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Abstract
Most real-time embedded systems are required to fulfill timing constraints while adhering to a limited
energy budget. Small ScratchPad Memory (SPM) poses a common hardware constraint on embedded
systems. Static SPM allocation techniques are limited by the SPM’s stringent size constraint, which
is why this paper proposes a Dynamic SPM Allocation (DSA) model at the compiler level for the
dynamic allocation of a program to SPM during runtime. To minimize Worst-Case Execution Time
(WCET) and energy objectives, we propose a multi-objective DSA-based optimization. Static SPM
allocations might inherently use SPM sub-optimally, while all proposed DSA optimizations are
only single-objective. Therefore, this paper is the first step towards a DSA that trades WCET and
energy objectives simultaneously. Even with extra DSA overheads, our approach provides better
quality solutions than the state-of-the-art multi-objective static SPM allocation and ILP-based
single-objective DSA approach.
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1 Introduction

Real-time embedded systems must satisfy hard timing constraints and often operate on
a limited energy budget. To optimize such systems, it is important to consider WCET
and energy consumption of the program. As SPMs are fast and energy-efficient local
memories, various static SPM allocation-based optimizations have been explored to exploit
their potential. But, their small size gravely constrains the static optimization problem.
Therefore, we propose a compiler-level DSA model in this paper to exploit the memory
subsystem and circumvent the SPM size constraint. Additionally, for the very first time, we
propose a strategy to perform WCET and energy analyses of such dynamically allocated
programs statically at compile-time, enabling us to perform DSA-based multi-objective
optimization during compilation.

DSA is traditionally an important task for Operating Systems (OS), but the execution
times of OS-based allocation techniques are difficult to predict and guarantee. The compiler-
based DSA has been investigated before for reasonably limited architectures, and only
single-objective optimizations to minimize either WCET or energy have been considered.
However, the program’s WCET- and energy-critical areas may differ, and optimizing for
WCET alone can negatively impact energy consumption and vice versa. Therefore, in this
paper, we propose for the very first time a multi-objective optimization that uses the proposed
DSA model and simultaneously optimizes the WCET and energy consumption.

We implemented the proposed DSA-based multi-objective optimization within the WCET-
aware C Compiler (WCC) [6] framework and solved using two metaheuristic algorithms,
namely Flower Pollination Algorithm (FPA) [25] and Strength Pareto Evolutionary Algorithm
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(SPEA) [26]. For the sake of brevity, we refer to this optimization run as MOD in this paper.
Furthermore, we compare the evaluation results of MOD with a static SPM allocation-based
multi-objective optimization and an ILP-based single-objective DSA optimization referred to
as MOS and SOD, respectively, in this paper. The key contributions of this paper are:

For the very first time, we formulated a DSA model that allocates memory objects from
Flash to SPM during runtime and supports both WCET and energy analyses.
We proposed a MOD that uses metaheuristic algorithms to solve the said problem.
MOD is compared with MOS and SOD using real-world benchmark suites from EEMBC.
DSA introduces significant WCET and energy overheads still, the quality of solutions
from MOD is slightly better than the ones from MOS , and MOD outperforms SOD.

The paper is organized as follows: Sec. (2) provides an overview of the related work. Sec. (3)
discusses the proposed DSA model. Sec. (4) presents MOD, and Sec. (5) presents the
evaluation results. A conclusion and discussion of the future work conclude the paper.

2 Related Work

DSA facilitates copying code and data objects on and off memories during runtime and
exploits the memory subsystem to its fullest potential [13]. DSA-based approaches proposed
in the past are in the context of single-objective optimizations [22, 19, 7, 20]. Deverge et
al. [5] proposed DSA for static and stack data to minimize WCET. Kim et al. [14] proposed
dynamic instructions allocation at the function level for minimizing WCET using direct
memory access transfers. Verma et al. [24] proposed an SPM overlay approach for data and
instruction allocation that minimizes the energy consumption of the program. Liu et al. [15]
built upon Verma’s scratchpad overlay model by considering a multi-level SPM architecture
for multi-core processors for minimizing WCET. These approaches consider the DSA of
either code or data and focus on only single objective optimization.

