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Preface

Welcome to the Proceedings of the 21st International Workshop on Worst-Case Execution
Time Analysis (WCET 2023). The 21st edition of the WCET Workshop is held on July 11,
2023, and is co-located with the Euromicro Conference on Real-Time Systems (ECRTS 2023)
in Vienna, Austria. The WCET Workshop targets research on worst-case execution time
analysis in the broad sense and serves as an annual meeting for the WCET community. In
this year’s edition, the scope of the workshop has been broadened, and the call for papers
also welcomed contributions on analysis techniques for resources other than time, such as
energy consumption.

The WCET Workshop has the goal of bringing together people from academia and
industry. This goal is also reflected in the composition of the program committee (listed
below) with members from academia, research institutes, and industry.

This year, the workshop received 12 submissions, each of which received at least three
reviews. Based on these reviews and an online discussion, the program committee selected
nine papers to appear for presentation at the workshop and in these proceedings. These
papers cover a wide range of topics, including, among others, WCET analysis for GPU
architectures, multi-objective optimization, and energy-consumption analysis.

Ensuring a high-quality program, organizing the WCET Workshop, and publishing
open-access proceedings is a joint effort of many people: First, I would like to thank all
members of the program committee and external reviewers for their time and effort in
reviewing the submissions, providing comprehensive feedback, and participating in the online
discussions. I am also very grateful for the support of the WCET Steering Committee
throughout the organization of the workshop. Schloss Dagstuhl provided excellent assistance
for the publishing process; many thanks to the whole team and especially to Michael Didas
for the detailed and friendly support in preparing these proceedings. Finally, I especially
thank all authors for contributing their work and you for your interest in these proceedings.
I hope that these proceedings will be inspiring and helpful for your work in the future. It
has been a pleasure for me to serve as a workshop chair for the WCET community.

Erlangen, Germany
June 23, 2023

Peter Wägemann

21st International Workshop on Worst-Case Execution Time Analysis (WCET 2023).
Editor: Peter Wägemann

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
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WCET Analysis
Louison Jeanmougin #

IRIT - Univ. Toulouse 3 - CNRS, France

Pascal Sotin #

IRIT - Univ. Toulouse 2 - CNRS, France

Christine Rochange #

IRIT - Univ. Toulouse 3 - CNRS, France

Thomas Carle #

IRIT - Univ. Toulouse 3 - CNRS, France

Abstract
We present an abstract interpretation technique to automatically build a Control Flow Graph (CFG)
representation of the execution of a GPU kernel. GPUs implement an inherently parallel execution
model, in which threads are grouped within so-called warps that execute in lockstep. This execution
model enables the representation of the execution of the threads of a warp as a single CFG. However,
thread divergence may appear within a warp and its effect must be captured explicitly within the
CFG. Our method builds the CFG of a warp by applying abstract interpretation on the assembly
(Nvidia SASS) code of a kernel, and by maintaining an abstract representation of which threads
within the warp agree on which values. This allows the method to detect precisely the points in the
program where thread divergence may occur, and avoid spurious reactivation edges in the CFG. We
apply our technique on benchmark kernels as a proof-of-concept, and generate IPET systems using
the resulting CFGs.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Theory of
computation → Abstraction

Keywords and phrases Graphical Processing Unit (GPU), Control Flow Graphs (CFG), Worst-Case
Execution Time (WCET), Program analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2023.1

Funding Thomas Carle: This work was supported by a grant overseen by the French National
Research Agency (ANR) as part of the MeSCAliNe (ANR-21-CE25-0012) project.

1 Introduction

The ever-growing need for computation power begs the question of adopting hardware
accelerators in real-time embedded systems. In particular, Graphical Processing Units
(GPUs) have gained traction as they combine massive parallelism and versatility. However,
their adoption for safety-critical real-time systems requires the ability to derive safe Worst-
Case Execution Time (WCET) bounds for the programs accelerated by GPUs. Traditional
static WCET analysis targets the execution of a sequential thread running in isolation on a
CPU core. In practice, the embedded program is modelled using a Control Flow Graph (CFG)
that captures all the possible execution paths of the program in a condensed representation.
Abstract interpretation techniques can be applied on this graph to determine properties
of the program execution (e.g. loop bounds, infeasible paths, cache behavior). Each node
of the CFG corresponds to a sequence of instructions of the program whose worst-case
execution duration is derived using a model of the target hardware (in fully static methods)
or using measurements (in hybrid methods). The CFG is ultimately used in the Implicit
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1:2 Warp-Level CFG Construction for GPU Kernel WCET Analysis

Path Enumeration Technique (IPET) in order to generate an Integer Linear Program (ILP)
system that captures the possible execution paths and combines them with the worst-case
execution duration of the nodes of the CFG. The solution of this ILP system is the WCET
bound for the considered program. Additional techniques can be used to account for the
effect of concurrent threads running on the same core [1] or on different cores of a multi-core
System-on-Chip [8, 11].

In order to handle thousands of threads in parallel, GPUs implement a complex execution
model in which the threads executing a program are hierarchically subdivided into groups
called thread blocks and warps. Thread blocks are dynamically distributed among the
Streaming Multiprocessors (SM) composing a GPU following occupation rules defined in the
GPU drivers [2, 12]. Within each block, the threads are also grouped into warps. Threads
within a warp execute in lockstep: at each execution cycle, each multiprocessor elects a
warp for execution, and all the threads within the elected warp execute the same instruction.
This execution model is known as Single Instruction Multiple Threads (SIMT). Since all the
threads within a warp execute the same instruction at the same time, it seems natural to
derive the worst-case execution time of a warp in isolation, using a single CFG, and following
the classical WCET analysis workflow. From this information, additional analyses can then
be developed and applied to combine multiple warps running on the same GPU and derive a
WCET for the complete application.

However, the SIMT execution model is subject to a phenomenon called thread divergence
that impacts the control flow, and ultimately the execution time, by serializing the execution
of the different branches of conditional branch statements when the threads within a warp
do not agree on the value of the condition. For each thread taken separately this has no
impact on the control flow, but at warp level, this serialization mechanism creates additional
transitions in the control flow that must be accounted for in the warp-level CFG.

In this paper, we present an abstract interpretation technique that builds an accurate
warp-level CFG directly from the assembly code (Nvidia SASS) of the application. This
technique models the semantics of the SIMT execution model, and is able to determine a
subset of the conditional branch instructions for which the threads are statically guaranteed
to agree on the execution condition.

Building the CFG by abstract execution of the machine code in a CPU context is known
to bring the following benefits [3]:
1. independence from the source language and the compilation process;
2. more accurate control graph and abstract values thanks to interleaving of value analysis

and graph construction.
In the context of GPU timing analysis, this approach seems even more natural because:

the source code describes the behavior of each thread, while the machine code describes
the behavior of a warp;
the subsequent WCET analysis is performed on the machine code1

The paper is organized as follows. In Section 2, we present the details of the SIMT
semantics. We then present our CFG construction method in Section 3 and evaluate it in
Section 4. We present the related work on the topic of static WCET analysis of GPU kernels
in Section 5 and we conclude in Section 6.

1 We leave aside the problem of transferring the loop bound information from source to assembly code.
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Figure 1 Thread divergence example.

2 SIMT execution semantics

As mentioned earlier, GPUs implement a particular execution model called SIMT. At the
highest level, the main CPU program calls a GPU function (called a kernel) that is executed by
a specified number of threads. These threads are organized into blocks that are dynamically
dispatched to the SMs composing the GPU. Within a block, threads are divided in groups of
32 (or 16 depending on the GPU architecture) called warps. Inside an SM, warp schedulers
are responsible for selecting a warp to execute at each execution cycle. Threads within a warp
execute in lockstep: whenever a warp is elected for execution, all the threads that compose
it execute the same instruction. This greatly simplifies the logic, as all threads within a
warp can be seen as sharing their program counter (PC). However this execution model
can be problematic when the threads execute conditional branches: in certain situations,
called thread divergence, threads within a warp may not agree on the value of the execution
condition of a branch, and thus on the next value of their shared PC. This is handled by
executing the branch with the threads that find the execution condition true, while masking
the others, and then executing the fallback code with the other threads only. This mechanism
is illustrated in Figure 1. On the left, the figure displays a simple CFG with a conditional
branch: at the end of block A, the control flows towards B or C, and then reaches D regardless.
At the end of block D, each thread executes the EXIT instruction that signals the end of
execution for the thread. A possible execution for a warp is given in the middle. At the
beginning, all threads within the warp2 execute block A. Then the ten rightmost threads
execute block B followed by block D, until they reach the end of the program. When the
execution is over for these threads, the six leftmost threads execute block C, followed by
block D. At this point, all threads have finished executing the kernel.

This serialization allows the correct execution of a kernel, but is not efficient, as some
parts of the code (located after the if-then-else) are executed multiple times in sequence
(e.g. block D in our example). A reconvergence mechanism is implemented to reduce the
subsequent loss of performance: the compiler automatically detects areas in the code where
thread divergence may occur (around conditional branch instructions) and adds special
purpose instructions in the assembly code to re-synchronize the threads that have diverged.
This is illustrated in the right part of Figure 1. As before, at the beginning all threads

2 For space reasons we only depict 16 threads within the warp.

WCET 2023



1:4 Warp-Level CFG Construction for GPU Kernel WCET Analysis

execute block A. Then the ten rightmost threads execute block B and are suspended, as they
reach a reconvergence instruction at the end of the block. The six leftmost threads execute
block C, and when they are done, all threads reconverge before executing block D.

The SASS instruction set (up to the Maxwell/Pascal ISA at least) contains two pairs of
such instructions: SSY/SYNC and PBK/BRK. In each pair, the first instruction is used to signal
a potential incoming divergence to the hardware, while the second instruction is used to
synchronize diverging threads, thus forcing their reconvergence. In order to support nested
conditional branches, an activation stack stores the necessary information: each entry in the
stack is composed of a mask representing the active threads of the entry, and of the next PC
value for these threads. The entry at the top of the stack always represents the currently
active threads and the PC of the next instruction to execute. Additionally, each entry of the
stack is typed in order to handle intertwined loop, if-then-else and break constructs:

an entry is of NIL type if it does not correspond to a reconvergence point. The top of the
stack is always of NIL type.
an entry is of type SYNC if it was inserted using the SSY instruction. It usually is used to
reconverge after a conditional branch due to a if-then-else or a loop construct.
an entry is of type BRK if it was inserted using the PBK instruction. It usually is used to
reconverge after a conditional break statement.
The SSY and PBK instructions contain the address of the instruction at which the corres-

ponding reconvergence must occur.
The stack is maintained using the following rules:
when a warp is mapped to an SM, a stack is allocated. It is initially composed of a single
NIL entry with all threads active in the mask and the next PC corresponding to the start
of the kernel code.
when a warp reaches a SSY @reconv_addr (resp. PBK @reconv_addr) instruction, the
next PC of the top entry becomes reconv_addr, and the entry becomes typed as SYNC
(resp. BRK). This entry will be used when the threads reconverge. A new NIL entry is
then pushed on the stack. This entry has the same thread mask as the previous top entry
(i.e. all currently active threads remain active), and its next PC is set to the current
PC + 8 (i.e. the next instruction in memory for 64 bit instructions). The SSY (resp.
PBK) instruction prepares the stack for a potential divergence due to a future conditional
branch instruction, but is not by itself a source of divergence.
when a warp reaches a divergent conditional branch BRA @addr, the actual divergence
must be accounted for in the stack. The top entry next PC is set to its current value + 8
(i.e. the address of the fallback code), and its mask is updated to contain only the active
threads that do not take the branch. This entry will be used later to execute the fallback
code. A new NIL entry is pushed to the stack. Its next PC is set to addr and its mask is
composed of the active threads that take the branch.
when a warp reaches a SYNC (resp. BRK) instruction, the active threads are removed from
the mask of all entries in the stack, from the top and until a SYNC (resp. BRK) entry is
reached. Each time a mask is modified, its corresponding entry is popped from the stack
if the modified mask no longer contains any thread. In practice, the SYNC (resp. BRK)
instruction suspends the execution of the currently active threads until a reconvergence
point is reached by all the threads that must reconverge.
when a warp reaches an EXIT instruction (i.e. the active threads reach the end of the
kernel), all active warps that execute the EXIT are removed from the mask of all the
entries in the stack. Once again, if a mask becomes empty doing so, its entry is removed
from the stack.
whenever an entry becomes the top entry, its type becomes NIL regardless of what it was
before.
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This set of rules is implemented in the hardware, and as the SSY/SYNC, PBK/BRK and
EXIT instructions are automatically inserted by the compiler, the process of handling thread
divergence when it occurs is transparent to the programmer. On the other hand, our static
analyses follow closely this execution model in order to accurately account for its effect.
In particular, to the best of our knowledge, it is the first time that a static analysis is
performed at the granularity level of the assembly language for a GPU kernel and that the
divergence/reconvergence instructions are taken into account. This is particularly important
as in our experiments, we have encountered situations in which the compiler does not insert
reconvergence instructions on the first post-dominating node after a conditional branch.

In the next section, we present our abstract interpretation method to build a warp-level
CFG from the SASS code of a GPU kernel.

3 Abstract interpretation

In the manner of Reps and al. [3], we perform the CFG construction at the machine code
level and we interleave exploration of the control flow with value analysis.

We construct the graph by starting at the entry point of the program with an initial
abstract state representing the possible initial concrete states. We execute the instructions of
the program on the abstract states and discover successors states. We do so until a fixpoint
is reached and no more new states are discovered. An abstract state contains information on:

the current program counter;
the pending activation stack (see Section 3.1);
several remarkable groups of threads (see Section 3.2);
for each group, the registers on which these threads agree (see Section 3.3).

After presenting the base domains in the following subsections, we detail our abstract
states in Section 3.4. For each domain, we provide a formal description of the concretization
function γ, that associates a value in an abstract domain D♯ to a set of concrete values, and
a description of its essential operations.

The notation A → B denotes a total function from A to B; A ⇀ B denotes a partial
function from A to B; P(A) denotes a subset of A.

3.1 Activation stack abstract domain

We represent the possible configurations of the activation stack by a graph in which the nodes
are composed of a control point and an optional tag (SYNC, BRK or none), plus two special
nodes : top and bot. In such a graph, each path from top to bot represents the contents of a
stack in a possible configuration. The stack concretization function γStack takes as input a
graph and returns the set of corresponding stack configurations.

γStack : D♯
Stack → P(List(Act♯)) with Act♯ def= PC× Tag

Operations

Most operations in this abstract domain are simple adaptations of classical operations on
stacks. We detail the pop and filter operations.

WCET 2023



1:6 Warp-Level CFG Construction for GPU Kernel WCET Analysis

Popping

While pushing an element on an abstract stack simply gives an abstract stack, popping the
topmost element may yield several possible popped values and leave distinct remainders. It
might also happen that the stack can be empty; none is then part of the result.

pop♯ : D♯
Stack → P(Act♯ ×D♯

Stack)

This operation is called after the active threads have been halted by an EXIT, SYNC or
BRK. The execution may continue at any of the control point that can be popped. If the
stack may be empty, this indicates that the program can halt here.

Filtering

When an operation halts the active threads, it removes them from the active mask, but
also from all the masks in the stack, up to the bottom in case of an EXIT and up to the
corresponding tag in case of a SYNC or BRK.

Our representations of the stack do not embed the masks3. However, we need to take
into account that stages of the activation stack might have been removed after that their
activation mask attained the zero vector.

We thus equipped our abstract stack domain with a filtering operation that processes the
stages from the top of the stack up to an optional tag and for each stage take into account
that its mask can/cannot/must reach zero. The latter information is taken as a parameter
and is provided by the thread group abstract domain (Sec. 3.2).

filter♯ : D♯
Stack × Tag× (Act♯ → {keep, drop, any}) → D♯

Stack

3.2 Thread group abstract domain

In order to conduct a precise analysis, we sometimes need to retain the relations between
certain groups4 of threads. We thus introduced an abstract domain that is able to remember
relations like A ⊆ B, A = B or A ∩B = ∅.

The domain does not keep track of the concrete threads present in a group, just the
relations between these groups. The group names are stored in the abstract value. In our
case, we use the special group active to denote the threads currently executing and one
group per activation node in the stack graph to denote either its associated mask or an upper
bound on it when in a cycle. This set of groups is denoted by G.

γGroup : D♯
Group → P(G ⇀ P(Threads))

We implement this domain by storing all the intersections of groups or complements of
groups that must be empty. The constraint A∩B = ∅ is stored as is, the constraint A ⊆ B is
stored as A∩ B̄ = ∅ and the constraint A = B is stored as A ⊆ B ∧B ⊆ A. The conjunction
of constraints is an exact operation5 in this domain.

3 Putting the masks or abstraction thereof in the abstract stack would lead to very large graphs.
4 In this specific context, we use the term group, but it can be read as set.
5 An exact operation is an operation of the abstract domain that does not result in an over-approximation.
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3.3 Agreement abstract domain
Thread divergence can occur when a conditional branch instruction is executed. However, in
many situations all the threads of the warp agree on the predicate, by program design.

In order to determine if a divergence may occur or not, we created a new abstract domain
that keeps track for a given group of threads of the registers on which these threads agree.
We just store the name of these registers, not the values they contain. The beauty of this
analysis is that we do not need to know the precise behaviour of each instruction but only
what it reads, what it writes, and be sure that it is deterministic.

For example, if the instruction is IADD R2, R4, R2; we can tell that if a group of threads
agree on R2 and R4, they will all write the same value in R2 and thus keep agreeing on these
registers.

The basic version of this domain captures the identical registers in a given group of
threads.

γAgree : (P(Thread)× P(Reg)) → P(Mem)
γAgree(T, R) = {m ∈ Mem | ∀t1, t2 ∈ T, ∀r ∈ R, read(m, t1, r) = read(m, t2, r)}

Such abstract value is concretized as the set of memories such that any two threads in
the group that read the same register on which the agreement was established, read the same
value. Values in Mem describe both the registers and the DRAM memories of the GPU.

This domain is then lifted to handle several groups of threads, identified in Section 3.2.

D♯
GrAgr

def= G ⇀ P(Reg)

γGrAgr : D♯
GrAgr → P((G ⇀ P(Threads))×Mem)

γGrAgr(f) def= {⟨g, m⟩ ∈ (G ⇀ P(Threads))×Mem |
dom(g) = dom(f) ∧ ∀x ∈ dom(f), m ∈ γAgree(g(x), f(x))}

When we process an instruction computing data, we update the information tied to each
group in the following manner:

If the group is equal to active, we perform a strong update. If the threads agree on the
arguments, they gain or preserve the agreement on the result. If the threads disagree on
at least one argument, agreement on the result is lost.
If the group is not equal to active but intersecting it, we perform a weak update. It
means that only a part of the group performs the instruction. Agreement on the result is
thus lost.
If the group is disjoint from active, we do not modify its agreements.

3.4 Warp state abstract domain
As announced on page 5, a state is made of the current program counter, the pending
activation stack, a set of remarkable groups of threads and agreement information on these
groups.

D♯
Warp

def= PC×D♯
Stack ×D♯

Group ×D♯
GrAgr

γWarp : D♯
Warp → P(List((PC× Tag)× P(Thread)}) × Mem)

γWarp(p, s♯, g♯, a♯) def= {⟨⟨⟨p, none⟩ , g(active)⟩ .s′, m⟩ |
⟨g, m⟩ ∈ γGrAgr(a♯) ∧ g ∈ γGroup(g♯)
∧∃s ∈ γStack(s♯), ∀i, s′[i] = ⟨s[i], g(s[i])⟩}
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Processing an instruction
We define the abstract treatment of an instruction by separating the concerns of processing
an instruction unconditionally (memo + operands) from the treatment of the condition.
This organization of the abstract semantics avoids to consider for each kind of instruction a
tedious and error-prone study of the interference between the instruction and the presence of
a condition.

Managing the condition

Processing an instruction with its condition may produce several abstract values, that we do
not wish to join immediately into a single one. An informal algorithm is given in Algo. 1
and it uses the produce keyword to signal one or several results (as yield in Python).

Algorithm 1 Successors of an abstract state: condition management.

Input : An initial abstract state stini
Output : The production of one or more successor state

1 PCcur ← PC(stini);
2 i← instruction at PCcur;
3 stall ← process unconditionally instruction i in state stini;
4 if stall has no more active threads then
5 produce all pop from stall;
6 else
7 produce stall;
8 if i is conditional then
9 produce stini with PC = PCcur + 8;

10 if active threads might disagree on cond(i) in stini then
11 stpart ← stini with a group skip separated from active;
12 stsome ← process unconditionally instruction i in state stpart;
13 if stsome has no more active threads then
14 produce stsome with group skip renamed as active;
15 else if PC(stsome) = PCcur + 8 then
16 produce stsome with group skip folded into active;
17 else
18 produce stsome with group skip pushed as ⟨PCcur + 8, none⟩;

Processing unconditional instructions

1. Branching (BRA) replaces the current PC with the target of the instruction. Non-branching
instructions increment the PC in addition to their effect.

2. Data-processing instructions (eg. IADD or LDC) modify the agreement component of the
abstract value, as presented at the end of Section 3.3.

3. Reconvergence preparation instructions (SSY and PBK) push their target on the pending
activation stack with a tag corresponding to the kind of synchronization.

4. Reconvergence instructions (SYNC and BRK) split the abstract stack on the first occurrence
of the corresponding tag. The upper part is then filtered from the activation stages that
can or must have their mask reduced to zero when we halt the threads in active.

5. The EXIT instruction filters the active threads from the whole stack.
In the next section we describe the results that we obtained using our method.
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4 Evaluation

4.1 Experimentation on the Rodinia Benchmark

To the best of our knowledge, no GPU kernel benchmark dedicated to embedded or real-
time systems has been released yet. To evaluate our analysis method, we thus used kernels
extracted from the Rodinia [7] benchmark. Since our analysis does not support calls to kernels
originated from another kernel (we are currently working on understanding the relationship
between the call stack and the reconvergence stack), our evaluation was performed on 37 out
of the 57 kernels composing Rodinia. For each of them, our prototype was able to generate
a CFG, and from each CFG we generated an ILP system following the IPET method.
Developing a loop-bound analysis for warp-level CFGs is part of future work, so for now we
manually provided the loop bounds, and arbitrarily set each loop bound to 10 iterations (or
a power of ten for nested loops). Loop reconstruction was done using [6]. Additionally, we
arbitrarily set each instruction duration to 1 cycle in order to obtain durations for the blocks
of the produced CFGs. Our objective was not to derive a real WCET for these kernels but to
prove the feasibility of deriving a warp-level CFG and to use it in a standard IPET workflow.

Overall, most of the analyzed kernels have a very limited number of arcs modelling a
possible divergence (34 of them have 4 or less of these arcs), which is coherent since most of
these kernels are pretty simple, and do not feature if-then-else constructs. Interestingly, the
3 kernels with a slightly more complex control flow (switch-case and if-then-else constructs)
have 39, 19 and 12 of them (respectively in the mummergpuKernel, printKernel and reduce
kernels). This means that the kind of analysis that we propose is necessary in order to
support even relatively simple kernels. For each of them we were able to compute a WCET,
which shows that the generated CFGs are compatible with the IPET method. The CFG
reconstruction took up to 1.3 seconds; in 75% of the benches, it took less than 90 ms.

In the future, we plan on looking at other benchmarks to try to find more complex
kernels, or to develop our own benchmark with kernels that can be interesting for analysis or
representative of embedded GPU kernels.

4.2 Evaluation of the abstract domain

In this subsection we give some results on the relative importance of the component of the
abstract domain D♯

Warp presented in Section 3. We deactivate some parts of the abstract
value and observe the fraction of the benchmark programs of Section 4.1 that see their WCET
severely degraded. The results are the following:

Domain modification WCET est. ×10 or more

Limitation to acyclic graphs (Sec. 3.1) 25%
No group fine analysis (Sec. 3.2) 15%
No agreement analysis (Sec. 3.3) 52%
Agreement tracking only for active 37%

The results show that the agreement analysis is the key ingredient for the WCET analysis
precision. We can also see that this analysis needs to be done not only for the active threads
but also the pending threads. Eventually, we can spot that a precise group analysis is less
crucial but should not be neglected.

WCET 2023
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5 State of the art

The problem of deriving a safe WCET bound for GPU kernels has so far been the topic of
only a limited number of publications.

In [4], the authors tackle the problem by providing an ILP formulation that captures
how a work-conserving warp scheduler could handle the workload corresponding to a kernel.
The focus is put on how the scheduler hides the long latency instructions (e.g. memory
accesses). However, in this preliminary work, the simplifying assumptions are very strong. In
particular, the considered kernels are single path, which greatly simplifies the analysis and
completely puts aside the problematic of thread divergence. The method proposed in [10]
is also based on the modelling of the warp scheduler policy using an ILP system, focusing
on the Greedy Then Round Robin scheduling policy. The authors propose analyses of the
kernel code to handle memory access coalescing and roughly account for thread divergence.
However, nothing is said about how thread divergence is detected, so we can assume that
additional analyses such as the one that we propose are required.

In [5], a hybrid analysis method is used: a CFG is built to represent the execution paths
of the kernel, and the execution duration of the basic blocks of the CFG are obtained using
measurements. The authors propose an algorithm that extends the CFG of a single thread to
a CFG that over-estimates the control transitions at warp-level, by adding extra edges that
model thread divergence. This method is based solely on the topological properties of the
thread CFG (i.e. divergence in the graph and dominance/post-dominance properties), and
does not take into account the actual SIMT semantics, nor the fact that thread reconvergence
only happens if and when SYNC/BRK instructions are inserted by the compiler. In our
experience, the compiler does not always insert reconvergence instructions at the first post-
dominant point in the CFG after a separation of paths in the graph, so the assumptions
made in [5] may sometimes be too optimistic and lead to underestimations of the WCET.
Moreover, since the authors do not follow closely the SIMT semantics, their method may add
extra edges that are not added with our method a) when we detect an agreement between
the threads of a warp and b) because when a conditional branch occurs, their algorithm does
not know which branch is taken first.

An ad-hoc WCET analysis method for GPU kernels has been proposed in [9]. The
algorithm builds on Single Static Assignment (SSA)-like analysis methods and on symbolical
execution to statically detect the points in the CFG of a thread where agreement between
all threads of a warp is statically guaranteed. This is, to the best of our knowledge, the only
method (before ours) that tries to determine agreement on a condition when a conditional
branch occurs. In comparison, our method determines agreement points by introducing the
SIMT stack mechanism in our model, which provides more precise results: we determine
agreement between active threads at each point, while the method based on SSA-like
properties only allows to reason about all the threads in the warp. Moreover, our method
aims at building a warp-level CFG that can then be used in a standard WCET analysis
pipeline, so it can benefit from classical analyses on CFGs (e.g. cache analysis) and from the
IPET method, while the method of [9] is standalone.

6 Conclusion

We presented an abstract interpretation technique to automatically build a warp-level CFG
for GPU kernels. Our method strictly follows the SIMT semantics as implemented in the
Nvidia Pascal GPUs. In particular, it handles the possibility of thread divergence and
its impact on the warp-level CFG. Part of our analysis focuses on the representation of
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agreement between threads of the same warp on a given value (e.g. a register value) to filter
out divergence when we can statically prove that all threads agree on the branch to take.
We performed an evaluation on the Rodinia benchmark, and highlighted the importance of
the agreement analysis.

In the future we will improve our analysis by supporting the calls to kernels from other
kernels, and by adapting classical analyses (e.g. loop bound analysis) to our framework. We
will also work on our understanding of the microarchitecture of GPU targets in order to
derive precise durations for the blocks of the CFG.
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A Appendix

A.1 If-then-else example

# Block 0
     MOV R1, c[0x0][0x20];
     S2R R5, SR_TID.X;
# ... 3 inst.
     LDG.E R0, [R2];
     MOV R6, R5;
     CS2R R7, SR_CLOCKLO;
     ISETP.NE.AND P0, PT, R0, R5, PT;
     SSY TARGET1;
@!P0 BRA TARGET2;

# Block 1
     XMAD R6, R0.reuse, R0.reuse, RZ;
     XMAD.MRG R9, R0.reuse, R0.H1, RZ;
     XMAD.PSL.CBCC R6, R0.H1, R9.H1, R6;
     CS2R R0, SR_CLOCKLO;
     SYNC ;

skip (all)

# Block 2
TARGET2:
     CS2R R0, SR_CLOCKLO;
     SYNC ;

BRA (some)

# Block 3
TARGET1:
     LEA R4.CC, R5, param_1[0], 0x2;
     IADD R0, -R7, R0;
     LEA.HI.X R5, R5, param_1[1], RZ, 0x2;
     STG.E [R4], R6;
     STG.E [R2], R0;
     EXIT ;

SYNC (all; last)

SYNC (all; 1 on top)

SYNC (all; last)

EXIT

EXIT (all)

Figure 2 Control flow graph of a program containing a non-trivial if-then-else. The dashed
control edge is not part of the source control flow.
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A.2 Regular loops example

# Block 0
     MOV R1, c[0x0][0x20];
     CS2R R16, SR_CLOCKLO;
# ... 52 inst.
     XMAD.CHI R9, R11.H1.reuse, param_5, R9;
     ISETP.GE.U32.X.AND P0, PT, R12, R5, PT;
     XMAD.PSL.CBCC R11, R11.H1, R4.H1, R2;
     IADD3.RS R9, R9, R7, R18;
     MOV R7, RZ;
@!P0 BRA TARGET1;

# Block 1
     XMAD R6, R13.reuse, param_3[0], RZ;
     XMAD R24, R13.reuse, param_4[0], RZ;
# ... 38 inst.
     IADD R20.CC, R14, R20;
     SHL R18, R18, 0x2;
     MOV R19, R11;
     SHL R27, R27, 0x2;
     SHL R25, R25, 0x2;
     IADD.X R24, RZ, R2;

skip (all)

# Block 6
TARGET1:
     XMAD R3, R17.reuse, R10.reuse, RZ;
     XMAD R6, R17.reuse, R8.reuse, RZ;
# ... 33 inst.
     STG.E [R2], R7;
     IADD.X R5, R0, param_6[1];
     CS2R R2, SR_CLOCKLO;
     IADD R2, -R16, R2;
     STG.E [R4], R2;
     EXIT ;

BRA (all)

# Block 2
TARGET4:
     IADD R3.CC, R0, R6;
     IADD.X R4, R23, R21;
# ... 15 inst.
     DEPBAR.LE SB5, 0x1;
     STS [R22], R3;
     STS [R25], R4;
     BAR.SYNC 0x0;
     MEMBAR.CTA ;
@!P1 BRA TARGET2;

IADD.X (all)

# Block 3
     MOV R2, RZ;
     MOV R3, RZ;
     MOV R28, R27;
     MOV R4, R18;
     MOV R5, param_5;

skip (all)

# Block 5
TARGET2:
     NOP ;
     NOP ;
     NOP ;
     BAR.SYNC 0x0;
     MEMBAR.CTA ;
@!P0 BRA TARGET4;

BRA (all)

# Block 4
TARGET3:
     IADD32I R2.CC, R2, 0x1;
     LDS.U.32 R29, [R4];
# ... 4 inst.
     ISETP.GE.U32.X.AND P1, PT, R3, RZ, PT;
     IADD32I R28, R28, 0x4;
     XMAD R7, R29.reuse, R30.reuse, R7;
     XMAD.MRG R30, R29.reuse, R30.H1, RZ;
     XMAD.PSL.CBCC R7, R29.H1, R30.H1, R7;
@!P1 BRA TARGET3;

MOV (all)

BRA (all)

skip (all)

BRA (all)

skip (all)

EXIT

EXIT (all)

Figure 3 Control flow of a tiled matrix multiplication. Without agreement analysis, the exit
instruction in block 6 would have an edge to every potential divergence.
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Abstract
We propose a workflow to help find errors in the processor models that are used to prove their
timing predictability. Recently, several papers have modeled processor cores using formal models
that represent how instructions progress through the pipeline in each execution cycle. However, such
models grow with the complexity of the cores and they are built by hand, using a description of the
core, usually the HDL-level code. Such a task is error-prone, and verifying that the model actually
captures the core’s timing behavior is required, otherwise the proofs become useless. Our workflow
simulates the execution of benchmark applications using the HDL specification of a core in order
to extract timing information as well as other relevant information (e.g. cache miss events, branch
mispredictions). This information is used to replay the execution in a simulator of the core timing
model, and to determine whether or not the model accurately represents the execution timing of
the instructions. To avoid writing the simulator by hand for each new core, or new variation of a
core, we developed a compiler that translates the timing model of a core into a C++ program. We
evaluated our approach on the open source MINOTAuR core and we show how it enabled us to
detect and correct errors in its model.
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1 Introduction

Ensuring the schedulability of real-time systems requires knowing the worst-case execution
time (WCET) of each critical task. Deriving such a WCET for tasks running on multicore
processors is particularly challenging because tasks running in parallel on separate cores
may request accesses to shared hardware components (e.g. shared cache, memory bus or
controller) at the same time. This makes the WCET of tasks dependent on their execution
context and would require a cycle accurate model of the execution of the whole task set,
which is untractable in practice. In order to reduce the complexity of the multi-core WCET
analysis, the community has adopted the compositional approach [10], in which the WCET
of each task is a composition of its worst-case duration in isolation and of a context-related
penalty that is computed as part of an interference analysis.
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However, this approach can be safely applied only if the cores are not prone to so-called
timing anomalies [14] i.e. situations in which a local worst case (e.g. a cache miss) does
not lead to the global worst case (i.e. the WCET of the analyzed task). Proving the
absence of timing anomalies in a core requires a formal timing model that expresses all the
details of the inner workings of the core [11, 8, 13]. This model is usually produced manually
from the VHDL or SystemVerilog specification of the core, which is particularly complex,
time-consuming and error-prone. As such, the formal model is the weak point of the chain, as
the applicability of the proofs relies on the fact that the model strictly reflects the behavior
of the processor as it is implemented in hardware.

