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Abstract
We are extending the keyword–based query interface DdQl for relational databases which is based
on contextual background knowledge such as suitable join conditions and which was proposed in [10].
In the previous paper, join conditions were extracted from existing referential integrity (foreign key)
constraints of the database schema, or they could be learned from other, previous database queries.

In this paper, we describe a speech–to–text component for entering the query keywords based on
the system Whisper. Keywords, which have been recognized wrongly by Whisper can be corrected
to similarly sounding words. Again, the context of the database schema can help here.

For users with a limited knowledge of the schema and the contents of the database, the approach
of DdQl can help to provide useful suggestions for query implementations in Sql or Datalog, from
which the user can choose one. Our tool DdQl can be run in a docker image; it yields the possible
queries in Sql and a special domain specific rule language that extends Datalog. The Datalog
variant allows for additional user-defined aggregation functions which are not possible in Sql.
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1 Introduction

The growing wave of digitization, which the smart world of the future is facing, could be met
by concepts from artificial intelligence (AI). The field of AI can be divided into symbolic and
subsymbolic approaches, e. g., [12]. Symbolic or knowledge–based approaches model central
cognitive abilities of humans like logic, deduction and planning in computers – mathematically
exact operations can be defined. Subsymbolic or statistical approaches try to learn a model
of a process (e. g., an optimal action of a robot or the classification of sensor data) from
the data. Current knowledge–based information systems are increasingly becoming hybrid,
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6:2 Intelligent Query Answering

including different formalisms for knowledge representation. In this paper, we use concepts
from AI and logic programming for answering non–expert queries to hybrid knowledge bases.
Still, the most frequent formalism is relational databases, but it would be very interesting to
include rule–bases, ontologies and Xml databases as well.

It is becoming popular to consider natural language queries [1]. In a simple form, this
concept is well–known from keyword–based queries in search engines like Google. It can be
very helpful for users who are not so familiar with the database schema, and for users on
mobile devices, where it is difficult to enter complex–structured queries. For a preceeding
speech–to–text transformation, currently subsymbolic approches, e.g. voice/speech assistants
such as the commercial systems Siri, Alexa, or Dragon NaturallySpeaking or the publicly
available tools Whisper and Mozilla Common Voice/Deep Spech [13] are popular. In this
paper, the complicated step of assigning a suitable semantics – i.e. of compiling textual
keyword–based queries to correct complex–structured knowledge base queries, e.g. in Sql or
Datalog – is done using a symbolic, declarative knowledge–based approach.

In a previous paper on DdQl at SLATE 2021 [10], we had presented the compilation of
keywords to Sql or Datalog queries using concepts from logic programming [4, 6, 8]. In this
paper, we will add a speech–to–text component that is based on the well–known tool Whisper
for speech–to–text conversion. Subsequently, based on the context of the queried database,
another text–to–text conversion has been developed to convert the keywords, which might
have been understood a little bit wrongly by Whisper, to similar keywords that might have
been intended by the user. This is done using concepts from language processing and the
context of the database.

The rest of this paper is structured as follows: Section 2 gives an overview on database
query languages and intelligent query answering. Section 3 presents a running example
of a database instance, i.e. the representation by tables, and a set of relational database
queries. Section 4 deals with the speech–to–text conversion with Whisper and the following
text–to–text corrections based on the context of the database. Section 5 summarizes our
system DdQl for answering keyword–based queries using technology from logic programming
and deductive databases. We show how DdQl and Whisper are integrated in a docker–based
approach to optimize the usability, portability and availability of the tool. Finally, Section 6
concludes with a summary.

2 Database Query Languages and Intelligent Query Answering

Natural language interfaces (Nli) are considered a useful end–user facing query language
for knowledge bases, see Affolter et al. [1] and Damljanovic et al. [9]. This is especially true
for complex databases and knowledge bases, where the intricacies of both the information
schema and the technicalities of the query language – Sql most of the time – put the task of
issuing useful queries well beyond the skill of most prospective, non–technical users. Nlis can
usually be catgorized into keyword–, pattern–, parsing–, and grammar–based systems. Recent
case studies are also reported by Stockinger [22] who argues that the trend of building Nli
databases is stimulated by the recent success stories of artificial intelligence and in particular
deep learning. An important keyword–based system is Soda [3]. Li and Jagadish [15] hold
that Nlis are superior to other approaches to ease database querying, such as keyword search
or visual query–building. They present the parsing–based systems NaLir and NaLix.

