classes is introduced in C++, which brings C’s structure and
form to a new paradigm. Some of its main characteristics are [15]:

Just like C, C++ is also strong and statically typed;
C++ imported all the basic syntactic and semantic elements from C. Therefore, character-
istics such as the entry point for execution, code block notation, declaration syntax and
so on were either unaltered or simply augmented;
The concept of classes was the most structural aspect that C++ implemented on top of C,
defining an Object Oriented Programing (OOP) language;
Classes are also structural elements of the source code;
Classes are declared using the class keyword, in a similar fashion to composite structures
(struct) in C;
Data members are declared inside the class definition using the standard variable declara-
tion pattern;
Methods may be declared either inside the class definition or outside, using a specific
notation (class::method);
The standard library added several data structures, such as dynamic vectors, linked
lists, and queues, while also provided several new redundant methods and operators that
implemented the same functionality as C’s standard library – « instead of printf, »
instead of scanf, and so on;
Some other additions to C’s mechanisms are also present, such as operator overloading,
new and delete commands, templates, virtual functions etc.;
In C++, the notion of namespaces is introduced. A namespace is a declarative region that
provides a scope to the identifiers (the names of types, functions, variables, etc) inside it.

3.3 C#
Just as C++ was designed to be an evolution of C, C# was meant to pursue this path further
concerning C++, while also competing in the same space of Java. C# simplifies many of C++’s
features and solves some of its problems (such as pointers and memory allocation issues)
while maintaining its power and paradigm. Some of C# characteristics are [1]:

Like its predecessors, C# is also strong and statically typed;
The need of a Main method, instead of a function;
As a successor of C++, it maintains the same syntatic features to delimit code blocks and
to end statements, both carried over from C;
When declaring a variable, one can explicitly state what the variable type will be or can
use the keyword var, and the variable type will be inferred by the compiler;

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:5

As C# is an Object Oriented Programming language, classes are the structural elements;
C# offers a variety of data structures, such as arrays, lists, stacks, queues, sets and
dictionaries;
Directives indicate that a specific namespace will be used. It is composed by the keyword
using, followed by the desired namespace identifier;
References types supplant pointers and remove the asterisk notation.

3.4 Java
Java is an Object Oriented Programming language that, despite not being based on C and
C++, certainly was influenced by them. Some of Java characteristics are [6]:

Java is a strong and statically typed language;
As Java was inspired by C and C++, many syntactic and semantic elements have been
imported into it, such as the mandatory entry point (main method), curly brackets to
delimit code blocks, semi-colons to end statements and the standard variable declaration
pattern;
All variables must be declared with a type;
There are specific declaration modifiers, such as final;
Just like C#, classes are the structural element;
Java also offers a significant variety of data structures, such as arrays, lists, stacks, queues,
sets and maps;
Types can be divided into two semantic categories: primitive types, such as boolean
and numeric types; and reference types such as classes, interfaces and arrays. Values in
reference types relate to objects;
The special type null has no name and can be assigned or cast to any reference type. Its
reference is the only possible value of an expression of type null;
Conversions, such as identity conversion, widening and narrowing primitive conversion,
unchecked conversion and capture conversion;
In order to use other packages, one must use the keyword import followed by the name
of the package, similar to C++ and C# namespaces.

3.5 Python
Python is an Interpreted, Scripting and Procedural language but also supports other program-
ming paradigms such as Object Oriented and Functional. Some of Python characteristics
are [10]:

Unlike the previously discussed languages, Python is dynamically typed;
A main function or method is not required;
In Python, instead of using braces to delimit code blocks and scope, these are defined by
indentation;
Semi-colons are not required to mark the end of a statement, a new line is enough;
Variables are declared when a value is assigned to them, without needing to declare their
type;
In order to define a function, its name must be preceded by the keyword def. After
the function name, a pair of parenthesis must be used containing and optional a set of
arguments;
Despite being an OOP language, Python’s structural elements are functions;
There are different data structures like lists, tuples, sets, dictionaries, strings and range
available in the standard library, some of which have special syntax associated with their
use.