In this paper, we present a methodology to obtain a better level of confidence on the
correctness of such formal models, by simulating the timing behavior of the formal model
of the processor using instruction traces obtained from the execution of programs on the
target processor. We applied our work on the open source MINOTAuR core [8], a processor
derived from the RISC-V CVA6 core [16] which was proven to be timing-anomaly free. Our
methodology has allowed us to uncover small mistakes in the formal model of MINOTAuR
and to fix them. Although this technique does not guarantee correctness, it allows us to gain
a higher confidence in the model. To facilitate the implementation of our methodology, we
also propose a model description language and an automatic model simulator generator.

The paper is organized as follows. In Section 2, we present the main lines of our model
of the MINOTAuR processor. Our validation workflow is introduced in Section 3 and is
evaluated on our model in Section 4. In Section 5, we show how model simulators can be
automatically generated from the description of a processor model. We discuss related work
in Section 6 and conclude the paper in Section 7.

2 Background

In [8], we introduced MINOTAuR, a 6-stage in-order RISC-V core of moderate complexity.
MINOTAuR is a timing-anomaly-free version of the CVA6 core [16]. Its monotonicity was
proven using a model similar to the one proposed for the SIC processor [11]. This model
is expressed in the logic of predicates. It describes the progression of an instruction in the
pipeline of the processor, depending on various factors, such as its kind, memory dependencies,
or data dependencies. The model is reproduced on Figure 1.

In the first part, it describes the basic structure of the pipeline: name and order of the
stages, latency of an instruction in each stage, next stage of an instruction depending on its
kind, etc. In each execution cycle c, an instruction i is in a stage c.stg(i), and has a counter
c.cnt(i) that indicates the remaining processing time of the instruction in this stage. The
cycle(c)(i) function describes what happens to instruction i at the end of cycle c: either the
instruction is ready to advance to the next stage and the next stage is ready to process it, in
which case the instruction advances, or the instruction remains in its current stage, in which
case its processing counter is decreased by one. When the counter reaches 0, the instruction
is considered processed in its current stage.

In the second part of the model, the c.ready(i) predicate describes whether an instruction
is ready to advance to the next stage in the next cycle: in the general case its processing
counter must be equal to 0 and it must be the oldest instruction in the stage. Depending on
the stage the instruction currently resides in, additional constraints may apply. For example,
in the issue stage, an instruction is not ready if it has a pending data dependency. Potential
branch misprediction is accounted for by the pwrong(i) predicate. We refer the interested
reader to the original MINOTAuR paper for a comprehensive description of the model.
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S := {pre, pc, if, id, is, alu, mul1, mul2, div, lsu, lu, su, csr, co, st, post}
pre ⊏S pc ⊏S if ⊏S id ⊏S is ⊏S {alu, mul1, lsu, csr, div} ⊏S {mul2, lu, su} ⊏S co ⊏S st ⊏S post

cycle(c)(i) :=

{
(c.nstg(i), c.nlat(i)) : c.ready(i) ∧ c.free(c.nstg(i))
(c.stg(i), c.ncnt(i)) : otherwise

c.nlat(i) :=


memlatf (i) : c.nstg(i) = if ∧ ¬ichit(i)
memlatd(i) : (c.nstg(i) = lu ∧ ¬dchit(i))

∨c.nstg(i) = st
exlat(i) : c.nstg(i) = div
0 : otherwise

c.ncnt(i) :=

{
c.cnt(i)− 1 : c.cnt(i) > 0
0 : otherwise

c.nstg ′(i) :=



pc : c.stg(i) = pre
if : c.stg(i) = pc
id : c.stg(i) = if
is : c.stg(i) = id
lsu : c.stg(i) = is ∧ opc(i) ∈ {load, store, atomic}
lu : c.stg(i) = lsu ∧ opc(i) = load
su : c.stg(i) = lsu ∧ opc(i) ∈ {store, atomic}
mul1 : c.stg(i) = is ∧ opc(i) = mul
mul2 : c.stg(i) = mul1
div : c.stg(i) = is ∧ opc(i) = div
csr : c.stg(i) = is ∧ opc(i) = csr
alu : c.stg(i) = is ∧ opc(i) /∈ {load, store, atomic, mul, div, csr}
co : c.stg(i) ∈ {alu, mul2, div, csr, lu, su}
st : c.stg(i) = co ∧ opc(i) ∈ {store, atomic}
post : (c.stg(i) = co ∧ opc(i) /∈ {store, atomic}) ∨ (c.stg(i) = st)

lstg(op) :=



lu : op = load
st : op = store
st : op = atomic
is : op = mul
div : op = div
co : op = csr
alu : op = branch

c.nstg(i) :=

{
post : c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i)
c.nstg ′(i) : otherwise

c.isnext(s, i) := c.stg(i) = s ∧ ∀j < i . c.stg(j) ⊐S s
c.pending(i, op) := ∃j < i . opc(j) = op ∧ c(j) ⊏P (lstg(op), 0)

c.ready(i) := (c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i))

∨ (c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))

∧ (c.stg(i) = pc ⇒ (ichit(i)

∨ (¬c.pending(i, branch) ∧ ¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧ (c.stg(i) = is ⇒ (opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, csr))
∧ (opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div))
∧ (∀j < i . dep(i, j) ⇒ c.stg(j) ⊒S co))

∧ (c.stg(i) = lsu ⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))

∨ (opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

c.free(s) := s ∈ {alu, mul1, csr, mul2, co, post}
∨ (s ∈ {if, is, lsu, su} ∧ c.slot(s))

∨ (s ∈ {pc, id, div, lu, st} ∧ ((¬∃j . c.stg(j) = s) ∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))))

∨ (∃i . c.stg(i) = s ∧ pwrong(i) ∧ ¬c.pending(i, branch))
c.slot(if) := ((#{j | c.stg(j) = if} < fq size) ∨ c.free(id)) ∧ ∀j . c.stg(j) = if ⇒ c.cnt(j) = 0
c.slot(is) := #{j | is ⊑S c.stg(j) ⊑S co} < iq size ∨ (∃j′ . c.isnext(co, j′) ∧ c.ready(j′) ∧ (opc(j′) ∈ {store, atomic} ⇒ c.free(st)))
c.slot(su) := #{j | opc(j) = store ∧ lsu ⊏S c.stg(j) ⊏S post} < sq size ∨ ∃j′ . c(j′) = (st, 0)
c.slot(lsu) := #{j | c.stg(j) = lsu} < mq size

∨ (∃j′ . c.isnext(lsu, j′) ∧ ((opc(j′) = load ∧ c.free(lu)) ∨ (opc(j′) ∈ {store, atomic} ∧ c.free(su))))

Figure 1 Model of the MINOTAuR core, described in predicate logic, taken from [8].

In the third part, the c.free(s) predicate describes whether a pipeline stage will be free in
the next cycle, i.e. whether it can accept a new instruction. As the MINOTAuR core features
instructions queues, notably in its issue stage, we also have a feature to count instructions in
a stage, and a predicate, c.slot(s), that indicates whether there will be a slot available for an
instruction in the next cycle.

Some predicates (e.g. ichit(i), dep(i, j), pwrong(i)) and latencies (e.g. memlatd(i))
remain opaque: in order to simplify the model, how their value is obtained is not expressed
in the model. For example, ichit(i) is true iff the fetch of instruction i leads to an instruction
cache hit. Computing this value for a given instruction sequence would require adding the
description of the cache to the model. Instead, the proofs cover both possibilities for the
value of ichit(i), and the actual model of the cache is not required.
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3 Validation workflow

Our validation workflow relies on a simulator of the formal processor model: it is a C++
implementation of the cycle(c)(i) function from this formal model, and thus it only focuses
on the timing aspects of the execution.

Figure 2 (upper part) displays the validation workflow. We use a bit-accurate cycle-
accurate simulator generated from the Verilog description of the processor and simulate
the execution of a benchmark application. For this simulation, we extract the information
corresponding to the opaque predicates in our model, allowing us to replay the execution in
our simulator. We obtain the following set of traces: reads to the insrtuction cache, reads
to the data cache, writes to the data cache, divisions, and finally, committed instructions.
These traces are obtained by adding probes to the SystemVerilog design of the core1.

The execution is then replayed in the model simulator, that extracts the predicate and
latency values from the traces, and generates itself a trace of committed instructions.

Finally, we compare the commit traces from the SystemVerilog simulator and from the
model simulator: if they are identical, that means that the model accurately describes the
timing behavior of the core for this benchmark. Otherwise, it indicates that there is an error
in the model. In that case, the trace can help in narrowing down the search of the error.

bit-accurate
cycle-accurate

Verilog simulator
commit

reads to Dcache
writes to Dcache
reads to Icache

divisions
branch mispred.

model
simulator

commit

generator of
model

simulators

description of
the formal model

Verilog description
of the processor

identical?

Validation workflow

Simulator generation (Section 5)

Figure 2 Overview of our validation workflow.

Traces formats

The traces are stored in a simple, plain-text format, with one event (i.e. one cache access, or
one division, or one branch misprediction) per line.

1 For cores whose SystemVerilog design is unavailable, we are currently looking at the feasibility of using
a hardware probe e.g. Lauterbach debugging probe.
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Instruction cache reads trace. An event consists of 5 fields: whether the request is valid or
not (i.e. it has not been cancelled by the frontend due to a branch misprediction), start cycle,
read address, end cycle, and instruction binary code. The address of the instruction allows
its identification all along its progression in the pipeline, and the binary code is necessary
to send the instruction to the correct functional unit during the simulation, as well as to
track instruction dependencies (predicate dep(i, j)). The start and end cycles determine the
ichit(i) predicate and the memlatf (i) latency. Listing 1 shows 3 lines of an instruction cache
trace.

Data cache reads trace. An event contains 3 fields: validity of the request, start and end
cycles. This is enough to determine the dchit(i) predicate and the memlatd(i) latency. Other
information, such as the address of the access, are not needed for the model simulation.

Data cache writes and divisions traces. They both have 2 fields per line: start and end
cycle of the operation. They determine the dchit(i) predicate and memlatd(i) and exlatd(i)
latencies.

Branch misprediction trace. An event only contains the cycle at which a branch is de-
termined to be mispredicted by the ALU. This is used to set pwrong(i) for all the younger
instructions residing in the pipeline at the time the branch reaches the ALU.

Commit trace. In MINOTAuR, a trace of committed instructions is written by default
when simulating. It contains a lot of information, such as the commit time and cycle, the
instruction address, the opcode and the decoded instruction, or register values. For our
purpose, we only need to extract the commit cycle and the address of the instruction. Hence,
the commit traces written by our model simulator contain only these two fields.

Listing 1 Extract of the instruction cache reads trace for the CoreMark benchmark. From left to
right: validity, start cycle, read address, end cycle, instruction binary code.

1 1 282 00000810 286 7 b241073
2 1 287 00000814 291 7 b351073
3 1 292 00000818 296 00000517

4 Evaluation

In this section, we discuss the results obtained by applying our methodology to the processor,
i.e., what issues we found in the model, and the limitations of the methodology.

We began by implementing new tracers to the description of the core (in addition to the
existing commit tracer) in order to generate all the aforementioned traces. We then ran
the CoreMark benchmark and the full TACLe benchmark suite [7] under QuestaSim2, a
cycle-accurate SystemVerilog simulator, to obtain the traces required by the model simulator.

2 https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
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4.1 Issues found in MINOTAuR’s model and solutions
During our experiments, we found issues in the formal model of MINOTAuR, sometimes
related to confusion or misunderstanding of the behavior or structure of the pipeline, and
sometimes due to a misinterpretation of the formal logic used in the model. We present 3 of
them in the remainder of this section.

Issue 1. One of the most important issues we found using our validation workflow, was
related to data dependencies. In function c.ready(j), our model states that an instruction is
ready (i.e. can progress) when it has no pending data dependency, or when the instruction it
depends on is in or after the commit stage. While this definition is sufficient for read-after-
write (RaW) dependencies, it does not cover most write-after-write (WaW) dependencies.
Actually, most RaW dependencies can be resolved as soon as the oldest instruction has
completed its execution and reached stage co: the result will be forwarded to the newer
instruction. One exception to this principle are CSR3 read instructions: the read is done only
when the instruction is committed. In the case of WaW dependencies, the newer instruction
has to wait for the oldest instruction to be committed before it can be issued. To solve this,
we replaced the dep() predicate with two predicates, one for WaW hazards, and another for
RaW hazards (resp. depWaW () and depRaW ()). The dependency check becomes:

∀j < i . (depWaW (i, j) ⇒ c.stg(j) ⊐S co)
∧ (depRaW (i, j) ⇒ ((opc(j) = csr ∧ c.stg(j) ⊐S co) ∨ (c.stg(j) ⊒S co)))

Issue 2. We also found an inconsistency related to the data cache in the LU stage. The
Verilog simulator shows that, whenever a cache miss occurs in the LU, no instruction is
processed in the cycle that follows the end of the access. This was not represented in the
model, and to account for this, we changed the definition of the c.free() function. The
relevant part of the model is the following:

s ∈ {pc, id, div, lu, st} ∧ ((¬∃j . c.stg(j) = s)
∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j))))

which states that the LU is free if there is no instruction in the stage, or if the instruction
in the LU exits the stage in the next cycle. Instead, the stage can be special cased to the
following:

s = lu ∧ ((¬∃j . c.stg(j) = lu)
∨ (∃j . c.stg(j) = lu ∧ c.ready(j) ∧ c.free(c.nstg(j)) ∧ dchit(j)))

The relevant change is highlighted. It means that, if there is an instruction in the LU, the
stage will be free if the current instruction is a hit, but not if it is a miss.

Issue 3. Another inconsistency concerns the behavior of instructions in the issue stage: the
model specifies that all instructions, except loads, stores and atomics, will not be issued in
the presence of an uncommitted CSR instruction. In reality, this does not happen (this error
was due to misunderstanding when reading the SystemVerilog code), and the part of the
expression that is highlighted below can be removed:

c.stg(i) = is ⇒ (opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, csr))
∧ (opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div)) ∧ (∀j < i . dep(i, j))

3 Control and Status Register
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Validation summary. After correcting the model, we were able to run all our benchmarks
and found no difference between the commit trace generated by the Verilog simulator and
the one obtained by our model simulator.

4.2 Limitations of our methodology
Our validation workflow is based on testing and thus does not provide any guarantee that
the chosen benchmarks cover all the possible errors in the model. However, it helped us find
and correct a few errors in our model, and thus gain confidence in the revised model.

Additionally, we emphasize that applying our validation workflow with the same bench-
marks as those used for performance evaluation purposes guarantees (once all the discrepancies
have been fixed) that the performance results have been obtained with a model that reflects
the processor’s behavior accurately.

5 Automatic generation of timing simulators

One major shortcoming of our method is having to write a simulator that corresponds to
the model of the core: this task is error-prone and must be done each time a new core is
considered. To ease up the transition from the formal model described in predicate logic, like
the one in Figure 1, to an efficient C++ simulator, we designed a domain-specific description
language that stays as close as possible to the predicate logic formulas of the model, as well
as a compiler written in OCaml. Listing 6 gives the formal definition of our language in
EBNF.

It is a functional language similar to both the logic language used in the SIC [11] and
MINOTAuR [8] models, and, to some extent, to OCaml. It features some basic data types
(integers, booleans, lists, and tuples), with the possibility to define custom enumerations, and
optionally, to define an order on the elements of the enumeration. Basic constructs such as
simple pattern matching are also available. The types of variables and functions are inferred
by the compiler, using a Hindley-Milner type system.

In the remainder of this section, we present key features of our language, using examples
taken from the MINOTAuR model on Figure 1, and later explain the compilation process in
more details.

5.1 Description of the language
Our language allows the definition of custom enumerations with the set or type keywords,
as well as partial orders on their elements. This can be used to reproduce the definition of
the pipeline and instruction kinds in the beginning in our model:

Listing 2 Declaration of the stages and opcodes of the MINOTAuR core.
1 set stage = | Pre | PC | IF | ID | IS | ALU | MUL1 | MUL2
2 | DIV | LSU | LU | SU | CSR | CO | ST | Post
3
4 order stage as s = Pre < PC < IF < ID < IS < {ALU, MUL1, LSU, CSR, DIV} <
5 {MUL2, LU, SU} < CO < ST < Post
6
7 type opcode = | Nop | Alu | Mul | Div | Load | Store
8 | Atomic | Branch | Csr | Fence | FenceI | Unknown

The order keyword marks the beginning of the declaration, and the as keyword is used
to define a suffix for the <, <=, >, and >= operators. Here, to compare two stages, one will
have to use the <s, <=s, >s, and >=s operators, respectively. Elements between curly braces
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are given the same level: IS <s ALU and IS <s LSU are true, but ALU <s LSU and LSU <s
ALU are false, for instance. But, even though ALU and LSU are different, ALU <=s LSU and
LSU <=s ALU are true.

One can declare variables and functions with the let keyword in our language. They
can be recursive and co-recursive, as this is required to implement the c.free(s) and c.slot(s)
predicates. The user must take care of providing a base case for them. In our case, a
recursive call is made to c.free(c.nstg(j)), which will eventually be equal to c.free(post). As
an example, here is our implementation of the c.ready(i) function:

Listing 3 Implementation of the c.ready(i) function in our language.
1 let ready(opc, limit c, i, pwrong) =
2 (stg(c, i) <> Pre /\ !pending(opc, c, i, Branch) /\ pwrong)
3 \/ (cnt(c, i) = 0 /\ isnext(c, stg(c, i), i) /\
4 (stg(c, i) = IS ->
5 (opc[i] in {Mul, Div} -> !pending(opc, c, i, Div))
6 /\ (forall j in c, (j < i -> !dep(opc, c, i, j))))
7 /\ (stg(c, i) = LSU ->
8 (opc[i] in {Store, Atomic} /\ !pending(opc, c, i, Atomic))
9 \/ (opc[i] = Load /\ !pending(opc, c, i, Atomic))))

The syntax of the language is very similar to the predicates logic used by the model of
MINOTAuR. This example demonstrates multiple features in our language: the multiple
comparators and logic connectors, and lists.

Lists are essential in our language to represent traces. Here, opc and c are lists, used
to represent the opcode and the state of an instruction, respectively. To access a specific
element, one can use the [] operator, as seen on Line 8. It is not advised to use it with a
constant or an ad-hoc variable, as it may be out-of-bounds. Instead, one can use the forall,
exists, and #{} constructs to scan lists. The indices they generate are guaranteed to be
valid. Table 1 lists the builtin functions working on lists, as well as their logic equivalent.

Lists exists in two kinds: “normal” lists, and “limited” lists. This distinction exists to
allow the code generator to specify bounds for the forall, exists, and count functions.
This allows to load only parts of the traces in memory if the generator elects to do so. The
exact bounds are hidden and cannot be manipulated in our language. The only way to obtain
a “limited” list is by adding an annotation on a parameter, like on c in the example above.

The bounds of a “limited” list cannot be manipulated directly from our language.
It is possible to downcast a “limited” list to a regular list, in which case the bounds will

be dropped. It is also possible to upcast a regular list to a “limited” list. In this case, the
bounds will cover the whole list.

Table 1 Builtin functions for lists.

Construct Logic equivalent

c[i], index(c, i) c[i]
forall i in c, (...) ∀i . ...

exists i in c, (...) ∃i . ...

#{j in c | ...} #{j|...}
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5.2 Compilation of the model
We developed a compiler for our language, which takes care of type checking and code
generation in C++. This compiler only generates code for the portions of the model that vary
with each processor (the ready, free, nstg, lstg and slot functions). The high-level functions
(cycle, nlat) are hard-coded in a template file that is used for all processors, as well as the
I/O functions that read the traces, decode the instructions (find their kind, latencies and
dependencies) and set the opaque predicate values.

In our language, all constructs are expressions, which is not the case of conditional blocks
and for loops in C++. Thus, boolean expressions, like in Listing 3, may be translated as
pure expressions or as a sequence of conditional blocks when loop constructs are required.
Loop constructs are generated when using the forall, exists, or #{} list builtins, as shown
on Listing 4.

Listing 4 Example of translation of the forall, exists, and #{} constructs.
1 // forall j in c, stg(c, j) = s -> j < i
2 bool tmp0 {true };
3 for ( unsigned int j {0}; j < c.size (); ++j)
4 tmp0 = tmp0 && (j < i || !( stg(c, j) == s));
5
6 // exists j in c, stg(c, j) = s -> j < i
7 bool tmp1 {false };
8 for ( unsigned int j {0}; j < c.size (); ++j)
9 tmp1 = tmp1 || (j < i || !( stg(c, j) == s));

10
11 // #{j in c | stg(c, j) = s -> j < i}
12 unsigned int tmp2 {0};
13 for ( unsigned int j {0}; j < c.size (); ++j) {
14 if (j < i || !( stg(c, j) == s))
15 ++ tmp2;
16 }

Notice that the j index has a value ranging from 0 to the size of the list minus 1. This
is the behavior for regular lists. For limited lists, the index would have a value within
the bounds. When a function takes a limited list as a parameter, the bounds are added
automatically by the compiler in the prototype and at each call site. The prototype of the
ready function is generated as shown on Listing 5. The compiler does not modify the bounds,
thus it is up to the interface between the generated code and the rest of the simulator to
handle them.

Listing 5 C++ prototype of the ready function.
1 bool ready( opcode opc , std :: vector <stage , unsigned int > c, unsigned int

↪→ c_start , unsigned int c_end , unsigned int i, bool pwrong );

As seen on Listing 5, lists are compiled to standard C++ vectors, which requires to
load the entire trace in memory. This works for the majority of programs of the TACLe
benchmark suite, but some, such as ammunition, were so big that their traces did not fit in
the memory of our test machine. To alleviate this problem, our simulator loads chunks of the
trace files as they are needed through a special vector type. To benefit from this mechanism,
the generated code has to be modified manually for now.

Sets (resp. orders), as shown in Listing 2, are compiled to enumerations (resp. operator
overload) in C++. When an order is defined for a set, a function converting each element to
an integer is generated. The lowest element (e.g. Pre) is assigned the value 0, with this value
growing for each level. The overloaded operators then convert each element to an integer,
and compare the results.
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6 Related Work

Various kinds of formal models of the timing behavior of processors have been proposed in
the literature. These models are designed to support the estimation of worst-case execution
times [12, 6, 2, 9] or the proof of properties, such as the absence of timing anomalies [11, 4, 1].
They describe how an instruction or a code sequence flows through the pipeline using so-called
execution graphs [12, 2], timed automata [6, 9], a transition system [4] or a set of logic
predicates [11]. These models are usually designed by hand, either from the processor user
manual or from its HDL description.

A few papers consider automatically deriving the processor’s model from HDL code [15, 3]
to alleviate the risk of errors in the model but they only provide preliminary solutions.

In [5], the authors model the functional and timing behavior of simple processor using
the L3 domain specific language, translate it in a HOL4 version and confront it to the
execution on the real processor of short code snippets. The processor we consider in this
paper implements complex mechanisms (e.g. speculative execution) that are not addressed
in their paper.

7 Conclusion and Future Work

We introduced a workflow to validate that a timing model of a processor corresponds to
the actual execution timing on the real processor. This workflow is based on a simulator
of the model that replays traces obtained by executing (or simulating) the execution of a
benchmark on the actual processor. Since the model focuses only on the timing aspects of
the core, so does our simulator. This allows the simulator to be very simple, compared to a
functional simulator. By comparing the original execution trace to the one obtained with
the model simulator, we can detect errors in the model and correct them. We applied this
methodology to the model of the open-source MINOTAuR core and were able to find and
correct several issues in the model, using the CoreMark and TACLe benches. In order to
facilitate the use of this workflow, we also presented a compiler that automatically generates
the model simulator from a language that is very close to the predicate language in which
the cores are described.

Being based on testing, our workflow does not provide a guarantee that all mistakes have
been corrected in a model, but it still allows to increase the confidence one can have in a
given model. As part of future work, we envision to extend our workflow to more complex
cores featuring out-of-order execution, and to use our description language to automatically
generate proofs of the absence of timing anomalies in Coq. We could thus generate proofs
and simulators from the exact same model.
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A Appendix

A.1 Formal definition of our language

Listing 6 Formal definition of our language in EBNF.
1 digit = "0" | ... | "9";
2 letter = "a" | ... | "z";
3 id = letter , {"a" | ... | "z" | "0" | ... | "9" | "_" | " -"};
4 number = ["-" | "+"] , {digit };
5 subset = "{" , {id , "|"} , id , "}";
6
7 description = { type_declaration | order_declaration |

↪→ function_declaration };
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8 type_declaration = (" type" | "set ") , id , "=" , ["|"] , {id , "|"} , id;
9 order_declaration = " order", id , "as", id , "=" , {(id , subset ), "<"}, (id ,

↪→ subset );
10
11 param = id | (" limit " id);
12 param_list = {param , ","}, param;
13 function_contents = id , ["(" , param_list , ")"], "=" , expression ;
14 function_declaration = "let", [" rec "], function_contents , {" and",

↪→ function_contents };
15
16 comparison = expression , ("/\" | "\/" | "->" | "=" | "<>" | ((" <" | " >") ,

↪→ ["="] , [id])), expression ;
17 inside = expression , [" not "], "in", subset ;
18 negation = ("!" | "not "), expression ;
19 forall = (" forall " | " exists ") , id , "in", expression , ",", "(" ,

↪→ expression , ")";
20 count = "#{" , id , "in", expression , "|" , expression , "}";
21 list_access = expression , "[", expression , "]";
22 tuple = "(", { expression , ","}, expression , ") ";
23 priority = "(", expression , ") ";
24 funcall = expression , "(" , [{[" limited "], expression , ","}, [" limited "],

↪→ expression ], ")";
25 immediate = id | "true" | "false" | number | tuple;
26 match = " match ", expression , "with", {"|" , immediate , "->", expression },

↪→ ["|" , "_", "->, expression ], "end ";
27 if = "if", expression , "then", expression , "else", expression ;
28 expression = function_declaration | comparison | inside | negation |

↪→ forall | count | list_access | priority | funcall | immediate |
↪→ match | if;
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Abstract
The demand of parallel execution in real-time embedded applications has motivated the integration
of GPUs as processing accelerators on SoCs (System-on-Chip) embedded architectures, often leading
to CPU-iGPU architectures. In the safety-critical domain, it is paramount to ensure that the
execution deadlines of critical tasks are not exceeded. To ease the analysis of this kind of tasks, we
can make their worst-case execution time more predictable. One way to achieve this is by mitigating
or controlling the memory interference generated by the concurrent execution of tasks through
the application of a series of techniques (e.g., cache partitioning, bank partitioning, cache locking,
bandwidth regulation). Originally, these were applied to CPUs, and more recently, to GPUs as well.
In this work, we focus on the hardware-based L2 cache locking on iGPUs as memory interference
mitigation mechanism. We are interested in evaluating its capacity for reducing the worst-case and
the average-case execution time in different scenarios. Our measurement-based analysis has been
carried out on the NVIDIA’s Jetson AGX Orin 64 GB MPSoC, making use of four representative
benchmarks (data resetting, 2D convolution, 3D convolution and matrix upsampling).
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1 Introduction

Since the last decade, we have been observing an increase in popularity of MPSoCs where
CPUs work together with integrated Graphic Processing Units (iGPUs). This is the solution
that manufacturers have devised to address the need for higher execution parallelism in
real-time embedded systems for autonomous machines. These MPSoCs might be used for
safety-critical real-time applications, meaning that the execution deadline of the tasks must
be satisfied to avoid fatal outcomes. Therefore, it is of extreme importance to perform
Worst-Case Execution Time (WCET) analysis of all tasks making up the overall application.
The memory interference among the tasks concurrently executing is one of the main reasons
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for missing deadlines. Traditionally, this type of interference is avoided or mitigated through
spatial-temporal isolation (e.g., bandwidth regulation) and memory partitioning techniques
(e.g., cache partitioning, cache locking, bank partitioning) [5].