The main gripe with a natural language interface is that it is inherently difficult to verify
reliably: an ambiguous sentence might be incorrectly parsed and its meaning evaluated,
without the end user ever becoming aware of the situation. As a consequence, much effort
has been placed into devising user–friendly ways of removing the ambiguity and translating



D. Seipel, B. Förster, M. Liebl, M. Waleska, and S. Abreu 6:3

the query to a semantically equivalent one in the native database query language. In practice,
this entails presenting alternatives to the user and asking him to decide; the process may
be iterated.

Doing so with Sql as the target seems a natural choice, but this hits many difficulties
arising from the language’s many quirks. This situation is exacerbated when one must present
the query interpretation back to the user. Relying on a more abstract query language, such
as a first order predicate logic–based one, turns out to be both easier and more effective,
especially as the reflection of the user’s utterance interpretation will be presented in a form
which is closer to its presumed grammatical structure and therefore easier to recognize
and understand. Besides convenience in presentation, relying on a logic representation for
the queries and schema has several enabling benefits: a major one is that it provides a
unifying framework for heterogeneous sources of information, such as Sql databases but also
deductive databases, Xml databases, ontologies queried in Sparql or Rdf datasets.

Interpreting a natural language sentence as a database query entails attempting to do
several queries, ranging over the schema but also the data and even the query history.
Contextual speech recognition is a very hard problem, which can be eased if one manages to
make use of background knowledge. The inherent ambiguity in the task of parsing and tagging
a sentence in natural language can be mitigated and complemented with concurrent knowledge
base queries: domain knowledge may be used to constrain the admissible interpretations as
well as to provide useful annotations. Having a logic–based framework also makes it easy to
provide views, which may be further used in interpreting natural language queries. The logic
dialect needs not be full first–order logic, as Datalog is sufficient to express queries originally
formulated in simple natural language.

3 Relational Database Queries

It is difficult for database users to have to remember the strucuture of the database (the
database schema) and the correct writing of the terms (table names and attributes) and
the values in the tables. Nevertheless, they have a good notion of the queries that they
would like to ask. We are proposing an intelligent expert tool for query answering based on
the deductive database system DDbase of the declarative programming toolkit Declare [20].
We have developed a module DdQl, that can first parse the textual representation of the
query using Declare’s extended definite clause grammars (Edcg) [19] in Prolog based on
the background knowledge of the database schema and the database, then hypothesize the
intended semantics of the query using expert knowledge, and finally present possible queries
and answers, so that the user can select one.

One could, e.g., imagine the following database queries to the well-known relational
database Company from [11] for exemplifying our approach.

Q1 Give me the salary of Borg.
Q2 What is the salary of Research ?
Q3 Give me the sum of the salaries of the departments by name.
Q4 Give me the list of the salaries of the departments by name.
Q5 Give me the supervisor name of an employee by name.

The database user does not say that salary is an attribute of a database table or that Borg
is a value of another attribute. Moreover, there could be slight spelling mistakes.

The complete database schema will be given in Figure 2 in the appendix; the ER diagram
contains 6 entity/relationship types and 8 referential integrity constraints between them
(links given by arrows). Some corresponding database tables will be given in this Section.

SLATE 2023
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In the background, the query compilation in Section 5.1 will extract undirected connected
subgraphs from the ER diagram. The relationship types from the corresponding ER diagram
of [11] are represented in the database schema as follows:
(a) in the table Employee, the 1:n relationship types Works_For and Supervision

from the ER diagram are integrated as foreign keys Dno and SuperSsn (the Ssn of
the supersisor), respectively;

(b) the manager of a department is given by the attribute MgrSsn in Department;
(c) the table Works_On gives the employees working on a project, and the attribute

Dnum in Project gives the responsible department of a project; both tables are not
shown here, but they can be seen in the ER diagram in the appendix.

Functionalities and existency constraints require: every employee works for exactly one
department; every department must have exactly one manager; an employee can manage at
most one department; every employee must work for at least one project; and every project
must have exactly one responsible department. All constraints of the database schema can
be used for optimizing queries.

In the following, we show a slightly restricted version of the database, where some entity
types and attributes are not present or renamed.

Employee
Fname Lname Ssn BDate Address Sex Salary SuperSsn Dno

John Smith 4444 1955-01-09 731 Fondren, Houston M 30000 2222 5

Franklin Wong 2222 1945-12-08 638 Voss, Houston M 40000 1111 5

Alicia Zelaya 7777 1958-07-19 3321 Castle, Spring F 25000 3333 4

Jennifer Wallace 3333 1931-06-20 291 Berry, Bellaire F 43000 1111 4

. . . . . . . . . . . . . . . . . . . . . . . . . . .

