
Constant-Loop Dominators for Single-Path Code
Optimization
Emad Jacob Maroun #

Institute of Computer Engineering, TU Wien, Vienna, Austria

Martin Schoeberl #

Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Lyngby, Denmark

Peter Puschner #

Institute of Computer Engineering, TU Wien, Vienna, Austria

Abstract
Single-path code is a code generation technique specifically designed for real-time systems. It
guarantees that programs execute the same instruction sequence regardless of runtime conditions.
Single-path code uses loop bounds to ensure all loops iterate a fixed number of times equal to their
upper loop bound. When the lower and upper bounds are equal, the loop must iterate the same
number of times, which we call a constant loop.

In this paper, we present the constant-loop dominance relation on control-flow graphs. It is a
variation of the traditional dominance relation that considers constant loops to find basic blocks that
are always executed the same number of times. Using this relation, we present an optimization that
reduces the code needed to manage single-path code. Our evaluation shows significant performance
improvements, with one example of up to 90%, with mostly minor effects on code size.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Theory of
computation → Graph algorithms analysis; Theory of computation → Control primitives; General
and reference → Performance

Keywords and phrases single-path, dominators, algorithms, optimization, control-flow graph

Digital Object Identifier 10.4230/OASIcs.WCET.2023.7

Supplementary Material Software (Source Code): https://github.com/t-crest/patmos-llvm-
project/tree/82eb73bff7336674027afecb254f1e3ebd1c23c2

archived at swh:1:rev:82eb73bff7336674027afecb254f1e3ebd1c23c2

Acknowledgements This work has been supported by the Doctoral College Resilient Embedded
Systems, which is run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum
Wien.

1 Introduction

Real-time systems are unique in their timing requirements. In addition to producing the
correct logical results, real-time programs must produce these results within a specific time
frame called the deadline. A result produced after the deadline is unacceptable, regardless of
its logical correctness. Real-time systems must statically guarantee that a task terminates
within the deadline. Here, a program’s worst-case execution time (WCET) is the critical
metric. In the simplest case, if the WCET can always be shown to be shorter than the
deadline, we know that the program will always produce its result in time for it to be useful.
For multi-task and multi-processor systems, scheduling must be done using each task’s WCET
to ensure all tasks adhere to their deadlines.

It is almost impossible to know the actual WCET of a program. Therefore, WCET
analysis provides an upper bound for it. This WCET bound can be used instead of the real
WCET when designing the system and verifying its timings. However, the halting problem

© Emad Jacob Maroun, Martin Schoeberl, and Peter Puschner;
licensed under Creative Commons License CC-BY 4.0

21st International Workshop on Worst-Case Execution Time Analysis (WCET 2023).
Editor: Peter Wägemann; Article No. 7; pp. 7:1–7:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emad.maroun@tuwien.ac.at
https://orcid.org/0000-0002-3675-3376
mailto:masca@dtu.dk
https://orcid.org/0000-0003-2366-382X
mailto:peter@vmars.tuwien.ac.at
https://orcid.org/0000-0002-2495-0778
https://doi.org/10.4230/OASIcs.WCET.2023.7
https://github.com/t-crest/patmos-llvm-project/tree/82eb73bff7336674027afecb254f1e3ebd1c23c2
https://github.com/t-crest/patmos-llvm-project/tree/82eb73bff7336674027afecb254f1e3ebd1c23c2
https://archive.softwareheritage.org/swh:1:rev:82eb73bff7336674027afecb254f1e3ebd1c23c2;origin=https://github.com/t-crest/patmos-llvm-project;visit=swh:1:snp:fd361f5993c1309f701780fffd6e3789126e369d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


7:2 Constant-Loop Dominators for Single-Path Code Optimization

has shown that creating a program (in this case, a WCET analyzer) that can tell whether any
given program will terminate is impossible [18]. To get around this inconvenience, real-time
programs are developed with certain restrictions that allow the code to be analyzable without
running afoul of the halting problem. One such restriction is to have loops with a bound on
the maximum number of iterations. In a real-time program, all loops must have an upper
bound on the number of iterations they may perform at runtime. This is a guarantee that
the programmer provides – often in the form of an annotation in the code – to the WCET
analyzer, which allows the analyzer to calculate an upper bound to the execution time. A
best-case execution time (BCET) is also often of interest for task scheduling [23]. To enable
efficient BCET analysis, a lower bound on loops is also often provided such that the analyzer
does not have to use zero as the default lower bound. If a loop’s lower and upper bounds are
equal, we call it a constant loop; a loop that always executes the same number of iterations.

Single-path code generation is a code-generation technique that ensures that programs
execute the same sequence of instructions regardless of runtime conditions [22]. This type of
code makes WCET analysis much easier, as the analyzer does not have to account for the
program executing different code traces based on what happens at runtime. The properties of
single-path code can significantly affect execution time [21]. Therefore, it must be optimized
to reduce the execution-time overhead.