In this work, we focus on the iGPU, more specifically, on its on-chip shared L2 cache
memory. This cache is shared across all the multiple Streaming Multiprocessors (SMs)
composing the GPU, and hence, being susceptible to data evictions. To avoid undesired data
removal, specially of the data we consider critical or persistent, we apply the cache locking
technique. Our objective is to assess the capacity of cache locking for: (1) mitigating the
inter-SM interference within one GPU application, (2) mitigating the inter-SM interference
produced by a variable number of non-critical GPU applications on one critical GPU
application and (3) mitigating the Low-Power Double Data Rate 5 (LPDDR5) memory
interference on one GPU application. To do so, we make use of realistic benchmarks (data
resetting, 2D matrix convolution, 3D matrix convolution and matrix upsampling), from which
we study their WCET and Average Case Execution Time (ACET). The measurement-based
analysis of the L2 cache locking technique is carried out on the Jetson AGX Orin 64 GB
[11], a heterogeneous MPSoC by NVIDIA which allows performing cache locking using
hardware-specific features.

2 Related Work

Memory interference has been a constant problem for the real-time community since the
introduction of the first multicore platforms. Since then, researchers have proposed a series
of techniques to deal with them [5]. Initially, these techniques were aimed to CPUs but
adapted variations have been also implemented on GPUs. To begin with, let us consider the
bandwidth regulators, which control the amount of requests that other cores can issue. Work
[1] presents a software mechanism that implements bandwidth regulators and GPU protection
for CPU-GPU architectures (see [16] for CPU approach). We can continue with the cache
and bank partitioning techniques which consist in dividing these two shared resources so
that each division is private to a processing core. The former technique offers protection
against forced cache evictions by concurrent tasks while the latter partially or totally removes
the costly intra-bank interference on the main memory. These two techniques are applied
on GPUs in work [4] (see [15] for CPU), which makes use of reverse-engineering and page
coloring for performing these partitions. Furthermore, work [4] makes use of SM partitioning,
i.e., compute kernels belonging to the same application execute on dedicated SMs. Task and
memory mapping can also be used for reducing the memory interference. For instance, on a
CPU and DSP context, work [7] performs task-core and core-bank mapping for minimizing
interference while considering other optimization objectives. Finally, we have the cache
locking technique which consists in keeping loaded data in the cache, preventing it from being
evicted. Caches can be fully locked (i.e., the whole cache is used for locked data) or partially
locked (i.e., a part of the cache is for locked data and another for cacheable data). The
locking can be made statically (i.e., locking is done at boot time and remains unchanged) or
dynamically (i.e., locking changes during run-time as function of the needs). Generally, static
locking offers more predictability while dynamic locking, which can also be predictable, is
more performing [6]. The cache locking technique has been commonly applied for increasing
the predictability, performance and energy efficiency of CPUs (see [8]). On GPUs, work
[13] uses a simulator to evaluate the impact of cache locking. A comparison between cache
partitioning and cache locking for CPU-GPU architectures is made by work [14], also via
simulations. In contrast to these previous works, ours aims to study this technique on a real
MPSoC incorporating an iGPU with L2 cache locking capabilities.
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Figure 1 Ampere architecture GPU in Jetson AGX Orin 64 GB.

3 Target Platform

3.1 Introduction
The heterogeneous multicore platform used in this work is the Jetson AGX Orin 64 GB by
NVIDIA [11]. It is made up of 12 Cortex-A78AE grouped in clusters of 4 and an Ampere
architecture iGPU. The iGPU is composed of 2048 cores distributed among 16 SMs. Each
SM has a dedicated L1 cache memory of 192 KB and, all of them, share an L2 cache memory
of 4 MB. Internally, the SMs are subdivided in four processing blocks, each of them with
their own registers (64 KB in total), an instruction cache and 32 cores (32 threads/clk).
As seen in Figure 1, a pair of SMs makes up a Texture Processing Cluster (TPC), and 4
TPCs compose a Graphic Processing Cluster (GPC). There are 2 GPCs in the Orin MPSoC.
Computing kernels are executed as grids of blocks of threads, each block being composed of
threads. On Jetson AGX Orin, a thread block supports up to 1024 threads. As long as there
are enough resources in a SM, multiple blocks of threads can be run by the same SM. We
point out two important constraints, the number of threads and blocks supported by a SM.
On this platform, the former is limited to 1536 and the latter to 16 [12].

3.2 L2 cache locking hardware mechanism
In NVIDIA GPUs with a compute capability of 8.0 or above, L2 cache locking can be
done through hardware [9, 10]. This is achieved by: (1) tagging a contiguous region of
global memory as persistent (NVIDIA term for lockable) and (2) setting the amount of
space from the L2 cache capacity to use for this persistent memory. If the amount of
data tagged as persistent is lower than the reserved persistent data space in the L2 cache
(i.e., perst_data_size < l2_perst_spc), then normal data (termed “streaming data” by
NVIDIA) can occupy this space. We must avoid having more persistent data than space
reserved for it in the L2 cache (i.e., perst_data_size > l2_perst_spc), as L2 cache lines
thrashing will take place [9], and therefore, no effective cache locking. To avoid this issue,
there are two possibilities. The first one consists in tuning the L2 cache hitRatio parameter,
which is used to determine the percentage of persistent data to be locked in the cache.
The second option is to limit the amount of persistent data to the L2 cache reserved space
(i.e., perst_data_size ≤ l2_perst_spc) even if this means that some persistent data is left
unlocked. We make use of the latter option as the first one implies an non deterministic factor
(i.e., the portion of memory to be locked in is unknown), and therefore, is not suitable for
predictability analysis. Another constraint to respect has to do with the maximum persistent
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(a) perst_data_size ≤ l2_perst_spc.

(b) perst_data_size > l2_perst_spc.

Figure 2 Mapping persistent data to L2 cache.

L2 cache data space that we are allowed to set (i.e., l2_perst_spc ≤ l2_max_perst_spc).
l2_max_perst_spc is 3 MB for the Orin MPSoC, meaning that there is at least a minimum
of 1 MB of cacheable space to be used for any kind of data. Our L2 cache locking space is
computed according to Equation 1, where perst_data_size is the size of persistent data to
lock and l2_perst_spc the amount of L2 cache space reserved for locking.

locked_data_size = min(perst_data_size, min(l2_perst_spc, l2_max_perst_spc)) (1)

Figure 2 shows two examples which depict how persistent and non-persistent (streaming)
data is placed on the L2 cache. In both cases (Figures 2a and 2b), we assume that the
reserved L2 cache space for locking (l2_perst_spc) is set to the maximum space allowed
(l2_perst_spc = l2_max_perst_spc = 3 MB). In Figure 2a, the streaming data in the
LPDDR is bigger than the one shown in the L2 cache. In this example, not all the
reserved lockable space is used as the persistent data (perst_data_size) fits inside the
cache with less space (perst_data_size < l2_perst_spc). Therefore, the locked data size is
perst_data_size. In contrast, Figure 2b supposes the case where the persistent data exceeds
the reserved lockable space (perst_data_size > l2_perst_spc). Note that the persistent
and streaming data in the LPDDR is bigger than the one shown in the L2 cache. In this
case, the locked data size is l2_perst_spc.

4 Evaluation

The L2 cache locking is evaluated in three scenarios described in Sections 4.1, 4.2 and 4.3.
The customized benchmarks used for the evaluation are based on the data resetting (Equation
2), 2D convolution (Equation 3), 3D convolution (Equation 4) and upsampling operations
(Equation 5):

B[j] = A[j % m] (2)

where A = ∀(ai) ∈ Rm and B = ∀(bj) ∈ Rp. Vector A is the data to protect with the cache
locking mechanism.

C[i, j](k) = Σp
u=0Σq

v=0A
[
i + u − ⌊p

2⌋, ⌊j + v − ⌊p

2⌋
]

· B[u, v](k) (3)
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with A = ∀(aij) ∈ Rm×n, B(k) = ∀(bij) ∈ Rp×q and C(k) = ∀(cij) ∈ Rm×n. The superindex k
is the matrices identification for each convolution compute kernel launch (k ∈ {0, 1, ..., K −1}).
We consider matrix A as persistent data.

C[i, j, k](k) = Σp
u=0Σq

v=0Σl
w=0A

[
i + u − ⌊p

2⌋, ⌊j + v − ⌊p

2⌋, w
]

· B[u, v, w](k) (4)

with A = ∀(aijk) ∈ Rm×n×l, B = ∀(bijk) ∈ Rp×q×l and C = ∀(cijk) ∈ Rm×n×l. The
superindex k is the matrices identification for each convolution compute kernel launch
(k ∈ {0, 1, ..., K − 1}). We consider tensor A as persistent data.

B = (A)↑L (5)

where A = ∀(aij) ∈ Rm×n and B = ∀(bij) ∈ Rp×q, L is the upsampling value and A is the
data to lock in the L2 cache.

The execution time of these benchmarks is computed through CUDA events recording,
process that consists is retrieving a timestamp of the start and stop events before and
after the execution of the benchmark respectively. For each observed WCET and ACET
result provided in Sections 4.1, 4.2 and 4.3, 105 measurements were considered. Initial
measurements affected by the load of the CUDA driver are considered statistical outliers,
and hence, discarded.

4.1 Scenario 1: SM interference of a single compute kernel
The objective of this scenario is to test the capabilities of the L2 cache locking for mitigating
the inter-SM interference when executing a single application, i.e., how the application
interferes with itself by making use of all the available SMs. In this scenario, the graphs with
the results show the response of a benchmark using the measured WCET and ACET metrics
when fixing the lockable space (l2_perst_spc) to 0 MB (no locking), 1 MB, 2 MB and 3 MB
(l2_max_pesrt_spc) represented using blue, orange, grey and amber colors respectively.
The X axis indicates the amount of persistent and total data (persistent plus streaming)
resulting from varying the size of the data set. The Y axis represents the metric value under
analysis in milliseconds. The benchmarks used for testing are the ones described in Equations
2, 3, and 5. The results are illustrated in Figures 3, 4 and 5 respectively.

The data resetting benchmark yields great results. On average, the WCET is reduced
by 14.64% with a maximum reduction of 23% (Figure 3a) and the ACET is reduced by
15.45% with a maximum reduction of 24.54% (Figure 3b) for a 3 MB cache lock. For a single
application inter-SM interference, the previous gains can be considered high. This is due to
the high reuse of specific data (persistent data). By locking this data, the number of loads
to the LPDDR are reduced, mainly performing stores.

More typical operations are offered by the 2D convolution and upsampling benchmarks.
On average, the 2D convolution has its WCET reduced a 5.55% with a maximum reduction
of 10.24% (Figure 4a) and the ACET is reduced a 6.7% with a maximum reduction of 24.54%
(Figure 4b) for a 3 MB cache lock. The upsampling sees an average WCET reduction of
15.67% with a maximum reduction of 29.15% (Figure 5a) and an average ACET reduction
of 13.66% with a maximum reduction of 28.35% (Figure 5b) for a 3 MB cache lock.

Overall, we can see that the L2 cache locking manages to reduce the WCET and ACET.
In this sense, the 2D convolution is the one benefiting the least and the data reset and
upsampling the most. For the three benchmarks, note that significant execution time drops
are achieved even when the persistent data of the benchmark exceeds the L2 lockable space.
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(a) Measured worst-case execution time.

(b) Average-case execution time.

Figure 3 Data reset benchmark behavior.

(a) Measured worst-case execution time.

(b) Average-case execution time.

Figure 4 2D convolution benchmark behavior.
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(a) Measured worst-case execution time.

(b) Average-case execution time.

Figure 5 Matrix upsampling benchmark behavior.

4.2 Scenario 2: SM interference from non-critical compute kernels

In this scenario, we seek to analyze the capacity of the L2 cache locking for isolating the SMs
used by a critical application from SM interference produced by non-critical applications.
To perform this study, we make use of SM partitioning in order to place together on a SM
the thread blocks belonging to the same application. The partitioning is done by exploiting
the threads per SM constraint (alternatively we can use the blocks per SM constraint). The
interfering non-critical applications are executed as persistent kernels, i.e., the compute
kernel re-execute the non-critical applications without launching from host again. The data
resetting benchmark (Equation 2) plays the role of the interfering applications.

Figures 6a, 6b,6c show the WCET and ACET gain due to the L2 cache locking (Y axis)
as function of the interfering number of SMs (X axis). The benchmarks used for testing are
those described in Equations 2, 3, and 4.

The measures taken from the data resetting benchmark (Figure 6a) indicate a clear
benefit for the WCET and ACET metrics. The performance gain is more notable as the
number of interfering SMs increases. For example, when half of the SMs are used by the
critical application, the WCET and ACET are 2.26 and 2.29 times less respectively with
respect to the L2 cache non-locking approach. As commented in Section 4.1, these gains
are not the most typical ones as this benchmark specially makes use of persistent data
whose protection from being evicted yields remarkable results. In this sense, the 2D and
3D convolution benchmarks (Figures 6b,6c) offer more common responses. The ACET of
the former benchmark benefits more than its WCET, having time reductions of 13.24% and
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9.38% respectively when using 8 critical SMs. The WCET and ACET of latter benchmark
are similar, progressively benefiting of the L2 cache lock as the number of interfering SMs
increases (no significant gains with low number of non-critical SMs). With 8 critical SMs,
the WCET and ACET have a 10.14% and 6.8% boost respectively.

In general, the L2 cache locking serves well for protecting the locked persistent data from
other concurrently running applications, leading to performance enhancements of the former.
Its effectiveness mainly depends on the design of the applications (critical and non-critical)
and the resources used for them (e.g., number of SMs, blocks, threads) but also on the L1
and L2 cache capacity of the iGPU.

(a) Data resetting. Configuration: 3 MB of persistent data and 103 MB of total data.

(b) 2D convolution. Configuration: 2 MB of persistent data and 4 MB of total data.

(c) 3D convolution. Configuration: 4 MB of persistent data and 8.04 MB of total data.

Figure 6 Performance gain under non-critical SM interference led by 3 MB L2 cache locking.
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4.3 Scenario 3: LPDDR5 interference from ARM cores

The purpose of the third scenario is to analyze the capacity of the L2 cache locking for
mitigating the overheads produced by the contention of the LPDDR memory when stressed
by 11 ARM cores. These execute a benchmark based on stores and loads from different array
strides, resulting in high level of DDR memory interference. By locking the persistent data,
the number of accesses to the LPDDR memory from the iGPU would be reduced, and hence,
suffer from less interference. We make use of two locking sizes (none or 3 MB) and different
benchmark memory configurations. The benchmarks used are the data resetting (Equation
2), the 2D convolution (Equation 3) and the upsampling (Equation 5). The WCET and
ACET response to the L2 cache locking of the two first benchmarks can be seen in Figures
7a and 7b and Figures 8a and 8b respectively.

The data resetting benchmark results show a WCET and ACET improvement when
applying the L2 cache lock. Nevertheless, by comparing these results with the homologous
of Scenario 1 (Figure 3), we can deduce that the improvement comes from the inter-SM
interference reduction rather than from avoiding the LPDDR5 interference as it would be
expected. The LPDDR5 memory interference represents, on average, 25.07% and 20.21%
of the WCET and ACET respectively. In contrast to the previous benchmark, the 2D
convolution benefits from the mitigation of the LPDDR5 interference when applying the
L2 cache locking. On average, 60.49% and 36.36% of the WCET and ACET reduction
comes from this interference mitigation. On average, the LPDDR5 memory interference is
responsible of 26.33% and 18.98% of the WCET and ACET respectively. In the same line,
we have observed that for the upsampling benchmark, 65% and 63.16% of the WCET and
ACET reduction are due to LPDDR memory interference mitigation.

All in all, we have seen that the L2 cache locking is able to reduce the main memory
interference. However, as the data resetting benchmark has shown us, this is not always the
case, reducing instead the inter-SM interference as in Scenario 1 (Section 4.1).

5 Conclusions and Future work

The effectiveness of the L2 cache locking depends on the application to execute, the GPU
resources used of it, the amount of persistent and total data used by the application and
the GPU L1 and L2 cache capacity. For the used tests and scenarios, we have observed a
significant WCET and ACET reduction with many of the configurations we have used. The
maximum WCET mitigation of inter-SM interference with one application (Section 4.1) lies
between 10.24% and 28.35% depending on the test. For the inter-SM interference with 8
non-critical applications running concurrently (Section 4.2), we observe a maximum WCET
reduction that ranges from 9.38% to 55.69%. In the case of the LPDDR interference scenario
(Section 4.3), we have have seen maximum performance amelioration between 16.6% and
19.17%.

The benchmarks used in this work are made of a single compute kernel. Therefore,
as future work, we would like to extend this study by testing the L2 cache locking for
applications composed of chains of compute kernels like in neural network applications (e.g.,
Resnet [3], Segnet [2]). Besides, there is an aspect that should be studied regarding the
L2 cache mechanism. According to NVIDIA, locked data on the L2 cache is automatically
unlocked if not used [10]. The conditions under which this reset occurs should be analyzed.
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(a) Measured worst-case execution time.

(b) Average-case execution time.

Figure 7 Data resetting behavior under LPDDR5 interference.

(a) Measured worst-case execution time.

(b) Average-case execution time.

Figure 8 2D convolution behavior under LPDDR5 interference.
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Abstract
Hard real time-systems are often small devices operating on batteries that must react within a
given deadline, so they must satisfy their timing, code size, and energy consumption requirements.
Since these three objectives contradict each other, compilers for real-time systems go towards
multiobjective optimizations which result in sets of trade-off solutions. A system designer can
use the solution sets to choose the most suitable system configuration. Evolutionary algorithms
can find trade-off solutions but the solution set might be large which complicates the task of the
system designer. We propose to divide the solution set into clusters, so the system designer chooses
the most suitable cluster and examines a smaller subset in detail. In contrast to other clustering
techniques, our method guarantees that the sizes of all clusters are less than a predefined limit. Our
method clusters a set by using any existing clustering method, divides clusters with sizes exceeding
the predefined size into smaller clusters, and reduces the number of clusters by merging small
clusters. The method guarantees that the final clusters satisfy the size constraint. We demonstrate
our approach by considering a well-known compiler-based optimization called function inlining. It
substitutes function calls by the function bodies which decreases the execution time and energy
consumption of a program but increases its code size.
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1 Introduction

Hard real-time systems are computing systems that must react before a given deadline to
avoid catastrophic consequences. The Worst-Case Execution Time (WCET) of a program is
its worst possible execution time independent of input data. By minimizing WCETs, we can
guarantee that hard real-time systems satisfy their timing constraints. Since many embedded
systems have small memories and operate on batteries, code size and energy consumption
should also be minimized.

Modern compilers offer optimizations [20] that automatically improve code quality by
decreasing code size, execution time, or energy consumption. But these three objectives
contradict each other, i.e. when a compiler decreases one of them, it usually increases the
others. An optimization problem with conflicting objectives is called multiobjective.

To choose the most desirable trade-off between the objectives, the preferences of a system
designer must be incorporated into the solution process. If the designer knows the preferences
before the solution process, three main approaches exist [5]: (1) all but one of the objectives
are placed into constraints; (2) all objectives are combined into a single objective; (3) a
decision maker conducts the solution process in direction of the desired solution.
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If the designer wants to know all possible trade-offs before choosing the best one, a Pareto
set is generated by, e.g. using an evolutionary algorithm [6]. A Pareto set consists of trade-off
solutions for which improvement in one objective worsens at least one of the other objectives.

“The magical number seven, plus or minus two” effect [19] says that humans can handle
only a limited amount of information simultaneously, so the system designer cannot examine
a Pareto set that consists of dozens of solutions. To improve the decision-making process,
two main approaches exist:
1. select a small number of solutions that represent the entire Pareto set [25, 14, 11];
2. divide the Pareto set into clusters of small sizes [3].
In this paper, we focus on the second approach: we cluster a solution set of a multiobjective
compiler-based optimization into subsets not larger than a given size.

Many existing clustering methods generate a specified number of clusters ignoring the
size of each cluster. Due to “the magical number seven, plus or minus two” effect, we want
to guarantee that the sizes of clusters are less than a predefined size to simplify the task of
the system designer. We propose the following procedure:
1. we cluster a solution set by using an existing clustering method,
2. if the size of a cluster exceeds the predefined size, we divide the cluster into smaller

clusters such that the sizes of the new clusters satisfy the size constraint,
3. we reduce the number of clusters by merging small clusters such that new clusters satisfy

the size constraint.
We demonstrate the applicability of the proposed clustering method on a well-known compiler-
based optimization called function inlining. This optimization substitutes a function call by
the body of the callee. It potentially decreases WCET and energy consumption but increases
code size, so no single optimal solution exists that minimizes the objectives simultaneously
and the problem becomes multiobjective [21].

We organized the paper as follows: Section 2 presents related work, Section 3 describes
the concepts of multiobjective optimization problems and introduces the proposed cluster-
ing method, Section 4 evaluates the clustering method by applying it to compiler-based
optimization called function inlining, and Section 5 gives a conclusion.

2 Related Work

Compiler-based optimizations rarely employ multiobjective methods. Lokuciejewski et al. [16]
considered bi-objective problems with WCET, average-case performance, and code size as
objectives when searching for optimal compiler optimization sequences. Jadhav and Falk [12]
presented a bi-objective static SPM allocation with WCET and energy consumption as
objectives. Muts [21] studied a multiobjective function inlining with three objectives: WCET,
energy consumption, and code size. Section 4 describes the multiobjective function inlining
problem, since we use it to demonstrate the applicability of the clustering method proposed
in this paper.

The Pareto front is a set in the objective space that represents the objectives of a Pareto
set. To the best of our knowledge, clustering has been never integrated into compiler-
based optimizations but it has been used to reduce Pareto fronts of other multiobjective
optimizations.

Mattson, Mullur, and Messac [18] proposed a method to reduce a Pareto front such that
the reduced set represents its trade-off properties. A designer controls the set size and the
degree of practically insignificant trade-offs, which defines how far two solutions should be
from each other to keep both of them in the reduced set. The authors used the approach
to reduce Pareto fronts of bi- and tri-objective mathematical problems and a physical truss
design problem.
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Catania et al. [4] aimed to reduce a Pareto front that represents the performance, power,
and area of an Application Specific Instruction-set Processor (ASIP) when configuring it, e.g.
by setting the size of a cache. The authors used fuzzy c-means to partition the Pareto front
and kept one solution from each cluster in the reduced set. They used Xie-Beni index [29] to
identify the number of clusters.

Ishibuchi, Pang, and Shang [11] used an expected loss function to select a representative
subset of the Pareto front. The expected loss function measures the loss when one solution
is chosen instead of another, so the final subset minimizes the expected loss. The authors
compared the approach to hypervolume-based subset selection methods [14] by considering
mathematical test problems.

Kong et al. [13] proposed a clustering-based decision-making method for the multiobjective
reservoir operation problem. The authors clustered a Pareto set and its Pareto front in the
decision and objective spaces, respectively, to identify solutions in high-density areas of the
decision and objective spaces. They selected a compromise solution by using both clustering
results.

Li, Wu, and Yang [15] used TOPSIS [30] – the technique for order performance by
similarity to an ideal solution – to select solutions from a Pareto front when solving a
multiobjective conceptual design problem with product assembly, manufacturing, and cost
as objectives. For the TOPSIS method, a designer provides a decision matrix that contains
scores of the objectives for each solution of the Pareto front. TOPSIS ranks and selects
solutions based on the distances to the positive- and negative-ideal solutions. The authors
demonstrated the approach by considering the conceptual design of a centrifugal compressor.

Smedberg and Bandaru [26] developed an interactive decision support system that allows
decision makers to visualize Pareto fronts and to study their impact in the decision space.
To visualize two-dimensional projections of solutions from high-dimensional objective spaces,
the authors implemented radial coordinate visualization, t-distributed stochastic neighbour
embedding, uniform manifold approximation and projection, scatter plots, and parallel
coordinate plots. To select solutions from a Pareto front, the authors implemented reference
point-, lasso- and slider-based selections. To extract knowledge about the decision vectors of
the selected solutions, the authors implemented two data mining techniques: Flexible Pattern
Mining [2] and Simulation-Based Innovization [9] which generate decision rules. To visualize
the extracted knowledge, the authors implemented a graph-based technique, where nodes
represent decision rules and edges connect the rules such that the combined rule meets the
significance thresholds set by a user. They used the system to study benchmark optimization
problems with up to 10 objectives and real-world problems with up to six objectives.

The approaches described above extract a subset of a Pareto front that represents the
entire Pareto front, and a system designer chooses the final solution from the extracted set.
Such approaches might discard solutions that suit most of the system designer’s requirements.
Our method divides a Pareto front into clusters without discarding any solutions, and the
system designer selects first a cluster and then the most suitable solution from the cluster.

Bejarano, Espitia, and Montenegro [3] studied k-means and c-means fuzzy algorithms in
terms of clustering Pareto fronts obtained by solving eight artificial multiobjective problems.
The authors clustered the Pareto fronts into 2–6 clusters. Both clustering algorithms produced
similar clusters for continuous Pareto fronts but complementary clusters for discontinuous
fronts. K-Means was slower than fuzzy c-means on the considered Pareto fronts. In contrast
to our approach, this method ignores the sizes of clusters.

WCET 2023
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3 Clustering Pareto Front

Many real-world optimization problems deal with conflicting objectives, i.e. when we improve
one objective, we degrade the others. Optimization problems with conflicting objectives are
called multiobjective. A general multiobjective minimization problem without constraints is
formulated as follows:

minimize f(x) = (f1(x), f2(x), . . . , fm(x)) , (1)

where m ∈ N and fi : X → R with X ⊂ Rd and i = 1, 2, . . . , m.
For a minimization problem with m objectives, a decision vector x1 dominates another

vector x2 or in symbols x1 ≺ x2, if fi(x1) ≤ fi(x2) for all i ∈ {1, 2, . . . , m} and there
exists j ∈ {1, 2, . . . , m} such that fj(x1) < fj(x2). A solution x ∈ X is called Pareto
optimal, if it is not dominated by any other solution. Any multiobjective optimization
problem results in a solution set P called Pareto set which consists of trade-off solutions:
P = {x ∈ X : x is Pareto optimal} ⊂ Rd. The Pareto front F represents the subset of the
objective space corresponding to the Pareto set: F = {f(x) : x ∈ P} ⊂ Rm.

Two main approaches exist to solve multiobjective problems: (1) iterative scalarization
methods iteratively change their parameter values to generate a Pareto set; (2) evolutionary
algorithms evolve a set of solutions - called population - over several iterations - called
generations - by using bio-inspired genetic operators. Evolutionary algorithms are commonly
used in practice [7], since scalarization methods produce one solution per iteration, whereas
evolutionary algorithms generate a set of solutions in each iteration.

After solving a multiobjective optimization problem, a system designer selects a desirable
solution from the resulting Pareto front. Since Pareto fronts are usually large and humans
can handle only a limited amount of information, clustering techniques simplify the designer’s
task by dividing the Pareto front into clusters.

Well-known clustering methods, e.g. k-means, generate a specified number of clusters but
ignore cluster sizes. We aim to cluster a Pareto front such that the size of each cluster does
not exceed a given maximum size.

Algorithm 1 Clustering.

Require: Set S ⊂ Rm, clustering algorithm Cluster, maximum cluster size τ , maximum
distance distmax between two clusters to be merged

Ensure: Set of clusters S = {Si} with Si ⊂ S,
⋃

Si = S, and Si ∩ Sj = ∅ for i ̸= j

1: n←
⌈

|S|
τ

⌉
▷ Number of clusters

2: S← Cluster(S, n)
3: S← RefineClusters(S, Cluster, τ ) ▷ Algorithm 2
4: S←MergeClusters(S, τ, distmax) ▷ Algorithm 3

Algorithm 1 presents the proposed clustering procedure. The algorithm takes a set S

(Pareto front) to be clustered, a clustering algorithm Cluster, e.g. k-means, a desired
maximum cluster size τ , and a maximum possible distance between two clusters distmax

for merging the clusters. The parameter distmax guarantees that two clusters are merged
only if they are close enough to each other. The algorithm returns a set of clusters S. Since
many clustering algorithms require a number of clusters as an input, at Line 1, the algorithm
computes the number of clusters n based on the size of the set S denoted by |S| and the
maximum cluster size τ . The clustering algorithm Cluster clusters the set into n clusters.
Since the clustering algorithm might generate clusters larger than the maximum size τ ,
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at Line 3, the algorithm refines the clusters such that the size of each cluster is not larger
than τ . The refinement might generate small clusters with sizes much smaller than τ , so at
Line 4, the algorithm merges the small clusters if it is possible.

Algorithm 2 Refine clusters.

Require: Set of clusters S = {Si} with Si ⊂ Rm, clustering algorithm Cluster, maximum
cluster size τ

Ensure: Set of refined clusters R = {Ri} with Ri ⊂ Rm, |Ri| ≤ τ , and
⋃

Ri =
⋃

Si

1: Clargest ← LargestCluster(S)
2: R← S

3: while |Clargest| > τ do
4: Crefined ← Cluster

(
Clargest,

⌈
|Clargest|

τ

⌉)
5: R← R \ {Clargest} ∪ Crefined ▷ Update R

6: Clargest ← LargestCluster(R)
7: end while

Algorithm 2 presents a procedure to refine clusters with sizes larger than τ . It takes a set
of clusters S, a clustering algorithm Cluster, and a maximum cluster size τ . The algorithm
returns a set of refined clusters R with sizes of all clusters less than or equal to τ .

At Lines 1 and 2, we denote by Clargest the largest cluster in S and assign the resulting
set R to the original set S. While the size of the largest cluster |Clargest| is larger than the
desired size τ , we cluster it in smaller clusters at Line 4. We update the current set R with
the new clusters at Line 5 and get the largest cluster Clargest of the updated set R at Line 6.
We repeat the refinement until the sizes of all clusters are less than or equal to τ .

▶ Lemma 1. If the input set S and its clusters Si ∈ S are finite, and 0 < τ <∞, Algorithm 2
terminates and returns clusters of size less than or equal to τ .

Proof. If |Si| ≤ τ for all Si ∈ S, the algorithm terminates and returns the original clusters Si.
To prove that the algorithm terminates if there exist clusters with sizes greater than τ ,

we prove that the while loop at Lines 3–7 terminates. We denote by W a set of all clusters of
size greater than τ in S:

W = {W ∈ S : |W | > τ} . (2)

Since the input set S is finite, the set W is finite.
At the first iteration of the while loop, Clargest ∈ W is split into n =

⌈
|Clargest|

τ

⌉
< ∞

clusters at Line 4. We prove by contradiction that the size of at least one of the newly
created clusters is less than or equal to τ : if |Cnew

k | > τ for all newly created clusters Cnew
k

with k = 1, 2, . . . , n, then

|Clargest| =
n∑

k=1
|Cnew

k | >
n∑

k=1
τ = n · τ =

⌈
|Clargest|

τ

⌉
· τ ≥ |Clargest|. (3)

The newly created clusters with sizes less than or equal to τ are removed from W: W =
W\ {Cnew

k : |Cnew
k | ≤ τ}. At the next iteration, the largest cluster from the updated set W

is split into smaller clusters, and clusters with sizes less than or equal to τ are removed from
W. Since the set W is finite and monotonically decreases in cardinality, we continue until
the set W is empty. It proves that the algorithm terminates.