James Borg 1111 1927-11-10 450 Stone, Houston M 55000 NULL 1

The departments and their managers are given by the table Department with the
primary key Dno. The 1:1 relationship type Manages is integrated as a foreign key
MgrSsn together with the describing attribute MgrStartDate, the start date of its
manager.

Department

Dname Dno MgrSsn MgrStartDate

Headquarters 1 1111 1971-06-19
Administration 4 3333 1985-01-01

Research 5 2222 1978-05-22

The multi–valued attribute Locations of the entity type Department yields a separate
table Dept_Locations, which we do not consider here. The table Works_On shows
the Hours that the employees work on the projects. The 1:n relationship type Controls
between Department and Project is integrated as the foreign key Dnum in Project.
Every project is located at one of the locations of its controlling department.

In this paper, we will only go into details for the shown tables Employee and Depart-
ment.

4 Speech–to–Text with Whisper and Word Corrections

In this section, the possibility of using DdQl in cooperation with a speech–to–text tool is ex-
amined in more detail. For this purpose, Whisper, which was released in September 2022 [18],
is presented and examined. For DdQl, it is crucial whether especially the keywords are
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correctly translated by a speech-to-text tool. Therefore DdQl can accordingly continue to
work correctly with the text transcribed from the spoken sentence. Whisper is apparently
better than the previous open-source speech-to-text tools, with a lower error rate regardless
of context. This is also described in the paper on Whisper in addition to an explanation
of the training model used to train Whisper. This training model is crucial for the high
robustness of the resulting speech-to-text tool [2].

Apart from that, we have deliberately decided against using commercial speech-to-text
variants. Experience has shown that voice assistants such as Amazon Alexa, Google Assistant
or Apple’s Siri work quite reliably, but they have the disadvantage that it is not possible
to trace what happens to the data that is transmitted to the company’s internal servers.
Furthermore we do not want to use ChatGPT due to its fatal privacy issues. Apart from
that, it would be possible to run a variant of ChatGPT locally. However, this would be
accompanied by significantly increased hardware requirements.

4.1 Technology of Whisper
As already mentioned, Whisper is a software built by a training model for machine learning.
This neural network is composed of a so called pipeline model [2]. This approach combined the
parallel learning of the aspects language identification, voice activity detection, transcription
of the spoken to a written text and transcription from any available language into english
text. Therefore, the model uses several tokens during the training process to specify, which
task especially is handled at the moment. All in all the model was trained with 680.000
hours of audio, of which 117.000 hours are 96 other languages than english. The resulting
speech-to-text-tool Whisper is really robust and detached from any context of the spoken
text, that would have been usually given by other training models [2].

4.2 Various Aspects of Speech–to–Text with Whisper
In the following, a case study will be presented to give an overview on various aspects of the
extent to which Whisper would be suitable for use as a speech-to-text-tool for DdQl. The
employee table (see Subsection 3) from the already mentioned company database gives the
basis for this purpose.

The table name, the column names and then all attributes were read out loud three times
and recorded in audio files. The values of the attributes fname, minit and lname were read
out as triples. The audio files were then evaluated and transcribed individually by Whisper.
The Whisper models base, small and medium were used one after the other. In summary,
each entry from the table was read out loud three times, recorded and then transcribed by
the three mentioned Whisper models. It would also have been possible to read out all the
words in the employee table in one take to record and then have it transcribed by Whisper.
According to the Whisper development team, however, this could have led to an unwanted
side effect. Whisper could let already evaluated audio data influence later evaluations within
an audio file [2]. Therefore, it was decided to record the different attributes and names
individually in the respective audio files and then have Whisper transcribe them.

SLATE 2023



6:6 Intelligent Query Answering

Since Whisper currently does not have the functionality to configure it easily so that it
recognises certain words preferentially by the user, a representative case distinction is now
presented below using the employee table as an example. This case distinction considers the
possibilities that could occur, how Whisper mis-transcribes words and how they would then
have to be further processed in order to ensure a meaningful further use by DdQl. Seen in
this way, the mappings opposite to the direction of the arrow in the following represent the
work of an intermediate tool between Whisper and DdQl in order to make the throughput
of spoken queries to the desired results of DdQl as high as possible.

