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Abstract
We present an abstract interpretation technique to automatically build a Control Flow Graph (CFG)
representation of the execution of a GPU kernel. GPUs implement an inherently parallel execution
model, in which threads are grouped within so-called warps that execute in lockstep. This execution
model enables the representation of the execution of the threads of a warp as a single CFG. However,
thread divergence may appear within a warp and its effect must be captured explicitly within the
CFG. Our method builds the CFG of a warp by applying abstract interpretation on the assembly
(Nvidia SASS) code of a kernel, and by maintaining an abstract representation of which threads
within the warp agree on which values. This allows the method to detect precisely the points in the
program where thread divergence may occur, and avoid spurious reactivation edges in the CFG. We
apply our technique on benchmark kernels as a proof-of-concept, and generate IPET systems using
the resulting CFGs.
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1 Introduction

The ever-growing need for computation power begs the question of adopting hardware
accelerators in real-time embedded systems. In particular, Graphical Processing Units
(GPUs) have gained traction as they combine massive parallelism and versatility. However,
their adoption for safety-critical real-time systems requires the ability to derive safe Worst-
Case Execution Time (WCET) bounds for the programs accelerated by GPUs. Traditional
static WCET analysis targets the execution of a sequential thread running in isolation on a
CPU core. In practice, the embedded program is modelled using a Control Flow Graph (CFG)
that captures all the possible execution paths of the program in a condensed representation.
Abstract interpretation techniques can be applied on this graph to determine properties
of the program execution (e.g. loop bounds, infeasible paths, cache behavior). Each node
of the CFG corresponds to a sequence of instructions of the program whose worst-case
execution duration is derived using a model of the target hardware (in fully static methods)
or using measurements (in hybrid methods). The CFG is ultimately used in the Implicit
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Path Enumeration Technique (IPET) in order to generate an Integer Linear Program (ILP)
system that captures the possible execution paths and combines them with the worst-case
execution duration of the nodes of the CFG. The solution of this ILP system is the WCET
bound for the considered program. Additional techniques can be used to account for the
effect of concurrent threads running on the same core [1] or on different cores of a multi-core
System-on-Chip [8, 11].

In order to handle thousands of threads in parallel, GPUs implement a complex execution
model in which the threads executing a program are hierarchically subdivided into groups
called thread blocks and warps. Thread blocks are dynamically distributed among the
Streaming Multiprocessors (SM) composing a GPU following occupation rules defined in the
GPU drivers [2, 12]. Within each block, the threads are also grouped into warps. Threads
within a warp execute in lockstep: at each execution cycle, each multiprocessor elects a
warp for execution, and all the threads within the elected warp execute the same instruction.
This execution model is known as Single Instruction Multiple Threads (SIMT). Since all the
threads within a warp execute the same instruction at the same time, it seems natural to
derive the worst-case execution time of a warp in isolation, using a single CFG, and following
the classical WCET analysis workflow. From this information, additional analyses can then
be developed and applied to combine multiple warps running on the same GPU and derive a
WCET for the complete application.

However, the SIMT execution model is subject to a phenomenon called thread divergence
that impacts the control flow, and ultimately the execution time, by serializing the execution
of the different branches of conditional branch statements when the threads within a warp
do not agree on the value of the condition. For each thread taken separately this has no
impact on the control flow, but at warp level, this serialization mechanism creates additional
transitions in the control flow that must be accounted for in the warp-level CFG.

In this paper, we present an abstract interpretation technique that builds an accurate
warp-level CFG directly from the assembly code (Nvidia SASS) of the application. This
technique models the semantics of the SIMT execution model, and is able to determine a
subset of the conditional branch instructions for which the threads are statically guaranteed
to agree on the execution condition.

Building the CFG by abstract execution of the machine code in a CPU context is known
to bring the following benefits [3]:
1. independence from the source language and the compilation process;
2. more accurate control graph and abstract values thanks to interleaving of value analysis

and graph construction.
In the context of GPU timing analysis, this approach seems even more natural because:

the source code describes the behavior of each thread, while the machine code describes
the behavior of a warp;
the subsequent WCET analysis is performed on the machine code1

The paper is organized as follows. In Section 2, we present the details of the SIMT
semantics. We then present our CFG construction method in Section 3 and evaluate it in
Section 4. We present the related work on the topic of static WCET analysis of GPU kernels
in Section 5 and we conclude in Section 6.