WCET 2023
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The set R is updated at each iteration and

R = {W ∈ S : |W | ≤ τ} ∪ {W ∈ S : |W | > τ} = {W ∈ S : |W | ≤ τ} ∪W (4)

Since the algorithm terminates when W = ∅, the final set R contains clusters of size less than
or equal to τ . ◀

Algorithm 3 Merge clusters.

Require: Maximum cluster size τ , set of clusters S = {Si} with Si ⊂ Rm and |Si| < τ ,
maximum distance distmax between two clusters to be merged

Ensure: Set of clusters R = {Ri} with Ri ⊂ Rm, |Ri| ≤ τ , and
⋃

Ri =
⋃

Si

1: R← S

2: for C ∈ R do
3: Cclosest ← ClosestCluster(C,R) ▷ Cclosest ̸= C.
4: if dist(C, Cclosest) < distmax AND |C|+ |Cclosest| < τ then
5: Cmerged ←Merge(C, Cclosest)
6: R← R \ {C, Cclosest} ∪ {Cmerged} ▷ Update R

7: go to 2
8: end if
9: end for

Algorithm 3 presents a procedure to merge small clusters after refinement. It takes a
maximum cluster size τ to preserve the desired sizes of clusters, a set of clusters S, and a
maximum distance distmax between two clusters to be merged. The algorithm returns a set
of clusters R with a reduced number of clusters. At Line 1, the algorithm assigns the output
set R to the original set S. For each cluster, it gets the cluster Cclosest ̸= C closest to the
current cluster C. At Line 4, we denote by dist the distance between two sets P, Q ⊂ Rm

defined as the Euclidean distance between the centroids gp and gQ of the sets P and Q,
respectively. If the distance between the clusters is smaller than distmax and the sum of the
cluster sizes is less than the maximum cluster size τ , we merge the clusters and update the
current set R. When the set R is updated, the for loop iterates over the updated set R.

▶ Lemma 2. If 0 < τ <∞, the input set S is finite, and |Si| < τ for all Si ∈ S, Algorithm 3
terminates and returns clusters of size less than or equal to τ .

Proof. To prove that the algorithm terminates, we prove that the for loop terminates. The
algorithm starts with S assigned to R. Since S is finite, R is finite and |R| < τ for all R ∈ R.

Case 1. If for all C ∈ R, the closest cluster Cclosest does not satisfy the conditions at
Line 4, the loop terminates after |R| <∞ iterations.

Case 2. If there exists C ∈ R such that its closest cluster Cclosest satisfies the conditions
at Line 4, the clusters C and Cclosest are merged, the size of the merged cluster is less than τ ,
and the set R is updated by substituting the clusters C and Cclosest by one merged cluster.
We denote by R1 the updated set R. The new set R1 satisfies the following conditions:
|R1| = |R| − 1 <∞,

|R| < τ for all R ∈ R1.

The set R1 satisfies either Case 1 or Case 2 with R = R1. Case 1 terminates the algorithm
and Case 2 generates a new set of clusters which we denote by R2. By repeating the
procedure, we generate a sequence of finite sets {R1,R2, . . . ,Rs}. The sets monotonically
decrease in cardinality and |R| < τ for all R ∈ Ri, i = 1, 2, . . . , s, which proves the lemma. ◀
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We considered one of the most widely used clustering algorithm k-means [17] as a
clustering method in Algorithms 1 and 2. We also compared the results of k-means with
the results of two other clustering methods: spectral clustering [8, 22] and agglomerative
clustering with the complete linkage criterion [27].

4 Results

We demonstrate the applicability of the proposed clustering method on a well-known compiler-
based optimization called function inlining [20].

Performing function inlining, a compiler replaces a function call with the body of the
function: it stores the inputs of the function call to local variables, removes the function call,
inserts the function body into the code, and removes the return instruction.

Function inlining can decrease WCET and energy consumption since it
removes call and return instructions which smooths pipeline behaviour;
reduces parameter handling;
enables more possibilities for subsequent optimizations, e.g. redundant path elimination
or constant propagation which tightens WCET and energy consumption estimations.

Function inlining combined with other optimizations, e.g. redundant path elimination, might
decrease code size but it often increases code size due to duplicated function bodies.

The multiobjective function inlining problem with WCET, energy consumption, and code
size as objectives is formulated as follows [21]:

decision space: X = [0, 1]d, where the dimension d is equal to the total number of function
calls in a program. A decision vector x = (x1, x2, . . . , xd) is defined as follows:

xi =
{

1, the function is inlined at the function call i,

0, otherwise .
(5)

objective function: f = (WCET, Energy Consumption, Code Size)
optimization problem: min

x∈X
f(x).

After solving the multiobjective function inlining problem by the evolutionary algorithm
MBPOA [28] and getting a Pareto front, we cluster the solutions as described in the previous
section.

We use the WCC compiler framework [10] for the ARM Cortex-M0 microcontroller. We
computed WCET and energy consumption by AbsInt’s aiT and EnergyAnalyser 20.10i [1]
and code size by WCC. We ran all evaluations on a computer with Dual CPU Intel Core i7-
5600U, RAM 15 GB, 2 CPU cores, and 2.60 GHz CPU frequency. We implemented Al-
gorithms 1, 2, and 3 in Python 3.10.

Function inlining shows the most significant improvement of a final executable in com-
bination with other optimizations, e.g. constant propagation and dead code elimination,
so we perform all evaluations with the compiler optimization level O2. The Cortex-M0
microcontroller lacks a hardware floating-point unit, so we use the WCC software math library
to tackle this issue. We considered functions of the floating-point library as candidates for
inlining. We used benchmarks from EEMBC benchmark suite [24] where MBPOA resulted in
more than 10 solutions because otherwise, the clustering problem is trivial. We assumed that
a benchmark fits into the Flash memory of the architecture.

When clustering a Pareto front found by MBPOA, we consider only meaningful solutions,
i.e. solutions with decreasing WCET or energy consumption compared to the original
program. Table 1 lists the total number of solutions and the number of meaningful solutions.
For all benchmarks, except bitmnp01, the applied constraint insignificantly reduced the
Pareto fronts.

WCET 2023
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Table 1 The number of solutions when solving the multiobjective function inlining problem by
evolutionary algorithm MBPOA.

Benchmark

Number of solutions a2
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01
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01

pu
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od

01
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ed
01

tb
lo

ok
01

tt
sp

rk
01

Total 29 38 13 41 21 42 15 26 43 91 17 13 96
Meaningful solutions 29 37 13 11 20 41 15 26 43 91 16 13 96

We used Algorithm 1 to cluster the Pareto fronts. We utilized k-means, spectral clustering,
and agglomerative clustering as input clustering methods in the algorithm. We used the
implementation of the clustering methods provided by the tool scikit-learn [23]. We
preserved the scikit’s default values provided for the methods. We set maximum cluster
size τ = 7 in Algorithm 1 due to “the magical number seven, plus or minus two” effect [19],
and maximum distance distmax was computed as described in the following remark:
▶ Remark 3. We did not pass maximum distance distmax as input to Algorithms 1 and 3
but computed it in Algorithm 3 as follows:

distmax = dmax

n− 1 , (6)

where n is the number of clusters in the input set S and dmax is the maximum distance
between two points from the union of sets Si ∈ S:

dmax = max
p,q∈∪Si

||p− q|| . (7)

Figure 1 shows cluster sizes as box plots after each stage of Algorithm 1 shown in x-axes:
original clustering, refinement of large clusters, and merger of small clusters. The figure
shows the results when using agglomerative clustering, k-means, and spectral clustering in
Algorithm 1. The numbers on the medians show the total number of clusters. E.g. for the
benchmark canrdr01, the original agglomerative clustering resulted in six clusters with the
largest cluster size 16; after refinement, the algorithm produced 9 clusters with the maximum
cluster size 7; and after merging, the algorithm returned 8 clusters. As expected, refinement
reduces the cluster sizes to the desired value but increases the number of clusters, whereas
merging small clusters may reduce the number of clusters.

If we choose the best clustering method to be used in Algorithm 1 based on the number
of final clusters: fewer clusters are better, k-means outperforms the two other clustering
methods. For all benchmarks, Algorithm 1 with k-means resulted in the same or smaller
number of clusters than when it was combined with the two other clustering methods.

Table 1 shows that six benchmarks bitmnp01, des, rspeed, basefp01, cacheb01, and
tblook have a few meaningful solutions compared to the remaining benchmarks. For these
benchmarks, Figure 1 shows that

the refinement and merging stages of Algorithm 1 preserved the original clusters (bitmnp01,
des, rspeed) or
refinement was required to generate clusters of the desired sizes (basefp01, cacheb01,
and tblook), whereas merging was useless.

For the remaining seven benchmarks with more solutions to be clustered, the refinement
stage was necessary to generate clusters of the desired sizes. For all these benchmarks, except
aifirf01, the merging stage reduced the number of final clusters for at least one of the
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Figure 1 Cluster sizes after each stage of Algorithm 1 when using agglomerative, k-means, and
spectral clustering. The numbers on the medians show the total number of clusters.

considered clustering methods. We observed the most significant reduction for benchmark
puwmod01 with spectral clustering where the merge algorithm returned 18 clusters instead
of 23 produced at the refinement stage. This benchmark is one of the largest benchmarks
considered in the evaluation.

▶ Remark 4. For large Pareto fronts, Algorithm 1 results in many clusters when the maximum
cluster size τ is small. We observed these results for benchmarks puwmod01 and ttsprk01.
If a Pareto front is large, a system designer should iteratively invoke Algorithm 1:
1. set τ to a large value to divide the Pareto front into fewer clusters of large sizes;
2. choose the best cluster;
3. pass the cluster to the algorithm and decrease τ to divide the cluster into smaller clusters.
Repeat Steps 2 and 3 until the desired maximum cluster size is achieved.

Figure 2 shows the runtime of the stages of Algorithm 1 as a stack diagram with three
parts starting from 0: original clustering, refinement, and merging. For all benchmarks, the
runtime of the three approaches was less than 0.3 s. Agglomerative clustering resulted in the
shortest runtime for all benchmarks, except des. For 12 out of 13 benchmarks, Algorithm 1
with spectral clustering was the slowest approach. For most benchmarks, the refinement
stage was the most time-consuming part of the algorithm, whereas the merge stage was the
least-time consuming part.

To sum up, in general, the three considered approaches showed very similar results
according to Figure 1, but Figure 2 shows that Algorithm 1 with agglomerative clustering
was finished in less than 0.03 s for all benchmarks. It is 0.012 s and 0.066 s faster, on average,
than Algorithm 1 with k-means and spectral clustering, respectively.
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Figure 2 Runtime of the stages of Algorithm 1 with agglomerative clustering, k-means, and
spectral clustering. The parts of the stack diagram starting from 0: original clustering, refinement,
and merging.

5 Conclusion

We presented a method to cluster trade-off solutions of a multiobjective optimization problem.
To guarantee that the size of all clusters is less than a predefined limit, our method clusters
the solutions by using a known clustering method, refines clusters with exceeding sizes, and
merges small clusters if possible. The last step tries to reduce the number of clusters which
may increase after the refinement.

We demonstrated our approach by clustering solutions of multiobjective function inlining
problem. We compared the results by using three clustering methods as a base for our
approach: k-means, agglomerative and spectral clusterings. By using the three clustering
methods, the proposed clustering techniques showed similar results in terms of the number
of clusters and their sizes, but it showed the smallest runtime when using agglomerative
clustering.

In future work, the proposed method should be verified by using other multiobjective
optimizations, including compiler-based optimizations.
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Abstract
Embedded real-time multi-task systems must often not only comply with timing constraints but also
need to meet energy requirements. However, optimizing energy consumption might lead to higher
Worst-Case Execution Time (WCET), leading to an un-schedulable system, as frequently executed
code can easily differ from timing-critical code. To handle such an impasse in this paper, we formulate
a Metaheuristic Algorithm-based Multi-objective Optimization (MAMO) for multi-task real-time
systems. But, performing multiple WCET, energy, and schedulability analyses to solve a MAMO
poses a bottleneck concerning compilation times. Therefore, we propose two novel approaches –
Path-based Constraint Approach (PCA) and Impact-based Constraint Approach (ICA) – to reduce
the solution search space size and to cope with this problem. Evaluations showed that PCA and
ICA reduced compilation times by 85.31% and 77.31%, on average, over MAMO. For all the task
sets, out of all solutions found by ICA–FPA, on average, 88.89% were on the final Pareto front.
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1 Introduction

Modern real-time embedded systems are subject to strict constraints and must meet functional
and temporal requirements, such as execution time and energy consumption. Failure to meet
such constraints might lead to disastrous consequences, e.g., airbag deployment systems.
For multi-task systems, schedulability is an important criterion. This paper proposes
multi-objective optimization for multi-task systems that simultaneously considers WCET,
energy, and schedulability for multi-task systems. The proposed framework utilizes two
metaheuristic algorithms, namely Strength Pareto Evolutionary Algorithm (SPEA) [26]
and Flower Pollination Algorithm (FPA) [25], to solve a static Scratchpad Memory (SPM)
allocation-based MAMO problem.

A program might have different WCET- and energy-critical paths. Moreover, minimizing
WCET and energy of one particular task might negatively affect others, resulting in an
un-schedulable system. Furthermore, the previous single-objective optimizations treated
schedulability as a constraint, which could limit design space exploration. Therefore, the
proposed framework considers schedulability as an objective, which enables the identification
of a Pareto front containing completely- and partially-scheduled multi-task systems. Depend-
ing on hard- and soft-real-time requirements, in the end, the system designer could choose
the needed Pareto-optimal solution.
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The presented MAMO approach is iterative, requires objective evaluations at every
iteration, and deals with three objectives, the analysis for which can be very time-consuming.
To address this issue, we introduce two novel objective-dependent approaches that generate
constraints at each iteration and reduce the solution space size and the total compilation
time. The first approach, PCA, uses worst- and average-case execution path information
to constrain the solution space, and the second approach, ICA, uses an impact metric to
constrain and reduce the solution space size. Evaluations in this paper clearly show that
worst- and average-case execution information can be utilized to improve MAMO speed and
solution quality. Therefore, the key contributions of this paper are:

We formulated and solved SPM allocation-based 3-dimensional MAMO problem.

We proposed two approaches – PCA and ICA – to reduce the solution space size.

PCA and ICA reduced compilation times by 85.31% and 77.31%, on average, over MAMO.

On average, 88.89% solutions found by ICA–FPA were on the final Pareto front.
This paper is outlined as follows: Sec. (2) overviews the related work. Sec. (3) defines
the MAMO problem for static SPM allocation. Sec. (4) introduces the MAMO framework.
Sec. (5) and (6) propose PCA and ICA, respectively. Sec. (7) presents the evaluation results.
Sec. (8) present conclusions and a future work discussion.

2 Related Work

In the past, many approaches focused on SPM allocation-based single-objective WCET-
or energy-aware single-task optimizations [2, 7, 12, 14, 15, 22]. Moreover, some research
has considered schedulability-aware single objective optimization for multi-task systems,
where schedulability is treated as a constraint [16, 17]. In contrast, this paper proposes a
compiler-level multi-objective optimization for multi-task systems which can simultaneously
minimize WCET, energy consumption, and schedulability objectives.

Heuristic approaches like greedy algorithms may not be optimal for multi-objective
optimizations, and ILP-based approaches are well-suited for single-objective optimization.
Therefore, we use metaheuristic algorithms that employ problem-independent search strategies
to solve the MAMO problem. Zitzler et al. [26] introduced the SPEA algorithm, where fitness
assignment is done based on the co-evolution principle. FPA, inspired by the pollination pro-
cess seen in flowering plants, is a Nature-Inspired metaheuristic Algorithm (NIA) introduced
by Yang et al. [24]. SPEA outperforms other EAs such as NSGA, VEGA, etc. [27], and FPA
performed better than VEGA, NSGA-II, MODE, etc. [25]. Therefore, in this paper, we chose
to use SPEA and FPA to solve the MAMO problem.

Evaluating every solution iteratively using metaheuristics can pose a huge bottleneck.
In such scenarios, machine learning techniques can be used to predict WCET and energy
objectives [10, 21]. But, their accuracy varies on hyperparameter tuning, data sample size,
and the underlying machine learning model. Previously, we proposed an approximation
model to approximate WCET and energy consumption of a program, which was used to
perform SPM allocation [13]. This approximation model relies on the underlying compiler
optimization, i.e., SPM allocation, and is not generic to any compiler-level optimization. In
this paper, we propose two approaches that rely on the objectives of MAMO, specifically
WCET and energy and do not rely on the underlying compiler optimization.
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3 Multi-Task Multi-Objective Problem

In this section, we propose a 3-dimensional MAMO problem for a multi-task system, where
we treat schedulability as an objective to minimize rather than a constraint, which allows for
better solution space exploration and maintains pressure on metaheuristic algorithms during
solution selection. Treating schedulability as a constraint might lead to the rejection of
solutions that violate this constraint and hinder proper solution space exploration. Moreover,
as the schedulability objective depends on WCET, we could consider only schedulability as a
minimization objective, but it could also hinder solution space exploration. For example,
a multi-task system could become schedulable, and more schedulable solutions with lower
WCET values could exist within the solution space. Lastly, WCET and energy consumption
objectives can contradict each other. Therefore, we simultaneously consider WCET, energy
consumption, and schedulability as objectives. The proposed MAMO problem for a multi-task
system is mathematically formulated as follows:

min
x

F (x) = (F1(x), F2(x), F3(x))

subject to g(x) =
T∑

t=1

pt∑
v=1

Btv xtv − SSP M −
T∑

t=1

pt−1∑
v=1

stv |xtv − xtv+1| ≤ 0
(1)

where x = (x1, .., xT ) ∈ {0, 1}d is a d-dimensional binary decision vector for a multi-task set
Γ. xt is a binary decision vector for a single task τ t ∈ Γ, where t = 1, T , and T is the total
number of tasks. SPM allocation is a compiler optimization, where we move Basic Blocks
(BB) from slow Flash to SPM. The decision of placing a BB in SPM or Flash is realized by
an element xtv ∈ {0, 1} of the decision vector, where v = 1, pt, pt is the total number of BBs
in the tth task, and d =

∑T
t=1

∑pt

v=1 v is the total number of BBs in the multi-task system.
g(x) ≤ 0 is the SPM size constraint condition, where Btv is the code size of BBtv , BBtv

is the vth BB in the tth task, and SSP M represents the SPM size. The term |xtv − xtv+1|
determines if extra jump correction cost is needed, i.e., if tth

v BB and the succeeding (tv +1)th

BB are in different memories, then we need to perform jump correction and add the extra
jump correction cost [18]. Furthermore, stv is an architecture-dependent term representing
the jump correction code size. For ARM7TDMI architecture, stv is modeled as follows:
stv = 16 if the basic block BBtv ends with a jump instruction, and in case of calls, conditional
jumps, or fall-though instructions stv = 16. Extra spill code is added if a free register is not
available, which increments the jump correction cost, i.e., stv + = 4.

F (x) = (F1(x), F2(x), F3(x)) is the 3-dimensional objective function. F1(x) =
∑T

t=1 W t

and F2(x) =
∑T

t=1 Et are the total WCET and energy values for the binary decision vector
x, where W t and Et are WCET and energy consumption of task τ t ∈ Γ, respectively.
F3(x) =

∑T
t=1 ρtW

t is the schedulability objective. ρ ∈ {0, 1}T is a T -dimensional binary
vector, where 1′s indicate that the task τ t is a task removed from Γ, i.e., τ t ∈ Γr, where Γr

denotes a set of tasks removed from Γ, such that the system of remaining tasks is schedulable.
We use the ILP-based schedulability analyzer [16] to calculate the number of tasks needed
to be removed from the system to achieve schedulability. Accordingly, if a system with T

tasks is schedulable and all the tasks safely meet their deadlines, the analyzer will return
0. Contrary, in a worst-case scenario, the analysis will return T . MAMO returns a set of
Pareto-optimal solutions that can be fully or partially schedulable and indifferent in terms of
WCET and energy, which allows the system designer to choose a suitable solution from the
set of Pareto-optimal binaries based on the requirements during runtime.

WCET 2023
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Algorithm 1 SPM allocation-based MAMO.

1: Initialization: Initialize the initial population, perform jump corrections, and evaluate them.
2: Input: Initialized population and stopping criteria
3: Output: Pareto-optimal solution set
4: while stopping criteria is not fulfilled do ▷ Iterate over all generations
5: for j = 1 : N do ▷ Iterate over all individuals
6: Update the individual using update operators
7: Repair the individual if needed and perform jump correction
8: Evaluate the individual
9: Using the selection operator, update to next generation

4 Multi-objective optimization

To solve the compiler-level MAMO problem for multi-task systems, we use the WCET-aware
C Compiler (WCC) [6] framework. We solve the MAMO problem using a metaheuristic
algorithm and try to minimize WCET, energy consumption, and schedulability. Let X ⊂
{0, 1}d be the search space of the MAMO defined in Sec. (3). Pi ⊂ X is the population set
with N individuals at generation i = 1, M , where M is the maximum number of generations.
xi,j ∈ {0, 1}d is a d-dimensional binary individual vector at generation i, where j = 1, N .

Algorithm (1) presents the SPM allocation-based MAMO. The problem formulation
presented in Sec. (3) is used to initialize MAMO (Line 1). After initialization, we solve
MAMO by calling the metaheuristic algorithm (Lines 4-9). The metaheuristic algorithm uses
an update operator to update an individual (Line 6). SPEA uses mutation and crossover [26],
whereas FPA uses global and local pollination operators to update an individual [25]. The
current population generation is updated after evaluations to the next using a selection
operator. FPA and SPEA provide scalar fitness values to each individual and use Pareto
Dominance [4] to update to the next generation. This paper considers two stopping criteria,
the maximum number of generations and the maximum number of generations for which the
population remains the same. After fulfilling the stopping criteria, the algorithm outputs the
final Pareto-optimal solution set. The Algorithm (1) considers all the BBs in the multi-task
system. The number of BBs defines the dimension of the solution space, which influences
the second stopping criterion. Therefore, the smaller the solution space size, the quicker we
might reach the second stopping criteria, leading to fewer individuals to evaluate. Therefore,
we propose two novel approaches to reduce the solution space size in the following sections.

5 Path-based Constraint Approach

During optimization, exploring the whole solution space would be the most reliable way
to find the Pareto-front. But, with limited time to perform optimization, we can consider
objective-specific details to decrease the problem size. The WCET and energy objectives rely

Algorithm 2 Path-based Constraint Approach.

1: Input: Evaluated individual xi,j

2: Output: Constraints for next individual xi+1,j

3: Get Wi,j and Ai,j , and Create Ui,j .
4: for t = 1 : T do ▷ Iterate over all tasks
5: for v = 1 : pt do ▷ Iterate over all basic blocks
6: if BBtv

i,j /∈ Ui,j then
7: xtv

i+1,j = 0
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Algorithm 3 Impact-based Constraint Approach.

1: Input: Evaluated individual xi,j

2: Output: Constraints for next individual xi+1,j

3: Create an empty set : Hi,j and an empty list of BBs : Bi,j

4: for t = 1 : T do ▷ Iterate over all tasks
5: for v = 1 : pt do ▷ Iterate over all basic blocks
6: Hi,j ←− (BBtv

i,j ,Mtv )
7: Sort (Hi,j) in the descending order of Mtv values
8: for q = 1 : d do ▷ Iterate over (Hi,j)
9: if

∑η

b=1 Bb <= α ∗ SSP M then
10: B ←− Hq,1

i,j

11: for t = 1 : T do ▷ Iterate over all tasks
12: for v = 1 : pt do ▷ Iterate over all basic blocks
13: if BBtv

i,j /∈ Bi,j then
14: xtv

i+1,j = 0

on the Worst-Case Execution Path (WCEP) and Average-Case Execution Path (ACEP) of a
program, respectively [1, 23]. WCEP and ACEP are defined as the execution paths through
a task’s control flow graph that leads to their WCET and Average-Case Execution Time
(ACET), respectively. Therefore, instead of exploring the entire search space, we constrain
the solution space at each iteration using WCEP and ACEP information. As the WCEP
and ACEP of a task set could differ, PCA considers the BBs on both paths. Let Wi,j and
Ai,j be the set of BBs on WCEP and ACEP of the jth individual of the ith generation. For
every individual, BBs on WCEP and ACEP can vary. Furthermore, let Ui,j := Wi,j

⋃
Ai,j .

Therefore, MAMO defined by Eq. (1) is extended by adding the following constraint.

xtv
i+1,j = 0, if BBtv

i,j /∈ Ui,j ∀t, v (2)

Algorithm (2) describes the PCA approach proposed in this paper. PCA takes an evaluated
individual xi,j as an input and provides constraints for the individual xi+1,j from the next
generation (Lines 1-2). The sets of BBs, Wi,j , Ai,j , and Ui,j , are created (line 3). If a BB is
not on WCEP or ACEP, then that element of the individual vector for the next generation is
constrained to 0, and the BB is placed in Flash, i.e., xtv

i+1,j = 0 (lines 4-7). This constraint is
enforced by recombination and mutation operators for SPEA and local and global pollination
operators for FPA. Therefore, the size and shape of the solution space can change and be
differently constrained throughout the optimization run.

6 Impact-based Constraint Approach

PCA considered all BBs on the WCEP and ACEP to reduce the dimension of the solution
space, but MAMO has an SPM size constraint, and SPMs are small in size. Consequently,
we can assume that many BBs will not be assigned to SPM for large multi-task systems.
Therefore, we propose the ICA Approach, which guides the optimization using the SPM
size constraint, Worst-Case Execution Count (WCEC), and Average-Case Execution Count
(ACEC) to constrain the solution space. WCEC and ACEC are defined as the number of
times each basic block is executed in a worst- and average-case scenario, respectively. As the
schedulability objective operates at the task level, we do not consider it for solution space
reduction. While initializing ICA, we calculate the impact of each BB on the total WCET
and energy when SPM allocation is not performed. We consider an individual F ∗ where all
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the BBs are in the Flash and evaluate it by performing WCET and energy analyses. Let
WF ∗ and EF ∗ , and W tv

F ∗ and Etv

F ∗ be the total WCET and total energy, and the WCET and
energy of BBtv

F ∗ , respectively. BBtv

F ∗ is the vth basic block of the tth task of the individual F ∗.
Furthermore, we calculate the impact of each BB by using Wtv

F ∗ := W tv
F ∗

WF ∗
and Etv

F ∗ := Etv
F ∗

EF ∗
.

Let WF ∗ and EF ∗ be the set of Wtv

F ∗ and Etv

F ∗ ∀t, v, respectively for the individual F ∗. After
calculating impact values for each BB for the case where all BBs are in Flash, we call
Algorithm (1) to solve the MAMO problem.

Algorithm (3) describes the proposed ICA approach used to reduce the solution space
size. ICA takes an evaluated individual xi,j as an input and provides constraints for the
individual xi+1,j from the next generation (Lines 1-2). ICA uses the following impact metric
to constrain the solution space.

Mtv = ζWtv
F ∗ ∗ wtv

i,j + βEtv
F ∗ ∗ atv

i,j ,where Wtv
F ∗ ∈ WF ∗ & Etv

F ∗ ∈ EF ∗ (3)

The terms wtv
i,j and atv

i,j represent the WCEC and ACEC of BBtv
i,j of the individual j at

generation i, respectively. Furthermore, ζ, β ∈ [0, 1] and ζ + β = 1 are the positive constant
weights assigned to WCET and energy terms. We can use ζ and β to adjust the weight of the
objectives. During SPM allocation, the BBs on WCEP and ACEP affect the program’s total
WCET and energy. But, BBs having higher WCEC and ACEC values does not indicate
that the BB will have higher WCET and energy values. Therefore, the WCEC and ACEC
term in Eq. (3) is multiplied by the WCET and energy impact terms to calculate the BB’s
impact. The bigger the value of Mtv , the higher the overall impact of BBtv

i,j on the total
WCET and energy of the individual.

An empty set Hi,j of the ordered pairs of BB and impact metric is initialized (line 3),
i.e., (BBtv

i,j , Mtv ) ∈ Hi,j ∀t, v. Furthermore, an empty list Bi,j , which will contain the list
of BBs selected by this heuristic, is initialized (line 3). We iterate through the multi-task
system, i.e., d =

∑T
t=1

∑pt

v=1 v times, to fill the set Hi,j and sort this set in the descending
order of Mtv values (lines 4-7). For selecting the BBs, we iterate through Hi,j and add BBs
to Bi,j until the total size of the BBs selected, i.e.,

∑η
b=1 Bb, is not greater than α ∗ SSP M ,

where α is a positive constant, and SSP M is the SPM size (Lines 8-10). Furthermore, Bb is
the size of the bth BB in Bi,j and η ∈ N such that 1 ≤ η ≤ d represents the total number of
BBs which are not constrained for the (i + 1)th generation. Using this heuristic, we select
the BBs that have the highest impact on the WCET and energy of the code. We further
constrain the solution space by limiting the number of the BBs selected by α ∗ SSP M . If a
BB is not in Bi,j , then that element of the individual for the next generation is constrained
to 0, i.e., xtv

i+1,j = 0 (Lines 11-14). This constraint is enforced by SPEA’s recombination
and mutation operators and FPA’s local and global pollination operators to update the
individual to (i + 1)th generation. Therefore, if the BB is not in Bi,j , i.e., BBtv

i,j /∈ Bi,j , then
xtv

i+1,j BB of individual j will be placed in Flash during the (i + 1)th generation. Using this
heuristic, we drastically constrain the solution space of big multi-task problems and perform
MAMO within a limited timeframe. As ICA considers WCEC and ACEC information, it
relies indirectly on the properties considered in PCA. But, unlike PCA, the ICA does not
ignore the BBs not on WCEP and ACEP, but they have a low priority.

7 Evaluation

In this section, the evaluations compare the MAMO approach with PCA and ICA. The
evaluations include compilation times, Pareto fronts, and quality indicators comparison for
task sets consisting of 2, 4, 6, and 8 tasks. For each, 10 task sets are randomly generated
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Figure 1 Compilation times required to perform MAMO, PCA, and ICA.

and are un-schedulable by construction. Multiple single-task benchmarks from the MRTC
suite [9], with loop bound annotations from the TACLeBench [5], were combined into a
multi-tasking task set. Optimization flag -O2, which enables several ACET-oriented compiler
optimizations, was used, and SPM size was set to 60% of the code size of each task set to
increase the pressure on MAMO. A timeout value of 200 h is set for the optimization. If the
optimization does not finish within this time limit, the final Pareto front is generated from
the last generation, and the final results are output. The SPM allocation code generated by
WCC is for ARM7TDMI architecture. For the sake of brevity, the figures show results for four
randomly chosen task sets1. WCC uses an external WCET analyzer called aiT [1] for WCET
analysis and an internal schedulability analyzer [16] for schedulability analysis. Furthermore,
WCC uses a cycle-true instruction set simulator from Synopsys called Virtualizer [11] to get
ACEC and ACET data. The energy analyzer within WCC uses the energy model proposed
by Roth et al. [20] and average-case data to perform the analysis [23].