Since DdQl is case-insensitive, capitalisation is ignored in the following. Generally,
Whisper transcriptions are complete sentences with punctuation. In the following, it is
assumed that Whisper transcriptions are passed as word lists. Therefore punctuation on the
edges of the whitespaces is also omitted, i.e. the characters ’.’, ’,’, ’;’, ’!’ and ’?’ inbetween
words of the word lists are not shown.

The arrows 7→ of the mappings below correspond to the transcription by Whisper. Each
left side of the arrows represent a table entry. The right side represents the possible Whisper
transcriptions of each entry. The mentioned word lists are shown as words separated by
whitespaces. Various transcriptions are separated by the character ’|’, while various mappings
are separated by a semicolon. The mappings only show a selection of the wrong transcriptions
of the medium model. This model, according to its own information [2], relatively often
translated what was said into what was wanted.

In the following, we show for a selection of types of speech-to-text by Whisper and in
the following Subsection 4.3 we present the subsequent text-to-text corrections by DdQl
depending on the context of the queried database.

Case 1: Separation of Words by Whisper. In the most cases, Whisper basically transcribes
the spoken words correctly. Apart from the correct order of letters, Whisper occasionally
adds whitespaces or other characters inbetween letters of words, that originally are written
as one word.
Examples:

fname (spoken f-name) 7→ f name; minit (spoken m-init) 7→ m in it;
lname (spoken l-name) 7→ l name; dno (spoken d-n-o) 7→ d-n-o;
superssn (spoken super-s-s-n) 7→ super ssn

Therefore an intermediate tool between Whisper and DdQl would have to ensure that
the keywords are partially reassembled in order to then pass them to DdQl. Incidentally,
this should also make it possible to spell out entries letter by letter.

Case 2: Tanscriptions of Similar or Phonetically Similar Words. Due to the fact that
Whisper is derived from a speech-to-text driven learning environment, it sometimes transcribes
words with smaller deviations. These discrepancies consist of either single or multiple letters
and can also take place across several words, as in Case 1.
Examples:

salary 7→ celery; bdate (spoken b-date) 7→ beat it | be date;
dno (spoken d-n-o) 7→ tno; franklin t wong 7→ franklin t wom;
alicia j salaya 7→ alicia j zelaya | alicia jade salaya;
joyce a english 7→ choice a english;
ahmad v jabbar 7→ amad vi jabar | amad vi javar | amad vi jabal;
james e borg 7→ james e bork; m 7→ um | mmm; null 7→ nah | no
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In this case, an intermediate tool between Whisper and DdQl would have to check for a
written similarity or even phonetic similarity with the words from the exemplary employee
table. If similarities are rated very highly according to a percentage value, these could then
be passed on to DdQl as word lists accordingly.

Case 3: Speech-to-Text for Numbers. Here, it is shown how Whisper transcribes spoken
numbers. Apart from characters like ’<whitespace>’, ’.’, ’,’ and ’-’ that could appear between
the digits after the transcription, a closer look reveals that in the following examples with
nine identical digits, an additional digit is added occasionally. Furthermore Whisper seems
to translate single digits into written-out numbers or even words that are phonetically very
close to these numbers.
Examples:

SSN (ID Number): 111111111 7→ 1 1 1 1 1 1 1 1 1 1;
444444444 7→ 4 4 4 4 4 4 4 4 4;
555555555 7→ 5 5 5 5 5 5 5 5 5 5 | 5-5-5-5-5-5-5;
666666666 7→ 6666666666; 777777777 7→ 7777 7777 7 | 7777 7777 7 7;
Money: 30000 7→ 3 0 0 0 0 | 30,000 | 3-0-0-0-0;
25000 7→ 25,000 | 2500 | 2 5 0 0 0; 43000 7→ 43,000 | 4 3 0 0 0;
Single Digits: 5 7→ five | fives; 4 7→ four | for; 1 7→ one

An intermediate tool between Whisper and DdQl could eliminate the separation of the
numbers by intermediate characters as described in Case 1. The occurrence of too many or
too few digits could be fixed by checking for equality of the first digits compared to the entries
of the exemplary employee table. This would also make it possible not to have to enter all
the digits for a number. For the written-out representation of a number, the intermediate
tool would have to pass the equivalent in digits on to DdQl. However, evaluating for as 4
and passing it on to DdQl as such would probably not make much sense, since the word for
occurs frequently in English sentences and would therefor be evaluated as a number each
time the speaker uses the word for.