The control-flow graph (CFG) is a directed graph that shows how execution can flow
through a function.1 Each node represents a block of sequential code, with edges specifying
where execution can continue. We use block and node interchangeably in this paper. If
a node in the CFG has multiple outgoing edges, we call that a branch. Depending on
some runtime condition, execution continues at the target node of one edge. Loops in a
function are represented by cycles in the CFG. The dominance relation identifies whether a
node is guaranteed to be executed before another node. This relation is critical in compiler
construction to ensure correct code generation and optimization [2]. However, the relation
does not account for loop bounds and constant loops.

In this paper, we present a new CFG relation called constant-loop dominance. It is a
variation of dominance that accounts for whether loops are constant to find blocks executed
a fixed number of times. Functions called from such blocks can be optimized to reduce the
overhead of converting them to single-path code. The contributions of this paper are: (1) a
definition of the constant-loop dominance relation and an algorithm for calculating it; (2) a
description of an optimization to single-path code that makes use of the relation; and (3) an
implementation of the algorithm and optimization in a compiler that produces single-path
code.

The paper is organized into six sections: The following section presents related work.
Section 3 provides background information to support the understanding of the rest of the
paper. Section 4 introduces the constant-loop dominance relation, an algorithm for finding
constant-loop dominators, how it is used to optimize single-path code, and a brief description
of the implementation. Section 5 evaluates our optimization’s performance and code size
impacts. Section 6 concludes the paper.

2 Related Work

The dominance relation is fundamental within compiler construction. Its first description
was given with a simple, O(n4) algorithm [17]. It was used to implement global common
expression elimination and loop identification. Its use continued in other important advances

1 We do not consider inter-procedural CFGs in this paper.



E. J. Maroun, M. Schoeberl, and P. Puschner 7:3

like enabling the efficient computation of static single assignment form [6], which opens up
further optimization opportunities [10,24,30]. Significant work has been put into reducing
the runtime complexity of computing the dominance relation [1, 12, 29]. The state-of-the-art
includes an algorithm that runs in O(mα(m, n)), where n is the number of nodes, m is the
number of edges, and α is the inverse Ackermann’s function [16]. Finally, the quest for a linear
time algorithm has resulted in several proposals [3, 5, 9]. The challenge has been translating
the theoretical runtime complexity into practical implementations that outperform the older,
non-linear algorithms.

Knowledge about loop bounds is a fundamental requirement for analyzing WCET. As
such, any annotation language must include the ability to specify bounds [14]. However,
since manual annotations can be tedious for programmers to provide and be a source of
imprecision and errors, significant effort has gone into automatic methods for finding loop
bounds [4, 11,28]. Effort has been put into finding scenarios that can automatically derive
loop bounds. E.g., upper loop bounds can be derived by assuming a loop terminates and then
enumerating the state-space of the variables that influence the loop exit [7]. Machine learning
has also been used to try and find loop bounds [13]. While our work only uses annotated
loop bounds to find constant loops, any method for finding loop bounds is compatible.

Single-path code was introduced as a code generation technique specifically for real-time
systems [22]. It can be automatically generated from any WCET analyzable source code,
with a significant but manageable performance cost [21]. Single-path code is challenged by its
execution-time overhead. One avenue for improving this is to take advantage of its inherent
instruction-level parallelism when scheduling on a VLIW architecture [20]. In [19], we extend
single-path code with techniques to compensate for execution-time variability from memory
accesses. This ensures that single-path code has a constant execution time, eliminating the
need for WCET analysis.

3 Background

3.1 The Patmos Processor
Patmos was specifically designed for real-time systems. It is a RISC-style instruction-set
architecture with features that make it time-predictable and optimized for a low WCET [27].
Patmos has an in-order, dual-issue pipeline that maximizes throughput while being time-
predictable. All instructions are predicated by one of eight boolean predicate registers. If the
value of the predicate is true, an instruction is enabled, which means it executes normally. If
the predicate is false, the instruction is disabled. It still gets executed in the same amount
of time. However, it does not read from or write to any memories or update any registers;
effectively, the instruction becomes a no-op.

3.2 Single-Path Code
Single-path code was initially intended to make it computationally easier to perform WCET
analysis. Single-path code uses predication to convert the branching control flow of a
function into an instruction stream with only one execution path. To convert a function into
single-path code, three techniques are used:

If-Conversion. Any conditional branching is converted into predicated instructions, such
that only the needed path’s instructions are enabled at runtime. The resulting code always
executes all instructions in both paths, with only one path being enabled at a time. Looking

WCET 2023



7:4 Constant-Loop Dominators for Single-Path Code Optimization

a b
c

d e

f
g h

(a) Traditional.

a b

c d

e f g h

(b) Single-Path.