Performing compiler-level multi-objective optimizations has rarely been exploited. Lok-
uciejewski et al. [16] proposed a stochastic evolutionary approach to find Pareto optimal
compiler optimization sequences. He considered trade-offs between Average-Case Execution
Time (ACET) and WCET, as well as WCET and code size. Muts et al. [17] proposed a
function-inlining-based multi-criteria optimization that traded WCET, energy, and code size.
Hoste et al. [10] proposed a multi-objective optimization framework that used evolutionary
algorithms to explore compiler optimization levels and automatically finds Pareto-optimal
optimization levels. In the past, we proposed a multi-objective optimization using FPA to
perform compiler-level static SPM allocation [11]. However, none of these multi-objective
optimizations focus on dynamic allocation to exploit the memory subsystems. Therefore,
this paper is the first step toward performing DSA-based multi-objective optimization that
simultaneously minimizes the WCET and energy consumption of the program.

3 Dynamic SPM Allocation Model

In this section, we propose a DSA model within WCC that can dynamically allocate memory
objects at runtime. DSA is the process of allocating memory objects dynamically during
the runtime of a program. Performing compiler-level DSA allows us to predetermine the
WCET- and energy-intensive memory object that could be dynamically copied to SPM
during runtime such that WCET and energy objectives are minimized.
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3.1 Memory Objects
A memory object (memObj) is defined as the finest granularity program fragment considered
in a DSA problem. A Basic Block (BB), a code sequence with no branches except possibly
at the exit, can be considered a memObj. But, while performing DSA, the re-usability of
a memObj plays a critical role. Executing a memObj only once from SPM leads to certain
WCET or energy reductions, but the overheads for dynamically copying such memObj can
overshadow these savings. For this reason, this paper considers only memObjs that are
executed several times, i.e., that exhibit a high re-usability. By construction, such memObjs
are loops and functions. Therefore, we consider functions and loops as code memory objects
(memObjc) for dynamic allocation. Loops and functions can provide the re-usability of BBs
and reduce additional overhead introduced by the movement of individual BBs.

A global data variable is live throughout the complete execution of the code. The dynamic
allocation of global data variables can introduce unnecessary overheads in terms of WCET
and energy consumption. Therefore, global data variables (memObjd) are allocated statically
either to SPM or to Flash by our approach. On the other hand, the scope of local data
variables only exists within some parts of a single function. Therefore, our approach considers
local data variables as part of the functions or loops within which they are being used and
are dynamically allocated in conjunction with them.

The underlying exemplary architecture considered while modeling the DSA model consists
of the Flash, an instruction SPM (ISPM), and a data SPM (DSPM). Let M ⊂ F ∪ L ∪ G
be a set of memObj that is a union of the set of functions F , the set of loops L, and the set of
global data variables G within a program. Let x ∈ {0, 1}d represent a d-dimensional binary
decision variable vector that describes which memObj is allocated in which memory. x is a
block vector, where the subvector x1:F = (x1, . . . , xF ) are decision variables for functions,
the subvector x(F +1):(F +L) = (xF +1, . . . , xF +L) are decision variables for loops, and the
subvector x(F +L+1):(F +L+G) = (xF +L+1, . . . , xF +L+G) are decision variables for global data
variables. F is the total number of functions, L is the total number of loops, and G is the
total number of global data variables within M. d = (F + L + G) is the total number of
memObj. Each coordinate xi, i = 1, d of vector x corresponds to a specific memObj:

xi =

{
1, if Mi is in ISP M

0, if Mi is in Flash
xi =

{
1, if Mi is in DSP M

0, if Mi is in Flash

∀i = 1, (F + L) ∀i = (F + L + 1), (F + L + G) (1)

The memObjc referring to decision variables xi, ∀i = 1, (F + L) are allocated dynamically
from Flash to ISPM , and the memObjd referring to xi, ∀(F + L + 1), (F + L + G) are
allocated statically from Flash to DSPM .