SLATE 2023

13:6 Characterization and Identification of Programming Languages

3.6 Haskell
Differently from all other languages previously discussed, Haskell is a purely Functional
Programming language meaning, instead of telling the computer what to do, the programmer
tells the computer what something is. Haskell is also lazily executed, so the interpreter will
compute values only when they are actually needed, unless told otherwise. Some of Haskell
characteristics are [11]:

Haskell is a Declarative language since is based on the specification of a set of functions
and expressions;
Haskell is a strong and statically typed language;
Code blocks are delimited by indentation, just like Python;
A new line is used to define the end of a statement;
In order to declare a variable in Haskell, the programmer must use either the keyword
let or var, followed by the variable name. Variables are immutable by default, however
the keyword var allows the variable to be mutable;
Due to Haskell’s inference mechanism, it is not needed to specify variables types in
declarations;
In order to declare a function type, the programmer declares its name followed by the ::
operator – which can be read as “type of” – and all its parameters. The parameters are
separated by the arrow operator (->), with the last parameter being the return type;
Functions are the main structural element of the language;
The data structures offered by Haskell are: lists, tuples, sets, maps, strings and ranges;
Instead of requiring multiple lines of code to write nested if...then...else conditions,
Haskell implements guards. Guards are indicated by a pipe character (|) followed by a
boolean expression and what will be evaluated in case the expression is true. Should it
be false, the next guard is evaluated, and so on;
where - Haskell doesn’t allow to store variables for a future use. However, with the
keyword where, users can declare variables to be used inside a function with its biggest
limitation being the fact that where scope is limited to the function it was declared;
Haskell also has a switch like statement, with the use of the keyword case in the format
case <expression> of <pattern> -> <result>;
Recursion plays a big role on the regular use of the language.

4 Survey Design

A crucial part of this research was the development and implementation of a survey1 to gather
the different perspectives of a programmer regarding their known languages identification.
While not directly applied, the general concepts behind Value-Focused Thinking [7] founded
the rationale throughout the construction of the survey, as was the case with previous
studies [4].

Since the survey contemplated multiple programming languages and the target audience
had various degrees of knowledge of these languages, it became critical to weigh one’s
answers. For this reason, the survey started with a section containing only one question
on the respondent’s familiarity with the six chosen programming languages (C, C++, C#,
Java, Python and Haskell). Respondents could choose his or her level of knowledge in each
language from five different options, ranging from complete ignorance to profound knowledge.

1 Available at https://forms.gle/6kBuHhYD5FPHK8Cp9.

https://forms.gle/6kBuHhYD5FPHK8Cp9

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:7

From this section forward, all questions regarded different code snippets written in the
programming languages under study. These code snippets were created aiming for conciseness,
while also contrasting or emphasizing specific linguistic traits. As previously stated in section 3,
both similarities and dissimilarities were implemented when two snippets were compared.
This was made to evaluate not only how minor details influence the differentiation of similar
languages, but also to identify which linguistic elements have stronger identification roles,
raising similarity between very different languages.

The second section aimed to evaluate if the respondent could identify the language of a
snippet of code, justifying his or her answer. There were six pairs of questions (“What is
the language present in the following snippet?” and “Justify your rationale for the previous
answer.”), one for each language. The purpose of this section was to understand the reasoning
behind the identification of a programming language and to detect if multiple people use
the same thought process, specifically if the snippet contains a distinctive feature that is
commonly reported as important for the identification. Using a similar strategy as applied
to the previous section, for each language the respondent could choose one of four possible
answers: doesn’t know, it sure isn’t, maybe and absolutely is. Listing 1 presents the snippet
used for the question regarding the C language identification.