Figure 1 Conversion of a function with branching control flow (left) to single-path code (right).

at Figure 1, we can see the result of transforming a function to single-path code. Block b
conditionally branches to either c or d. The color coding of Figure 1a’s blocks matches the
conditions that led to that path being taken. In Figure 1b, the colors indicate that only if
the corresponding condition is true will the block’s instructions be enabled at runtime. As
such, we can see how if-conversion results in b always leading to first c and then d. However,
only if the red condition holds at runtime will c’s instructions be enabled. The same holds
for d, leading to either e or f in the traditional code, but eventually leading to both in the
single-path version. Notice how we have not colored the edges in the single-path version, as
they are always taken.

Loop-Conversion. Loops may iterate a variable number of times depending on runtime
conditions. To avoid this variability, single-path code converts loops to always iterate the
maximum possible number of times. Any superfluous iterations are instead disabled using
predication. Looking at our example, we can see the function has two loops, one containing
the blocks b, c, d, and e, and the second containing only f. A single-path loop maintains a
count of how many iterations have been executed and keeps looping until the maximum is
reached. Inside the loop, the condition that traditionally breaks out of the loop is instead
used as the predicate to all the instructions. This condition will become false at some point,
meaning any further iterations will have their instructions disabled.

Function-Conversion. Single-path code also has to account for function calls. Say we have
two branching paths, one of which performs a function call while the other does not. If we
predicate the function call as we do for the rest of the instructions, it will not cause control to
shift to the called function. This means the function’s instructions are not executed (neither
enabled nor disabled) if the path it was called from was disabled. Function-conversion ensures
every function call is performed the same number of times, analogously to loop-conversion.
Any call not logically necessary is instead disabled. Function-conversion copies all functions
that are called within single-path code. The copies are then modified to take an extra
predicate register argument, which specifies whether the function was called from an enabled
or disabled path. The body of the copied function is then predicated on that register; if it is
called from a disabled function, it will be disabled, too, and vice versa. The call instruction
in the caller is not predicated, instead being provided with the predicate of the calling code
to pass on. This ensures all functions are always called and executed, regardless of whether
their callers are enabled or disabled.

3.3 Definitions
A loop in a CFG is a set of strongly connected nodes, i.e., a path exists between any two
nodes. A natural loop additionally has an entry node, the header, which dominates all other
nodes in the loop, and a back edge that enters the header from another node in the loop.



E. J. Maroun, M. Schoeberl, and P. Puschner 7:5

a b

d

c e

Dom CLDom (const(b)) CLDom (¬const(b))
a a, b, c, d, e a, b, c, d, e a, b, c, d, e
b b, c, d, e b, c, d, e
c c, d, e c, d, e
d d d, e
e e e e

Figure 2 Example CFG with the traditional dominator and constant-loop dominator relations.

The source node of a back edge is called a latch. An exit edge is an edge that connects a
node in the loop to one outside of it. If two natural loops have the same header, we treat
them as the same loop. We refer to these “merged” natural loops as a single loop. We define
the number of iterations a loop performs as the number of times a path enters its header.
All loops are either disjoint or nested within one another and identified by their headers. As
such, every node has a header, which is the header of the innermost loop it is contained in.
For consistency, we also consider the entire function as a pseudo-loop with the entry node as
the header. Nodes without successors are end nodes and are assumed to return from the
function.

Removing all back edges from the CFG results in an acyclic graph called a forward
control-flow graph (FCFG). We partition the FCFG into loop FCFGs of the subgraphs
containing only nodes whose header is the loop header. This means that for each loop,
we now have a dedicated FCFG. Each node in the graph is only in one FCFG, except the
headers, which reside in the FCFG of their enclosing loop and in the FCFG of the loop for
which they are headers. Exit edges are represented as edges from the header of the inner
loop to the original target node in the outer loop.

4 Constant-Loop Dominance

We consider CFGs with an optional label, const, on the headers of loops. If the label is
present, it means paths through the loop header must visit the header a fixed number of
times before exiting its loop. Otherwise, the number of visits may fluctuate between different
paths. We define the constant-loop dominance relation as follows: A node x constant-loop
dominates a node y (x cldom y) if every path from the entry to y visits x a fixed
number of non-zero times.

Looking at Figure 2, we can see the traditional dominator relation (Dom) and the
constant-loop dominator relations (CLDom) for the given CFG. CLDom is shown with the
loop headed by b being both constant and variable. The most obvious difference is that when
the loop is variable, none of its nodes constant-loop dominate other nodes or themselves. If
the loop is constant, we can see the result is the same except d also constant-loop dominates
e, unlike with traditional dominance. The last iteration of the loop must exit through c,
meaning d is always visited i − 1 times, where i is the max iteration count. Note that
constant-loop dominators behave the same as traditional dominators in the absence of loops.

4.1 Algorithm
Finding traditional dominators on acyclic directed graphs (DAGs) is done by calculating
the dominance for each node in topological order. Using topological order ensures that the
dominance of a node’s predecessors is established before getting their intersection to result
in the dominance of the current node (and remembering to add self-dominance.)

WCET 2023



7:6 Constant-Loop Dominators for Single-Path Code Optimization

Algorithm 1 Constant-Loop Dominators.