3.2 Liveness Analysis
A memObj is live at an edge e ∈ E of the control flow graph G(N, E) if there exists a back
path from the edge e to a node n ∈ N , where the memObj is defined without being redefined
at any other node along the path [24]. For the sake of brevity, a detailed explanation of
the standard liveness analysis is omitted [2]. We perform liveness analysis within WCC at
the function level. Each function is analyzed to determine the live range of a memObj. A
function memObj is defined (def ) when it is first called within the function currently under
analysis. The subsequent calls for that function are categorized as use. The live range of the
function memObj is the path, i.e., set of BBs, from def until the last use.

WCET 2023
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A loop memObj is defined at the live-out edge of the loop-entry BB. All BBs within the
loop are categorized as use. The live range of the loop memObj is the loop-entry’s predecessor
BB, i.e., def, until the loop-exit BBs. In case of multiple entries and exits for a loop, all
the BBs are considered part of the live range of the loop memObj. In the case of nested
loops, each loop is considered an individual memObj entity. The loop memObj nested within
another loop is defined at the live-out edge of the top-enclosing loop entry’s BB, and the BBs
within the individual loop memObj are categorized as use. The live range of a nested loop
memObj spans over all the BBs contained within the top-enclosing loop. In the case of global
data variables, they are considered live throughout the complete execution of the code.

Let Λ = {λ1, . . . , λ(F +L)}, where (F + L) is the total number of memObjc and λi be a set
of BBs live for memObjc Mi, i.e., λi = {bp | ∀p bp is live for Mi}. Let C = {c1, . . . , c(F +L)},
where ci be a (F + L)-dimensional binary vector that determines if there exists an overlap
of live ranges between the ith memObjc and others. Each coordinate cij , j = 1, (F + L)
corresponds to a conflict of ith memObj with the jth memObj, i.e.,

cij =
{

1, if ∃ bp | bp ∈ λi & bp ∈ λj , & i ̸= j

0, otherwise
(2)

When solving the address assignment problem, liveness conflicts between memObjs are
considered. These conflicts prevent the allocation of memObjs that share conflicting liveness
to the same memory address within SPM.

3.3 Address Assignment

DSA allows copying of memObjc from Flash to SPM during runtime dynamically. But, we
must be careful that any memObjc is not overwritten during its execution. Therefore, we
need to solve an address assignment problem at compile-time such that no two memObjc that
are live at the same time are allocated to the same memory addresses. We solve the address
assignment algorithm within WCC to appropriately allocate address spaces to memObjc for
proper dynamic allocation. Moreover, all BBs contained within a memObjc are not always
placed within consecutive memory addresses. For example, a loop within a nested loop could
have BBs located in consecutive memory addresses, followed by another loop, and then
followed by the remaining BBs. In this case, we need two distinct memory copy functions to
dynamically allocate the whole memObj. Therefore, we define an address object (addrObj)
as a set of BBs from the memObjc such that they are placed within consecutive memory
addresses. Solving the address assignment problem provides us with the start address, the
destination address, and the size of the addrObj, which are needed for their dynamic allocation
during runtime. Let Ti be the total number of addrObjs associated with the memObjc Mi,
and T be the total number of addrObjs that need dynamic allocation.

To solve the address assignment problem, we use a combination of the first-fit and best-fit
heuristics [8]. The first-fit heuristic fit as many addrObj as possible within SPM until the
SPM is full. If two addrObj are adjacent within the Flash, then we try to place them similarly
in SPM. Once the SPM is full, we run the best-fit heuristic to find the best possible place in
SPM for the remaining addrObj. memObjs with liveness conflicts are not overlapped within
the memory addresses. In case the size of the addrObj is larger than the already placed
addrObjs, then we try to find multiple adjacent addrObj that fit the considered addrObj. If
all addrObjs are assigned to SPM, then the algorithm returns 0. If that is not the case, then
it returns (T − η), where η is the number of addrObjs assigned to SPM.
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Algorithm 1 Generation and Analyses of Dynamically Allocated Code.