Listing 1 C language snippet used in the second section of the survey.
int main()
{

if(n <= 1 || (n = atoi(argv [1])) <= 0) n = 8;
int hist[n];
solve(n, 0, hist);

}

For the third section, the identification of programming languages was evaluated through
comparisons. In this section, the respondent was presented with two code snippets repres-
enting solutions to the same problem, each written in a different language, and asked to
identify which programming languages were used in each snippet. Listings 2 and 3 exemplify
the comparisons that were made in each of the third section’s questions. The similarities in
general form were intentional to pinpoint characteristics that respondents justified as crucial
to the identification of each language – or his or her inability to do so.

Listing 2 Java snippet used in the third section of the survey. This snippet was presented in the
same question as listing 3 for comparison.
class FileIOTest {

public static void main(String [] args) throws Exception {
var lines = Files.readAllLines(Paths.get("input.txt"));
Files.write(Paths.get("output.txt"),lines);

}
}

Listing 3 C# snippet used for comparison with the one presented in listing 2, in the third section
of the survey.
class FileIOTest
{

public static void Main(string [] args)
{

var lines = File.ReadLines .("input.txt");
File.WriteAllLines("output.txt",lines);

}
}

SLATE 2023

13:8 Characterization and Identification of Programming Languages

In the fourth and last section, a new approach was applied. This new approach consisted
in progressively modifying a given a code snippet in one programming language until it
became a substantially different. The respondent was then asked at which point of these
progressive changes he or she believed that the snippet of code no longer resembled the
original language, that is, at which point the language lost its identity. Figure 1 shows one
of the original snippets, followed by their progressively altered versions. The changes were
small and related to one of the language’s main characteristics at each version. This section
aimed to establish what is the breaking-point to a language’s identification, meaning which
characteristics are so entrenched into its definition that once it is changed, programmers can
no longer associate code with it.

int main(int argc , char *argv [])
{

char t[255]="alphaBETA";
str_toupper(t);
printf("uppercase:␣%s\n",t);
str_tolower(t);
printf("lowercase:␣%s\n",t);
return 0;

}

int main(int argc , string argv)
{

string t="alphaBETA";
str_toupper(t);
printf("uppercase:␣%s\n",t);
str_tolower(t);
printf("lowercase:␣%s\n",t);
return 0;

}

int main(int argc , string argv)
{

string t="alphaBETA";
str_toupper(t);
write("uppercase:␣",t);
str_tolower(t);
write("lowercase:␣",t);
return 0;

}

main(argc , argv)
{

t="alphaBETA";
str_toupper(t);
printf("uppercase:␣",t);
str_tolower(t);
printf("lowercase:␣",t);
return 0;

}

Figure 1 Four progressively altered snippets of C code used to establish what is the breaking
point for the identification of a programming language.

5 Survey Results Analysis

To start the results analysis, it is important to begin with the first question, as it shows how
well the respondents knew the six chosen languages. Java,C and Python were the most well
known languages, with 95%, 88% and 93%, respectively, of the respondents stating to be, at
least, capable of using the languages. These results are indicative that questions regarding
Java,C and Python can give a higher understanding on what identifies these languages. On
the other hand, Haskell, C++ and C# respectively had only 47%, 45% and 31% of respondents
stating to be, at least, capable of using the languages.

5.1 Second Section: Language Identification
Regarding C, respondents successfully identified it, stating the main reasons to its identification
were:

Variable declaration syntax;
Use of pointers;
Syntax features like semicolons, brackets to delimit code blocks and functions signature;

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:9

Like C, Java was also correctly identified, with the main reasons being:
Methods access modifiers;
Methods signatures;
Variables types;
The usage of System.out.println;

On the third snippet shown, the language present was C#, however, as the respondents
weren’t very familiarized with this language, there was a consistent lack of confidence to
distinguish whether the language was Java or C#. Out of the total, nine people said they
were sure it was Java, and nine said they were sure it was C#. On the other hand, twenty four
respondents said it could be Java, and twenty one said it could be C#. There were also fourteen
respondents who believed it could be C++. It was unanimous, however, that it was neither
Python nor C. The audience revealed a big difficulty in finding characteristics which allowed
them to distinguish between Java and C#. The respondents who could successfully identify
it as C#, expressed that what made them sure was the use of PascalCase naming convention
on identifiers. Since it represents a writing style other than a language characteristic, it is
safe to say that the identification wasn’t a consequence of the language’s formal definition,
but its conventions of use instead.