For the FPA-based optimization, the switch probability between the local and global
pollination is ps = 0.8. According to [25, 19], for FPA, the positive integer λ = 1.5 for
the standard gamma function, and the scaling factor γ = 0.1 works well. For SPEA-based
optimization, the external population set size is 10. The crossover probability is 0.8, and
the mutation probability is 0.2. The population size is 10, the first stopping criterion –the
maximum number of generations– is 80, and the second stopping criterion –the maximum
number of generations for which the population remains the same– is 10. PCA does not
need any extra parameter settings. But, for ICA, we set the weights for M as ζ = 0.5 and
β = 0.5 so that the WCET and energy objectives are equally weighted while selecting the
BBs. Furthermore, α = 0.9, i.e., we allow the BBs 0.9 times the SPM size during selection.
α is less than 1 to accommodate the extra code inserted during jump correction. The results
from these evaluations are valid for the algorithm parameters described above.

7.1 Compilation Times
Fig. (1) compares the compilation times for MAMO, PCA, and ICA on four task sets. The x-
and y-axis represent task sets and compilation times, respectively. Each task set has six bars
– the first three are the results for FPA, and the last three for SPEA, respectively, for MAMO,
PCA, and ICA. The figure shows that MAMO took more time to output the final Pareto
front than PCA and ICA. Overall evaluations show that PCA and ICA achieved 85.31% and
77.31% overall reduction in compilation times, respectively, compared to MAMO. Moreover,
PCA–FPA achieved the most reduction in compilation time. The timeout value is hit by

1 All the remaining figures can be made available at the readers’ request.
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17, 6, and 7 task sets in the case of MAMO, PCA, and ICA, respectively. MAMO–FPA,
on average, required 184.41% higher compilation time than MAMO–SPEA. PCA–FPA and
ICA–FPA required 26.8% and 46.99% less compilation times than PCA–SPEA and ICA–
SPEA, respectively. The improved performance of FPA over SPEA in PCA and ICA may be
due to constraints on the search space, which make FPA update strategies for PCA and ICA
more effective in converging to the Pareto-optimal front.

The overall decrease in compilation times achieved using PCA and ICA is due to the
search space reduction and the second stopping criterion. The total number of BBs in
the task set determines the search space size. To calculate the reduction in the search
space for PCA, we first calculated the total number of BBs not constrained by Eq. (2). As
the number of BBs on WCEP and ACEP may vary, we calculated the average number of
BBs on WCEP and ACEP over all populations. Similarly, for ICA, the number of BBs
not constrained according to the Algorithm (3) are calculated and averaged over all the
populations. PCA and ICA, on average, achieved 60.06% and 87.638% reduction in the
search space, respectively. The reduction in the search space can cause the optimization
to hit the second stopping criteria faster. But, the average reduction in the search space
cannot directly reflect the decrease in compilation times. If the metaheuristics find better
solutions in every generation, the second stopping criteria is not fulfilled. E.g., even though
ICA achieved a higher reduction in the search space size, PCA–SPEA achieved the most
reduction in compilation time on average.

7.2 Pareto Fronts
Obtaining a true Pareto front to MAMO problem described in Sec. (3) is ambitious. Under
a realistic assumption that the true Pareto front is unknown, we define a new set P that
represents its approximation. Let A and B be two Pareto fronts returned by FPA and SPEA,
respectively. The new set P is defined as the set of all non-dominated points of the union
of the sets A and B, i.e., P = {pi|∀pi∄cj ∈ (A ∪ B) ≺ pi}. For each task set, we obtain the
final Pareto front (P) from the union of all the Pareto optimal solutions obtained from all
the approaches. Fig. (2) shows the solutions for four task sets found by MAMO, PCA, ICA,
and the standard -O2 optimization level in the form of Pareto fronts. We represent WCET,
energy, and schedulability values on the x−, y−, and z−axis, respectively. In the legend of
the sub-figure, we show the number of solutions returned by each approach. Furthermore,
we show the number of solutions on P out of the total solutions. To distinguish the solutions
on P, they are highlighted using numbers.

For the task set 2TasksMRTC_1, we see that all solutions by MAMO and ICA are on
P. One MAMO–FPA solution (Solution 2) is scheduled, whereas the other is schedulable if
one task is removed from the task set. Similarly, one MAMO–SPEA solution out of three
(Solution 5) has a schedulable task set. ICA–FPA and ICA–SPEA found one completely
scheduled solution each (Solution 6 and 7) on P, converging on the same solution. None of
the solutions obtained by PCA are on P. Considering the compilation times by ICA and
MAMO, we can conclude that ICA performed better for this task set. Besides, when we
compare the solutions on P with the -O2 solution, we see on average 34.02%, 78.69%, and
91.781% decrease in WCET, energy consumption, and schedulability objectives, respectively.
The 91.781% average decrease in the schedulability objective indicates that P consists of
partially scheduled solutions too.

For task set 4TasksMRTC_3, ICA–FPA clearly outperforms others. Both ICA–FPA’s
solutions on P are completely schedulable. For the task set 6TasksMRTC_5, PCA–FPA
and ICA–FPA found three and two solutions on P, respectively. ICA–FPA solutions are
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Figure 2 Solutions Obtained by MAMO, PCA, ICA, and -O2 runs for multi-task system.

completely schedulable, and PCA–FPA solutions are schedulable if one task is removed from
the task set. But, PCA–FPA found these solutions faster than ICA–FPA (cf. Fig. (1)). For
task set 8TasksMRTC_6, ICA–FPA was able to find better solutions overall. We can see
that the time taken by PCA–FPA is lower than ICA–FPA (cf. Fig. (1)). But, the quality
of the solutions obtained by ICA is much better than PCA. Consequently, we can say that
ICA–FPA performs better for this task set. Furthermore, when we compare the solutions on
P with the -O2 solution, we see on average 68.23%, 97.09%, and 100% decrease in WCET,
energy consumption, and schedulability objectives, respectively. The 100% decrease in the
schedulability objective indicates that all the solutions on P are completely schedulable.

From overall evaluations, for all the task sets, out of all solutions found by MAMO for
FPA and SPEA, on average, 10.24% and 13.39% of solutions were on P . PCA for FPA and
SPEA had, on average, 11.27% and 5.93% of solutions on P . Finally, ICA for FPA and SPEA
algorithms had 88.89% and 4.81% of solutions on P , respectively, on average. Therefore, we
can say that ICA–FPA provided most solutions on P.

7.3 Quality Metrics
We use the following quality metrics to evaluate and compare the quality of multi-objective
optimization approaches. Coverage (CA) [26] is a quality metric that describes the total
number of dominated points in a set A. The lower the value of CA, the better. The Non-
Dominance Ratio (NDRA) [8] is another quality metric measuring the ratio of non-dominated
solutions contributed by a particular solution set A to the non-dominated solutions provided
by all solution sets. The higher the value of the non-dominance ratio, the better. The
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Non-Dominated Solutions (NDSA) [3] is the last considered quality metric that calculates
the number of non-dominated solutions concerning the set A itself, when compared to P.
The higher the value of non-dominated solutions, the better.

Table 1 Comparing FPA & SPEA.

Number of Task Sets
Quality MAMO PCA ICA
metric FPA SPEA FPA SPEA FPA SPEA

CA 21 19 23 17 37(3) 0(3)

NDRA 19(2) 19(2) 20(3) 17(3) 40 0

NDSA 21 19 23 17 37(3) 0(3)

Table 2 Comparing MAMO, PCA, & ICA.

Number of Task Sets
Quality FPA SPEA
metric MAMO PCA ICA MAMO PCA ICA

CA 3(4) 2(4) 27(3) 3(3) 1(3) 0(3)

NDRA 3(4) 2(4) 27(3) 3(3) 1(3) 0(3)

NDSA 3(4) 2(4) 27(3) 3(3) 1(3) 0(3)

We compared quality metrics to evaluate the quality of the obtained solutions. We first
compared solutions obtained using FPA and SPEA algorithms for each approach. For this
comparison, P is generated individually for MAMO, PCA, and ICA by combining the final
Pareto fronts of their respective FPA and SPEA runs. Table (1) provides the total number of
task sets for which FPA and SPEA performed better for each approach. During evaluations,
we encountered task sets for which the quality metrics were indifferent to each other. The
total number of such indifferent task sets is indicated using brackets within the table. From
an overall comparison, we can say that SPEA and FPA algorithms provided relatively the
same quality of solutions for MAMO and PCA, and FPA performed outright better for ICA.

Furthermore, we compared MAMO, PCA, and ICA approaches in terms of the above-
mentioned quality metrics. For this comparison, P is generated by combining the final Pareto
fronts of all the approaches. Table (2) provides the total number of task sets for which
MAMO, PCA, and ICA performed better. The total number of task sets with indifferent
quality metrics are indicated within the table using brackets. From an overall comparison, we
can clearly see that ICA–FPA provided better quality solutions for most task sets. Although
it is difficult to know beforehand which approach will deliver the better Pareto-optimal
solutions due to the non-deterministic nature of algorithms, we could find better results by
constraining the solution space and focusing the optimization direction on the BBs that
highly impact the objectives.

8 Conclusions

In this paper, we formulated a 3-dimensional SPM allocation-based MAMO and solved it
using FPA and SPEA algorithms. As the compilation times required for the optimization
can increase with the problem size, we introduced two new approaches, PCA and ICA, to
cope with the MAMO problem size. All these approaches were able to find the trade-offs
between schedulability, WCET, and energy consumption. Moreover, we compared the results
obtained using FPA and SPEA for all three approaches. From evaluations, we, on average,
achieved 85.31% and 77.31% reduction in compilation times using PCA and ICA compared
to MAMO, respectively. Moreover, ICA–FPA found good quality solutions for 27 task sets
and, on average, found 88.89% of the solutions on P , which is the highest compared to other
considered optimization approaches. Therefore, in this paper, we were able to show that
clever integration of worst-case and average-case information within the optimization can
lead to a drastic reduction in compilation times and help find better-quality solutions.

The two approaches discussed in this paper to reduce the solution space effectively
reduced the runtime of the optimization and provided quality solutions. But, there were
still some larger task sets that ran into timeouts during our evaluations. In the future, a
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promising approach to further reduce the compilation times could be to partially replace
time-consuming WCET and energy analyses with pessimistic WCET and energy estimations.
In this paper, the approximated Pareto-optimal solution set returned by the optimization
could consist of either fully or partially schedulable solutions. But a multi-task system could
consist of tasks with both hard and soft timing constraints. Therefore, in the future, we
could extend the proposed multi-objective formulation in which the system designer specifies
tasks with hard and soft timing constraints. Based on these specifications, the compiler
could either treat a task as part of the schedulability constraint or part of the schedulability
objective, which could further constrain the solution space and provide the system designer
more control over the optimization parameters and the compiler output. Furthermore, SPM
allocation is just one optimization that we have considered as a multi-task multi-objective
problem. Other compiler-based optimizations also have great potential, which might need
objective-independent ways to constrain the solutions space. Therefore, in the future, we
can consider hybrid algorithms, which combine relaxed ILPs and metaheuristic algorithms
together to constrain the solution space in a problem-independent manner.
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Abstract
Most real-time embedded systems are required to fulfill timing constraints while adhering to a limited
energy budget. Small ScratchPad Memory (SPM) poses a common hardware constraint on embedded
systems. Static SPM allocation techniques are limited by the SPM’s stringent size constraint, which
is why this paper proposes a Dynamic SPM Allocation (DSA) model at the compiler level for the
dynamic allocation of a program to SPM during runtime. To minimize Worst-Case Execution Time
(WCET) and energy objectives, we propose a multi-objective DSA-based optimization. Static SPM
allocations might inherently use SPM sub-optimally, while all proposed DSA optimizations are
only single-objective. Therefore, this paper is the first step towards a DSA that trades WCET and
energy objectives simultaneously. Even with extra DSA overheads, our approach provides better
quality solutions than the state-of-the-art multi-objective static SPM allocation and ILP-based
single-objective DSA approach.
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1 Introduction

Real-time embedded systems must satisfy hard timing constraints and often operate on
a limited energy budget. To optimize such systems, it is important to consider WCET
and energy consumption of the program. As SPMs are fast and energy-efficient local
memories, various static SPM allocation-based optimizations have been explored to exploit
their potential. But, their small size gravely constrains the static optimization problem.
Therefore, we propose a compiler-level DSA model in this paper to exploit the memory
subsystem and circumvent the SPM size constraint. Additionally, for the very first time, we
propose a strategy to perform WCET and energy analyses of such dynamically allocated
programs statically at compile-time, enabling us to perform DSA-based multi-objective
optimization during compilation.

DSA is traditionally an important task for Operating Systems (OS), but the execution
times of OS-based allocation techniques are difficult to predict and guarantee. The compiler-
based DSA has been investigated before for reasonably limited architectures, and only
single-objective optimizations to minimize either WCET or energy have been considered.
However, the program’s WCET- and energy-critical areas may differ, and optimizing for
WCET alone can negatively impact energy consumption and vice versa. Therefore, in this
paper, we propose for the very first time a multi-objective optimization that uses the proposed
DSA model and simultaneously optimizes the WCET and energy consumption.

We implemented the proposed DSA-based multi-objective optimization within the WCET-
aware C Compiler (WCC) [6] framework and solved using two metaheuristic algorithms,
namely Flower Pollination Algorithm (FPA) [25] and Strength Pareto Evolutionary Algorithm
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(SPEA) [26]. For the sake of brevity, we refer to this optimization run as MOD in this paper.
Furthermore, we compare the evaluation results of MOD with a static SPM allocation-based
multi-objective optimization and an ILP-based single-objective DSA optimization referred to
as MOS and SOD, respectively, in this paper. The key contributions of this paper are:

For the very first time, we formulated a DSA model that allocates memory objects from
Flash to SPM during runtime and supports both WCET and energy analyses.
We proposed a MOD that uses metaheuristic algorithms to solve the said problem.
MOD is compared with MOS and SOD using real-world benchmark suites from EEMBC.
DSA introduces significant WCET and energy overheads still, the quality of solutions
from MOD is slightly better than the ones from MOS , and MOD outperforms SOD.

The paper is organized as follows: Sec. (2) provides an overview of the related work. Sec. (3)
discusses the proposed DSA model. Sec. (4) presents MOD, and Sec. (5) presents the
evaluation results. A conclusion and discussion of the future work conclude the paper.

2 Related Work

DSA facilitates copying code and data objects on and off memories during runtime and
exploits the memory subsystem to its fullest potential [13]. DSA-based approaches proposed
in the past are in the context of single-objective optimizations [22, 19, 7, 20]. Deverge et
al. [5] proposed DSA for static and stack data to minimize WCET. Kim et al. [14] proposed
dynamic instructions allocation at the function level for minimizing WCET using direct
memory access transfers. Verma et al. [24] proposed an SPM overlay approach for data and
instruction allocation that minimizes the energy consumption of the program. Liu et al. [15]
built upon Verma’s scratchpad overlay model by considering a multi-level SPM architecture
for multi-core processors for minimizing WCET. These approaches consider the DSA of
either code or data and focus on only single objective optimization.

Performing compiler-level multi-objective optimizations has rarely been exploited. Lok-
uciejewski et al. [16] proposed a stochastic evolutionary approach to find Pareto optimal
compiler optimization sequences. He considered trade-offs between Average-Case Execution
Time (ACET) and WCET, as well as WCET and code size. Muts et al. [17] proposed a
function-inlining-based multi-criteria optimization that traded WCET, energy, and code size.
Hoste et al. [10] proposed a multi-objective optimization framework that used evolutionary
algorithms to explore compiler optimization levels and automatically finds Pareto-optimal
optimization levels. In the past, we proposed a multi-objective optimization using FPA to
perform compiler-level static SPM allocation [11]. However, none of these multi-objective
optimizations focus on dynamic allocation to exploit the memory subsystems. Therefore,
this paper is the first step toward performing DSA-based multi-objective optimization that
simultaneously minimizes the WCET and energy consumption of the program.

3 Dynamic SPM Allocation Model

In this section, we propose a DSA model within WCC that can dynamically allocate memory
objects at runtime. DSA is the process of allocating memory objects dynamically during
the runtime of a program. Performing compiler-level DSA allows us to predetermine the
WCET- and energy-intensive memory object that could be dynamically copied to SPM
during runtime such that WCET and energy objectives are minimized.



S. Jadhav and H. Falk 6:3

3.1 Memory Objects
A memory object (memObj) is defined as the finest granularity program fragment considered
in a DSA problem. A Basic Block (BB), a code sequence with no branches except possibly
at the exit, can be considered a memObj. But, while performing DSA, the re-usability of
a memObj plays a critical role. Executing a memObj only once from SPM leads to certain
WCET or energy reductions, but the overheads for dynamically copying such memObj can
overshadow these savings. For this reason, this paper considers only memObjs that are
executed several times, i.e., that exhibit a high re-usability. By construction, such memObjs
are loops and functions. Therefore, we consider functions and loops as code memory objects
(memObjc) for dynamic allocation. Loops and functions can provide the re-usability of BBs
and reduce additional overhead introduced by the movement of individual BBs.

A global data variable is live throughout the complete execution of the code. The dynamic
allocation of global data variables can introduce unnecessary overheads in terms of WCET
and energy consumption. Therefore, global data variables (memObjd) are allocated statically
either to SPM or to Flash by our approach. On the other hand, the scope of local data
variables only exists within some parts of a single function. Therefore, our approach considers
local data variables as part of the functions or loops within which they are being used and
are dynamically allocated in conjunction with them.

The underlying exemplary architecture considered while modeling the DSA model consists
of the Flash, an instruction SPM (ISPM), and a data SPM (DSPM). Let M ⊂ F ∪ L ∪ G
be a set of memObj that is a union of the set of functions F , the set of loops L, and the set of
global data variables G within a program. Let x ∈ {0, 1}d represent a d-dimensional binary
decision variable vector that describes which memObj is allocated in which memory. x is a
block vector, where the subvector x1:F = (x1, . . . , xF ) are decision variables for functions,
the subvector x(F +1):(F +L) = (xF +1, . . . , xF +L) are decision variables for loops, and the
subvector x(F +L+1):(F +L+G) = (xF +L+1, . . . , xF +L+G) are decision variables for global data
variables. F is the total number of functions, L is the total number of loops, and G is the
total number of global data variables within M. d = (F + L + G) is the total number of
memObj. Each coordinate xi, i = 1, d of vector x corresponds to a specific memObj:

xi =

{
1, if Mi is in ISP M

0, if Mi is in Flash
xi =

{
1, if Mi is in DSP M

0, if Mi is in Flash

∀i = 1, (F + L) ∀i = (F + L + 1), (F + L + G) (1)

The memObjc referring to decision variables xi, ∀i = 1, (F + L) are allocated dynamically
from Flash to ISPM , and the memObjd referring to xi, ∀(F + L + 1), (F + L + G) are
allocated statically from Flash to DSPM .

3.2 Liveness Analysis
A memObj is live at an edge e ∈ E of the control flow graph G(N, E) if there exists a back
path from the edge e to a node n ∈ N , where the memObj is defined without being redefined
at any other node along the path [24]. For the sake of brevity, a detailed explanation of
the standard liveness analysis is omitted [2]. We perform liveness analysis within WCC at
the function level. Each function is analyzed to determine the live range of a memObj. A
function memObj is defined (def ) when it is first called within the function currently under
analysis. The subsequent calls for that function are categorized as use. The live range of the
function memObj is the path, i.e., set of BBs, from def until the last use.

WCET 2023
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A loop memObj is defined at the live-out edge of the loop-entry BB. All BBs within the
loop are categorized as use. The live range of the loop memObj is the loop-entry’s predecessor
BB, i.e., def, until the loop-exit BBs. In case of multiple entries and exits for a loop, all
the BBs are considered part of the live range of the loop memObj. In the case of nested
loops, each loop is considered an individual memObj entity. The loop memObj nested within
another loop is defined at the live-out edge of the top-enclosing loop entry’s BB, and the BBs
within the individual loop memObj are categorized as use. The live range of a nested loop
memObj spans over all the BBs contained within the top-enclosing loop. In the case of global
data variables, they are considered live throughout the complete execution of the code.

Let Λ = {λ1, . . . , λ(F +L)}, where (F + L) is the total number of memObjc and λi be a set
of BBs live for memObjc Mi, i.e., λi = {bp | ∀p bp is live for Mi}. Let C = {c1, . . . , c(F +L)},
where ci be a (F + L)-dimensional binary vector that determines if there exists an overlap
of live ranges between the ith memObjc and others. Each coordinate cij , j = 1, (F + L)
corresponds to a conflict of ith memObj with the jth memObj, i.e.,

cij =
{

1, if ∃ bp | bp ∈ λi & bp ∈ λj , & i ̸= j

0, otherwise
(2)

When solving the address assignment problem, liveness conflicts between memObjs are
considered. These conflicts prevent the allocation of memObjs that share conflicting liveness
to the same memory address within SPM.

3.3 Address Assignment

DSA allows copying of memObjc from Flash to SPM during runtime dynamically. But, we
must be careful that any memObjc is not overwritten during its execution. Therefore, we
need to solve an address assignment problem at compile-time such that no two memObjc that
are live at the same time are allocated to the same memory addresses. We solve the address
assignment algorithm within WCC to appropriately allocate address spaces to memObjc for
proper dynamic allocation. Moreover, all BBs contained within a memObjc are not always
placed within consecutive memory addresses. For example, a loop within a nested loop could
have BBs located in consecutive memory addresses, followed by another loop, and then
followed by the remaining BBs. In this case, we need two distinct memory copy functions to
dynamically allocate the whole memObj. Therefore, we define an address object (addrObj)
as a set of BBs from the memObjc such that they are placed within consecutive memory
addresses. Solving the address assignment problem provides us with the start address, the
destination address, and the size of the addrObj, which are needed for their dynamic allocation
during runtime. Let Ti be the total number of addrObjs associated with the memObjc Mi,
and T be the total number of addrObjs that need dynamic allocation.

To solve the address assignment problem, we use a combination of the first-fit and best-fit
heuristics [8]. The first-fit heuristic fit as many addrObj as possible within SPM until the
SPM is full. If two addrObj are adjacent within the Flash, then we try to place them similarly
in SPM. Once the SPM is full, we run the best-fit heuristic to find the best possible place in
SPM for the remaining addrObj. memObjs with liveness conflicts are not overlapped within
the memory addresses. In case the size of the addrObj is larger than the already placed
addrObjs, then we try to find multiple adjacent addrObj that fit the considered addrObj. If
all addrObjs are assigned to SPM, then the algorithm returns 0. If that is not the case, then
it returns (T − η), where η is the number of addrObjs assigned to SPM.
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Algorithm 1 Generation and Analyses of Dynamically Allocated Code.

1: For each solution x

2: for i = 1 : (F + L + G) do ▷ For each Mi

3: if xi == 1 then ▷ If Mi is placed in SPM
4: if i ≤ (F + L) then ▷ For code Mi

5: Perform jump correction
6: else ▷ For data Mi

7: Statically allocate global data object to DSP M

8: Perform Address Assignment
9: if (T − η)! = 0 then

10: Repair solution x

11: Repeat Steps 2–8
12: Insert memcpy() calls and call literal pool placement algorithm
13: Again perform Address Assignment to accommodate memcpy() calls and literal pool changes
14: Generate a static version of the code and perform WCET and energy analyses
15: Collect Analyses results and discard the static version of the code

3.4 Code Transformation for Dynamic SPM Allocation
We perform code transformations during compile time to dynamically move addrObj from one
memory to another. To copy a addrObj during runtime, we insert a memory copy function
(memcpy()) at the assembly level. The memcpy() is allocated to the Flash, and it takes the
start address (α), size (β), and destination address (δ) of an addrObj as inputs. The values
for α, β, and δ are available after solving the address assignment problem. These three
parameters enable memcpy() to copy code from one memory to another during runtime.
After solving the address assignment problem and if (T − η) = 0, we place memcpy() calls
at the assembly level before the memObjc. This call to memcpy() enables the program to
copy code from α to δ during runtime. Once the code is copied from one memory to another
during runtime, we also want our code to jump to δ instead of α. Therefore, we perform
jump correction, such that previously valid jumps to α are replaced by new jumps to δ,
enabling the code to jump to a proper destination address during runtime.

The code transformation for DSA is architecture-specific, i.e., we implemented these
mechanisms for an ARMv7-based architecture within WCC. Placing memcpy() calls and
jump correction code at the assembly level could increase the distance between BBs and
literal pools referred to by the BBs. Therefore, we implemented an ARMv7-specific algorithm
to fix literal pool placement within WCC. To fix literal pool placement, we move the literal
pool near the BB referring them and generate a jump over the moved literal pool [3]. For
the sake of brevity, we are skipping WCC-related implementation details and the detailed
explanation of the architecture-specific code transformation for DSA. On the other hand,
no major code transformation is needed for the static allocation of global data variables
memObjd. We assign memObjd to respective memories according to their allocations at the
assembly level, and an additional startup code to move memObjd statically is needed.

3.5 Analyses of Dynamically Allocated Code
Performing WCET and energy analyses for dynamically allocated code at compile-time using
static analysis tools is not feasible. To circumvent this problem, we generate a temporary
static version of the code by virtually placing memObj within different memories according to
the solution x. We assume that all the required memObj will fit within SPM, i.e., the SPM
is temporarily resized to generate the static version of the code. Then, we assign memObj
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Figure 1 Dynamic SPM Allocation-based Multi-Objective Optimization Framework.

to respective memories, insert the memcpy() function calls at appropriate places according
to the results from the address assignment algorithm, and perform jump correction. The
memcpy() function is annotated with parametric loop bounds, which helps WCET and energy
analyzers to calculate the contribution of memcpy() for each memObjc. Therefore, WCET
and energy contributions of dynamically copying memObjc are collected at the compiler level.

Assigning memObjc to SPM can affect the memory addresses of the remaining code in
Flash. In order to keep the memory layout in Flash unchanged for static analyses, we insert
NOP BBs in Flash in place of memObjc that are statically allocated to SPM. These NOP

BBs do not contribute to the final WCET and energy analysis results. Once the static
version of the code is analyzed, we collect the results and discard this temporary code version.
Algorithm (1) describes the process needed for DSA code generation and analyses. The
address assignment algorithm may fail to assign all the memObjc to appropriate addresses
within SPM due to liveness conflicts. So, instead of discarding the whole solution, we repair
the solution and then generate the dynamically allocated code for the repaired solution. We
repair the solution by moving the memObjc that are not assigned to an SPM address by the
address assignment algorithm back to Flash.

4 Multi-Objective Dynamic SPM Allocation-based Optimization

In this section, we formulate a compiler-level DSA-based multi-objective optimization that
minimizes the program’s WCET and energy consumption. Fig. (1) depicts the proposed
DSA-based multi-objective optimization framework. The figure presents the flow between
different aspects of DSA code generation and its analyses explained in Sec. (3). A multi-
objective optimization problem performing DSA can be mathematically formulated as a
minimization problem as follows.

min
x

F (x) = (F1(x), F2(x)), subject to x(F +1):(F +L) = x(F +1):(F +L) + τ

(T − η) = 0
(3)

where the objective function F (x) ∈ R2 represents WCET and energy consumption corres-
ponding to a solution vector x. x ∈ X represents a d-dimensional binary decision variable
vector, where Eq. (1) describes each coordinate xi, i = 1, d and X ⊂ {0, 1}d is the search
space of the DSA problem. The first constraint is applied based on the liveness analysis, i.e.,
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if a function is allocated to SPM and the loops contained within that function are allocated
to Flash, then it is logical that the loops contained within that function are also allocated
within the SPM. Within this constraint, τ is a L-dimensional binary vector, and each element
τl, l = 1, L is ’1’ if lth loop is in Flash and there exists a function f placed in SPM that has
liveness conflict with the considered loop, i.e.,

τl =
{

1, if xF +l = 0 & (∃f | λF +l ⊆ λf ∈ Λ1:F ) & xf = 1
0, otherwise

(4)

where, λ(F +l) represents the set of BBs live for the (F + l)th memObj or lth loop memObj,
and Λ1:F is the set of sets of live BBs for function memObj (c.f. Sec. (3.2)). Furthermore,
the second constraint (T − η) = 0 says that the address assignment algorithm should return
0 for the solution vector x. We utilize the metaheuristic algorithms FPA and SPEA To
solve the multi-objective optimization. In order to identify the trade-offs between different
solutions of multi-objective optimization, we introduce a few definitions.

▶ Definition 1. Let x1, x2 ∈ X and F (x) = (F1(x), F2(x)), then x1 dominates x2, i.e.,
x1 ≺ x2, if ∀t ∈ {1, 2} Ft(x1) ≤ Ft(x2) and ∃r ∈ {1, 2} : Fr(x1) < Fr(x2).

▶ Definition 2. The solutions that are not dominated by any other solution are called Pareto
optimal solutions. The set of all such Pareto optimal solutions is called Pareto optimal set,
and the set of corresponding objective vectors is called the Pareto optimal front.

The initial population for FPA and SPEA are defined randomly and can influence the
final Pareto front. Therefore, we perform evaluations using five different initial populations
reducing the influence of the initial population on the final results. As the true Pareto front
is unknown for our problem, we combine approximated Pareto fronts found by several runs of
the algorithm for different initial populations into a set of nondominated points as reference
Pareto front P. To evaluate and compare the quality of the proposed MOD, we use the
following quality indicators:

▶ Definition 3. Coverage (C ∈ [0, 1]) [26] describes the total number of dominated points in
a solution set A, i.e., C = 1 − |{a∈A:∃p∈P,a⪯p}|

|A|

▶ Definition 4. Non-Dominated Ratio (NDR ∈ [0, 1]) [9] measures the ratio of non-dominated
solutions that are contributed by a particular solution set A to the non-dominated solutions
provided by all solutions sets, i.e., NDR = |P∩A|

|P|

▶ Definition 5. Non-Dominated Solutions (NDS ∈ [0, 1]) [4] calculates number of non-
dominated solutions concerning A itself compared to P, i.e., NDS = |a∈A:a∈P|

|A|

The two metaheuristic algorithms considered in this paper use three operators to explore
the search space. FPA uses local and global pollination operators [25], and SPEA uses
recombination and mutation operators to update each individual at every iteration [26]. They
use a selection operator to collect the top-scoring solutions using the definition of Pareto
dominance (c.f. Def. (1)) and pass them to the next iteration. After pre-defined stopping
criteria, the algorithms output the final Pareto optimal front.