1 We leave aside the problem of transferring the loop bound information from source to assembly code.
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Figure 1 Thread divergence example.

2 SIMT execution semantics

As mentioned earlier, GPUs implement a particular execution model called SIMT. At the
highest level, the main CPU program calls a GPU function (called a kernel) that is executed by
a specified number of threads. These threads are organized into blocks that are dynamically
dispatched to the SMs composing the GPU. Within a block, threads are divided in groups of
32 (or 16 depending on the GPU architecture) called warps. Inside an SM, warp schedulers
are responsible for selecting a warp to execute at each execution cycle. Threads within a warp
execute in lockstep: whenever a warp is elected for execution, all the threads that compose
it execute the same instruction. This greatly simplifies the logic, as all threads within a
warp can be seen as sharing their program counter (PC). However this execution model
can be problematic when the threads execute conditional branches: in certain situations,
called thread divergence, threads within a warp may not agree on the value of the execution
condition of a branch, and thus on the next value of their shared PC. This is handled by
executing the branch with the threads that find the execution condition true, while masking
the others, and then executing the fallback code with the other threads only. This mechanism
is illustrated in Figure 1. On the left, the figure displays a simple CFG with a conditional
branch: at the end of block A, the control flows towards B or C, and then reaches D regardless.
At the end of block D, each thread executes the EXIT instruction that signals the end of
execution for the thread. A possible execution for a warp is given in the middle. At the
beginning, all threads within the warp2 execute block A. Then the ten rightmost threads
execute block B followed by block D, until they reach the end of the program. When the
execution is over for these threads, the six leftmost threads execute block C, followed by
block D. At this point, all threads have finished executing the kernel.

This serialization allows the correct execution of a kernel, but is not efficient, as some
parts of the code (located after the if-then-else) are executed multiple times in sequence
(e.g. block D in our example). A reconvergence mechanism is implemented to reduce the
subsequent loss of performance: the compiler automatically detects areas in the code where
thread divergence may occur (around conditional branch instructions) and adds special
purpose instructions in the assembly code to re-synchronize the threads that have diverged.
This is illustrated in the right part of Figure 1. As before, at the beginning all threads

2 For space reasons we only depict 16 threads within the warp.
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execute block A. Then the ten rightmost threads execute block B and are suspended, as they
reach a reconvergence instruction at the end of the block. The six leftmost threads execute
block C, and when they are done, all threads reconverge before executing block D.

The SASS instruction set (up to the Maxwell/Pascal ISA at least) contains two pairs of
such instructions: SSY/SYNC and PBK/BRK. In each pair, the first instruction is used to signal
a potential incoming divergence to the hardware, while the second instruction is used to
synchronize diverging threads, thus forcing their reconvergence. In order to support nested
conditional branches, an activation stack stores the necessary information: each entry in the
stack is composed of a mask representing the active threads of the entry, and of the next PC
value for these threads. The entry at the top of the stack always represents the currently
active threads and the PC of the next instruction to execute. Additionally, each entry of the
stack is typed in order to handle intertwined loop, if-then-else and break constructs:

an entry is of NIL type if it does not correspond to a reconvergence point. The top of the
stack is always of NIL type.
an entry is of type SYNC if it was inserted using the SSY instruction. It usually is used to
reconverge after a conditional branch due to a if-then-else or a loop construct.
an entry is of type BRK if it was inserted using the PBK instruction. It usually is used to
reconverge after a conditional break statement.
The SSY and PBK instructions contain the address of the instruction at which the corres-