CLDom(s): ▷ Starting node as input
1: H ← Inner loop headers
2: D ← ∅ ▷ Dominator set for nodes of fcfg(s)
3: ID ← ∅ ▷ Dominator sets for inner loops
4: IED ← ∅ ▷ End-Dominator sets for inner loops
5: for h in H do ▷ Analyze inner loops
6: ID[h], IED[h]← CLDom(h)
7: end for
8: for b | b ∈ topological_sort(fcfg(s)) do ▷ Find dominators
9: P ←

⋂
{D[a] ∪ IED[a] | ∀(a, b) ∈ fcfg(s) ∧ a ∈ H ∧ const(a)} ∩⋂
{D[a] | ∀(a, b) ∈ fcfg(s) ∧ (a /∈ H ∨ ¬const(a))}

10: D[b]←
{

P ∪ b if b /∈ H ∨ const(b)
P otherwise

11: end for
12: for h, v | ∀h ∈ H ∧ ∀v ∈ ID[h] do ▷ Extract dominators from loops

13: D[v]←
{

D[h] ∪ ID[h][v] if const(h)
D[h] otherwise

14: end for
15: L←

⋂
{header_end_dominators(l, D, IED) | ∀(l, s)}

16: E ←
⋂
{header_end_dominators(e, D, IED) | ∀(e, c) ∈ exit_edges(s)}

17: C ← {c | ∀c /∈ exits(s) ∧ ∀e ∈ exits(s) ∧ c ∈ header_end_dominators(e, D, IED)}
18: return D, (L ∩ (E ∪ C)

This traditional algorithm is the basis for our algorithm for finding constant-loop domina-
tors. It can be seen in Algorithm 1 on lines 8-11, where P (the intersection of predecessors)
has been edited for our relation. Instead of operating on the CFG, our algorithm operates on
the FCFG of the start node (fcfg(s)), which is a DAG. Since traditional and constant-loop
dominance are equivalent when there are no loops, they are also equivalent between pairs of
nodes within the same FCFG. This baseline, therefore, finds the correct constant-loop domi-
nance between nodes in the same FCFG. The rest of the algorithm accounts for dominance
between nodes of different loops (nested or in sequence).

In addition to returning the constant-loop dominator sets for each node in the given FCFG,
CLDom returns a second, helper set we will call the end dominators. The set is calculated
on lines 15-18. It represents the set of nodes in the current FCFG that would constant-loop
dominate a hypothetical successor node to the FCFG’s loop – assuming that node did
not have any other predecessors. It is calculated by finding the nodes that constant-loop
dominate all latches (L) and constant-loop dominate all exits (E) or are strictly constant-
loop dominated by all exits (C). The nodes adhering to these requirements are precisely
those that will always be visited a fixed number of times; they either are visited in every
iteration (L ∩ E) or will be skipped in the last iteration only (L ∩ C). The helper function
header_end_dominators does the following: If the given node is in the FCFG (n ∈ fcfg(s)),
the function returns that node’s constant-loop dominators (D[n]). Otherwise, the node must
be in one of the inner loops. header_end_dominators finds the header in the FCFG (h ∈ H)
whose loop contains the node; either directly or in a nested loop. If that header is constant,
it returns the constant-loop dominators of the header and end dominators of that inner loop
(D[h] ∪ IED[h]). Otherwise, it returns the header’s constant-loop dominators alone (D[h]).



E. J. Maroun, M. Schoeberl, and P. Puschner 7:7

Our algorithm starts by recursing on the headers of inner loops in the FCFG (lines 5-7)
and storing the results for each. During dominator calculation for each FCFG node, we
add the end dominators of any constant headers to their dominator sets before intersecting
with the other predecessors (D[a] ∪ IED[a]). This is what ensures that any constant-loop
dominators are extracted from inner loops into the dominator sets of the current loop’s
nodes. Notice that header_end_dominators serves the same purpose in the end-dominators
calculation.

Lastly, we also need to extract the constant-loop dominators of the nodes of inner loops
into the current dominator set (lines 12-14). We give the loops’ nodes the dominators of the
header in the current dominator set, as those would not have been available in the recursive
call (since fcfg(h) does not contain nodes from outside the loop.) For constant loops, we
also add the dominator sets of each node from their loop’s recursive call (ID[h][v]) so they
are included in the final result. Not doing so for variable loops ensures that nodes within a
variable loop do not dominate anything, not even themselves.

To use CLDom for getting the constant-loop dominators of a function, we call it on the
entry node and ignore the end-dominators result. It will always be empty since functions
have no latches or exits.

4.2 Pseudo-Root Optimization
Single-path code can take advantage of constant-loop dominators to reduce execution times.
The optimization focuses on those blocks that constant-loop dominate all end blocks, which
means they will always be executed the same number of times per function call. We will
refer to these blocks as constant-loop dominant.