1: For each solution x

2: for i = 1 : (F + L + G) do ▷ For each Mi

3: if xi == 1 then ▷ If Mi is placed in SPM
4: if i ≤ (F + L) then ▷ For code Mi

5: Perform jump correction
6: else ▷ For data Mi

7: Statically allocate global data object to DSP M

8: Perform Address Assignment
9: if (T − η)! = 0 then

10: Repair solution x

11: Repeat Steps 2–8
12: Insert memcpy() calls and call literal pool placement algorithm
13: Again perform Address Assignment to accommodate memcpy() calls and literal pool changes
14: Generate a static version of the code and perform WCET and energy analyses
15: Collect Analyses results and discard the static version of the code

3.4 Code Transformation for Dynamic SPM Allocation
We perform code transformations during compile time to dynamically move addrObj from one
memory to another. To copy a addrObj during runtime, we insert a memory copy function
(memcpy()) at the assembly level. The memcpy() is allocated to the Flash, and it takes the
start address (α), size (β), and destination address (δ) of an addrObj as inputs. The values
for α, β, and δ are available after solving the address assignment problem. These three
parameters enable memcpy() to copy code from one memory to another during runtime.
After solving the address assignment problem and if (T − η) = 0, we place memcpy() calls
at the assembly level before the memObjc. This call to memcpy() enables the program to
copy code from α to δ during runtime. Once the code is copied from one memory to another
during runtime, we also want our code to jump to δ instead of α. Therefore, we perform
jump correction, such that previously valid jumps to α are replaced by new jumps to δ,
enabling the code to jump to a proper destination address during runtime.

The code transformation for DSA is architecture-specific, i.e., we implemented these
mechanisms for an ARMv7-based architecture within WCC. Placing memcpy() calls and
jump correction code at the assembly level could increase the distance between BBs and
literal pools referred to by the BBs. Therefore, we implemented an ARMv7-specific algorithm
to fix literal pool placement within WCC. To fix literal pool placement, we move the literal
pool near the BB referring them and generate a jump over the moved literal pool [3]. For
the sake of brevity, we are skipping WCC-related implementation details and the detailed
explanation of the architecture-specific code transformation for DSA. On the other hand,
no major code transformation is needed for the static allocation of global data variables
memObjd. We assign memObjd to respective memories according to their allocations at the
assembly level, and an additional startup code to move memObjd statically is needed.

3.5 Analyses of Dynamically Allocated Code
Performing WCET and energy analyses for dynamically allocated code at compile-time using
static analysis tools is not feasible. To circumvent this problem, we generate a temporary
static version of the code by virtually placing memObj within different memories according to
the solution x. We assume that all the required memObj will fit within SPM, i.e., the SPM
is temporarily resized to generate the static version of the code. Then, we assign memObj
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Figure 1 Dynamic SPM Allocation-based Multi-Objective Optimization Framework.

to respective memories, insert the memcpy() function calls at appropriate places according
to the results from the address assignment algorithm, and perform jump correction. The
memcpy() function is annotated with parametric loop bounds, which helps WCET and energy
analyzers to calculate the contribution of memcpy() for each memObjc. Therefore, WCET
and energy contributions of dynamically copying memObjc are collected at the compiler level.

Assigning memObjc to SPM can affect the memory addresses of the remaining code in
Flash. In order to keep the memory layout in Flash unchanged for static analyses, we insert
NOP BBs in Flash in place of memObjc that are statically allocated to SPM. These NOP

BBs do not contribute to the final WCET and energy analysis results. Once the static
version of the code is analyzed, we collect the results and discard this temporary code version.
Algorithm (1) describes the process needed for DSA code generation and analyses. The
address assignment algorithm may fail to assign all the memObjc to appropriate addresses
within SPM due to liveness conflicts. So, instead of discarding the whole solution, we repair
the solution and then generate the dynamically allocated code for the repaired solution. We
repair the solution by moving the memObjc that are not assigned to an SPM address by the
address assignment algorithm back to Flash.