ponding reconvergence must occur.
The stack is maintained using the following rules:
when a warp is mapped to an SM, a stack is allocated. It is initially composed of a single
NIL entry with all threads active in the mask and the next PC corresponding to the start
of the kernel code.
when a warp reaches a SSY @reconv_addr (resp. PBK @reconv_addr) instruction, the
next PC of the top entry becomes reconv_addr, and the entry becomes typed as SYNC
(resp. BRK). This entry will be used when the threads reconverge. A new NIL entry is
then pushed on the stack. This entry has the same thread mask as the previous top entry
(i.e. all currently active threads remain active), and its next PC is set to the current
PC + 8 (i.e. the next instruction in memory for 64 bit instructions). The SSY (resp.
PBK) instruction prepares the stack for a potential divergence due to a future conditional
branch instruction, but is not by itself a source of divergence.
when a warp reaches a divergent conditional branch BRA @addr, the actual divergence
must be accounted for in the stack. The top entry next PC is set to its current value + 8
(i.e. the address of the fallback code), and its mask is updated to contain only the active
threads that do not take the branch. This entry will be used later to execute the fallback
code. A new NIL entry is pushed to the stack. Its next PC is set to addr and its mask is
composed of the active threads that take the branch.
when a warp reaches a SYNC (resp. BRK) instruction, the active threads are removed from
the mask of all entries in the stack, from the top and until a SYNC (resp. BRK) entry is
reached. Each time a mask is modified, its corresponding entry is popped from the stack
if the modified mask no longer contains any thread. In practice, the SYNC (resp. BRK)
instruction suspends the execution of the currently active threads until a reconvergence
point is reached by all the threads that must reconverge.
when a warp reaches an EXIT instruction (i.e. the active threads reach the end of the
kernel), all active warps that execute the EXIT are removed from the mask of all the
entries in the stack. Once again, if a mask becomes empty doing so, its entry is removed
from the stack.
whenever an entry becomes the top entry, its type becomes NIL regardless of what it was
before.
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This set of rules is implemented in the hardware, and as the SSY/SYNC, PBK/BRK and
EXIT instructions are automatically inserted by the compiler, the process of handling thread
divergence when it occurs is transparent to the programmer. On the other hand, our static
analyses follow closely this execution model in order to accurately account for its effect.
In particular, to the best of our knowledge, it is the first time that a static analysis is
performed at the granularity level of the assembly language for a GPU kernel and that the
divergence/reconvergence instructions are taken into account. This is particularly important
as in our experiments, we have encountered situations in which the compiler does not insert
reconvergence instructions on the first post-dominating node after a conditional branch.

In the next section, we present our abstract interpretation method to build a warp-level
CFG from the SASS code of a GPU kernel.

3 Abstract interpretation

In the manner of Reps and al. [3], we perform the CFG construction at the machine code
level and we interleave exploration of the control flow with value analysis.

We construct the graph by starting at the entry point of the program with an initial
abstract state representing the possible initial concrete states. We execute the instructions of
the program on the abstract states and discover successors states. We do so until a fixpoint
is reached and no more new states are discovered. An abstract state contains information on:

the current program counter;
the pending activation stack (see Section 3.1);
several remarkable groups of threads (see Section 3.2);
for each group, the registers on which these threads agree (see Section 3.3).

After presenting the base domains in the following subsections, we detail our abstract
states in Section 3.4. For each domain, we provide a formal description of the concretization
function γ, that associates a value in an abstract domain D♯ to a set of concrete values, and
a description of its essential operations.

The notation A → B denotes a total function from A to B; A ⇀ B denotes a partial
function from A to B; P(A) denotes a subset of A.

3.1 Activation stack abstract domain

We represent the possible configurations of the activation stack by a graph in which the nodes
are composed of a control point and an optional tag (SYNC, BRK or none), plus two special
nodes : top and bot. In such a graph, each path from top to bot represents the contents of a
stack in a possible configuration. The stack concretization function γStack takes as input a
graph and returns the set of corresponding stack configurations.

γStack : D♯
Stack → P(List(Act♯)) with Act♯ def= PC× Tag

Operations

Most operations in this abstract domain are simple adaptations of classical operations on
stacks. We detail the pop and filter operations.

WCET 2023
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Popping

While pushing an element on an abstract stack simply gives an abstract stack, popping the
topmost element may yield several possible popped values and leave distinct remainders. It
might also happen that the stack can be empty; none is then part of the result.

pop♯ : D♯
Stack → P(Act♯ ×D♯

Stack)

This operation is called after the active threads have been halted by an EXIT, SYNC or
BRK. The execution may continue at any of the control point that can be popped. If the
stack may be empty, this indicates that the program can halt here.

Filtering

When an operation halts the active threads, it removes them from the active mask, but
also from all the masks in the stack, up to the bottom in case of an EXIT and up to the
corresponding tag in case of a SYNC or BRK.

Our representations of the stack do not embed the masks3. However, we need to take
into account that stages of the activation stack might have been removed after that their
activation mask attained the zero vector.