Case 4: Transcription of Date Values. Whisper can transcribe dates read out loud number
by number. The cases in which the months were pronounced or the spoken order of a date
were differed is beyond consideration here.
Examples:

1955-01-09 7→ 1955.1.9; 1945-12-08 7→ 1945 12 8;
1958-07-19 7→ 1958 7 19 | 1958 719; 1931-06-20 7→ 1931 620;
1952-09-15 7→ 1952 9 15; 1927-11-10 7→ 1927 11 10

An intermediate tool for transforming the recognized words to more suitable words would
have to derive all possible dates that can be formed from the input and compare them with
the values in the database.

Case 5: Transcription of Addresses. Here the transcription of addresses is looked on more
closely. It can be seen that similar errors occur here, as they already emerged in the previous
cases.
Examples:

tx (spoken texas) 7→ texas;
3321 castle spring tx 7→ 3,3,2,1 castle spring texas |
3 3 2 1 kassel spring texas | 3321 carson spring texas;
291 berry bellaire tx 7→ 291 berry bel air texas

SLATE 2023
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Additionally tx was always transcribed to texas, but this is because it was recorded that
way. For an intermediate tool, several challenges would arise at the same time, as an address
can consist of numbers, words and also abbreviations. Accordingly, an intermediate tool
would have to combine several of the approaches from the previous cases. Apart from that,
another table could be introduced that divides the address into its different components.
This could be handled more easily by an intermediate tool, as described in Cases 1 to 4.

Case 6: Diverse. Proper Nouns like ProductX, abreviations like SSN, MGRSSN, and ambigu-
ities like SME (subject meta expert, small medium enterprises) have to be handled. Moreover,
MGR can abbreviate Manager. Nowaday, Laser, X-Ray, LGBTQ, ChatGPT and Open AI are
commonly known names. Furthermore, as in the example above with tx, it should be ensured
that common designations, such as USA, EU and ASEAN should be recognised and brought
into a context processable by DdQl.

In conclusion, it can be said that an intermediate tool between Whisper and DdQl should
be mostly dependent on data type in order to effectively enable corrections for DdQl. It is
important that all data types that occur in the accessed database are considered. A person
with expert knowledge about the database could then, for example in the case of this case
study, set the intermediate tool accordingly so that addresses are recognised and handled
like a compound data type.

The above mappings were composed mainly in relation to the transcription of the medium
model of Whisper. In fact, the same categories of error types occurred in the small and base
models, but with higher frequency and partially more bias. This is clearly due to the fact
that small and base are smaller and less accurate speech-to-text models than medium, but
thus are faster with respect to runtime [2]. When designing the intermediate tool between
Whisper and DdQl, this trade-off of accuracy and runtime can be utilized and should be
further investigated in the implementation.

4.3 Text–to–Text Corrections with Language Technology
As we have seen in the previous section, it is not only important to correctly interpret a user’s
request in natural language, but it is also of great importance to correct words incorrectly
transcribed by a speech–to–text (STT) engine in the case of spoken requests.

We use a custom fuzzy matching approach, adjusted to the observed wrong transcriptions
of Whisper, to counteract this problem. One main part of our fuzzy matching algorithm is
based on the fact that STT engines try to identify the correct phonemes of spoken words,
e.g. in an audio file, in order to map those phonemes to the correct spelling. Therefore it is
much more likely, that words are transcribed incorrectly to similar sounding words, as we
saw in, e.g., Case 2 (salary 7→ celery).

Our phonetic matching approach, to find homophones in the database, generates a phonetic
key for each word, which tries to represent the most important parts of its pronounciation.
This key generation is mainly derived from the known metaphone–algorithm [14].

Hereafter, for every case, mentioned in Subsection 4.2, it will be discussed how our fuzzy
matching approach addresses those listed mistranscriptions.

Case 1: Separation of Words by Whisper. The phonetic key generation does not pay
attention to any whitespaces, hyphen etc.. Therefore dno and d-n-o have the same phonetic
key, same goes with f name and fname. If we are not able to find an exact match with a
given value in the database, we compare the phonetic keys and pick those with the highest
similarity. This reduces the amount of format issues significantly.
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Nevertheless, we have to pay attention to those cases, in which word separations differen-
tiate values in the database. For example if there are an Anna Lyn and an Annalyn in the
database. A user may want to find Anna Lyn, but Whisper transcribes it incorrectly to Anna
Lin. All three names have the same phonetic key. As it is more likely that Whisper uses the
correct word separations, Anna Lyn will be preferred as a match.