4 Multi-Objective Dynamic SPM Allocation-based Optimization

In this section, we formulate a compiler-level DSA-based multi-objective optimization that
minimizes the program’s WCET and energy consumption. Fig. (1) depicts the proposed
DSA-based multi-objective optimization framework. The figure presents the flow between
different aspects of DSA code generation and its analyses explained in Sec. (3). A multi-
objective optimization problem performing DSA can be mathematically formulated as a
minimization problem as follows.

min
x

F (x) = (F1(x), F2(x)), subject to x(F +1):(F +L) = x(F +1):(F +L) + τ

(T − η) = 0
(3)

where the objective function F (x) ∈ R2 represents WCET and energy consumption corres-
ponding to a solution vector x. x ∈ X represents a d-dimensional binary decision variable
vector, where Eq. (1) describes each coordinate xi, i = 1, d and X ⊂ {0, 1}d is the search
space of the DSA problem. The first constraint is applied based on the liveness analysis, i.e.,
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if a function is allocated to SPM and the loops contained within that function are allocated
to Flash, then it is logical that the loops contained within that function are also allocated
within the SPM. Within this constraint, τ is a L-dimensional binary vector, and each element
τl, l = 1, L is ’1’ if lth loop is in Flash and there exists a function f placed in SPM that has
liveness conflict with the considered loop, i.e.,

τl =
{

1, if xF +l = 0 & (∃f | λF +l ⊆ λf ∈ Λ1:F ) & xf = 1
0, otherwise

(4)

where, λ(F +l) represents the set of BBs live for the (F + l)th memObj or lth loop memObj,
and Λ1:F is the set of sets of live BBs for function memObj (c.f. Sec. (3.2)). Furthermore,
the second constraint (T − η) = 0 says that the address assignment algorithm should return
0 for the solution vector x. We utilize the metaheuristic algorithms FPA and SPEA To
solve the multi-objective optimization. In order to identify the trade-offs between different
solutions of multi-objective optimization, we introduce a few definitions.

▶ Definition 1. Let x1, x2 ∈ X and F (x) = (F1(x), F2(x)), then x1 dominates x2, i.e.,
x1 ≺ x2, if ∀t ∈ {1, 2} Ft(x1) ≤ Ft(x2) and ∃r ∈ {1, 2} : Fr(x1) < Fr(x2).

▶ Definition 2. The solutions that are not dominated by any other solution are called Pareto
optimal solutions. The set of all such Pareto optimal solutions is called Pareto optimal set,
and the set of corresponding objective vectors is called the Pareto optimal front.

The initial population for FPA and SPEA are defined randomly and can influence the
final Pareto front. Therefore, we perform evaluations using five different initial populations
reducing the influence of the initial population on the final results. As the true Pareto front
is unknown for our problem, we combine approximated Pareto fronts found by several runs of
the algorithm for different initial populations into a set of nondominated points as reference
Pareto front P. To evaluate and compare the quality of the proposed MOD, we use the
following quality indicators:

▶ Definition 3. Coverage (C ∈ [0, 1]) [26] describes the total number of dominated points in
a solution set A, i.e., C = 1 − |{a∈A:∃p∈P,a⪯p}|

|A|

▶ Definition 4. Non-Dominated Ratio (NDR ∈ [0, 1]) [9] measures the ratio of non-dominated
solutions that are contributed by a particular solution set A to the non-dominated solutions
provided by all solutions sets, i.e., NDR = |P∩A|

|P|

▶ Definition 5. Non-Dominated Solutions (NDS ∈ [0, 1]) [4] calculates number of non-
dominated solutions concerning A itself compared to P, i.e., NDS = |a∈A:a∈P|

|A|

The two metaheuristic algorithms considered in this paper use three operators to explore
the search space. FPA uses local and global pollination operators [25], and SPEA uses
recombination and mutation operators to update each individual at every iteration [26]. They
use a selection operator to collect the top-scoring solutions using the definition of Pareto
dominance (c.f. Def. (1)) and pass them to the next iteration. After pre-defined stopping
criteria, the algorithms output the final Pareto optimal front.