We thus equipped our abstract stack domain with a filtering operation that processes the
stages from the top of the stack up to an optional tag and for each stage take into account
that its mask can/cannot/must reach zero. The latter information is taken as a parameter
and is provided by the thread group abstract domain (Sec. 3.2).

filter♯ : D♯
Stack × Tag× (Act♯ → {keep, drop, any}) → D♯

Stack

3.2 Thread group abstract domain

In order to conduct a precise analysis, we sometimes need to retain the relations between
certain groups4 of threads. We thus introduced an abstract domain that is able to remember
relations like A ⊆ B, A = B or A ∩B = ∅.

The domain does not keep track of the concrete threads present in a group, just the
relations between these groups. The group names are stored in the abstract value. In our
case, we use the special group active to denote the threads currently executing and one
group per activation node in the stack graph to denote either its associated mask or an upper
bound on it when in a cycle. This set of groups is denoted by G.

γGroup : D♯
Group → P(G ⇀ P(Threads))

We implement this domain by storing all the intersections of groups or complements of
groups that must be empty. The constraint A∩B = ∅ is stored as is, the constraint A ⊆ B is
stored as A∩ B̄ = ∅ and the constraint A = B is stored as A ⊆ B ∧B ⊆ A. The conjunction
of constraints is an exact operation5 in this domain.

3 Putting the masks or abstraction thereof in the abstract stack would lead to very large graphs.
4 In this specific context, we use the term group, but it can be read as set.
5 An exact operation is an operation of the abstract domain that does not result in an over-approximation.
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3.3 Agreement abstract domain
Thread divergence can occur when a conditional branch instruction is executed. However, in
many situations all the threads of the warp agree on the predicate, by program design.

In order to determine if a divergence may occur or not, we created a new abstract domain
that keeps track for a given group of threads of the registers on which these threads agree.
We just store the name of these registers, not the values they contain. The beauty of this
analysis is that we do not need to know the precise behaviour of each instruction but only
what it reads, what it writes, and be sure that it is deterministic.

For example, if the instruction is IADD R2, R4, R2; we can tell that if a group of threads
agree on R2 and R4, they will all write the same value in R2 and thus keep agreeing on these
registers.

The basic version of this domain captures the identical registers in a given group of
threads.

γAgree : (P(Thread)× P(Reg)) → P(Mem)
γAgree(T, R) = {m ∈ Mem | ∀t1, t2 ∈ T, ∀r ∈ R, read(m, t1, r) = read(m, t2, r)}

Such abstract value is concretized as the set of memories such that any two threads in
the group that read the same register on which the agreement was established, read the same
value. Values in Mem describe both the registers and the DRAM memories of the GPU.

This domain is then lifted to handle several groups of threads, identified in Section 3.2.

D♯
GrAgr

def= G ⇀ P(Reg)

γGrAgr : D♯
GrAgr → P((G ⇀ P(Threads))×Mem)

γGrAgr(f) def= {⟨g, m⟩ ∈ (G ⇀ P(Threads))×Mem |
dom(g) = dom(f) ∧ ∀x ∈ dom(f), m ∈ γAgree(g(x), f(x))}

When we process an instruction computing data, we update the information tied to each
group in the following manner:

If the group is equal to active, we perform a strong update. If the threads agree on the
arguments, they gain or preserve the agreement on the result. If the threads disagree on
at least one argument, agreement on the result is lost.
If the group is not equal to active but intersecting it, we perform a weak update. It
means that only a part of the group performs the instruction. Agreement on the result is
thus lost.
If the group is disjoint from active, we do not modify its agreements.

3.4 Warp state abstract domain
As announced on page 5, a state is made of the current program counter, the pending
activation stack, a set of remarkable groups of threads and agreement information on these
groups.

D♯
Warp

def= PC×D♯
Stack ×D♯

Group ×D♯
GrAgr

γWarp : D♯
Warp → P(List((PC× Tag)× P(Thread)}) × Mem)

γWarp(p, s♯, g♯, a♯) def= {⟨⟨⟨p, none⟩ , g(active)⟩ .s′, m⟩ |
⟨g, m⟩ ∈ γGrAgr(a♯) ∧ g ∈ γGroup(g♯)
∧∃s ∈ γStack(s♯),∀i, s′[i] = ⟨s[i], g(s[i])⟩}

WCET 2023
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Processing an instruction
We define the abstract treatment of an instruction by separating the concerns of processing
an instruction unconditionally (memo + operands) from the treatment of the condition.
This organization of the abstract semantics avoids to consider for each kind of instruction a
tedious and error-prone study of the interference between the instruction and the presence of
a condition.