As described in Section 3, function-conversion makes functions in single-path code take a
predicate argument to enable or disable their bodies. However, this is not always necessary.
This is most obvious for any single-path root function; a function that is itself single-path
but is called from a non-single-path function (e.g., the main function.) A root function
is guaranteed to be enabled, making the predicate argument unnecessary. The original
single-path implementation recognized this and special-cased root functions not to need
the predicate argument [21]. This reduces the number of instructions needed for predicate
management, which results in reduced execution time.

The optimization of root functions can also be used for other functions. Any function
that we can guarantee is always called enabled can be optimized as if it was a root. Taking
this further, any function called from a constant-loop dominant block can also be optimized.
We can do so because it means we know exactly how many times the function is called from
that point, and function-conversion therefore does not need to account for variations in call
numbers (as there is no variation). The callee in cases like these is called a pseudo-root
since its code generation can be identical to a root’s. Any function called from a root or
pseudo-root in a constant-loop dominant block is also a pseudo-root.

The pseudo-root optimization uses constant-loop dominance to explore the call tree from
the root function(s) and identifies all pseudo-root functions. The single-path transformation
then uses the information to optimize all pseudo-roots to omit the predicate argument. It
also changes all call instructions to pseudo-roots to be predicated, so the functions are not
called when a block is disabled. Note that a function may be called from both a constant-loop
dominant block and one that does not dominate. E.g., it could be called both in the entry
block of a function and within only one side of a branch. In such cases, functions are
duplicated, such that two versions are used: one that takes an additional argument and one
that does not.

WCET 2023



7:8 Constant-Loop Dominators for Single-Path Code Optimization

4.3 Implementation
We extend the open-source work presented in [21] with implementations of the constant-loop
dominance algorithm and the described optimization. Patmos’ compiler is based on the
LLVM compiler framework [15]. Its frontend, called Clang, produces the LLVM intermediate
representation called Bitcode. Bitcode is then compiled by the backend into machine code.
The previous work and our extensions all reside in the backend.

We have implemented our algorithm as a MachineFunctionPass in the LLVM backend.
At this stage, functions are in an intermediate representation close to Patmos machine code.
Our algorithm is run on each function and returns a map from their blocks to the set of
blocks that constant-loop dominate them. Our CFG does not have a const label. Instead,
we provide the algorithm a function that, when given a header, returns whether it should be
treated as constant. It does so by looking at the loop iteration bounds; if they are equal, the
loop must be constant.

Identifying pseudo-roots is done in the SPMark pass of the single-path transformation [21].
We update it so that while identifying functions that will be called from a single-path context,
it also identifies which calls are coming from a constant-loop dominant block and marks the
target functions as pseudo-roots.

The SPReduce pass assigns each instruction its predicate. It also removes predication
from call instructions and provides the additional predicate argument to functions. When it
sees a call instruction in a constant-loop dominant block in a pseudo-root function, it omits
the predicate argument, predicates the call instruction, and targets the pseudo-root version
of the function (instead of the version that takes a predicate argument.)

5 Evaluation

We use a subset of the TACLe benchmark suite [8] to evaluate the effect of enabling the
pseudo-root optimization for single-path code. We only include those programs that compile
and run correctly for single-path code with and without the optimization. We exclude the
duff program, as it has no branching and is fully inlined by the compiler, meaning no
changes are made to it by the single-path transformation. The filterbank program is also
excluded because it is so long-running that the simulator we use to run all the programs,
Pasim, saturates its cycle counter, meaning we do not know what the execution times are.

5.1 Performance
In Figure 3, we show the performance increase (blue bars) of enabling the pseudo-root
optimization (disabled−enabled

enabled × 100). First, note how 11 programs see no execution time
differences. All these programs – except huff_dec and gsm_dec – only have one function.
This can be seen in the first row of Table 1, where nine programs only have one function with
and without our optimization. The second row shows how many functions were recognized
as pseudo-roots. For all these functions, including huff_dec and gsm_dec, only the root was
recognized as a pseudo-root, meaning there is nothing to optimize.

Enabling the pseudo-root optimization produces wildly different results for the other
programs. In the lower end, cosf sees a small performance decrease. Looking at the third
row of Table 1, we see that many more instructions are used by single-path code with the
optimization (600 → 726). The fourth row also shows an increase in the total number of call
instructions (159 → 181), while the fifth row shows that there are very few calls between
pseudo-roots (8). This must mean the five pseudo-root functions found did not make up



E. J. Maroun, M. Schoeberl, and P. Puschner 7:9

bin
ary

sea
rchbso

rt

com
ple

x_
up

da
tes cos

f

cou
ntn

ega
tiv

e
cu

bic

de
g2

rad fft iir

ins
ert

sor
t

jfd
cti

nt

matr
ix1

minv
er

rad
2d

eg st

ad
pc

m_de
c

ad
pc

m_en
c

cjp
eg_

wrbm
p
fm

ref

gsm
_de

c

h2
64

_de
c

hu
ff_

de
c

sta
tem

atetes
t3

0
10
20
30
40
50
60
70
80
90

Pe
rf

or
m

an
ce

In
cr

ea
se

in
%

Performance Size

−1
0
1
2
3
4
5
6
7
8
9

Size
Increase

in
%

Figure 3 Performance and code size increase of enabling the pseudo-root optimization for single-
path code.