Algorithm (2) presents the DSA-based multi-objective optimization performed at the
compiler level. To initialize the algorithm, we recognize and collect all the memObj by
performing standard control flow and depth-first analyses within WCC. Then, we perform
the liveness analysis to determine the live ranges of the said memObj. To perform the
multi-objective optimization, we need to initialize the metaheuristic algorithm. As mentioned
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Algorithm 2 Multi-Objective DSA-based optimization.

1: Collect memObj, perform Liveness Analysis, and randomly initialize initial population of size N

2: for n = 1 : N do
3: Call Algorithm (1)
4: while Stopping criteria is not reached do
5: Update Individual using respective update operators
6: for Each updated Individual do
7: Call Algorithm (1)
8: Update to next generation using selection operator
9: return Pareto-optimal solution set

before, in this paper, we use both FPA and SPEA algorithms separately to solve the
optimization problem. We randomly initialize the initial population of size N and then
call the Algorithm (1) to generate dynamically allocated code and analyze the individuals.
Moreover, a maximum number of generations is set as the stopping criterion, as we want the
metaheuristic algorithm to terminate at some point. The metaheuristic algorithm updates
the individuals at every generation and calls the Algorithm (1) to collect their objective
values. Based on the objective values, the selection operator uses Pareto-dominance to select
the population for the next generation. Once the stopping criterion is reached, the algorithm
provides the Pareto-optimal solutions.

5 Evaluations

To the best of our knowledge, this is the first attempt to solve a compiler-level DSA-
based multi-objective optimization problem that simultaneously trades multiple objectives.
Therefore, we use SOD referenced from [24] and MOS [12] as the base for comparisons in
the following evaluations. These approaches are implemented within the WCC framework,
where WCET and energy analyses are performed using aiT v21.04i [1] and EnergyAnalyser
v21.04i [23], respectively. WCC generates the DSA code for ARMv7-based architecture that
consists of separate ISPM and DSPM . The evaluations compare MOD, MOS , and SOD

in terms of the final Pareto optimal sets and the quality of obtained solutions. As SOD is a
single-objective optimization problem, we solve SOD to minimize WCET and perform the
energy analysis of the final solution to obtain both WCET and energy values.

We used benchmark suites offered by the Embedded Microprocessor Benchmark
Consortium (EEMBC) [18] during evaluations. While performing evaluations, we use -O0
optimization flag to turn off any other compiler-level optimization and avoid their influence
on our results. We adjust the ISPM and DSPM sizes individually to 60% relative to the
benchmark size to increase the pressure on the optimization. Moreover, we assume that the
benchmarks will fit within the Flash memory.

While solving MOD and MOS using FPA, the switch probability is set to 0.8, as the
probability of global pollination is lower than local pollination in nature. The positive
integer λ for the standard gamma function and the scaling factor γ are set to 1.5 and
0.1, respectively [25, 21]. For SPEA, the size of the external population set is set to 10,
which is equal to the size of each generation’s population. The recombination and mutation
probabilities are set to 0.8 and 0.2, respectively. The size of the population for each generation
and the maximum number of generations for both algorithms are set to 10 and 80, respectively.
The results obtained during these evaluations are valid for the algorithm parameters described
above. For SOD, there is no need to set any parameters.
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Figure 2 Solutions Obtained from MOS , MOD, and SOD optimization runs.

5.1 Pareto Fronts
Fig. (2) presents the solutions found by MOS , MOD, and SOD. For the sake of brevity,
this subsection presents the solutions for 3 randomly chosen benchmarks.1. The final Pareto
fronts in these figures are represented using a 2D scatter plot. The x-axis and the y-axis
represent WCET and energy consumption, respectively. The legend at the bottom of the
figure represents the optimization runs to which the solutions belong. The legend at the
top-right corner of each subfigure shows the total number of solutions returned by respective
optimization runs. The same legend indicates the number of solutions on P out of the total
solutions. The darker-colored solutions in the figure represent the solutions on P, and the
fainter version of those colors represents the solutions returned by each optimization run.