Managing the condition

Processing an instruction with its condition may produce several abstract values, that we do
not wish to join immediately into a single one. An informal algorithm is given in Algo. 1
and it uses the produce keyword to signal one or several results (as yield in Python).

Algorithm 1 Successors of an abstract state: condition management.

Input : An initial abstract state stini
Output : The production of one or more successor state

1 PCcur ← PC(stini);
2 i← instruction at PCcur;
3 stall ← process unconditionally instruction i in state stini;
4 if stall has no more active threads then
5 produce all pop from stall;
6 else
7 produce stall;
8 if i is conditional then
9 produce stini with PC = PCcur + 8;

10 if active threads might disagree on cond(i) in stini then
11 stpart ← stini with a group skip separated from active;
12 stsome ← process unconditionally instruction i in state stpart;
13 if stsome has no more active threads then
14 produce stsome with group skip renamed as active;
15 else if PC(stsome) = PCcur + 8 then
16 produce stsome with group skip folded into active;
17 else
18 produce stsome with group skip pushed as ⟨PCcur + 8, none⟩;

Processing unconditional instructions

1. Branching (BRA) replaces the current PC with the target of the instruction. Non-branching
instructions increment the PC in addition to their effect.

2. Data-processing instructions (eg. IADD or LDC) modify the agreement component of the
abstract value, as presented at the end of Section 3.3.

3. Reconvergence preparation instructions (SSY and PBK) push their target on the pending
activation stack with a tag corresponding to the kind of synchronization.

4. Reconvergence instructions (SYNC and BRK) split the abstract stack on the first occurrence
of the corresponding tag. The upper part is then filtered from the activation stages that
can or must have their mask reduced to zero when we halt the threads in active.

5. The EXIT instruction filters the active threads from the whole stack.
In the next section we describe the results that we obtained using our method.
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4 Evaluation

4.1 Experimentation on the Rodinia Benchmark

To the best of our knowledge, no GPU kernel benchmark dedicated to embedded or real-
time systems has been released yet. To evaluate our analysis method, we thus used kernels
extracted from the Rodinia [7] benchmark. Since our analysis does not support calls to kernels
originated from another kernel (we are currently working on understanding the relationship
between the call stack and the reconvergence stack), our evaluation was performed on 37 out
of the 57 kernels composing Rodinia. For each of them, our prototype was able to generate
a CFG, and from each CFG we generated an ILP system following the IPET method.
Developing a loop-bound analysis for warp-level CFGs is part of future work, so for now we
manually provided the loop bounds, and arbitrarily set each loop bound to 10 iterations (or
a power of ten for nested loops). Loop reconstruction was done using [6]. Additionally, we
arbitrarily set each instruction duration to 1 cycle in order to obtain durations for the blocks
of the produced CFGs. Our objective was not to derive a real WCET for these kernels but to
prove the feasibility of deriving a warp-level CFG and to use it in a standard IPET workflow.

Overall, most of the analyzed kernels have a very limited number of arcs modelling a
possible divergence (34 of them have 4 or less of these arcs), which is coherent since most of
these kernels are pretty simple, and do not feature if-then-else constructs. Interestingly, the
3 kernels with a slightly more complex control flow (switch-case and if-then-else constructs)
have 39, 19 and 12 of them (respectively in the mummergpuKernel, printKernel and reduce
kernels). This means that the kind of analysis that we propose is necessary in order to
support even relatively simple kernels. For each of them we were able to compute a WCET,
which shows that the generated CFGs are compatible with the IPET method. The CFG
reconstruction took up to 1.3 seconds; in 75% of the benches, it took less than 90 ms.

In the future, we plan on looking at other benchmarks to try to find more complex
kernels, or to develop our own benchmark with kernels that can be interesting for analysis or
representative of embedded GPU kernels.