The fourth snippet consisted of a piece of C++ code. It was very obvious for the audience
that this snippet wasn’t C, Java or Python. There was some uncertainty if it could be C# as
the respondents could identify this language as being a part of the C language’s branch of
derived languages. Nonetheless, there was a major consistency as identifying the language as
being C++ due to:

The usage of the std library;
Unsigned long long type;
The method or member function call notation.

On the fifth snippet shown, the language present was Python. It was very evident for the
audience that this was Python as no other language was given a positive answer and Python
was picked as the right language by almost one hundred percent of the users. What made
them answer Python was:

Block syntax and indentation;
The use of def when defining a function;
Type inference;

For the last snippet on this section, respondents were finally presented with a Haskell
code snippet. Once again, the respondents were certain it couldn’t be any other language
other than Haskell. The reasons given for this were:

Functional programming style;
Point free syntax, a style of writing Haskell code that avoids explicit mention of the
arguments of a function;
Function signatures;
The complete overall difference to the other languages;

5.2 Third Section: Language Comparison

5.2.1 Java vs C#

As Java and C# were two languages which it was expected some difficulties to arise, two
comparisons were made. On the first comparison, the respondents were able to successfully
identify the languages correctly, stating – as they did on the previous section – the difference

SLATE 2023

13:10 Characterization and Identification of Programming Languages

in naming convention as the biggest contributor for the identification. Respondents also
pointed the way exceptions are thrown in Java as a differentiating factor. On the second
comparison however, there was a big uncertainty on the C# snippet, with respondents being
mainly divided between C#, C++ and Java. There were also some answers that were open to
the possibility of it being C or even another language. This indecision is due to respondents
not being able to associate the types ulong and uint to a language. Java’s identification
was very straightforward to the respondents, stating that the use of the keyword final on
an argument as the reason the snippet was written in Java.

5.2.2 C vs C++

In this comparison, the respondents were on the same page, with virtually no problems to
the correct identification. However, there were only two reasons on why they believed one
language was C and the other C++: the functions used to output something (printf for C
and cout for C++) and the use of namespace on C++.

5.2.3 C vs Java

Once again, there was no doubt within the respondents on what language was present in each
snippet. Respondents stated that the output functions printf and System.out.println
were the main reasons for their correct identification. There were also a few answers pointing
that the way arrays are declared was also a contributing factor.

5.3 Fourth Section: Language Identification Breaking-point
For C, respondents were adamant that from the second snippet onward the language couldn’t
be C. The modification that triggered this opinion was the replacement of char * with a
new type string, commonly used in other languages.

With C++, the answers were also unanimous on saying that, from the second snippet on,
the language could not be C++. The modification on how libraries are imported, switching
from namespace and #include <libraryName> to with was the defining change to arrive
at the breaking-point.

On the third question, respondents agreed that the first snippet was C# and were also open
to the possibility of it on the second snippet. It is possible to infer that the output function
is not a very defining characteristic of the language, as that was the modification made
from the first to the second snippet, changing System.Console.WriteLine() to write().
However, on the third snippet it became obvious to the respondents that the language wasn’t
C#. On this snippet, the way code blocks are structured was modified, replacing brackets
with indentation, such as in Python.

Curiously, the exact same reaction was obtained with Java. On the second snippet,
the code blocks syntax was modified from curly brackets to indentation, triggering the
respondents to not identify the language as being Java.