Case 2: Transcriptions of Similar or Phonetically Similar Words. Here, several, but
not all of the mistranscriptions have the same phonetic key than their origin. salary
and celery have the same phonetic key of SLR. bdate, beat it and be date have also
the same phonetic key of BTT. franklin t wong (FRNKLNTWNK) and franklin t wom
(FRNKLNTWM) or Pork (PRK) and Borg (BRK) have different phonetic keys. In order to be
able to rank the similarities of phonetic keys, we use a custom Levenshtein Distance, where
we take into account, that some differences of phonetic keys are more likely to occur than
others. It is much more likely, that a difference of P and B in the phonetic keys is based on a
mistranscription of Whisper than P and L. Therefore differences like P and B contribute to a
much lesser degree to the calculated distance than differences like P and L.

We also pay attention to those characters in the near surrounding of a detected difference.
Keys like NL from the word null and N from no get a lower distance than NK from nik and N.
It is much more likely, that Whisper mistranslates null to no than it does with nik.

These adjustments are based on the pronounciation itself and our testing with Whisper.
Of course these rules are dependent of the used language. Right now, we only consider
english as spoken language. It would also be possible to deal with other languages, but for
every other language, an own phonetic algorithm has to be created.

Case 3: Speech–to–Text for Numbers. In the case of numbers, all spelled out digits are
first converted to their corresponding digits. Then, based on the amount of consecutive digits
or the given context, it is verified whether this could be a date. If this is not the case, all
consecutive digits, which are separated only by whitespaces or similar, are merged. Then we
search in the database for numbers that contain the given number, or if the given number
contains a number in the database. This gives us the opportunity, to address numbers, which
are not known in their entirety. If the user only knows the first few digits of the SSN of an
employee, it is possible to ask the user if a certain SSN, containing the given number, was the
SSN he meant. If there is more than one match with a high similarity, the user can choose
for which of them he wants to get the according result.

It is not recommended to combine this approach with the Levenshtein Distance, because
in our testing, Whisper usually did not mistranscribe one digit into another. It was more
likely that Whisper translated a 4 into for. Hence we consider cases, in which for was not
changed and cases, in which for was changed to 4. Those results are preferred, that did not
change anything.

Case 4: Transcription of Date Values. The usual way for a user to provide dates, is to
pronounce the month or year directly instead of spelling it out digit by digit. This works
quite well with Whisper. But if just the according digits are mentioned, we verify if a certain
set of digits could be a date. The different aspects we consider are the length and the value
of the number. From those possible date representations with the wrong format, we create
all dates that are eligible, compare them with the values in the database and ask the user if
he meant this specific date. 1931 620 for example, can only be 1931-06-20.

SLATE 2023
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Case 5: Transcription of Addresses. Many approaches discussed so far help us to interpret
a misunderstood address the correct way. berry bellaire tx (BRBLRTX) and berry bel
air texas (BRBLRTXS) have very similar phonetic representations, our algorithm will take
this kind of mistranslations into account. As we are also looking for matching substrings,
it would also be possible to respond to from Whisper transcribed queries like Give me all
employees, who live in berry bel air texas.

Case 6: Diverse. Abbreviations that can occur in the database are addressed by a simple
dictionary, which stores those words and their according abbreviation.

It is not only possible, to compare words according to spelling or pronounciation, it is
also possible to compare words according to their meaning. If we have a look at the query
How much does the employee Borg earn, then earn and salary have a similar meaning. This
can give us the opportunity to interpret a wider range of variations in the formulation of
queries in natural language correctly.

5 The Declarative Database Query Language DDQL

In DdQl, the generation of queries is based on declarative concepts from logic programming.
The knowledge-based compilation of keyword–queries to Datalog and/or Sql is done in
three steps. In experiments with the company database, useful queries were generated; if a
database does not contain referential integrity constraints, then we will need query logs for
deriving suitable join conditions.

The declarative programming toolkit Declare [20] and its deductive database system
DDbase already have functionality for evaluating database queries formulated using extensions
of Datalog. Even hybrid queries including different knowledge representation formalisms
are possible in DDbase. Relational databases can be accessed using Datalog or Sql queries
and Odbc; for Xml processing, a query, transformation and update language FNQuery is
given in [21]. In DDbase, Datalog programs are evaluated bottom–up with stratified fixpoint
computation, and they can – possibly, for simple forms of aggregation – be compiled to Sql
queries; often Datalog programs can also be evaluated top–down like in Prolog. For the
evaluation in logic programming, the field notation atoms are compiled to ordinary, logical
Datalog atoms based on background knowledge about the database schema. The ordinary
Datalog rules can be compiled to Sql with DDbase, if there is no default negation – and
for stratified default negation or aggregation.1 For non–stratified default negation, DDbase
could use answer set solvers, cf. [5], if there are no aggregation literals.