4.2 Evaluation of the abstract domain

In this subsection we give some results on the relative importance of the component of the
abstract domain D♯

Warp presented in Section 3. We deactivate some parts of the abstract
value and observe the fraction of the benchmark programs of Section 4.1 that see their WCET
severely degraded. The results are the following:

Domain modification WCET est. ×10 or more

Limitation to acyclic graphs (Sec. 3.1) 25%
No group fine analysis (Sec. 3.2) 15%
No agreement analysis (Sec. 3.3) 52%
Agreement tracking only for active 37%

The results show that the agreement analysis is the key ingredient for the WCET analysis
precision. We can also see that this analysis needs to be done not only for the active threads
but also the pending threads. Eventually, we can spot that a precise group analysis is less
crucial but should not be neglected.

WCET 2023
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5 State of the art

The problem of deriving a safe WCET bound for GPU kernels has so far been the topic of
only a limited number of publications.

In [4], the authors tackle the problem by providing an ILP formulation that captures
how a work-conserving warp scheduler could handle the workload corresponding to a kernel.
The focus is put on how the scheduler hides the long latency instructions (e.g. memory
accesses). However, in this preliminary work, the simplifying assumptions are very strong. In
particular, the considered kernels are single path, which greatly simplifies the analysis and
completely puts aside the problematic of thread divergence. The method proposed in [10]
is also based on the modelling of the warp scheduler policy using an ILP system, focusing
on the Greedy Then Round Robin scheduling policy. The authors propose analyses of the
kernel code to handle memory access coalescing and roughly account for thread divergence.
However, nothing is said about how thread divergence is detected, so we can assume that
additional analyses such as the one that we propose are required.

In [5], a hybrid analysis method is used: a CFG is built to represent the execution paths
of the kernel, and the execution duration of the basic blocks of the CFG are obtained using
measurements. The authors propose an algorithm that extends the CFG of a single thread to
a CFG that over-estimates the control transitions at warp-level, by adding extra edges that
model thread divergence. This method is based solely on the topological properties of the
thread CFG (i.e. divergence in the graph and dominance/post-dominance properties), and
does not take into account the actual SIMT semantics, nor the fact that thread reconvergence
only happens if and when SYNC/BRK instructions are inserted by the compiler. In our
experience, the compiler does not always insert reconvergence instructions at the first post-
dominant point in the CFG after a separation of paths in the graph, so the assumptions
made in [5] may sometimes be too optimistic and lead to underestimations of the WCET.
Moreover, since the authors do not follow closely the SIMT semantics, their method may add
extra edges that are not added with our method a) when we detect an agreement between
the threads of a warp and b) because when a conditional branch occurs, their algorithm does
not know which branch is taken first.

An ad-hoc WCET analysis method for GPU kernels has been proposed in [9]. The
algorithm builds on Single Static Assignment (SSA)-like analysis methods and on symbolical
execution to statically detect the points in the CFG of a thread where agreement between
all threads of a warp is statically guaranteed. This is, to the best of our knowledge, the only
method (before ours) that tries to determine agreement on a condition when a conditional
branch occurs. In comparison, our method determines agreement points by introducing the
SIMT stack mechanism in our model, which provides more precise results: we determine
agreement between active threads at each point, while the method based on SSA-like
properties only allows to reason about all the threads in the warp. Moreover, our method
aims at building a warp-level CFG that can then be used in a standard WCET analysis
pipeline, so it can benefit from classical analyses on CFGs (e.g. cache analysis) and from the
IPET method, while the method of [9] is standalone.

6 Conclusion

We presented an abstract interpretation technique to automatically build a warp-level CFG
for GPU kernels. Our method strictly follows the SIMT semantics as implemented in the
Nvidia Pascal GPUs. In particular, it handles the possibility of thread divergence and
its impact on the warp-level CFG. Part of our analysis focuses on the representation of
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agreement between threads of the same warp on a given value (e.g. a register value) to filter
out divergence when we can statically prove that all threads agree on the branch to take.
We performed an evaluation on the Rodinia benchmark, and highlighted the importance of
the agreement analysis.