Algorithm (2) presents the DSA-based multi-objective optimization performed at the
compiler level. To initialize the algorithm, we recognize and collect all the memObj by
performing standard control flow and depth-first analyses within WCC. Then, we perform
the liveness analysis to determine the live ranges of the said memObj. To perform the
multi-objective optimization, we need to initialize the metaheuristic algorithm. As mentioned
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Algorithm 2 Multi-Objective DSA-based optimization.

1: Collect memObj, perform Liveness Analysis, and randomly initialize initial population of size N

2: for n = 1 : N do
3: Call Algorithm (1)
4: while Stopping criteria is not reached do
5: Update Individual using respective update operators
6: for Each updated Individual do
7: Call Algorithm (1)
8: Update to next generation using selection operator
9: return Pareto-optimal solution set

before, in this paper, we use both FPA and SPEA algorithms separately to solve the
optimization problem. We randomly initialize the initial population of size N and then
call the Algorithm (1) to generate dynamically allocated code and analyze the individuals.
Moreover, a maximum number of generations is set as the stopping criterion, as we want the
metaheuristic algorithm to terminate at some point. The metaheuristic algorithm updates
the individuals at every generation and calls the Algorithm (1) to collect their objective
values. Based on the objective values, the selection operator uses Pareto-dominance to select
the population for the next generation. Once the stopping criterion is reached, the algorithm
provides the Pareto-optimal solutions.

5 Evaluations

To the best of our knowledge, this is the first attempt to solve a compiler-level DSA-
based multi-objective optimization problem that simultaneously trades multiple objectives.
Therefore, we use SOD referenced from [24] and MOS [12] as the base for comparisons in
the following evaluations. These approaches are implemented within the WCC framework,
where WCET and energy analyses are performed using aiT v21.04i [1] and EnergyAnalyser
v21.04i [23], respectively. WCC generates the DSA code for ARMv7-based architecture that
consists of separate ISPM and DSPM . The evaluations compare MOD, MOS , and SOD

in terms of the final Pareto optimal sets and the quality of obtained solutions. As SOD is a
single-objective optimization problem, we solve SOD to minimize WCET and perform the
energy analysis of the final solution to obtain both WCET and energy values.

We used benchmark suites offered by the Embedded Microprocessor Benchmark
Consortium (EEMBC) [18] during evaluations. While performing evaluations, we use -O0
optimization flag to turn off any other compiler-level optimization and avoid their influence
on our results. We adjust the ISPM and DSPM sizes individually to 60% relative to the
benchmark size to increase the pressure on the optimization. Moreover, we assume that the
benchmarks will fit within the Flash memory.

While solving MOD and MOS using FPA, the switch probability is set to 0.8, as the
probability of global pollination is lower than local pollination in nature. The positive
integer λ for the standard gamma function and the scaling factor γ are set to 1.5 and
0.1, respectively [25, 21]. For SPEA, the size of the external population set is set to 10,
which is equal to the size of each generation’s population. The recombination and mutation
probabilities are set to 0.8 and 0.2, respectively. The size of the population for each generation
and the maximum number of generations for both algorithms are set to 10 and 80, respectively.
The results obtained during these evaluations are valid for the algorithm parameters described
above. For SOD, there is no need to set any parameters.
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Figure 2 Solutions Obtained from MOS , MOD, and SOD optimization runs.

5.1 Pareto Fronts
Fig. (2) presents the solutions found by MOS , MOD, and SOD. For the sake of brevity,
this subsection presents the solutions for 3 randomly chosen benchmarks.1. The final Pareto
fronts in these figures are represented using a 2D scatter plot. The x-axis and the y-axis
represent WCET and energy consumption, respectively. The legend at the bottom of the
figure represents the optimization runs to which the solutions belong. The legend at the
top-right corner of each subfigure shows the total number of solutions returned by respective
optimization runs. The same legend indicates the number of solutions on P out of the total
solutions. The darker-colored solutions in the figure represent the solutions on P, and the
fainter version of those colors represents the solutions returned by each optimization run.

For Auto_a2time, all solutions obtained by MOD–FPA and MOD–SPEA lie on P . MOS–
FPA found 1 solution that is on P, and the one obtained using MOS–SPEA is not on P.
The 1 solution obtained by SOD–ILP does not lie on P. As SOD is a single-objective
optimization, it always outputs a single solution in the end. In the case of Auto_basefp,
MOD found 17 and 19 solutions using FPA and SPEA, out of which only 5 and 1 lie on
P, respectively. Furthermore, MOS–SPEA found 1 solution on P, and solutions obtained
MOS–FPA and SOD–ILP do not lie on P . For Auto_ttsprk, except for MOS–SPEA, other
4 optimization runs found solutions on P . For this benchmark, SOD–ILP performed better
than MOS–SPEA.

For all benchmarks, we compared the total number of solutions found by respective
approaches and the total number of those solutions on their final Pareto front P. In that
case, MOS using FPA and SPEA had, on average, 22.92% and 32% solutions on their P,
and MOD using FPA and SPEA had, on average, 51.44% and 36.75% solutions on their P,
respectively. Moreover, SOD found solutions on P for only 2 benchmarks. Furthermore, we
calculate the contribution of each approach to the total number of solutions on P for all
benchmarks. In that case, MOS–FPA and MOS–SPEA contributed, on average, 3.62% and
5.26% solutions, MOD–FPA and MOD–SPEA contributed, on average, 70.4% and 20.1%
solutions, and SOD–ILP contributed, on average 0.66% solutions to the total number of
solutions on P for all benchmarks.

5.2 Quality Indicators
To evaluate and compare the quality of the proposed MOD, we use three quality indicators,
namely Coverage (C) (c.f. Def. (3)), Non-Dominated Ratio (NDR) (c.f. Def. (4)), and
Non-Dominated Solutions (NDS) (c.f. Def. (5)). From these definitions, we can say the

1 All the remaining figures can be made available at the readers’ request.
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following: The lower the value of C, the better the approach, and the higher the values of
NDR and NDS, the better the approach. Table (1) shows C, NDR, and NDS indicators for
all the evaluated benchmarks. For each benchmark, the table presents the values of the
quality indicators for both MOS , MOD, and SOD. MOS and MOD used FPA and SPEA
algorithms, and SOD used ILPs to solve the optimization problem. Under each quality
indicator column, we have compared their values, and for each benchmark, the better quality
metric is highlighted in bold in the table.

MOS–FPA, MOS–SPEA, and SOD–ILP found better or indifferent solutions in terms
of C for 9, 7, and 2 benchmarks, respectively. MOD–FPA and MOD–SPEA found better
or indifferent solutions for 9 and 10 benchmarks, respectively, in terms of C. Therefore, we
can say that, in terms of C, MOS and MOD using FPA performed equally, MOD–SPEA
performed the best, and SOD–ILP performed the worst. MOS–FPA and MOS–SPEA found
either better or indifferent solutions in terms of NDR and NDS for 5 and 7, and 9 and 7
benchmarks, respectively. MOD–FPA and MOD–SPEA found either better or indifferent
solutions in terms of NDR and NDS for 9 and 6, and 9 and 10 benchmarks, respectively.
SOD–ILP found either better or indifferent solutions for 0 and 2 benchmarks in terms of NDR
and NDS, respectively. In terms of NDR, MOD–FPA performed best, and MOD–SPEA
performed best in terms of NDS. From overall evaluations, we can say that, in general, MOD

performed slightly better than MOS and much better than SOD.
Finally, we also calculated the WCET and energy overheads that the MOD solutions

incur due to the dynamic allocation of memory objects during runtime using memcpy(). For
all benchmarks, memcpy() functions contributed 24.39% and 22.65% to the total WCET and
energy consumption, respectively. Therefore, even with a very simple and unsophisticated
implementation of the memcpy() function that is actively executed by the processor, we
obtained slightly better quality solutions using MOD over MOS . Furthermore, we can see
that MOD clearly outperforms SOD. Our next steps will focus on offloading the processor
from the dynamic copying of memory objects by exploiting Direct Memory Access (DMA).
This way, we expect that our proposed MOD will outright outperform MOS .

6 Conclusion

In this paper, we proposed a novel compiler-level DSA-based multi-objective optimization
that simultaneously minimizes the WCET and energy consumption of the program. The
DSA model proposed in this paper handles the dynamic movement of memory objects.
Moreover, we extended the WCET and energy analyses framework within the compiler to
handle analyses of such dynamically allocated code. Finally, we proposed a DSA-based
multi-objective optimization framework. To solve the DSA-based multi-objective optimization
problem, we used two metaheuristic algorithms, namely, FPA and SPEA. We evaluated and
compared the results of the proposed optimization with MOS and SOD using real-world
benchmark suites from EEMBC. Evaluations showed MOD provided more solutions on the final
Pareto front than MOS . Moreover, MOD clearly outperformed SOD. The MOD solutions
consist of memcpy() overheads, still, the evaluation showed that the proposed approach can
provide slightly better solutions than the well-established MOS approach.

This paper is the first step toward compiler-level DSA-based multi-objective optimization.
The next step would be to improve the approach proposed in this paper by reducing the
overheads. In this paper, we saw that the overheads in terms of WCET and energy due
to memcpy() are significant. Therefore, in the future, we will explore methods to decrease
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Table 1 Performance Metrics for MOS , MOD and SOD.

Coverage NDR NDS
MO_S MO_D SO_D MO_S MO_D SO_D MO_S MO_D SO_D

FPA SPEA FPA SPEA ILP FPA SPEA FPA SPEA ILP FPA SPEA FPA SPEA ILP
Benchmarks

Auto_a2time 0 1 0 0 1 0.03 0 0.73 0.24 0 1 0 1 1 0
Auto_aifftr 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Auto_aifirf 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0
Auto_aiifft 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Auto_basefp 1 0 0.71 0.95 1 0 0.14 0.71 0.14 0 0 1 0.29 0.05 0
Auto_bitmnp 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0
Auto_cacheb 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Auto_canrdr 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0
Auto_idctrn 1 1 0 0 1 0 0 0.8 0.2 0 0 0 1 1 0
Auto_iirflt 0 0.5 1 0.5 0 0.27 0.27 0 0.36 0.1 1 0.5 0 0.5 1
Auto_matrix 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Auto_pntrch 1 1 0 0 1 0 0 0.91 0.1 0 0 0 1 1 0
Auto_puwmod 1 1 0 0 1 0 0 0.91 0.1 0 0 0 1 1 0
Auto_rspeed 0 1 0 0 1 0.14 0 0.14 0.71 0 1 0 1 1 0
Auto_tblook 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0
Auto_ttsprk 0 1 0.33 0 0 0.1 0 0.2 0.6 0.1 1 0 0.67 1 1
Netw_ip_pktcheck 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0
Netw_ospfv2 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
Netw_routelookup 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0
Tele_autocor 0 0 1 1 1 0.5 0.5 0 0 0 1 1 0 0 0
Tele_conven 1 1 0 0 1 0 0 0.78 0.22 0 0 0 1 1 0
Tele_fbital 0.5 0.33 0.28 0.5 1 0.04 0.08 0.54 0.33 0 0.5 0.67 0.72 0.5 0
Tele_fft 0 1 0 1 1 0.5 0 0.5 0 0 1 0 1 0 0
Tele_viterb 0 0.5 1 1 1 0.5 0.5 0 0 0 1 0.5 0 0 0

the overhead incurred due to memcpy() and improve the MOD solution quality even more.
Currently, we are integrating DMA support within WCC to use it in conjunction with our
DSA model for dynamically copying code during runtime.
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Abstract
Single-path code is a code generation technique specifically designed for real-time systems. It
guarantees that programs execute the same instruction sequence regardless of runtime conditions.
Single-path code uses loop bounds to ensure all loops iterate a fixed number of times equal to their
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1 Introduction

Real-time systems are unique in their timing requirements. In addition to producing the
correct logical results, real-time programs must produce these results within a specific time
frame called the deadline. A result produced after the deadline is unacceptable, regardless of
its logical correctness. Real-time systems must statically guarantee that a task terminates
within the deadline. Here, a program’s worst-case execution time (WCET) is the critical
metric. In the simplest case, if the WCET can always be shown to be shorter than the
deadline, we know that the program will always produce its result in time for it to be useful.
For multi-task and multi-processor systems, scheduling must be done using each task’s WCET
to ensure all tasks adhere to their deadlines.

It is almost impossible to know the actual WCET of a program. Therefore, WCET
analysis provides an upper bound for it. This WCET bound can be used instead of the real
WCET when designing the system and verifying its timings. However, the halting problem
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has shown that creating a program (in this case, a WCET analyzer) that can tell whether any
given program will terminate is impossible [18]. To get around this inconvenience, real-time
programs are developed with certain restrictions that allow the code to be analyzable without
running afoul of the halting problem. One such restriction is to have loops with a bound on
the maximum number of iterations. In a real-time program, all loops must have an upper
bound on the number of iterations they may perform at runtime. This is a guarantee that
the programmer provides – often in the form of an annotation in the code – to the WCET
analyzer, which allows the analyzer to calculate an upper bound to the execution time. A
best-case execution time (BCET) is also often of interest for task scheduling [23]. To enable
efficient BCET analysis, a lower bound on loops is also often provided such that the analyzer
does not have to use zero as the default lower bound. If a loop’s lower and upper bounds are
equal, we call it a constant loop; a loop that always executes the same number of iterations.

Single-path code generation is a code-generation technique that ensures that programs
execute the same sequence of instructions regardless of runtime conditions [22]. This type of
code makes WCET analysis much easier, as the analyzer does not have to account for the
program executing different code traces based on what happens at runtime. The properties of
single-path code can significantly affect execution time [21]. Therefore, it must be optimized
to reduce the execution-time overhead.

The control-flow graph (CFG) is a directed graph that shows how execution can flow
through a function.1 Each node represents a block of sequential code, with edges specifying
where execution can continue. We use block and node interchangeably in this paper. If
a node in the CFG has multiple outgoing edges, we call that a branch. Depending on
some runtime condition, execution continues at the target node of one edge. Loops in a
function are represented by cycles in the CFG. The dominance relation identifies whether a
node is guaranteed to be executed before another node. This relation is critical in compiler
construction to ensure correct code generation and optimization [2]. However, the relation
does not account for loop bounds and constant loops.

In this paper, we present a new CFG relation called constant-loop dominance. It is a
variation of dominance that accounts for whether loops are constant to find blocks executed
a fixed number of times. Functions called from such blocks can be optimized to reduce the
overhead of converting them to single-path code. The contributions of this paper are: (1) a
definition of the constant-loop dominance relation and an algorithm for calculating it; (2) a
description of an optimization to single-path code that makes use of the relation; and (3) an
implementation of the algorithm and optimization in a compiler that produces single-path
code.

The paper is organized into six sections: The following section presents related work.
Section 3 provides background information to support the understanding of the rest of the
paper. Section 4 introduces the constant-loop dominance relation, an algorithm for finding
constant-loop dominators, how it is used to optimize single-path code, and a brief description
of the implementation. Section 5 evaluates our optimization’s performance and code size
impacts. Section 6 concludes the paper.

2 Related Work

The dominance relation is fundamental within compiler construction. Its first description
was given with a simple, O(n4) algorithm [17]. It was used to implement global common
expression elimination and loop identification. Its use continued in other important advances

1 We do not consider inter-procedural CFGs in this paper.
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like enabling the efficient computation of static single assignment form [6], which opens up
further optimization opportunities [10,24,30]. Significant work has been put into reducing
the runtime complexity of computing the dominance relation [1, 12, 29]. The state-of-the-art
includes an algorithm that runs in O(mα(m, n)), where n is the number of nodes, m is the
number of edges, and α is the inverse Ackermann’s function [16]. Finally, the quest for a linear
time algorithm has resulted in several proposals [3, 5, 9]. The challenge has been translating
the theoretical runtime complexity into practical implementations that outperform the older,
non-linear algorithms.

Knowledge about loop bounds is a fundamental requirement for analyzing WCET. As
such, any annotation language must include the ability to specify bounds [14]. However,
since manual annotations can be tedious for programmers to provide and be a source of
imprecision and errors, significant effort has gone into automatic methods for finding loop
bounds [4, 11,28]. Effort has been put into finding scenarios that can automatically derive
loop bounds. E.g., upper loop bounds can be derived by assuming a loop terminates and then
enumerating the state-space of the variables that influence the loop exit [7]. Machine learning
has also been used to try and find loop bounds [13]. While our work only uses annotated
loop bounds to find constant loops, any method for finding loop bounds is compatible.

Single-path code was introduced as a code generation technique specifically for real-time
systems [22]. It can be automatically generated from any WCET analyzable source code,
with a significant but manageable performance cost [21]. Single-path code is challenged by its
execution-time overhead. One avenue for improving this is to take advantage of its inherent
instruction-level parallelism when scheduling on a VLIW architecture [20]. In [19], we extend
single-path code with techniques to compensate for execution-time variability from memory
accesses. This ensures that single-path code has a constant execution time, eliminating the
need for WCET analysis.

3 Background

3.1 The Patmos Processor
Patmos was specifically designed for real-time systems. It is a RISC-style instruction-set
architecture with features that make it time-predictable and optimized for a low WCET [27].
Patmos has an in-order, dual-issue pipeline that maximizes throughput while being time-
predictable. All instructions are predicated by one of eight boolean predicate registers. If the
value of the predicate is true, an instruction is enabled, which means it executes normally. If
the predicate is false, the instruction is disabled. It still gets executed in the same amount
of time. However, it does not read from or write to any memories or update any registers;
effectively, the instruction becomes a no-op.

3.2 Single-Path Code
Single-path code was initially intended to make it computationally easier to perform WCET
analysis. Single-path code uses predication to convert the branching control flow of a
function into an instruction stream with only one execution path. To convert a function into
single-path code, three techniques are used:

If-Conversion. Any conditional branching is converted into predicated instructions, such
that only the needed path’s instructions are enabled at runtime. The resulting code always
executes all instructions in both paths, with only one path being enabled at a time. Looking
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(a) Traditional.

a b

c d

e f g h

(b) Single-Path.

Figure 1 Conversion of a function with branching control flow (left) to single-path code (right).

at Figure 1, we can see the result of transforming a function to single-path code. Block b
conditionally branches to either c or d. The color coding of Figure 1a’s blocks matches the
conditions that led to that path being taken. In Figure 1b, the colors indicate that only if
the corresponding condition is true will the block’s instructions be enabled at runtime. As
such, we can see how if-conversion results in b always leading to first c and then d. However,
only if the red condition holds at runtime will c’s instructions be enabled. The same holds
for d, leading to either e or f in the traditional code, but eventually leading to both in the
single-path version. Notice how we have not colored the edges in the single-path version, as
they are always taken.

Loop-Conversion. Loops may iterate a variable number of times depending on runtime
conditions. To avoid this variability, single-path code converts loops to always iterate the
maximum possible number of times. Any superfluous iterations are instead disabled using
predication. Looking at our example, we can see the function has two loops, one containing
the blocks b, c, d, and e, and the second containing only f. A single-path loop maintains a
count of how many iterations have been executed and keeps looping until the maximum is
reached. Inside the loop, the condition that traditionally breaks out of the loop is instead
used as the predicate to all the instructions. This condition will become false at some point,
meaning any further iterations will have their instructions disabled.

Function-Conversion. Single-path code also has to account for function calls. Say we have
two branching paths, one of which performs a function call while the other does not. If we
predicate the function call as we do for the rest of the instructions, it will not cause control to
shift to the called function. This means the function’s instructions are not executed (neither
enabled nor disabled) if the path it was called from was disabled. Function-conversion ensures
every function call is performed the same number of times, analogously to loop-conversion.
Any call not logically necessary is instead disabled. Function-conversion copies all functions
that are called within single-path code. The copies are then modified to take an extra
predicate register argument, which specifies whether the function was called from an enabled
or disabled path. The body of the copied function is then predicated on that register; if it is
called from a disabled function, it will be disabled, too, and vice versa. The call instruction
in the caller is not predicated, instead being provided with the predicate of the calling code
to pass on. This ensures all functions are always called and executed, regardless of whether
their callers are enabled or disabled.

3.3 Definitions
A loop in a CFG is a set of strongly connected nodes, i.e., a path exists between any two
nodes. A natural loop additionally has an entry node, the header, which dominates all other
nodes in the loop, and a back edge that enters the header from another node in the loop.
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a b

d

c e

Dom CLDom (const(b)) CLDom (¬const(b))
a a, b, c, d, e a, b, c, d, e a, b, c, d, e
b b, c, d, e b, c, d, e
c c, d, e c, d, e
d d d, e
e e e e

Figure 2 Example CFG with the traditional dominator and constant-loop dominator relations.

The source node of a back edge is called a latch. An exit edge is an edge that connects a
node in the loop to one outside of it. If two natural loops have the same header, we treat
them as the same loop. We refer to these “merged” natural loops as a single loop. We define
the number of iterations a loop performs as the number of times a path enters its header.
All loops are either disjoint or nested within one another and identified by their headers. As
such, every node has a header, which is the header of the innermost loop it is contained in.
For consistency, we also consider the entire function as a pseudo-loop with the entry node as
the header. Nodes without successors are end nodes and are assumed to return from the
function.

Removing all back edges from the CFG results in an acyclic graph called a forward
control-flow graph (FCFG). We partition the FCFG into loop FCFGs of the subgraphs
containing only nodes whose header is the loop header. This means that for each loop,
we now have a dedicated FCFG. Each node in the graph is only in one FCFG, except the
headers, which reside in the FCFG of their enclosing loop and in the FCFG of the loop for
which they are headers. Exit edges are represented as edges from the header of the inner
loop to the original target node in the outer loop.

4 Constant-Loop Dominance

We consider CFGs with an optional label, const, on the headers of loops. If the label is
present, it means paths through the loop header must visit the header a fixed number of
times before exiting its loop. Otherwise, the number of visits may fluctuate between different
paths. We define the constant-loop dominance relation as follows: A node x constant-loop
dominates a node y (x cldom y) if every path from the entry to y visits x a fixed
number of non-zero times.

Looking at Figure 2, we can see the traditional dominator relation (Dom) and the
constant-loop dominator relations (CLDom) for the given CFG. CLDom is shown with the
loop headed by b being both constant and variable. The most obvious difference is that when
the loop is variable, none of its nodes constant-loop dominate other nodes or themselves. If
the loop is constant, we can see the result is the same except d also constant-loop dominates
e, unlike with traditional dominance. The last iteration of the loop must exit through c,
meaning d is always visited i − 1 times, where i is the max iteration count. Note that
constant-loop dominators behave the same as traditional dominators in the absence of loops.

4.1 Algorithm
Finding traditional dominators on acyclic directed graphs (DAGs) is done by calculating
the dominance for each node in topological order. Using topological order ensures that the
dominance of a node’s predecessors is established before getting their intersection to result
in the dominance of the current node (and remembering to add self-dominance.)
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Algorithm 1 Constant-Loop Dominators.

CLDom(s): ▷ Starting node as input
1: H ← Inner loop headers
2: D ← ∅ ▷ Dominator set for nodes of fcfg(s)
3: ID ← ∅ ▷ Dominator sets for inner loops
4: IED ← ∅ ▷ End-Dominator sets for inner loops
5: for h in H do ▷ Analyze inner loops
6: ID[h], IED[h]← CLDom(h)
7: end for
8: for b | b ∈ topological_sort(fcfg(s)) do ▷ Find dominators
9: P ←

⋂
{D[a] ∪ IED[a] | ∀(a, b) ∈ fcfg(s) ∧ a ∈ H ∧ const(a)} ∩⋂
{D[a] | ∀(a, b) ∈ fcfg(s) ∧ (a /∈ H ∨ ¬const(a))}

10: D[b]←
{

P ∪ b if b /∈ H ∨ const(b)
P otherwise

11: end for
12: for h, v | ∀h ∈ H ∧ ∀v ∈ ID[h] do ▷ Extract dominators from loops

13: D[v]←
{

D[h] ∪ ID[h][v] if const(h)
D[h] otherwise

14: end for
15: L←

⋂
{header_end_dominators(l, D, IED) | ∀(l, s)}

16: E ←
⋂
{header_end_dominators(e, D, IED) | ∀(e, c) ∈ exit_edges(s)}

17: C ← {c | ∀c /∈ exits(s) ∧ ∀e ∈ exits(s) ∧ c ∈ header_end_dominators(e, D, IED)}
18: return D, (L ∩ (E ∪ C)

This traditional algorithm is the basis for our algorithm for finding constant-loop domina-
tors. It can be seen in Algorithm 1 on lines 8-11, where P (the intersection of predecessors)
has been edited for our relation. Instead of operating on the CFG, our algorithm operates on
the FCFG of the start node (fcfg(s)), which is a DAG. Since traditional and constant-loop
dominance are equivalent when there are no loops, they are also equivalent between pairs of
nodes within the same FCFG. This baseline, therefore, finds the correct constant-loop domi-
nance between nodes in the same FCFG. The rest of the algorithm accounts for dominance
between nodes of different loops (nested or in sequence).

In addition to returning the constant-loop dominator sets for each node in the given FCFG,
CLDom returns a second, helper set we will call the end dominators. The set is calculated
on lines 15-18. It represents the set of nodes in the current FCFG that would constant-loop
dominate a hypothetical successor node to the FCFG’s loop – assuming that node did
not have any other predecessors. It is calculated by finding the nodes that constant-loop
dominate all latches (L) and constant-loop dominate all exits (E) or are strictly constant-
loop dominated by all exits (C). The nodes adhering to these requirements are precisely
those that will always be visited a fixed number of times; they either are visited in every
iteration (L ∩ E) or will be skipped in the last iteration only (L ∩ C). The helper function
header_end_dominators does the following: If the given node is in the FCFG (n ∈ fcfg(s)),
the function returns that node’s constant-loop dominators (D[n]). Otherwise, the node must
be in one of the inner loops. header_end_dominators finds the header in the FCFG (h ∈ H)
whose loop contains the node; either directly or in a nested loop. If that header is constant,
it returns the constant-loop dominators of the header and end dominators of that inner loop
(D[h] ∪ IED[h]). Otherwise, it returns the header’s constant-loop dominators alone (D[h]).
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Our algorithm starts by recursing on the headers of inner loops in the FCFG (lines 5-7)
and storing the results for each. During dominator calculation for each FCFG node, we
add the end dominators of any constant headers to their dominator sets before intersecting
with the other predecessors (D[a] ∪ IED[a]). This is what ensures that any constant-loop
dominators are extracted from inner loops into the dominator sets of the current loop’s
nodes. Notice that header_end_dominators serves the same purpose in the end-dominators
calculation.

Lastly, we also need to extract the constant-loop dominators of the nodes of inner loops
into the current dominator set (lines 12-14). We give the loops’ nodes the dominators of the
header in the current dominator set, as those would not have been available in the recursive
call (since fcfg(h) does not contain nodes from outside the loop.) For constant loops, we
also add the dominator sets of each node from their loop’s recursive call (ID[h][v]) so they
are included in the final result. Not doing so for variable loops ensures that nodes within a
variable loop do not dominate anything, not even themselves.

To use CLDom for getting the constant-loop dominators of a function, we call it on the
entry node and ignore the end-dominators result. It will always be empty since functions
have no latches or exits.

4.2 Pseudo-Root Optimization
Single-path code can take advantage of constant-loop dominators to reduce execution times.
The optimization focuses on those blocks that constant-loop dominate all end blocks, which
means they will always be executed the same number of times per function call. We will
refer to these blocks as constant-loop dominant.

As described in Section 3, function-conversion makes functions in single-path code take a
predicate argument to enable or disable their bodies. However, this is not always necessary.
This is most obvious for any single-path root function; a function that is itself single-path
but is called from a non-single-path function (e.g., the main function.) A root function
is guaranteed to be enabled, making the predicate argument unnecessary. The original
single-path implementation recognized this and special-cased root functions not to need
the predicate argument [21]. This reduces the number of instructions needed for predicate
management, which results in reduced execution time.

The optimization of root functions can also be used for other functions. Any function
that we can guarantee is always called enabled can be optimized as if it was a root. Taking
this further, any function called from a constant-loop dominant block can also be optimized.
We can do so because it means we know exactly how many times the function is called from
that point, and function-conversion therefore does not need to account for variations in call
numbers (as there is no variation). The callee in cases like these is called a pseudo-root
since its code generation can be identical to a root’s. Any function called from a root or
pseudo-root in a constant-loop dominant block is also a pseudo-root.

The pseudo-root optimization uses constant-loop dominance to explore the call tree from
the root function(s) and identifies all pseudo-root functions. The single-path transformation
then uses the information to optimize all pseudo-roots to omit the predicate argument. It
also changes all call instructions to pseudo-roots to be predicated, so the functions are not
called when a block is disabled. Note that a function may be called from both a constant-loop
dominant block and one that does not dominate. E.g., it could be called both in the entry
block of a function and within only one side of a branch. In such cases, functions are
duplicated, such that two versions are used: one that takes an additional argument and one
that does not.

WCET 2023



7:8 Constant-Loop Dominators for Single-Path Code Optimization

4.3 Implementation
We extend the open-source work presented in [21] with implementations of the constant-loop
dominance algorithm and the described optimization. Patmos’ compiler is based on the
LLVM compiler framework [15]. Its frontend, called Clang, produces the LLVM intermediate
representation called Bitcode. Bitcode is then compiled by the backend into machine code.
The previous work and our extensions all reside in the backend.

We have implemented our algorithm as a MachineFunctionPass in the LLVM backend.
At this stage, functions are in an intermediate representation close to Patmos machine code.
Our algorithm is run on each function and returns a map from their blocks to the set of
blocks that constant-loop dominate them. Our CFG does not have a const label. Instead,
we provide the algorithm a function that, when given a header, returns whether it should be
treated as constant. It does so by looking at the loop iteration bounds; if they are equal, the
loop must be constant.

Identifying pseudo-roots is done in the SPMark pass of the single-path transformation [21].
We update it so that while identifying functions that will be called from a single-path context,
it also identifies which calls are coming from a constant-loop dominant block and marks the
target functions as pseudo-roots.

The SPReduce pass assigns each instruction its predicate. It also removes predication
from call instructions and provides the additional predicate argument to functions. When it
sees a call instruction in a constant-loop dominant block in a pseudo-root function, it omits
the predicate argument, predicates the call instruction, and targets the pseudo-root version
of the function (instead of the version that takes a predicate argument.)

5 Evaluation

We use a subset of the TACLe benchmark suite [8] to evaluate the effect of enabling the
pseudo-root optimization for single-path code. We only include those programs that compile
and run correctly for single-path code with and without the optimization. We exclude the
duff program, as it has no branching and is fully inlined by the compiler, meaning no
changes are made to it by the single-path transformation. The filterbank program is also
excluded because it is so long-running that the simulator we use to run all the programs,
Pasim, saturates its cycle counter, meaning we do not know what the execution times are.

5.1 Performance
In Figure 3, we show the performance increase (blue bars) of enabling the pseudo-root
optimization ( disabled−enabled

enabled × 100). First, note how 11 programs see no execution time
differences. All these programs – except huff_dec and gsm_dec – only have one function.
This can be seen in the first row of Table 1, where nine programs only have one function with
and without our optimization. The second row shows how many functions were recognized
as pseudo-roots. For all these functions, including huff_dec and gsm_dec, only the root was
recognized as a pseudo-root, meaning there is nothing to optimize.