for the increase in code size from duplicating three of them. On the other hand, we have
the cubic program, which sees a 90 % performance increase. This number is all the more
impressive when we look at Table 1. First, notice that the number of functions increases
from 33 to 47. Notice also that the number of pseudo-roots found was 17 (including the
root). This means that 14 pseudo-roots are also used in a non-pseudo-root context, which
means two copies of each original function must be used. The rest of the functions are either
only used in a pseudo-root context (3) or in a non-pseudo-root context (16). The additional
copies of some functions also translate to an increased total of instructions used for managing
the single-path code (627 → 921) and the number of total call instructions (136 → 215),
with 58 calls being between pseudo-roots. So from where does all that performance come?
The source code shows that the main function is four constant loops nested within each
other. The function cubic_solveCubic is called four times before the loop and once in each
iteration of the inner-most nested loop. Cumulatively, the main function has 879 calls to this
function, all from constant-loop dominant blocks. Therefore, recognizing cubic_solveCubic
exclusively as a pseudo-root likely produces most of this substantial increase in performance.

5.2 Code Size

As we have explained earlier and seen in our results so far, using the pseudo-root optimization
can increase code size. The first source of this increase is the additional copies of functions
used in both pseudo-root contexts and non-pseudo-root contexts. Code size can also be
reduced when functions are exclusively pseudo-roots and therefore need fewer instructions
for managing predicates and calling other pseudo-roots.

We measure the total size of the final executable of each program with and without the
optimization and can see the result in the red bars of Figure 3. We can see that the difference
is negligible for most of the programs that were affected by our optimization. For others,

WCET 2023



7:10 Constant-Loop Dominators for Single-Path Code Optimization

Table 1 Compiler statistics for each program using single-path code. For each entry, the pseudo-
root optimization is disabled for the upper number and enabled for the lower. The metrics given are
the total number of functions, the number of pseudo-root (PR) functions, the number of single-path
management instructions, the total number of call instructions, and the number of calls between
pseudo-roots.

bin
ary

..

bs
ort

com
ple

x..

cos
f

cou
ntn

..

cu
bic

de
g2

rad

fft iir ins
ert

..

jfd
cti

nt

matr
ix1

minv
er

rad
2d

eg

st ad
..d

ec

ad
..e

nc

cjp
eg.

.

fm
ref

gsm
..

h2
64

..
hu

ff..
sta

te.
.

tes
t3

Functions 1
1

1
1

21
23

30
33

1
1

33
47

27
30

1
1

21
23

1
1

1
1

1
1

33
36

27
30

34
48

3
3

3
3

3
3

72
103

3
3

1
1

2
2

1
1

101
101

PRs 1
1

1
1

1
10

1
6

1
1

1
17

1
12

1
1

1
10

1
1

1
1

1
1

1
4

1
12

1
18

1
3

1
3

1
3

1
36

1
1

1
1

1
1

1
1

1
101

Instructions 19
19

32
32

302
264

600
726

32
32

627
921

433
378

91
91

303
264

34
34

20
20

40
40

827
922

433
378

546
854

112
96

142
126

71
64

1458
2070

389
389

116
116

199
199

47
47

1510
1210

Calls 0
0

0
0

64
64

159
181

0
0

136
215

87
87

0
0

65
65

0
0

0
0

0
0

116
143

87
87

121
200

4
4

4
4

4
4

377
523

8
8

0
0

5
5

0
0

200
200

PR-Calls 0
0

0
0

0
21

0
8

0
0

0
58

0
24

0
0

0
22

0
0

0
0

0
0

0
9

0
24

0
46

0
4

0
4

0
4

0
78

0
0

0
0

0
0

0
0

0
200

there is a significant increase but none prohibitively so. We can see no correlation between
the increase in performance and code size. E.g., while cubic sees an enormous performance
increase, it only sees a 2.8 % size increase. fmref, on the other hand, sees a 6 % size increase
for a comparatively modest 7.7 % performance increase.

Lastly, we also need to note that the executables we have measured do not exclusively
contain single-path code. They also include all original versions of any single-path function,
any initialization code that eventually calls the benchmark function, and the standard
library. This means the size differences are likely bigger for both increases and decreases in a
real-world, single-path-only scenario.

5.3 Source Access

Patmos and its platform, T-CREST [25], are available as open-source and include the contri-
butions of this paper. The Patmos homepage can be found at http://patmos.compute.dtu.dk/
and provides a link to the Patmos Reference Handbook [26], which includes build instructions.

The T-CREST project repositories can be found at https://github.com/t-crest, with the
repository for the compiler used in this work at https://github.com/t-crest/patmos-llvm-
project (commit hash: 82eb73bff7336674027afecb254f1e3ebd1c23c2).