In the future we will improve our analysis by supporting the calls to kernels from other
kernels, and by adapting classical analyses (e.g. loop bound analysis) to our framework. We
will also work on our understanding of the microarchitecture of GPU targets in order to
derive precise durations for the blocks of the CFG.
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A Appendix

A.1 If-then-else example

# Block 0
     MOV R1, c[0x0][0x20];
     S2R R5, SR_TID.X;
# ... 3 inst.
     LDG.E R0, [R2];
     MOV R6, R5;
     CS2R R7, SR_CLOCKLO;
     ISETP.NE.AND P0, PT, R0, R5, PT;
     SSY TARGET1;
@!P0 BRA TARGET2;

# Block 1
     XMAD R6, R0.reuse, R0.reuse, RZ;
     XMAD.MRG R9, R0.reuse, R0.H1, RZ;
     XMAD.PSL.CBCC R6, R0.H1, R9.H1, R6;
     CS2R R0, SR_CLOCKLO;
     SYNC ;

skip (all)

# Block 2
TARGET2:
     CS2R R0, SR_CLOCKLO;
     SYNC ;

BRA (some)

# Block 3
TARGET1:
     LEA R4.CC, R5, param_1[0], 0x2;
     IADD R0, -R7, R0;
     LEA.HI.X R5, R5, param_1[1], RZ, 0x2;
     STG.E [R4], R6;
     STG.E [R2], R0;
     EXIT ;

SYNC (all; last)

SYNC (all; 1 on top)

SYNC (all; last)

EXIT

EXIT (all)

Figure 2 Control flow graph of a program containing a non-trivial if-then-else. The dashed
control edge is not part of the source control flow.
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A.2 Regular loops example

# Block 0
     MOV R1, c[0x0][0x20];
     CS2R R16, SR_CLOCKLO;
# ... 52 inst.
     XMAD.CHI R9, R11.H1.reuse, param_5, R9;
     ISETP.GE.U32.X.AND P0, PT, R12, R5, PT;
     XMAD.PSL.CBCC R11, R11.H1, R4.H1, R2;
     IADD3.RS R9, R9, R7, R18;
     MOV R7, RZ;
@!P0 BRA TARGET1;

# Block 1
     XMAD R6, R13.reuse, param_3[0], RZ;
     XMAD R24, R13.reuse, param_4[0], RZ;
# ... 38 inst.
     IADD R20.CC, R14, R20;
     SHL R18, R18, 0x2;
     MOV R19, R11;
     SHL R27, R27, 0x2;
     SHL R25, R25, 0x2;
     IADD.X R24, RZ, R2;

skip (all)

# Block 6
TARGET1:
     XMAD R3, R17.reuse, R10.reuse, RZ;
     XMAD R6, R17.reuse, R8.reuse, RZ;
# ... 33 inst.
     STG.E [R2], R7;
     IADD.X R5, R0, param_6[1];
     CS2R R2, SR_CLOCKLO;
     IADD R2, -R16, R2;
     STG.E [R4], R2;
     EXIT ;

BRA (all)

# Block 2
TARGET4:
     IADD R3.CC, R0, R6;
     IADD.X R4, R23, R21;
# ... 15 inst.
     DEPBAR.LE SB5, 0x1;
     STS [R22], R3;
     STS [R25], R4;
     BAR.SYNC 0x0;
     MEMBAR.CTA ;
@!P1 BRA TARGET2;

IADD.X (all)

# Block 3
     MOV R2, RZ;
     MOV R3, RZ;
     MOV R28, R27;
     MOV R4, R18;
     MOV R5, param_5;

skip (all)

# Block 5
TARGET2:
     NOP ;
     NOP ;
     NOP ;
     BAR.SYNC 0x0;
     MEMBAR.CTA ;
@!P0 BRA TARGET4;

BRA (all)

# Block 4
TARGET3:
     IADD32I R2.CC, R2, 0x1;
     LDS.U.32 R29, [R4];
# ... 4 inst.
     ISETP.GE.U32.X.AND P1, PT, R3, RZ, PT;
     IADD32I R28, R28, 0x4;
     XMAD R7, R29.reuse, R30.reuse, R7;
     XMAD.MRG R30, R29.reuse, R30.H1, RZ;
     XMAD.PSL.CBCC R7, R29.H1, R30.H1, R7;
@!P1 BRA TARGET3;

MOV (all)

BRA (all)

skip (all)

BRA (all)

skip (all)

EXIT

EXIT (all)

Figure 3 Control flow of a tiled matrix multiplication. Without agreement analysis, the exit
instruction in block 6 would have an edge to every potential divergence.
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