5.1 Knowledge–Based Compilation of Queries
DdQl compiles a NL query QN to a Datalog query QD in three steps:

QN → QA → QF → QD.

The result tables are shown in a graphical interface in Figure 1. First, using Definite Clause
Grammars (Dcgs, see, e.g., [4, 8]), an annotated query QA is generated. Using, e.g., the
following grammar rule in the extended Dcg formalism introduced in [19], also the resulting
parse tree can be computed:

query ==> aggregation , of , attribute , of , table.

1 A stratified evaluation requires that none of the embedded atoms Ai is mutualle recursive with the head
atom A. Then, the program is split into strata, such that default negated literals or aggregation literals
refer to lower strata; the strata are evaluated successively, beginning with the lowest.
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The Dcg rules are fully interleaved with database access operations of DDbase using Odbc.
E.g., the derivations of attribute and table can result in Odbc calls, or – for potential
speed–up – calls to a cached collection of facts previously extracted from the database. Some
words of the query – such as ”of” and ”the” – are ignored. DdQl generates the annotations
one after the other on backtracking, starting with the most likely annotations. E.g., the query
Q1 with the key words ”salary, of, Borg” is first annotated to the following query QA:

salary=company/employee/attribute
’Borg’=company/employee/row(@LNAME)

The keyword ”of” is ignored. In DdQl, it can be detected easily from the database schema
that salary is an attribute of the relation employee. The location of ’Borg’ has to be done
based on the contents of the database, which is more expensive. This can be done depending
on the context of the table employee; it turns out that it is the value of the attribute
LNAME. After the first annotation has been done and the first solution to the query has been
produced, DdQl uses backtracking to generate further annotations and solutions. Of course,
then DdQl will also search for ’Borg’ in other tables of the database. In summary, the
annotation QN → QA depends on – and can be refined by – the speech–to–text recognition
by Whisper and the text–to–text corrections.

Then, the compilation of the annotated queries QA to Sql or Datalog is done by adding
suitable join conditions using technology from DDbase based on the database schema. As an
intermediate representation, conjunctive queries QF in Datalog are generated with atoms in
field notation. The conjunctive queries are then refined and optimized to ordinary Datalog
queries QD using background knowledge from the database schema or Datalog–likes rules.
QD could be evaluated on a deductive variant of the relational database or a deductive
database; an Sql variant of QD can be evaluated on the relational database.

In Sql, queries usually have the form select-from-where-group by: The select part
specifies the attribute values that we are interested in and can contain aggregations of
attribute values. The from part specifies the tables that should be used to obtain the
answer. The intelligent where part describes the join-conditions for the envolved tables. For
transforming QA to QF and QD, in many cases, suitable join conditions can be inferred
from the foreign key constraints given in the database schema. The schema of the database
company contained many foreign key constraints. For databases without given foreign key
constraints, join conditions can be inferred from previous Sql queries in the log file: a join
condition can be assumed, if the primary key of a table (all attributes of the primary key)
is joined with some attributes of another table. In Declare, the schema of a table can be
extracted automatically from a running relational MySql database systen and presented in
Xml to the user and analysed with Prolog.

Obviously, query Q1 can simply be computed from table employee, since salary is an
attribute of employee and Borg is an attribute value in this table of the attribute lname.
Sometimes the word Borg could have been entered or spoken wrongly as, e.g., Bork with an
ending ”k”. Unless corrected by similarity search, the query would find no result. For Q2,
the situation is more complicated. Research is an attribute value in the table department,
and DdQl has to find the suitable join condition employee.DNO = department.DNUMBER.
Query Q3 requires the aggregation function sum on the salary values, and the departments
have to be grouped by name. The relevant links between the concepts mentioned in a user
query might be an undirected tree, or even a cyclic graph. E.g., if the user asks for the
salary of all employees working in a department that is controlling a given project and that
is located in a given city, then two different link trees might be used.
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Figure 1 Graphical User Interface of DdQl: Query Q4.

5.2 The Graphical User Interface
A prototype of the graphical user interface (GUI) of DdQl is shown in Figure 1. The query
keywords can be entered by speech after pressing the microphone icon or typed separated
by blanks into the input box. Then, the a list of possible search queries in Datalog or Sql
is generated, which might be further optimized. Currently, a corresponding Sql query is
shown, if there are no aggregation functions.