Enabling the pseudo-root optimization produces wildly different results for the other
programs. In the lower end, cosf sees a small performance decrease. Looking at the third
row of Table 1, we see that many more instructions are used by single-path code with the
optimization (600 → 726). The fourth row also shows an increase in the total number of call
instructions (159 → 181), while the fifth row shows that there are very few calls between
pseudo-roots (8). This must mean the five pseudo-root functions found did not make up
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Figure 3 Performance and code size increase of enabling the pseudo-root optimization for single-
path code.

for the increase in code size from duplicating three of them. On the other hand, we have
the cubic program, which sees a 90 % performance increase. This number is all the more
impressive when we look at Table 1. First, notice that the number of functions increases
from 33 to 47. Notice also that the number of pseudo-roots found was 17 (including the
root). This means that 14 pseudo-roots are also used in a non-pseudo-root context, which
means two copies of each original function must be used. The rest of the functions are either
only used in a pseudo-root context (3) or in a non-pseudo-root context (16). The additional
copies of some functions also translate to an increased total of instructions used for managing
the single-path code (627 → 921) and the number of total call instructions (136 → 215),
with 58 calls being between pseudo-roots. So from where does all that performance come?
The source code shows that the main function is four constant loops nested within each
other. The function cubic_solveCubic is called four times before the loop and once in each
iteration of the inner-most nested loop. Cumulatively, the main function has 879 calls to this
function, all from constant-loop dominant blocks. Therefore, recognizing cubic_solveCubic
exclusively as a pseudo-root likely produces most of this substantial increase in performance.

5.2 Code Size

As we have explained earlier and seen in our results so far, using the pseudo-root optimization
can increase code size. The first source of this increase is the additional copies of functions
used in both pseudo-root contexts and non-pseudo-root contexts. Code size can also be
reduced when functions are exclusively pseudo-roots and therefore need fewer instructions
for managing predicates and calling other pseudo-roots.

We measure the total size of the final executable of each program with and without the
optimization and can see the result in the red bars of Figure 3. We can see that the difference
is negligible for most of the programs that were affected by our optimization. For others,
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Table 1 Compiler statistics for each program using single-path code. For each entry, the pseudo-
root optimization is disabled for the upper number and enabled for the lower. The metrics given are
the total number of functions, the number of pseudo-root (PR) functions, the number of single-path
management instructions, the total number of call instructions, and the number of calls between
pseudo-roots.
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there is a significant increase but none prohibitively so. We can see no correlation between
the increase in performance and code size. E.g., while cubic sees an enormous performance
increase, it only sees a 2.8 % size increase. fmref, on the other hand, sees a 6 % size increase
for a comparatively modest 7.7 % performance increase.

Lastly, we also need to note that the executables we have measured do not exclusively
contain single-path code. They also include all original versions of any single-path function,
any initialization code that eventually calls the benchmark function, and the standard
library. This means the size differences are likely bigger for both increases and decreases in a
real-world, single-path-only scenario.

5.3 Source Access

Patmos and its platform, T-CREST [25], are available as open-source and include the contri-
butions of this paper. The Patmos homepage can be found at http://patmos.compute.dtu.dk/
and provides a link to the Patmos Reference Handbook [26], which includes build instructions.

The T-CREST project repositories can be found at https://github.com/t-crest, with the
repository for the compiler used in this work at https://github.com/t-crest/patmos-llvm-
project (commit hash: 82eb73bff7336674027afecb254f1e3ebd1c23c2).

6 Conclusion

In this paper, we presented the constant-loop dominance relation and how it can be used for
optimizing single-path code. We first defined the relation as a variation of the traditional
dominance where the number of visits to a node must be constant. This takes loop bounds
into account to recognize constant loops. We then presented a recursive algorithm for finding
the constant-loop dominators. It first explores (nested) loops and uses the intermediate
results for the outer loops. We showed how the relation can be used to identify pseudo-root
functions in single-path code. These have the quality of being called a fixed number of times.
We used this property to optimize single-path code to require fewer instructions to manage
predicates and to reduce unnecessary calls. Our evaluation showed sporadic but significant
performance improvements from applying our optimization. While some programs saw no
execution-time differences, others saw an up to 90 % performance increase. We also showed
that the optimizations do affect code size, with executable sizes increasing by up to 6 %.

http://patmos.compute.dtu.dk/
https://github.com/t-crest
https://github.com/t-crest/patmos-llvm-project
https://github.com/t-crest/patmos-llvm-project
https://github.com/t-crest/patmos-llvm-project/tree/82eb73bff7336674027afecb254f1e3ebd1c23c2
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Abstract
There has been a shift towards the software-defined vehicle in the automotive industry in recent
years. In order to enable the correct behaviour of critical as well as non-critical software functions,
like those found in Autonomous Driving/Driver Assistance subsystems, extensive software testing
needs to be performed. The usage of embedded hardware for these tests is either very expensive
or takes a prohibitively long time in relation to the fast development cycles in the industry. To
reduce development bottlenecks, test frameworks executed in cloud environments that leverage
the scalability of the cloud are an essential part of the development process. However, relying on
more performant cloud hardware for the majority of tests means that performance problems will
only become apparent in later development phases when software is deployed to the real target.
However, if the performance relation between executing in the cloud and on the embedded target
can be approximated with sufficient precision, the expressiveness of the executed tests can be
improved. Moreover, as a fully integrated system consists of a large number of software components
that, at any given time, exhibit an unknown mix of best-/average-/worst-case behaviour, it is
critical to know whether the performance relation differs depending on the inputs. In this paper,
we examine the relative performance differences between a physical ARM-based chipset and a
cloud-based ARM-based virtual machine, using a generic benchmark and 2 algorithms representative
of typical automotive workloads, modified to generate best-/average-/worst-case behaviour in a
reproducible and controlled way and assess the performance differences. We determine that the
performance difference factor is between 1.8 and 3.6 for synthetic benchmarks and around 2.0-2.8
for more representative benchmarks. These results indicate that it may be possible to relate cloud
to embedded performance with acceptable precision, especially when workload characterization is
taken into account.
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Keywords and phrases Performance Benchmarking, Performance Factor Stability, Software Develop-
ment, Cloud Computing, WCET
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1 Introduction

In recent years, the task complexity of automotive software has increased, and the quantity
and quality of software has grown proportionally. To put this software complexity into
perspective, a premium car today has more than 100 million object code instructions [6].
The development of this volume of embedded software runs into its own unique challenges.
One such challenge is the need for embedded hardware to be available to the developers.
Since the requirements for the software are formulated according to the embedded chipset,
most performance and functional benchmarks and tests must be executed on the specific
embedded hardware to determine the behaviour of safety-critical real-time systems. Even for
non-safety-critical real-time applications, it is necessary to assess the overall load/latency of
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integrated components. Modern automotive software systems are distributed, with many
software components contributing to the execution time of an algorithm at the same time.
Thus, the overall WCET depends on the performance of multiple different components, yet it
is not necessarily composed of the sum of the WCETs of the separate components. Instead,
execution times are context-dependent, as discussed in [21]. Benchmarks, such as the ones
introduced in this paper, use this context dependency to their advantage by utilizing real-life
use cases to measure and compare performance.

Due to hardware and licensing costs, as well as legal and logistical problems, uninterrupted
access to target hardware is rarely available to every developer. This is a critical issue since
the inability to perform quick verification and tests of the code leads to a decrease in efficiency
and quality. Furthermore, safety requirements require extensive testing of autonomous driving
applications. It is not feasible to execute all those tests on dedicated physical hardware, and
thus, cloud technology could provide a sensible solution to this issue due to its vertical (scale
up/down where changes occur in the resources of a VM/container) and horizontal (scale in/out
that adds/removes VMs/containers) scalability [2]. This is sufficient for functional tests but
not for assessing correctness regarding temporal behaviour. The temporal behaviour can lead
to different functional behaviour, leading to tests not representative of real behaviour [11].

Autonomous driving applications have been tested in the cloud, using simulations, yet
the behaviour has been shown to differ from the track testing, in part due to timing
issues [8]. Hence, testing entirely in the cloud has not been fully providing the required
test coverage. Recently, ARM hardware became available in the cloud [14], bringing it
closer to embedded hardware, which is often ARM-based as well, due to ARM’s energy
efficiency and high performance. This allows more similar timing. However, differences in
the chip implementation, like the micro-architecture and memory subsystem layout, will
lead to performance differences depending on the nature of the workloads running on the
machines [19], [12].

The goal of this paper is to determine first how the performance of the cloud and the
embedded hardware can be related and, secondly, whether a simple factor would be expressive
enough to represent this relation.

To treat performance in the cloud as a reliable indicator of performance on the embedded
hardware, using a performance difference factor(= Perfembedded/PerfV M ), two conditions
need to be met. First, the factor jitter must be relatively low for repeating test executions and
must not be overly affected by timing outliers. Second, the factor must not differ significantly
based on different inputs to the algorithms (e.g., a factor is valid for all cases from the best-
to the worst-case behaviour). Thus, we investigate the stability of relative performance
differences of benchmarks over the entire input range and for different workloads, executed
on a cloud VM (running on dedicated hardware) and on embedded hardware and perform a
root cause analysis of any observed outliers. The environments differ not only in the chip
used but also in the software infrastructure, e.g., the hypervisor present in the cloud and
potential differences in the operating systems. We expect that certain timing outliers exist,
which would need to be taken into account in any future framework that might try to relate
the cloud to embedded performance.

Should a stable factor be identified, two questions can be answered early on in the
development process by analyzing the cloud performance exclusively: Would the set of all
applications that should be hosted together fit into the embedded CPU, or can it already
be foreseen that they are too compute-intensive? How realistic is it that the real-time
applications would meet their end-to-end timing requirements on the embedded hardware?

The rest of the paper is structured as follows: Section 2 provides the relevant background
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information and related work, Section 3 discusses the three benchmarks and the most
important implementation details and input variation of the two representative benchmarks,
Section 4 presents an overview of the benchmarking environment, as well as of the different
benchmark executions and an interpretation of the results, Section 5 provides a final overview
of the results and a summary of the open points.

2 Background and Related work

Modern general-purpose microprocessors on the market differ in features like clock frequency,
cache sizes and structure, core count, memory bandwidth, power consumption, and, in
general, their architecture and micro-architecture. However, these specifications are not
enough to reliably compare performance differences, as CPU performance is highly dependent
on the specific workloads being executed, e.g., a higher clock frequency does not imply a
better performance of the memory subsystem. Additionally, discrepancies in the performance
factor might be caused by differences in the branch prediction algorithms, timing anomalies
in the instruction pipeline, etc.

While considerable research has been done in recent years in relation to predicting new
workloads or CPU/GPU performance (c.f. [20], [1]), it has focused on the average case. Thus,
this paper aims to extend the state of the art by analyzing the performance difference factors
of the best- and worst-case performance. One particular problem is how to reliably stimulate
representative best-, average- and worst-case behaviour of the applications.

Most applications hosted on automotive ECUs are best-case, soft real-time (infotainment),
or firm real-time systems (autonomous driving), and the deployed software is typically a
combination of both. No static WCET analysis is performed due to the overly pessimistic
results, especially on modern multi-core SoCs and the extensive efforts required [18]. The
uncertainty of measurement results over static WCET approaches can be tolerated, as the
non-hard real-time context does not require strict guarantees [21]. A low number of deadline
misses can typically be tolerated in autonomous driving functions (e.g., cruise control).
In this sense, autonomous driving applications are an example of firm real-time systems.
Measurement-based analysis has much lower analysis efforts and leads to less hardware
overprovisioning need, which would lead to prohibitive hardware costs. Therefore, this type
of analysis is useful for the industry use case, where it can speed up development and reduce
costs. However, some low-level causes for timing anomalies, which could lead to unexpected
and hard-to-predict execution time outliers that could make it infeasible to predict the
performance difference, are known and discussed by Lundqvist and Stenstrom in [12], e.g.,
out of order instruction execution causing domino effects. These types of anomalies were
not identified in the performed experiments and are therefore not discussed in further detail.
Other, higher-level anomalies are possible, e.g., preemptions due to real-time throttling
caused by a FIFO scheduler. This is touched upon in Section 4.

3 Benchmark Details

General overview. While selecting benchmarks for the analysis, we focused on software
relevant to the automotive field. Besides that, the main requirement is the ability to control
the best-/average-/worst-case performance by varying the input.

Two algorithms were selected - a pathfinding algorithm (the A* search algorithm) and a
contour detection algorithm. The A* algorithm, or variations of it, is used for path planning
in mapping software. Contour detection algorithms are a vital part of the object extraction
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process, e.g., used for object recognition in autonomous driving.
A third, more generic benchmark was selected - EEMBC CoreMark-PRO. It utilizes a

combination of integer and floating-point workloads and large datasets to stress the entire
processor [7]. Due to these features, it provides a range of performance difference factors
for workloads with isolated processor stress points and hence gives upper/lower bounds for
factors to expect. The two representative algorithmic benchmarks exhibit a more realistic
combination of different stress points.

A* algorithm. The A* algorithm was implemented according to its definition [9].
Our implementation of the algorithm works using Manhattan-style grids, represented as

2D C++ vectors, where each “cell” of the grid corresponds to a vector element. Grids are
generated in the benchmark using a C++ standard library random number generator in
order to block some cells to reduce possible paths and make the search environment more
realistic. Maximum grid size and the seed of the RNG function are configured using input
parameters. Grid generation is not timed; exclusively, the algorithm execution is.

The heuristic functions used to modify the performance of the algorithm are depicted in
Table 1. Worth noting is that inconsistent, yet admissible, heuristics have been shown to
expand arbitrarily more cells than an alternative A*-like algorithm in [4].

Table 1 Heuristic functions used in the A* benchmark and their effects on its performance.

heuristic
function

best-case Euclidean dis-
tance

constant inconsistent

algorithm be-
haviour

uses precalcu-
lated values
for the actual
distance to the
goal cell

calculates the Eu-
clidean distance
to the goal cell

always estim-
ates distance 0
to the goal

randomly estim-
ates the distance
between 0 and
Euclidean distance
to the goal (thus,
admissible)

performance
impact

best case average case,
good estimate,
thus close to
best-case

average case,
bad estimate

worst-case

Contour detection. The contour detection benchmark was implemented following the
OpenCV documentation [16]. In the timed section, the input image is read, converted to
grayscale, binary thresholding is applied, contours are found, and contours are drawn.

Three classes of 5120x2880px input images were selected to trigger the best-/average-
/worst-case performance of the algorithm, depicted in Table 2. An additional fourth set
of worst-case type images was added, with 8k resolution, to analyze the behaviour when
increasing image resolution. Fifteen images of each class are used. The contour approximation
mode and the contour retrieval mode also cause differences in performance [17], [15].

4 Benchmark Executions and Results

4.1 General
Environment. The code for both representative benchmarks is written in C++17 and
compiled using g++ 9.4.0 for Ubuntu. For the contour detection benchmark, OpenCV 4.6.0
is used. It is important to note that the shared object files for the C++ STD and OpenCV
and the binaries for each benchmark are shared between the two platforms to avoid any
performance differences caused by different compiler versions/settings.
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Table 2 Inputs for the contour detection benchmark and their effects on its performance.

image classes
image type solid-color images dashcam pictures of

street traffic
multicolored white noise

algorithm beha-
viour

only image borders are
considered contours

average real-life use case very large number of neigh-
bouring pixels with different
colours => highest possible
number of contours

performance im-
pact

best case average case worst case

contour approximation method
method CHAIN_APPROX_SIMPLE CHAIN_APPROX_NONE
performance im-
pact

removes redundant points: less
memory intensive

all the boundary points are stored:
very memory intensive

contour retrieval mode
mode EXTERNAL LIST CCOMP TREE
performance im-
pact

least compute-
/memory-
intensive

no hierarchy:
less memory-
intensive

2-level hier-
archy: slightly
more memory-
intensive

all hierarchy
levels: most
memory-
/compute-
intensive

For the cloud virtual machine, a standard Microsoft Azure type D2pds v5 was chosen,
which provides an entire physical core for each vCPU. The embedded hardware consists
of a Janicto TDA4VMx&DRA829Vx processor connected to a J721EXCP01EVM common
processor board. The specifications [3], [10] of both are listed in Table 3.

These platforms closely represent a real-world development scenario in the automotive
industry. The embedded CPU is “ARMv8-A”-ISA-based, while the VM utilizes a newer
“ARMv8.2+”-ISA. The cloud CPU also supports a higher clock frequency and a larger cache,
including a 32MB system-level cache, which is not present on the embedded CPU. Thus, it
is to be expected that both the computationally intensive (due to clock frequency) and the
memory-intensive (due to memory and caching model [13]) performance of the VM would be
significantly better.

Due to the fact that the virtual machine utilizes a hypervisor and the different Linux
distributions in use, we are, in reality, not analyzing the performance differences between the
two different ARM chips but the whole stack (OS, hypervisor, hardware). This is acceptable
and even desirable, as it is the environment that would be present in the industry-relevant
use case.

Preliminary analysis. The A* benchmark was configured to execute 10 times for every
heuristic and grid size, and the contour detection benchmark was configured to execute 20
times for every image and contour retrieval/approximation mode. The entire benchmarks
were executed multiple times with little to no variance in the results.

A preliminary analysis was performed to evaluate how stable the execution environment
is. Some potential temporal anomaly sources were identified, like scheduling and background
loads. Therefore, for both the A* and contour detection benchmark executions, it was
investigated whether the CPU affinity or the scheduling algorithm has any effect on the
performance factor. The taskset command was used to assign the CPU affinity to a single
core. The FIFO scheduling algorithm was enabled, once with maximum and once with
above-average priority for the benchmark process. No significant difference in the performance
factor was observed, except for some outliers caused by the FIFO scheduler throttling the OS
and being forced to reschedule due to the priority of the benchmark being maximized. As
these outliers do not occur with the default scheduler and the root cause is known, plots for
these runs are omitted. This indicates that the measurements are highly reproducible, and
there are no apparent external effects that introduce timing anomalies into the applications.

WCET 2023
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4.2 EEMBC CoreMark®-PRO
A run of CoreMark-PRO was performed to observe the behaviour of the performance difference
factor when the CPU is stressed in different ways. The plot in Figure 1 depicts the results.
A short description of the stress point of each workload is presented in the table in Figure 1.
[7] provides more detailed descriptions of each workload. The average performance factor for

(a) CoreMark-PRO benchmark run performance
factor

Workload Stress point
cjpeg-rose7-preset integer, compute-intensive
core integer, compute-/memory intensive
linear_alg-mid-100x100-
sp

floating-point, compute-intensive

lloops-all-mid-10k-sp floating-point, compute-intensive
nnet_test floating-point, compute-intensive
parser-125k integer, memory intensive
radix2-big-64k floating-point, compute-intensive
sha-test integer, compute-intensive
zip-test integer, compute-/memory intensive

(b) CoreMark-PRO workloads

Figure 1 CoreMark-PRO benchmark execution.

CoreMark-PRO workloads varies between 1.8 and 3.6, averaging around 2.52. Of interest are
the 3 outliers as seen in the plot in Figure 1.

The first increase to above a factor of 3 is the workload “lloops-all-mid-10k-sp”. This
workload is part of the floating point suite. It is computationally intensive, as it carries out
different mathematical kernels. The second outlier occurs with the integer-based workload
“parser-125k”, which is created in such a way that the focus of the benchmark is data structure
creation and traversal [7]. Thus, it is memory intensive. The third increase occurs within the
“radix2-big-64k” workload, which is also part of the floating point suite and is computationally
intensive. These results show that different performance relations exist based on the workload
(integer vs floating point and compute- vs memory-intensive).

Since neither the A*, nor the contour detection benchmark is heavy on floating point
computations, that is left as a possible area to explore in the future, using different benchmarks.
On the other hand, both of those create, traverse and delete data structures, which leads
to larger than average for the benchmarks performance difference factors for larger data
structure sizes, similar to the outliers observed in the XML parser benchmark in the CoreMark
suite.

4.3 A* algorithm
The A* algorithm benchmark was executed with 4 different seeds, with every heuristic. For
every seed and grid size, 20 different grids were generated and tested. The same sequence
of grids is generated when using the same seed, so executions using different heuristics use
identical grids.

Only the plots for one of the 4 different seeds are shown, as the performance (factor)
for the other 3 is analogous. Runs for grid sizes above 128 using the best-case heuristic
were omitted, as these take the longest amount of time in the preparation phase, and the
Euclidean distance heuristic behaves analogously due to their very similar runtimes.

Default benchmark executions. As depicted in plot (a) of Figure 2, the performance
difference factor varies between 1.8 and 2.4 for the median of the runs for every combination
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(a) Default execution, max grid size 1024, seed 1422785160

(b) Vector destruction

Figure 2 A* benchmark execution and vector destruction measurements.

of heuristic, seed, and grid size. Two interesting points: First, some outliers with factor 2.7
for grid size 32 can be observed. Second, there is a decrease in the median performance
factor to 1.9 and 1.8, respectively, for grid sizes 128 and 256, for Euclidean distance and
best-case heuristics. Besides those outliers, the performance difference factor appears to be
fairly stable.

Average performance factor outliers for grid sizes 128 and 256. The root cause of the
outlier lies in the overhead of the return of the function. At the start of the function, 3
data structures are allocated. Relevant for this discussion is a 2D standard library vector of
elements of type cell, which is a struct containing 2 integers and 3 doubles. This vector is of
size gridSize ∗ gridSize and is initialized with empty cells.

The cause for the decrease in performance was determined to be the destruction of this
vector by using a complementary benchmark, which calls a function, which allocates a 2D
cells vector of variable size and then returns. Measurements were performed from the point
after the allocation was done to after the function had returned.

In plot (b) of Figure 2, it can be observed that the VM performs consistently worse than
the embedded CPU for vector destruction, with a significant decrease in performance for grid
sizes 128 and 256. We are not able to identify the root cause of this outlying behaviour. This
slowdown of the VM explains the decrease in the average performance for these grid sizes for
the Euclidean distance and best-case heuristics, as these are the fastest heuristics, where
vector destruction takes a larger percentage of the overall execution time of the benchmark
(24.8% and 30% respectively for grid sizes 128 and 256 on the VM). On the other hand, the
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constant and inconsistent heuristics take a longer time to execute, and the vector destruction
takes a smaller percentage of the overall execution time of the benchmark (1% and 0.5%
respectively for constant and inconsistent heuristics, grid size 128 on VM). On the embedded
hardware, the vector deletion takes less than 1.5% of the overall execution time for any
heuristic. This means that there is a 23% to 29% extra execution time for these grid sizes
and heuristics on the VM, which corresponds to the 23% to 29% decrease in the performance
factor.

Performance factor increases for minimum case. To analyse the root cause of the outliers
for grid size 32, it was determined via debugging that these occur during minimum execution
times caused by a specific edge case in the algorithm. In each iteration, the A* algorithm
attempts to determine the neighbouring cell with the shortest path so far and the heuristically
determined shortest remaining path to the goal cell. An edge case exists, where all cells
neighbouring the start cell are blocked. Therefore, the goal is immediately unreachable and no
more iterations can be done, so the algorithm returns, leading to the minimal execution time.
These were determined to be the cases where the performance difference factor increases.

The pattern repeats because every run represented on a single plot uses the same seed to
generate grids, and the heuristic functions are never actually called in these minimum cases,
as all surrounding cells are blocked.

To analyze this behaviour, additional measurements of only the “surrounded” case
were performed, inside and outside the function call, as well as of only the data structure
initializations. Listing 1 depicts the three pairs of measurement points.

As the performance difference factor remains on average 2.2 in all of these measurements,
this points towards caching differences. As the VM has a larger cache and an updated memory
model [13], some differences in caching/memory operations performance are expected. This
is a very probable cause for the increased factor in the minimum case of the default execution.
I.e., in the default runs of the benchmark, many memory operations, which use the cache,
are performed in iterations before the “surrounded” case. This leads to cache misses in
the “surrounded” case. These misses do not occur in the isolated edge case measurements,
as the cache does not get overwritten since every separate iteration only does the vector
initialization with empty data. Thus, a higher performance factor in the “surrounded” cases
during default runs is expected compared to the targeted “surrounded” case runs. The higher
factor is in line with the results from other memory-intensive measurements, as discussed in
e.g., Subsection 4.2 or Subsection 4.4.

4.4 Contour Detection
Default benchmark executions. Plot (a) in Figure 3 shows that the contour detection
benchmark displays a median performance factor of 2.1 to 2.2 for the best- and average-case
inputs. A jitter of about 0.1 is present and can be explained by the differences between the
different pairs of contour retrieval and approximation methods. However, an increase up to a
factor of about 2.6 can be observed for the worst-case input image class. This corresponds to
a 15%-20% increase in the performance factor.

To investigate the increase in performance factor between the average- and worst-case
results, two approaches were used. First, a further set of white noise images with a larger
(7680 × 4320) resolution was introduced to analyze whether the performance factor continues
to increase with increasing image resolution due to e.g., differences in caching/memory
subsystem or the branch prediction algorithm. Second, the separate sections of the contour
detection algorithm were timed to determine specific areas that might explain the difference.
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(a) Default execution with additional 8k worst-case images

(b) Median performance factor of separate sections of contour
detection

Figure 3 Contour detection benchmark executions.

8k images run. It is evident from plot (a) of Figure 3 that the average performance factor
does not continue to increase with increasing image resolution. It stays in the same range of
2.4 to 2.8, as it does for the 5k worst-case images.

A single outlier run using the 8k resolution worst-case images was observed, where the
average performance factor decreased to 2.2 for those images, caused by a slowdown in the
performance on the VM. The slowdown was not reproducible, and therefore, the outlier is
not discussed further.

Timing of separate sections of the algorithm. As can be read from plot (b) of Figure 3,
the binary thresholding section of the algorithm experiences an increase in performance
factor from a stable 2.2 for the best- and average-case input images to 4.5-5 for the worst-case
type images. The factor increases by about 250%. The other slight increase in performance
factor is seen in the image read function, which has an increase in factor of about 0.2, which
corresponds to a 9%-10% increase.

The thresholding function corresponds to about 2% of the complete execution time of
the algorithm, while the reading of the image accounts for about 30% of the overall runtime.
Thus, the increase in performance factor caused by the reading and thresholding comes out
to about 10% total increase in runtime. We attribute these increases to memory model and
caching differences. It should be noted that a 5K image has a size of 14.7MB when loaded
into memory. Respectively, an 8K image has a size of 33.1MB. Both of these do not fit in the
L1 and L2 DCache of either CPU. However, the VM utilizes a so-called system-level cache,
SLC, of size 32MB. This additional caching level likely contributes to the better performance
of the VM for the worst-case image class, as cache misses that would go directly to the main
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memory on the embedded CPU would, in most cases, go to the faster SLC of the cloud
CPU. The worst-case image type induces more memory operations, especially in the binary
thresholding section, where less optimization (e.g., through branch prediction) is possible due
to the random nature of white noise. Thus, the better memory/caching model of the VM
leads to better performance for these image types. The cachegrind tool [5] of the valgrind
suite was used to simulate the different caching behaviour with or without the 32MB SLC
of the VM by setting the last level cache as either 32MB or 1MB. The tool shows a 10%
and 25% lower miss rate with the SLC, respectively, for the worst-case and worst-case-8k
image classes. Cachegrind provides only a basic simulation of the caching behaviour, but the
results appear to support the hypothesis that the 15% to 20% increase in the performance
factor for the worst-case image classes is caused by caching differences. A profiler like perf
that accesses hardware counters is a better choice for more accurate measurements, but the
hypervisor of the cloud VM does not allow perf to read the counters.

5 Conclusion and Outlook

In conclusion, the A* benchmark shows an average factor of 2.045, with a standard deviation
of 0.15. The contour detection benchmark shows an average factor of 2.31, with a standard
deviation of 0.2. Lastly, CoreMark-PRO shows an average factor of 2.52, with a standard
deviation of 0.56. The minimum and maximum factors for each of the benchmarks tend to
move in the same range with some outliers of around 10%.

Overall, values between 1.8 and 3.6 were observed for the performance factor. For every
workload, however, a separate range within this overall range can be observed, meaning that
the factor range depends on the specific workload. The factor is consistent for every specific
input type, i.e., no significant jitter occurs due to, e.g., timing anomalies. The difference
between the average factors of the two representative benchmarks (A* and contour detection),
which exhibit a combination of (integer only) compute- and memory-intensive operations,
is around 13% with no vast outliers. These results indicate that it may be possible to use
a single factor to relate the performance between the cloud VM and the embedded CPU
with 10%-15% accuracy for this type of workload. Characterizing the workload regarding
whether it is integer- or floating-point-intensive and computationally or memory-intensive
could improve the accuracy.

Some deviation of the performance difference factor for a single algorithm is possible due
to different input types causing the algorithm to transition from being compute-bound to
memory-bound, thus changing the processor feature under stress. An example of this is the
difference between the best-/average- and worst-case image type for the contour detection
benchmark, where the worst-case type is more memory-intensive, as described in Section 4.4.

Some interesting topics for further research have also been identified in Section 4. There
is always the possibility to add more benchmarks to increase the coverage of different types
of workloads, stressing different aspects of the CPU. For example, a comprehensive floating
point benchmark and a complex data structure benchmark would be of particular interest.

Another approach would be to investigate whether a similarly stable performance difference
factor is present for GPUs or between x86-based CPUs and ARM-based embedded CPUs.

A topic of interest would be to analyze the stability of the performance of the cloud VM,
as motivated by the single outlier with images of 8K resolution, mentioned in Subsection 4.4.
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A Tables and Listings

Table 3 Benchmarking environment specifications.