With Haskell and Python, respondents were open to the possibility of being the original
languages until the function declaration syntax were modified. In Haskell’s case, the
modification was the replacement of the standard syntax functionName :: argument ->
argument -> result with functionName(argument, argument). Python’s modification
was even more subtle, with the mere change of the keyword def to function.

The analysis of the results was obtained through the answers gathered from a class of
fourth year software engineering students. A select group of people, that included university
professors and software engineers, was also invited to answer, however, the survey has not

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:11

been yet made publicly available, as these results and the students’ feedback will be used to
make the necessary improvements for a future version.

The respondents were selected for their background in computer programming languages.
The majority of the respondents were Master’s Degree students present in a course of
Languages Engineering at University of Minho (UMinho). In total, 44 people responded
to the questionnaire, 39 of which were students. The other 5 people were professors of the
Department of Informatics, also at UMinho.

6 Conclusion

Machine Learning [12, 16] has been extensively used on the subject of computer programming
languages automatic identification. These studies applied different types of classifications
such as Image Based Classification [3], Algorithmic Classification [9] and Source Code Classi-
fication [8, 17], however not many studies have been conducted to consider the programmers’
points of view. What are the most relevant linguistic features that programmers observe,
consciously or not, to correctly identify a language used in a source code? What and how
much can a language’s syntax and semantics change and still retain its identity? In order
to answer these questions, the most straightforward solution is to actually ask people that
deal with programming languages. The challenge then becomes not only what to inquire
programmers about their perception of a language, how it is recognized and identified, but
also how to properly ask them.

This paper presented an analysis of typical linguistic features, commonly found in six
established programming languages (C, C++, C#, Java, Python, and Haskell) followed by the
design and application of a survey that seeks to better understand the intrinsic relationship
between programmers and their main tools of the trade: programming languages.

The survey was designed around three main approaches:
1. Direct identification of a programming language;
2. Comparison between similar languages;
3. Determination of the identity breaking-point.

The three approaches were implemented via corresponding sections in the survey. The
questions for approaches 1 and 2 were constructed in pairs: a multiple-choice direct question,
asking respondents to identify the language in the respective snippets of code; followed by
an open-ended justification. The last section (approach 3) used only multiple-choice direct
questions, gradually changing snippets of source code to evaluate at which point the original
language (shown at the first snippet of each question) lost its identity.

The common threads of identification in the answers showed that some typically associated
syntactic features, such as code block syntax, method signatures and variable declaration
patterns are contributing factors to identify a programming language – which was expected.
Other answers lead to some unpredicted results, pointing to the use of standard library
elements (functions, classes, methods, etc.) and specially the naming convention that is typical
– and sometimes, mandatory – in several programming languages. While not a characteristic
of the formal definition of the language, it is nonetheless prevalent and linguistically related
to it.

The comparison between languages pointed the inevitable mixed results between languages
that are very similar and descendants from a common parent – C# and Java being the most
prominent example, both derived from C and C++. The two main differentiating features, as
pointed by the respondents, were naming convention and typical standard library elements,
once more.

SLATE 2023

13:12 Characterization and Identification of Programming Languages

On the other hand, the results were not very conclusive on the breaking-point analysis,
since there is an argument to be made for changing the way the questions were asked.
Most respondents correctly identified the first snippet as being the original and unaltered
language, and the second one forward as promptly loosing its identity. Since the changes
were diminutive and triggered the breaking-point almost immediately, it is inconclusive as to
which ones contributed the most to the lost of identity.

The feedback was one of the goals of this first application, as respondents pointed to
two main difficulties they faced when answering the survey: they felt questions related to
languages they didn’t know should not be present and, as pointed in the previous paragraph,
the breaking-point analysis must change in form, avoiding the immediate lost of identity. The
latter showed us that a different approach to the breaking-point analysis must be tackled for
a next version, aiming to gather enough information towards a more conclusive argument.