Obviously, for user–defined aggregation functions, only the Datalog variant is possible.
Figure 1 shows such a case with the user-defined aggregation function list for the query Q4.
For this example, only one Datalog answer was found, which leads to the result table shown
in the figure. Here, a unique answer was returned by DdQl. The join condition between the
first and the third Datalog atom of the query is given by the middle atom for employee: The
two occurences of F for the social security number identify the two employee atoms, and A
in the department atom ensures the Sql condition employee.DNO = department.DNUMBER.

5.3 Integration of Whisper into Declare in a Docker-Based Tool
To integrate Whisper with DdQl, several prerequisites must be met. First, Whisper must be
installed. For this, we need a current version of Python together with the PyTorch framework
and FFmpeg. For DdQl, we need the Declare developers toolkit, which contains DdQl to be
installed along with Swi–Prolog version 7.6.4 and Odbc to access the database. In addition,
we need a Python script which was developed to provide the command line interface and
connect Whisper and DdQl. To connect DdQl to the desired database, we need to manually
create a DSN with the required information. Moreover, the client environment must be able
to offer an X display for the graphical component of Declare to work.

Since the installation relies on a delicate balance of versions for all dependencies, the
process is somewhat cumbersome. On top of that, several other inconveniences may occur.
Whisper seems to have trouble with other installed Python packages. To avoid this, Whisper
should be installed in an isolated virtual environment. Another inconvenience could be the
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operating system used itself. It can influence the installation of the individual components
and can lead to unexpected behavior, since not all parts are tested on every variant of every
operating system.

To increase usability as well as other features such as portability and availability, several
approaches can be considered. As a first step, we have dockerized Declare2 to conveniently
provide a Declare distribution with all its dependencies. To use Whisper we either install it
as mentioned in the description above or use an existing Docker image of Whisper. However,
we need to install Python to run the script, which needs some small modifications, to provide
the CLI for the tool. We also have to create the DSN to connect DdQl with the database.
Another approach could be to combine all the required dependencies into a single Docker
image, so that only Docker needs to be installed to use the tool via CLI. Then, the database
connection can be created inside the Docker container by passing all the required information
as environment variables. This maximizes the portability and availability of the program, as
we can easily retrieve the Docker image from any machine and run it as needed. To further
optimize the usability of this approach, we could integrate the python script into a web server
that runs inside this single Docker container. With this step, we are able to install it both on
a local machine or on a server to provide the tool to the user with an appropriate web page.

6 Conclusions and Future Work

In this paper, we have shown how queries to relational databases can be answered in keyword–
based natural language interfaces using intelligent, cooperative techniques. The concepts
mentioned in the query are linked based on contextual background knowledge, mainly from
the database schema. In the future, also concepts from subsymbolic AI will be investigated
and included where useful. For instance, by looking at the user behaviour from previous
queries, we may derive heuristics for finding intended queries (e.g. linking atoms) using some
form of machine learning.

We have containerized Declare – inluding DdQl – in a docker image and added a voice
recognition part based on Whisper. In this paper, we have described the techniques used
for recognizing the correct queries in the context of the database. DdQl can benefit from
interleaving it with Whisper. Later, we are planning to use the voice recognition also for
DdQl on mobile devices and the knowledge acquisition could be done with a voice assistant
based on a domain–specific language, see [17]. Currently, we are training the Whisper tool
on different databases with varying schemata and instances. We would also like to add
voice output, i.e. spoken answers, such that the returned table could be read to the user.
At the moment the tool Whisper can transcribe 99 languages and we are planning to add
multilinguality to DdQl.

Graphical user interfaces (GUIs) might also be acted upon. Then, the GUI is the context;
it might also be described in a structured form such as Html 5 [16] or the Xml user interface
language Xul [7], which has been used by Mozilla for the firefox web browser; then text
matching has to be done on the interface components with reflection over a GUI. In Declare,
Xul interfaces can already be interpreted, and we are working on Prolog links in Html.

2 https://hub.docker.com/r/declaredocker/declare
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A Appendix

We have used the relational database Company from [11] for exemplifying our approach. The
database schema in Figure 2 contains 6 entity/relationship types and 8 referential integrity
constraints between them (links given by arrows). Some corresponding database tables have
been shown in Section 3 earlier in this paper.

Figure 2 Referential Integrity Constraints for the Relational Database Company.
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