For Auto_a2time, all solutions obtained by MOD–FPA and MOD–SPEA lie on P . MOS–
FPA found 1 solution that is on P, and the one obtained using MOS–SPEA is not on P.
The 1 solution obtained by SOD–ILP does not lie on P. As SOD is a single-objective
optimization, it always outputs a single solution in the end. In the case of Auto_basefp,
MOD found 17 and 19 solutions using FPA and SPEA, out of which only 5 and 1 lie on
P, respectively. Furthermore, MOS–SPEA found 1 solution on P, and solutions obtained
MOS–FPA and SOD–ILP do not lie on P . For Auto_ttsprk, except for MOS–SPEA, other
4 optimization runs found solutions on P. For this benchmark, SOD–ILP performed better
than MOS–SPEA.

For all benchmarks, we compared the total number of solutions found by respective
approaches and the total number of those solutions on their final Pareto front P. In that
case, MOS using FPA and SPEA had, on average, 22.92% and 32% solutions on their P,
and MOD using FPA and SPEA had, on average, 51.44% and 36.75% solutions on their P,
respectively. Moreover, SOD found solutions on P for only 2 benchmarks. Furthermore, we
calculate the contribution of each approach to the total number of solutions on P for all
benchmarks. In that case, MOS–FPA and MOS–SPEA contributed, on average, 3.62% and
5.26% solutions, MOD–FPA and MOD–SPEA contributed, on average, 70.4% and 20.1%
solutions, and SOD–ILP contributed, on average 0.66% solutions to the total number of
solutions on P for all benchmarks.

5.2 Quality Indicators
To evaluate and compare the quality of the proposed MOD, we use three quality indicators,
namely Coverage (C) (c.f. Def. (3)), Non-Dominated Ratio (NDR) (c.f. Def. (4)), and
Non-Dominated Solutions (NDS) (c.f. Def. (5)). From these definitions, we can say the

1 All the remaining figures can be made available at the readers’ request.
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following: The lower the value of C, the better the approach, and the higher the values of
NDR and NDS, the better the approach. Table (1) shows C, NDR, and NDS indicators for
all the evaluated benchmarks. For each benchmark, the table presents the values of the
quality indicators for both MOS , MOD, and SOD. MOS and MOD used FPA and SPEA
algorithms, and SOD used ILPs to solve the optimization problem. Under each quality
indicator column, we have compared their values, and for each benchmark, the better quality
metric is highlighted in bold in the table.

MOS–FPA, MOS–SPEA, and SOD–ILP found better or indifferent solutions in terms
of C for 9, 7, and 2 benchmarks, respectively. MOD–FPA and MOD–SPEA found better
or indifferent solutions for 9 and 10 benchmarks, respectively, in terms of C. Therefore, we
can say that, in terms of C, MOS and MOD using FPA performed equally, MOD–SPEA
performed the best, and SOD–ILP performed the worst. MOS–FPA and MOS–SPEA found
either better or indifferent solutions in terms of NDR and NDS for 5 and 7, and 9 and 7
benchmarks, respectively. MOD–FPA and MOD–SPEA found either better or indifferent
solutions in terms of NDR and NDS for 9 and 6, and 9 and 10 benchmarks, respectively.
SOD–ILP found either better or indifferent solutions for 0 and 2 benchmarks in terms of NDR
and NDS, respectively. In terms of NDR, MOD–FPA performed best, and MOD–SPEA
performed best in terms of NDS. From overall evaluations, we can say that, in general, MOD

performed slightly better than MOS and much better than SOD.
Finally, we also calculated the WCET and energy overheads that the MOD solutions

incur due to the dynamic allocation of memory objects during runtime using memcpy(). For
all benchmarks, memcpy() functions contributed 24.39% and 22.65% to the total WCET and
energy consumption, respectively. Therefore, even with a very simple and unsophisticated
implementation of the memcpy() function that is actively executed by the processor, we
obtained slightly better quality solutions using MOD over MOS . Furthermore, we can see
that MOD clearly outperforms SOD. Our next steps will focus on offloading the processor
from the dynamic copying of memory objects by exploiting Direct Memory Access (DMA).
This way, we expect that our proposed MOD will outright outperform MOS .