The results already showed interesting facets about the relationship between programmers
and the languages they know and use. In a setting of multiple different technologies being
applied to the construction of a modern computer system – a technological cocktail – this
naturally occurring change of patterns and identities in the development process might be
cumbersome. If well understood, this cognitive load may be lightened by diminishing the
changes in language identity or even choosing technologies that use languages with similar
identity features. Not only that but, at an initial stage of a programmer study, it can also
aid a programmer to learn a programming language with more ease, given that it will allow
him to choose a programming language more suited to his preferences.

This research is part of a larger group of studies that aim to identify and understand
the human relations involved in computer programming. Future works include the review
and refactoring of the survey, specially in the last section, followed by the next version to be
openly applied for general public response. Finally, a guiding system will be implemented for
the detection of a language’s identity in snippets of source code, based on the programmers’
points of view.

References
1 Sam A Abolrous. Learn C-Sharp - Includes the C-Sharp 3.0 Features. Wordware Pub, 2007.
2 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,

techniques & tools. Addison Wesley, 2007.
3 Francesca Del Bonifro, Maurizio Gabbrielli, Antonio Lategano, and Stefano Zacchiroli. Image-

based many-language programming language identification. PeerJ Computer Science, 7,
2021.

4 Alvaro Costa Neto, Cristiana Araújo, Maria João Varanda Pereira, and Pedro Rangel Henriques.
Value-Focused Investigation into Programming Languages Affinity. In Alberto Simões and
João Carlos Silva, editors, Third International Computer Programming Education Conference
(ICPEC 2022), volume 102 of Open Access Series in Informatics (OASIcs), pages 1:1–1:12,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
OASIcs.ICPEC.2022.1.

5 Robert W. Floyd. The syntax of programming languages, 1964.
6 James Gosling, William N. Joy, and Guy L. Steele. The java language specification, 1996.
7 Ralph L. Keeney. Value-focused thinking: Identifying decision opportunities and creating

alternatives. European Journal of Operational Research, 92(3):537–549, 1996. doi:10.1016/
0377-2217(96)00004-5.

8 Jyotiska Nath Khasnabish, Mitali Sodhi, Jayati Deshmukh, and Gopalakrishnan Srinivas-
araghavan. Detecting programming language from source code using bayesian learning
techniques. In MLDM, 2014.

https://doi.org/10.4230/OASIcs.ICPEC.2022.1
https://doi.org/10.4230/OASIcs.ICPEC.2022.1
https://doi.org/10.1016/0377-2217(96)00004-5
https://doi.org/10.1016/0377-2217(96)00004-5

J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques 13:13

9 David Klein, Kyle Murray, and Simon Weber. Algorithmic programming language identification.
ArXiv, abs/1106.4064, 2011.

10 Dave Kuhlman. A Python Book: Beginning Python, Advanced Python, and Python Exercises.
Platypus Global Media, 2015.

11 Miran Lipovaca. Learn You a Haskell for Great Good! A Beginner’s Guide. No Starch Press,
2011.

12 Tom Mitchell. Machine learning, 1997.
13 Alvaro Costa Neto, Cristiana Araújo, Maria João Varanda Pereira, and Pedro Rangel Henriques.

Programmers’ affinity to languages. In ICPEC, 2021.
14 Easy Programming. C Programming Language The Ultimate Beginner’s Guide. CreateSpace

Independent Publishing Platform, 2016.
15 Bjarne Stroustrup. A History of C++: 1979–1991, pages 699–769. Association for Computing

Machinery, New York, NY, USA, 1996.
16 Peter Norvig Stuart Russell. Artificial Intelligence: A Modern Approach. Prentice Hall Series

in Artificial Intelligence. Prentice Hall, 3rd edition, 2010.
17 Shaul Zevin and Catherine Holzem. Machine learning based source code classification using

syntax oriented features. ArXiv, abs/1703.07638, 2017.

SLATE 2023