6 Conclusion

In this paper, we presented the constant-loop dominance relation and how it can be used for
optimizing single-path code. We first defined the relation as a variation of the traditional
dominance where the number of visits to a node must be constant. This takes loop bounds
into account to recognize constant loops. We then presented a recursive algorithm for finding
the constant-loop dominators. It first explores (nested) loops and uses the intermediate
results for the outer loops. We showed how the relation can be used to identify pseudo-root
functions in single-path code. These have the quality of being called a fixed number of times.
We used this property to optimize single-path code to require fewer instructions to manage
predicates and to reduce unnecessary calls. Our evaluation showed sporadic but significant
performance improvements from applying our optimization. While some programs saw no
execution-time differences, others saw an up to 90 % performance increase. We also showed
that the optimizations do affect code size, with executable sizes increasing by up to 6 %.

http://patmos.compute.dtu.dk/
https://github.com/t-crest
https://github.com/t-crest/patmos-llvm-project
https://github.com/t-crest/patmos-llvm-project
https://github.com/t-crest/patmos-llvm-project/tree/82eb73bff7336674027afecb254f1e3ebd1c23c2


E. J. Maroun, M. Schoeberl, and P. Puschner 7:11

References

1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. On finding lowest common ancestors
in trees. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd, Michael A.
Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings of the 5th Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas, USA,
pages 253–265. ACM, 1973. doi:10.1145/800125.804056.

2 Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design (Addison-Wesley Series
in Computer Science and Information Processing). Addison-Wesley Longman Publishing Co.,
Inc., USA, 1977.

3 Stephen Alstrup, Dov Harel, Peter W. Lauridsen, and Mikkel Thorup. Dominators in linear
time. SIAM J. Comput., 28(6):2117–2132, 1999. doi:10.1137/S0097539797317263.

4 Armelle Bonenfant, Marianne de Michiel, and Pascal Sainrat. oRange: A tool for static loop
bound analysis. In Proceedings of the Workshop on Resource Analysis, volume 42, 2008.

5 Adam L. Buchsbaum, Loukas Georgiadis, Haim Kaplan, Anne Rogers, Robert Endre Tarjan,
and Jeffery R. Westbrook. Linear-time algorithms for dominators and other path-evaluation
problems. SIAM J. Comput., 38(4):1533–1573, 2008. doi:10.1137/070693217.

6 Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13(4):451–490, 1991. doi:10.1145/115372.115320.

7 Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Björn Lisper.
Loop bound analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In Christine Rochange, editor, 7th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis, Pisa, Italy, July 3, 2007, volume 6 of OASIcs. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.
URL: http://drops.dagstuhl.de/opus/volltexte/2007/1194.

8 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener.
TACLeBench: A benchmark collection to support worst-case execution time research. In
Martin Schoeberl, editor, 16th International Workshop on Worst-Case Execution Time Analysis,
WCET 2016, July 5, 2016, Toulouse, France, volume 55 of OASIcs, pages 2:1–2:10. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/OASIcs.WCET.2016.2.

9 Dov Harel. A linear time algorithm for finding dominators in flow graphs and related problems.
In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 185–194. ACM, 1985.
doi:10.1145/22145.22166.

10 Rebecca Hasti and Susan Horwitz. Using static single assignment form to improve flow-
insensitive pointer analysis. In Jack W. Davidson, Keith D. Cooper, and A. Michael Berman,
editors, Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language Design
and Implementation (PLDI), Montreal, Canada, June 17-19, 1998, pages 97–105. ACM, 1998.
doi:10.1145/277650.277668.

11 Christopher A. Healy, Mikael Sjödin, Viresh Rustagi, David B. Whalley, and Robert van
Engelen. Supporting timing analysis by automatic bounding of loop iterations. Real Time
Syst., 18(2/3):129–156, 2000. doi:10.1023/A:1008189014032.

12 Paul Walton Purdom Jr. and Edward F. Moore. Immediate predominators in a directed graph
[H] (algorithm 430). Commun. ACM, 15(8):777–778, 1972. doi:10.1145/361532.361566.

13 Dimitar Kazakov and Iain Bate. Towards new methods for developing real-time systems:
Automatically deriving loop bounds using machine learning. In Proceedings of 11th IEEE
International Conference on Emerging Technologies and Factory Automation, ETFA 2006,
September 20-22, 2006, Diplomat Hotel Prague, Czech Republic, pages 421–428. IEEE, 2006.
doi:10.1109/ETFA.2006.355425.

WCET 2023

https://doi.org/10.1145/800125.804056
https://doi.org/10.1137/S0097539797317263
https://doi.org/10.1137/070693217
https://doi.org/10.1145/115372.115320
http://drops.dagstuhl.de/opus/volltexte/2007/1194
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.1145/22145.22166
https://doi.org/10.1145/277650.277668
https://doi.org/10.1023/A:1008189014032
https://doi.org/10.1145/361532.361566
https://doi.org/10.1109/ETFA.2006.355425


7:12 Constant-Loop Dominators for Single-Path Code Optimization

14 Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Albrecht Kadlec. Beyond
loop bounds: comparing annotation languages for worst-case execution time analysis. Softw.
Syst. Model., 10(3):411–437, 2011. doi:10.1007/s10270-010-0161-0.