6 Conclusion

In this paper, we proposed a novel compiler-level DSA-based multi-objective optimization
that simultaneously minimizes the WCET and energy consumption of the program. The
DSA model proposed in this paper handles the dynamic movement of memory objects.
Moreover, we extended the WCET and energy analyses framework within the compiler to
handle analyses of such dynamically allocated code. Finally, we proposed a DSA-based
multi-objective optimization framework. To solve the DSA-based multi-objective optimization
problem, we used two metaheuristic algorithms, namely, FPA and SPEA. We evaluated and
compared the results of the proposed optimization with MOS and SOD using real-world
benchmark suites from EEMBC. Evaluations showed MOD provided more solutions on the final
Pareto front than MOS . Moreover, MOD clearly outperformed SOD. The MOD solutions
consist of memcpy() overheads, still, the evaluation showed that the proposed approach can
provide slightly better solutions than the well-established MOS approach.

This paper is the first step toward compiler-level DSA-based multi-objective optimization.
The next step would be to improve the approach proposed in this paper by reducing the
overheads. In this paper, we saw that the overheads in terms of WCET and energy due
to memcpy() are significant. Therefore, in the future, we will explore methods to decrease
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Table 1 Performance Metrics for MOS , MOD and SOD.

Coverage NDR NDS
MO_S MO_D SO_D MO_S MO_D SO_D MO_S MO_D SO_D

FPA SPEA FPA SPEA ILP FPA SPEA FPA SPEA ILP FPA SPEA FPA SPEA ILP
Benchmarks

Auto_a2time 0 1 0 0 1 0.03 0 0.73 0.24 0 1 0 1 1 0
Auto_aifftr 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Auto_aifirf 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0
Auto_aiifft 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Auto_basefp 1 0 0.71 0.95 1 0 0.14 0.71 0.14 0 0 1 0.29 0.05 0
Auto_bitmnp 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0
Auto_cacheb 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Auto_canrdr 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0
Auto_idctrn 1 1 0 0 1 0 0 0.8 0.2 0 0 0 1 1 0
Auto_iirflt 0 0.5 1 0.5 0 0.27 0.27 0 0.36 0.1 1 0.5 0 0.5 1
Auto_matrix 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Auto_pntrch 1 1 0 0 1 0 0 0.91 0.1 0 0 0 1 1 0
Auto_puwmod 1 1 0 0 1 0 0 0.91 0.1 0 0 0 1 1 0
Auto_rspeed 0 1 0 0 1 0.14 0 0.14 0.71 0 1 0 1 1 0
Auto_tblook 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0
Auto_ttsprk 0 1 0.33 0 0 0.1 0 0.2 0.6 0.1 1 0 0.67 1 1
Netw_ip_pktcheck 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0
Netw_ospfv2 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Netw_routelookup 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0
Tele_autocor 0 0 1 1 1 0.5 0.5 0 0 0 1 1 0 0 0
Tele_conven 1 1 0 0 1 0 0 0.78 0.22 0 0 0 1 1 0
Tele_fbital 0.5 0.33 0.28 0.5 1 0.04 0.08 0.54 0.33 0 0.5 0.67 0.72 0.5 0
Tele_fft 0 1 0 1 1 0.5 0 0.5 0 0 1 0 1 0 0
Tele_viterb 0 0.5 1 1 1 0.5 0.5 0 0 0 1 0.5 0 0 0

the overhead incurred due to memcpy() and improve the MOD solution quality even more.
Currently, we are integrating DMA support within WCC to use it in conjunction with our
DSA model for dynamically copying code during runtime.
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