15 Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In 2nd IEEE / ACM International Symposium on Code Generation
and Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA, pages 75–88. IEEE
Computer Society, 2004. doi:10.1109/CGO.2004.1281665.

16 Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in
a flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979. doi:10.1145/357062.
357071.

17 Edward S. Lowry and C. W. Medlock. Object code optimization. Commun. ACM, 12(1):13–22,
1969. doi:10.1145/362835.362838.

18 Salvador Lucas. The origins of the halting problem. J. Log. Algebraic Methods Program.,
121:100687, 2021. doi:10.1016/j.jlamp.2021.100687.

19 Emad J. Maroun, Martin Schoeberl, and Peter Puschner. Compiler-directed constant execution
time on flat memory systems. In 2023 IEEE 26th International Symposium on Real-Time
Distributed Computing (ISORC). IEEE, 2023.

20 Emad J. Maroun, Martin Schoeberl, and Peter P. Puschner. Compiling for time-predictability
with dual-issue single-path code. J. Syst. Archit., 118:102230, 2021. doi:10.1016/j.sysarc.
2021.102230.

21 Daniel Prokesch, Stefan Hepp, and Peter P. Puschner. A generator for time-predictable
code. In IEEE 18th International Symposium on Real-Time Distributed Computing, ISORC
2015, Auckland, New Zealand, 13-17 April, 2015, pages 27–34. IEEE Computer Society, 2015.
doi:10.1109/ISORC.2015.40.

22 Peter P. Puschner and Alan Burns. Writing temporally predictable code. In 7th IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002),
7-9 January 2002, San Diego, CA, USA, pages 85–94. IEEE Computer Society, 2002. doi:
10.1109/WORDS.2002.1000040.

23 Ola Redell and Martin Sanfridson. Exact best-case response time analysis of fixed priority
scheduled tasks. In 14th Euromicro Conference on Real-Time Systems (ECRTS 2002), 19-
21 June 2002, Vienna, Austria, Proceedings, pages 165–172. IEEE Computer Society, 2002.
doi:10.1109/EMRTS.2002.1019196.

24 Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value numbers and
redundant computations. In Jeanne Ferrante and Peter Mager, editors, Conference Record of
the Fifteenth Annual ACM Symposium on Principles of Programming Languages, San Diego,
California, USA, January 10-13, 1988, pages 12–27. ACM Press, 1988. doi:10.1145/73560.
73562.

25 Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil C. Audsley, Raffaele Capasso, Jamie
Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, Stefan Hepp,
Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel
Prokesch, Wolfgang Puffitsch, Peter Puschner, André Rocha, Cláudio Silva, Jens Sparsø, and
Alessandro Tocchi. T-CREST: time-predictable multi-core architecture for embedded systems.
J. Syst. Archit., 61(9):449–471, 2015. doi:10.1016/j.sysarc.2015.04.002.

26 Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Puffitsch, and Daniel Prokesch.
Patmos reference handbook. Technical report, Technical University of Denmark, 2014.

27 Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel Prokesch.
Patmos: a time-predictable microprocessor. Real Time Syst., 54(2):389–423, 2018. doi:
10.1007/s11241-018-9300-4.

28 Thomas Sewell, Felix Kam, and Gernot Heiser. Complete, high-assurance determination of
loop bounds and infeasible paths for WCET analysis. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Vienna, Austria, April 11-14, 2016, pages
185–195. IEEE Computer Society, 2016. doi:10.1109/RTAS.2016.7461326.

https://doi.org/10.1007/s10270-010-0161-0
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/362835.362838
https://doi.org/10.1016/j.jlamp.2021.100687
https://doi.org/10.1016/j.sysarc.2021.102230
https://doi.org/10.1016/j.sysarc.2021.102230
https://doi.org/10.1109/ISORC.2015.40
https://doi.org/10.1109/WORDS.2002.1000040
https://doi.org/10.1109/WORDS.2002.1000040
https://doi.org/10.1109/EMRTS.2002.1019196
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/73560.73562
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1109/RTAS.2016.7461326


E. J. Maroun, M. Schoeberl, and P. Puschner 7:13

29 Robert Endre Tarjan. Finding dominators in directed graphs. SIAM J. Comput., 3(1):62–89,
1974. doi:10.1137/0203006.

30 Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst., 13(2):181–210, 1991. doi:10.1145/103135.103136.

WCET 2023

https://doi.org/10.1137/0203006
https://doi.org/10.1145/103135.103136

	1 Introduction
	2 Related Work
	3 Background
	3.1 The Patmos Processor
	3.2 Single-Path Code
	3.3 Definitions

	4 Constant-Loop Dominance
	4.1 Algorithm
	4.2 Pseudo-Root Optimization
	4.3 Implementation

	5 Evaluation
	5.1 Performance
	5.2 Code Size
	5.3 Source Access

	6 Conclusion