Cloud VM Embedded CPU
ARM CPU Ampere Altra 64-Bit Multi-Core

Processor (ARM v8.2+)
64-bit Dual-core Arm Cortex-A72
(ARMv8-A)

Number of cores 2 2
max. clock fre-
quency

3300MHz 2000MHz

L1 cache 64KB DCache, 64KB ICache per
core

32KB DCache, 48KB ICache per
core

L2 cache 1MB per core 1MB shared per dual-core cluster
System-Level
Cache (SLC)

32MB -

RAM 8GiB 3.8GiB(4GiB), 512KB on-chip
SRAM in MAIN domain

Operating Sys-
tem

Ubuntu 20.04.5 LTS, Kernel:
5.15.0-1034-azure

Arago 2021.09 (based on
Yocto Linux), Kernel: 5.10.65-
gdcc6bedb2c

Listing 1 Minimum case measurements pseudo-code
a_star_benchmark ():

benchmark_preparation
time_measurement_start_OUTER
a_star_algorithm_func ():

time_measurement_start_INNER
time_measurement_start_INITS
data structure inits
time_measurement_end_INITS
calculations
time_measurement_end_INNER
return result

time_measurement_end_OUTER
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Abstract
This paper presents EnergyAnalyzer, a code-level static analysis tool for estimating the energy
consumption of embedded software based on statically predictable hardware events. The tool utilises
techniques usually used for worst-case execution time (WCET) analysis together with bespoke
energy models developed for two predictable architectures – the ARM Cortex-M0 and the Gaisler
LEON3 – to perform energy usage analysis. EnergyAnalyzer has been applied in various use
cases, such as selecting candidates for an optimised convolutional neural network, analysing the
energy consumption of a camera pill prototype, and analysing the energy consumption of satellite
communications software. The tool was developed as part of a larger project called TeamPlay,
which aimed to provide a toolchain for developing embedded applications where energy properties
are first-class citizens, allowing the developer to reflect directly on these properties at the source
code level. The analysis capabilities of EnergyAnalyzer are validated across a large number of
benchmarks for the two target architectures and the results show that the statically estimated
energy consumption has, with a few exceptions, less than 1% difference compared to the underlying
empirical energy models which have been validated on real hardware.
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1 Introduction

Safety-critical embedded systems are used in various domains such as transportation,
aerospace, medical devices, and industrial control systems. These systems are designed
to meet certain non-functional requirements, such as timing or energy usage constraints, in
addition to functional requirements. The satisfaction of these non-functional requirements
is essential for the correct operation of the system and the safety of its users. Failure to
meet these requirements can result in catastrophic consequences, such as loss of life or severe
financial losses. Therefore, it is necessary to ensure that these systems are designed and
implemented with reliable guarantees for their non-functional requirements.
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For timing constraints, reliable guarantees can be obtained by using sound timing analysis
methods. Timing analysis is a technique used to analyse the temporal behaviour of a system
and predict the worst-case execution time (WCET) of tasks and other timing properties.
Accurately determining a bound for the WCET of a task is essential for ensuring that a
system meets its timing constraints and avoiding potential hazards.

Energy consumption is another crucial non-functional requirement for embedded systems.
Energy usage constraints are becoming more and more important due to the increasing use
of battery-powered and energy-constrained devices. Moreover, reducing energy consumption
can increase the lifetime of the device and reduce its operating costs. However, ensuring that
a system meets its energy usage constraints is a challenging task, as energy consumption is
highly dependent on the system’s workload, input data, and hardware characteristics. In
contrast to timing analysis, which has a well-established theoretical foundation, creating an
energy model that yields safe yet tight bounds for energy consumption is almost impossible.
There are two primary reasons for this. First, energy consumption is measured in physical
units (Joule), whereas processor cycles are a logical unit of time. Moreover, the amount
of energy consumed by a processor is highly specific to the actual device. Two processors
from the same production batch may already show a small difference in energy consumption.
Additionally, the amount of energy consumed by one and the same processor may increase over
time as the silicon degrades [11]. While this is true for timing as well, as the clock frequency
may differ slightly from processor to processor, there is an easy mitigation: The logical unit
of time (processor cycles) can be converted to the physical unit of time by multiplying with
the interval of clock frequencies. Second, the actual amount of energy consumed depends on
the switching activity in the processor, which is highly data-dependent. Thus, creating an
energy model requires measuring all possible input combinations for each instruction, which
is usually not feasible [16]. To address these limitations, several research works proposed
using empirical methods to characterise energy models. For example, Georgiou et al. [9]
suggest using pseudo-randomly created data to characterise an Instruction Set Architecture
(ISA) energy model. This approach reduces the number of input combinations needed to
create the energy model and allows for faster evaluation of the model.

In recent years, researchers have proposed using event counters to create more accurate
energy models for predictable architectures. Event counters are hardware components that
count the number of times certain events occur during execution, such as instructions executed
or cache misses. By using event counters to create an energy model, the model can accurately
capture the energy consumption of a more diverse set of programs. Furthermore, event
counters are available on many modern processors, which makes the proposed energy models
more accessible to developers. Pallister et al. [23] proposed an event counter-based method
for data-dependent energy modelling, which is a more accurate way of modelling energy
consumption for systems that process variable data sets. The proposed method identifies the
relationship between the input data and the processor’s energy consumption and uses this
relationship to create an energy model. The authors evaluated their method on two different
processors and found that it provided more accurate predictions of energy consumption than
previous methods.

This paper presents EnergyAnalyzer, a novel tool for static energy consumption analysis.
It incorporates accurate energy models [19, 20] for two specific architectures: the Gaisler
LEON3 microprocessor [3], a radiation-tolerant microprocessor commonly used in the space
communications sector, and the ARM Cortex-M0 microcontroller [1], known for its ultra-low
power capabilities. Main contribution of this paper is the utilisation of standard techniques
from WCET analysis for static worst-case energy consumption (WCEC) analysis. The
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microarchitectural analysis statically predicts the progression of performance counter values
which are used as input for the aforementioned energy models. When validated against model
predictions using real-time samples, the static analysis shows <1% difference in estimated
energy for the vast majority of tested benchmarks.

2 Related Work

Several studies have attempted to construct worst-case energy models capable of capturing the
WCEC at the ISA level [13, 32]. In Jayaseelan et al. [13], the authors bound the WCEC on a
simulated processor by maximizing the switching activity factor for each simulated component
to obtain a WCEC cost for each ISA instruction. Although this method retrieves the WCEC
for all the ISA instructions, it could result in significant overestimation because the absolute
worst-case on the hardware simulation used for the energy model’s characterization phase
might be infeasible to be triggered by any program on the actual hardware implementation
of the same architecture. Additionally, the approach is not feasible on physical hardware
because there is no practical way of maximizing the switching activity on hardware. To
construct an equivalent ISA energy model for a fabricated processor, one would need to
exhaustively search all combinations of valid data for the operands of an instruction, making
it infeasible in most cases due to the huge space of possible input data combinations for each
ISA instruction. Wägemann et al. [32] constructed an energy model capable of capturing
the WCEC. The specifics of the model’s characterization are presented in [28]. Nevertheless,
they tested this energy model on a benchmark and admitted that such an absolute energy
model could lead to significant overestimations, making the retrieved energy consumption
bounds less useful.

Ideally, data-sensitive energy models would be created to capture the energy cost of
executing an instruction based on the circuit switching activity caused by the operands
used. Such models can potentially capture the WCEC of a program without overestimation.
However, recent work has demonstrated that finding the data that triggers the WCEC is an
NP-hard problem and that no practical method can approximate tight energy consumption
upper bounds within any level of confidence [16]. Therefore, Georgiou et al. [9] suggested
using pseudo-randomly created data to characterise an ISA energy model, as their empirical
evidence showed that such models tend to be close to the actual worst case. Although this
approach is expected to yield loose upper-bound energy consumption estimations, their
experimental results showed a low level of underestimation of the WCEC (less than 4%) for
the programs tested. Such estimations can still provide valuable guidance to the application
programmer to compare coding styles or algorithms in terms of resource consumption.
Design decisions can be made based on empirical investigations to determine the level of
over-provisioning that ensures the required level of dependability for the given application.

3 Tool Overview

Over the last several years, a more or less standard architecture for static timing-analysis
tools has emerged [34, 12, 6, 30], which is also implemented in AbsInt’s WCET analyser aiT.
One can distinguish four major building blocks:
1. The decoder translates the executable to an internal form that is used by the other parts

(value analysis, microarchitectural analysis, etc). Architecture specific patterns decide
whether an instruction is a call, branch, return, or just an ordinary instruction. This
knowledge is used to form the basic blocks of the control-flow graph (CFG). Then, the
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control-flow between the basic blocks is reconstructed. In most cases, this is done com-
pletely automatically. However, if a target of a call or branch cannot be statically resolved,
then the user needs to write some annotations to guide the control-flow reconstruction.

2. Afterwards, the value analysis determines safe approximations of the values of processor
registers and memory cells for every program point and execution context. These
approximations are used to determine bounds on the iteration numbers of loops and
information about the addresses of memory accesses. Value analysis information is also
used to identify conditions that are always true or always false. Such knowledge is used
to infer that certain program parts are never executed and therefore do not contribute to
the worst-case resource consumption. Value analysis is again architecture-dependent.

3. The microarchitectural analysis then determines upper bounds for the execution times
of basic blocks by performing an abstract interpretation of the program execution on
the particular architecture, taking into account its pipeline, caches, memory buses, and
attached peripheral devices. The microarchitectural analysis is even more architecture-
dependent than the decoder and value analysis, as the specification of the ISA alone
does not suffice to create an abstract model of the hardware’s timing behaviour, but
the particular specifics of a particular processor implementing this specification must be
taken into account (e.g., cache size, buffers, pre-fetching, etc). The microarchitectural
analysis is usually a composition of both pipeline and cache analysis.

4. Using the results of the preceding analysis phases, the path analysis phase searches for
the worst-case execution path. The analysis translates the control-flow graph with the
basic block timing bounds determined by the microarchitectural analysis and the loop
bounds derived by the value analysis into an Integer Linear Program (ILP). The solution
of the ILP yields a worst-case path together with a safe upper bound of the WCET. Path
analysis is generic, i.e., does not depend on the target architecture.

The structure of EnergyAnalyzer is similar to the structure of aiT. In fact, both tools share
most components. In particular, they both use the same decoder for CFG reconstruction
and the same value, loop, control-flow, and path analyses. Only the microarchitectural
analysis differs. aiT uses a microarchitectural timing model to derive safe upper bounds of
the WCET for each instruction. In contrast, EnergyAnalyzer’s microarchitectural analysis
computes worst-case performance counter values for each basic block, which are used as
input values for the microarchitectural energy models presented in Section 4. While the
input values for the energy models are conservatively predicted, the model itself does not
give a worst-case guarantee. During path analysis, worst-case execution frequencies of basic
blocks are combined with approximate energy model results to produce a tight estimate of
the worst-case energy behaviour which is not necessarily an upper bound.

4 Microarchitectural Energy Analysis

A key component of EnergyAnalyzer is the underlying use of accurate energy models
for the target microarchitectures. Based on previous research experience, a hardware
event-based methodology was utilised to generate and evaluate the models [18, 17]. Such
techniques are well established and provide high prediction accuracy for both CPU and full
system modelling. In their research, Rodrigues et al. [25] conducted a systematic review
of Performance Monitoring Unit (PMU) events also referred to as Performance Monitoring
Counters (PMCs) commonly used in modern microprocessors. They showed the effectiveness
of these events in characterising and modelling dynamic power consumption. Several other
studies have also explored accurate power modelling [21, 24, 33, 27, 17].
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The PMC-based energy consumption estimation models were obtained via Ordinary Least
Squares [14] linear regression analysis, where coefficients, βx, are determined for each counter,
Cx, to predict the overall energy cost, i.e., E =

∑
x(βx × Cx) + α, with α being the residual

error term and x being the event that is tracked by the performance counter. The coefficients
βx are the constants in the energy model that are program independent while the counters
Cx are the variables that depend on the program and its input. For a specific program with
known counter values, the energy model can be used to estimate the energy consumed during
the program’s execution.

For static-analysis-based energy consumption estimation, the overall energy consumption
estimate of a piece of code is typically constructed from the estimates of the ISA basic blocks
of the program. Thus, a PMC-based energy model can enable energy consumption estimation
via static analysis only if the counters used for the modelling and prediction can be statically
predicted at the ISA basic block level. The microarchitectural analysis of EnergyAnalyzer
models the parts of the pipeline that have an effect on the performance counters. For example,
the decode unit tracks the number of executed instructions of each type, and the load/store
unit tracks the number of read and write accesses to each memory that is covered by a
performance counter. Thus, for each instruction in the CFG, the microarchitectural analysis
predicts an upper bound for the increase of the various performance counter values. These
values are summed up for the basic blocks and then used as input for the energy model. In
order to make the model scalable for block-level static analysis, we enforced a residual α = 0.
This means that at time 0 the energy predicted is also 0J. We have also used a Non-Negative
Least Squares (NNLS) solver to guarantee positive weights for all the events in the final
energy model, thus always guaranteeing predictable positive energy consumption values
from the model at discrete time slices [15]. We apply the energy model on the worst-case
performance counter values for each block.

The accuracy of the model has been evaluated by using PMC data from a test set with the
generated model equations. The measured power or energy values are then compared to the
estimations obtained from the model. The percentage difference or mean absolute percentage
error (MAPE) between them can be used as an objective metric to quantify model accuracy.
Several different models for each platform were identified and the best performing ones were
integrated into EnergyAnalyzer. Additional details on model generation and validation
techniques used for both target platforms can be found in the accompanying papers [20, 19].

4.1 ARM Cortex-M0 Setup and Energy Model
The target platform on which the Cortex-M0 models were developed and validated is the
STM32F0-Discovery board, which features the STM32F051 microprocessor [29]. The platform
does not feature an on-chip PMU. Thus, a special methodology was developed to obtain the
necessary PMC information, using an extended version of the Thumbulator instruction set
simulator [7]. The target platform allows ten different configurations, depending on CPU
frequency, wait states for flash memory access, and whether instruction pre-fetch is enabled
or not.

We selected the energy consumption model of the ARM Cortex-M0 below for integration
into EnergyAnalyzer. It uses six statically predictable PMCs, and the resulting energy
estimation is measured in nJ. The model offers an estimation error to physical measurements,
calculated as Mean Absolute Percentage Error (MAPE), of 2.8%, for all the data points used
for training and validation. Further details on how the energy analysis models have been
generated including a breakdown of the available hardware configurations and associated
model weights and performance are presented in Nikov et al. [19].

WCET 2023
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ECortex-M0 = 0.972565030 × Cexecuted instructions without multiplications

+ 0.652871770 × CRAM data reads

+ 1.031341343 × CRAM writes

+ 1.037625441 × CFlash data reads

+ 1.354953706 × Ctaken branches

+ 2.274650563 × Cmultiplication instructions

The microarchitectural analysis uses the address intervals computed by the value analysis
phase to determine whether a memory read targets the RAM or the Flash memory (or
possibly both). The number of load and store operations, as well as the number of taken
branches, are predicted by analysing the flow of an instruction through the processor pipeline.
There, the type of an instruction is also taken into account.

4.2 Gaisler LEON3 Setup and Energy Model

The LEON3 energy models were trained and validated on the GR712RC evaluation board [2].
Similarly to the STM32F0-Discovery board, this platform also does not feature a PMU. In
order to get the PMC measurements for the models, a new, dual-platform approach using
a Kintex UltraScale FPGA board was developed. The programmable platform was loaded
with a synthesised version of the LEON3 coupled together with the LEON3 Statistics Unit
(L3STAT [4]). The results were synchronised with physical sensor measurements from the
GR712RC platform to obtain the complete data set for model generation and validation.
More details on the platform setup, methodology, and estimation results are presented in
Nikov et al. [20].

The models presented in that paper describe fine-grained power models which are trained
and validated on all available samples. The models integrated into EnergyAnalyzer use the
same methodology, but with one key difference: the samples in the data set are aggregated
for each benchmark to create code-block-sized models, making them more coarse-grained
and the NNLS solver is used to generate positive model weights. Since average power models
would not be very helpful for this purpose, total energy consumption is used instead.

L3STAT provides several performance counters that are useful for modelling the energy
consumption [5]. However, not all of them are statically predictable. Those that can be
statically predicted by EnergyAnalyzer with high accuracy are shown in Table 1. Whether a
memory access results in a possible cache miss is predicted by the cache analysis that is part
of the microarchitectural analysis. The type of instructions and consequently, the update
of the respective counters, are tracked in the pipeline analysis. The following energy model
based on the ISA+Cache subset has been selected for integration into EnergyAnalyzer using
the methodology shown in Appendix A. It has a MAPE of <8.3% compared to physical
measurements and provides energy estimations in J:

ELEON3 = 3.93365 × 10−08 × Cinteger instructions

+ 1.87111 × 10−07 × Cstore instructions
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Table 1 ISA+Cache subset of PMCs.

# Counter Description # Counter Description

C1 ICMISS instruction cache misses C13 TYPE2 type 2 instructions
C3 DCMISS data cache misses C14 LDST load and store instructions
C7 IINST integer instructions C15 LOAD load instructions

C11 BRANCH branch instructions C16 STORE store instructions
C12 CALL call instructions

5 Evaluation

We integrated the energy models from Section 4 into EnergyAnalyzer for ARM Cortex-M0
and EnergyAnalyzer for LEON3, respectively. We evaluated the integration with the help
of the BEEBS benchmark suite [22]. The goal of the evaluation is to determine how close
the statically estimated energy consumption for a given workload is to the model estimation.
Not all of the BEEBS benchmarks exercise the worst-case path through the program during
execution. Thus, a comparison of the results of the analysis and the actual measurements
would compare in two orthogonal dimensions. First, it would compare the tightness of the
model with respect to the actual hardware measurements. Second, it would compare the
exercised path with the worst-case path. In order to fix the comparison to one degree of
freedom, we compared the energy estimates obtained from static analysis and those obtained
from the energy model based on the actual PMC measurements from the platforms. The
tightness of the models has already been demonstrated in Section 4.

In contrast to the safety-critical embedded hard real-time software that is usually analysed
with aiT, the BEEBS benchmarks also contain dynamic memory management using malloc
and free. We did not analyse these benchmarks because the manual annotation effort to
get tight results would be too high. Some of the benchmarks contain computed calls via
function pointers that cannot be resolved automatically. In this case we manually annotated
the call targets. Moreover, we specified constant data in some cases.

For the LEON3, only a subset of the BEEBS benchmarks has been measured on the
hardware setup, because the execution time of some of the benchmarks is too low to
synchronise the FPGA and the ASIC (see Section 4 and accompanying paper [20]).

5.1 EnergyAnalyzer for ARM Cortex-M0

For some benchmarks, the static analysis was not able to derive all loop bounds automatically.
In this case, we used Thumbulator to derive flow constraints for the ILP-based path analysis.
However, the benchmark might not exercise the worst-case path, and thus, using the simulation
trace might not result in the worst-case amount of loop iterations for each loop in the program.
For one of the benchmarks – wikisort – the simulation with Thumbulator fails because the
binary allocated only 4096 bytes of stack, but one routine already needed 4520 bytes of stack.
This causes a stack overflow. Hence, some function pointer variables are overwritten, and
the benchmark cannot be executed correctly. We thus excluded the benchmark from the
evaluation. Two of the benchmarks – qsort and select – contain out-of-bounds accesses.

Table 2 shows the results of the evaluation of EnergyAnalyzer for ARM Cortex-M0. For
43 benchmarks, the difference between the model and the static analysis is less than one
percent, i.e., the execution path exercised during the simulator run is the worst-case path.
Note that the analysis results include the energy consumption of the execution of the main
routine, which is not included in the simulator result, which only contains the path between
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the start trigger and the stop trigger. However, the contribution of this overhead is less
than one mJ and hence, negligible. For the other benchmarks, the static analysis selected
different paths as worst-case execution paths. The maximal observed difference between
the simulator run and the static analysis is 109% for benchmark nsichneu, which models a
state machine with many different execution paths, and the static analysis was not able to
prune infeasible paths. Since the path analysis is a worst-case analysis, it maximises over the
possible execution paths. Hence, the path analysis selects the worst-case combination which
differs significantly from the simulated execution path.

EnergyAnalyzer allows to trade performance for precision by specifying how many calling
and loop contexts should be distinguished during analysis. We used this feature to increase
the analysis precision. The analysis of most benchmarks takes less than four minutes to
complete, with the exception of five benchmarks (rijndael, cubic, sqrt, nbody, picojpeg), which
took between 4 and 59 minutes.

Table 2 Evaluation of the integration of the energy model for the ARM Cortex-M0 into static
energy consumption analysis. For most benchmarks, the difference between the model and the static
analysis is less than one percent, i.e., the execution path exercised during the simulator run is the
worst-case path. For the other benchmarks, the simulated execution path and the path found by the
worst-case path analysis differ significantly.

Benchmark Analysis Result Model Result ∆ Note

aha-compress 78.885 mJ 78.828 mJ < 1 %
aha-mont64 99.396 mJ 99.396 mJ < 1 %
bubblesort 366.763 mJ 366.762 mJ < 1 %

cnt 42.813 mJ 42.804 mJ < 1 %
compress 27.895 mJ 27.895 mJ < 1 %

crc 9.623 mJ 9.623 mJ < 1 %
cubic 7.801 J 4.138 J 89 % flow constraints
duff 4.349 mJ 4.349 mJ < 1 %
edn 302.762 mJ 302.762 mJ < 1 %

expint 43.315 mJ 43.315 mJ < 1 %
fac 2.934 mJ 2.904 mJ 1 %

fasta 29.383 J 21.100 J 39 % flow constraints
fdct 12.292 mJ 12.292 mJ < 1 %

fibcall 1.493 mJ 1.493 mJ < 1 %
fir 1.994 J 1.994 J < 1 %

frac 1.183 J 1.183 J < 1 %
insertsort 3.089 mJ 3.089 mJ < 1 %

janne_complex 1.402 mJ 1.402 mJ < 1 %
jfdctint 31.481 mJ 31.476 mJ < 1 %
lcdnum 886.941 uJ 805.000 mJ 10 %

levenshtein 400.926 mJ 400.926 mJ < 1 %
ludcmp 174.559 mJ 174.559 mJ < 1 %

matmult-float 1.537 J 1.537 J < 1 %
matmult-int 842.724 mJ 842.649 mJ < 1 %

minver 131.316 mJ 84.348 mJ 56 % flow constraints
nbody 25.844 J 25.844 J < 1 %
ndes 293.387 mJ 293.297 mJ < 1 %

Benchmark Analysis Result Model Result ∆ Note

nettle-arcfour 105.880 mJ 105.880 mJ < 1 %
nettle-cast128 23.214 mJ 23.211 mJ < 1 %

nettle-des 22.595 mJ 22.595 mJ < 1 %
nettle-md5 5.467 mJ 5.467 mJ < 1 %

nettle-sha256 50.507 mJ 50.507 mJ < 1 %
newlib-exp 70.439 mJ 70.439 mJ < 1 %
newlib-log 52.954 mJ 52.954 mJ < 1 %
newlib-sqrt 10.289 mJ 10.289 mJ < 1 %

nsichneu 61.017 mJ 29.185 mJ 109 %
picojpeg 4.885 J 4.885 J < 1 %

prime 209.663 mJ 209.663 mJ < 1 %
qsort 27.294 mJ 20.408 mJ 34 % flow constraints
qurt 139.891 mJ 139.890 mJ < 1 %

rijndael 7.176 J 7.042 J 2 %
sglib-arraybinsearch 76.596 mJ 76.596 mJ < 1 %
sglib-arrayheapsort 86.857 mJ 86.857 mJ < 1 %
sglib-arrayquicksort 65.600 mJ 65.600 mJ < 1 %

sglib-queue 126.250 mJ 126.250 mJ < 1 %
slre 206.734 mJ 206.734 mJ < 1 %
sqrt 11.529 J 11.529 J < 1 %
st 4.142 J 2.945 J 41 % flow constraints

statemate 13.331 mJ 9.308 mJ 43 %
stb_perlin 5.145 J 5.145 J < 1 %

stringsearch1 46.362 mJ 46.362 mJ < 1 %
strstr 5.480 mJ 5.480 mJ < 1 %

trio-snprintf 105.378 mJ 65.427 mJ 61 % flow constraints
trio-sscanf 139.345 mJ 71.618 mJ 95 % flow constraints

ud 21.863 mJ 21.862 mJ < 1 %
whetstone 22.533 J 16.687 J 35 % flow constraints

5.2 EnergyAnalyzer for LEON3
Some of the BEEBS benchmarks contain floating-point computations. However, since the
FPGA implementation of the LEON3 was built without a FPU, the benchmarks cannot use
floating-point instructions but must use a software library that emulates these floating-point
computations. One of the benchmarks – minver – computes a matrix multiplication using
floating-point numbers, where one of the matrices is never initialised. Thus, the analysis has
no knowledge about the possible floating-point values and the actual execution on the CPU
will process random values, depending on what was stored in the respective memory cells.
We performed both the standard worst-case analysis for this benchmark and an analysis
where we assumed that the computations only process normalised IEEE 754 floating-point
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numbers and zero. This reflects the “flush to zero” option present in many architectures.
The computed energy consumption estimate is then cut in half, which shows that enabling
“flush to zero” in software floating-point computations can save a lot of energy.

The LEON3 implements the SPARCv8 ISA, which uses register windows for fast context
switches, and for providing hardware support for the call stack. However, the number of
register windows is limited. The particular LEON3 model used for our experiments, available
on the GR712RC board and its FPGA equivalent, has eight register windows. Due to the
overlapping nature of the register windows, and their use as a ring buffer, only seven are
usable. Hence, in case a program needs more than seven register windows, the processor
triggers software traps to handle the register window overflow (and underflow). This happens
for two of the benchmarks – picojpeg and slre. Hence, the processor needs to execute trap
functions when it detects a register window overflow or a register window underflow. This
causes additional energy consumption which must be taken into account during a system-level
energy analysis.

Table 3 shows the results of the evaluation of EnergyAnalyzer for LEON3. The analysis
of most benchmarks takes less than four minutes to complete, but for three benchmarks –
matmult-float, nbody, and picojpeg – the analysis duration was 50 minutes, 45 minutes, and
24 minutes, respectively.

Table 3 Evaluation of the integration of the ISA+Cache energy model for the LEON3 into static
energy consumption analysis. For minver, the measured execution path and the path found by the
worst-case path analysis differ significantly (see text). The costs of traps are not included in the
microarchitectural analysis (see text).

Benchmark Analysis Result Model Result ∆ Note

aha-compress 11.004 J 11.004 J 0 %
aha-mont64 7.499 J 7.491 J < 1 %
bubblesort 3.898 J 3.889 J < 1 %

edn 39.186 J 39.186 J 0 %
fir 159.469 J 159.469 J 0 %

frac 59.391 J 59.339 J < 1 %
levenshtein 25.506 J 25.491 J < 1 %

ludcmp 10.992 J 10.814 J 2 %
matmult-float 2.847 J 2.822 J 1 %

minver 14.372 J 4.643 J 210 % worst-case
minver 7.398 J 4.643 J 59 % assumptions
nbody 4.512 J 4.496 J < 1 %
ndes 24.828 J 24.467 J 1 %

Benchmark Analysis Result Model Result ∆ Note

nettle-aes 19.401 J 19.389 J < 1 %
nettle-arcfour 9.644 J 9.639 J < 1 %
nettle-sha256 2.763 J 2.754 J < 1 %
newlib-exp 4.374 J 4.319 J 1 %
newlib-log 3.284 J 3.252 J 1 %
picojpeg 503.732 J 503.918 J < -1 % traps

prime 3.670 J 3.667 J < 1 %
qurt 8.001 J 7.958 J 1 %

sglib-arraybinsearch 6.283 J 6.281 J < 1 %
sglib-arrayheapsort 13.066 J 13.062 J < 1 %
sglib-arrayquicksort 13.066 J 13.052 J < 1 %

sglib-queue 13.901 J 13.900 J < 1 %
slre 14.988 J 15.261 J -2 % traps

6 Integration into TeamPlay Toolchain and Case Studies

EnergyAnalyzer for ARM Cortex-M0 and EnergyAnalyzer for LEON3 can be used as stan-
dalone tools to estimate the energy consumption of embedded software. They provide a
rich and user-friendly graphical user interface to ease the analysis process. However, they
have been developed during the TeamPlay project as part of a larger toolchain where they
enable multi-criteria optimisation in a compiler, contract-based programming, and energy-
aware scheduling. In the following, we present the integration of EnergyAnalyzer into the
WCET-aware C compiler WCC [8].

The mechanisms implemented to integrate EnergyAnalyzer within WCC mirror the mech-
anisms in place to perform WCET analysis using AbsInt’s WCET analyser aiT. XTC files
[10] are used to call aiT and EnergyAnalyzer in batch mode (i.e., without graphical user
interface). An XTC file specifies the binary to be analysed, the entry point, the path to an
annotation file which contains details about the target architecture configuration as well as
user-provided annotations like flow facts, and the path to an XML report file. This XML
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output file is then parsed by WCC after invocation of EnergyAnalyzer to extract the analysis
results and import them into WCC’s Low-Level IR at function and basic block level. This
attached energy data can further be exploited by WCC to perform various compiler-level
energy-aware optimisations, and thus, establishing a smooth flow between compiler-level
energy analysis and optimisation. WCC supports source-level flow facts utilising ANSI C
pragmas. A user can annotate their code with loop bounds, recursion depths, and execution
frequency of an instruction relative to some other instruction. These source-level pragmas
are translated within WCC into AIS2 annotations for aiT and EnergyAnalyzer.

EnergyAnalyzer has been applied to several use cases in the course of the TeamPlay
project. First, it has been used to select candidates from a set of implementations of compute
elements for an optimised convolutional neural network (CNN). Acting as an evaluation guide,
it helped decide which optimisations should be considered for the final CNN implementation
and which showed unacceptable energy consumption and should not be used. Second, it has
been used to analyse the energy consumption of a camera pill prototype. The addition of an
encryption algorithm showed a significant impact on the energy consumption of the camera
pill that also varied depending on the type of encryption algorithm, with SPECK being an
order of magnitude more energy efficient than AES and PRESENT. EnergyAnalyzer closely
predicted the actual energy usage that was physically measured on the system with prediction
relative errors ranging from 1% to 5%, depending on the encryption algorithm evaluated, and
thus is a viable method for estimating energy consumption of a system such as the camera
pill. Third, EnergyAnalyzer has been used to analyse the energy consumption of a piece of
satellite software. One of the main challenges of the space industry is power consumption,
as spacecrafts usually have limited access to power sources. EnergyAnalyzer proved to be
a useful tool thanks to its support of the LEON3 on the GR712RC platform, which is the
most common processor ASIC used by European space companies. The results showed a
precise prediction of the energy consumption for the different binaries, with <1% estimation
error compared with physical measurements for the final optimised version compiled with
WCC. Another interesting feature of EnergyAnalyzer was the result visualisation using call
and control-flow graphs, showing the energy consumption for each of the functions inside the
binary which could be used not only for predicting and minimising energy consumption but
also for qualifying code for space.

More details on the integration of EnergyAnalyzer in the TeamPlay toolchain and the
use cases on which the toolchain has been applied are presented in Rouxel et al. [26].

7 Conclusion

This paper presents our work on static energy consumption analysis for embedded systems.
We created energy models for two predictable architectures: the ARM Cortex-M0 and the
Gaisler LEON3, both achieving estimation errors of less than 10% when validated against our
two target hardware platforms. Both models are based on hardware event counters, which
can be predicted by static analysis. The models are integrated into EnergyAnalyzer, a novel
tool for code-level static energy consumption analysis. Our evaluation results show a good
accuracy of the energy consumption analysis. The tool provides a user-friendly graphical
interface to analyse energy consumption at different levels of granularity, from the entire
program to individual functions and basic blocks. EnergyAnalyzer is part of the TeamPlay
toolchain [26], where it enables multi-criteria code optimisation during compilation.

We demonstrated the usefulness of our tools in several case studies including a camera-
pill designed for medical diagnosis and a space communications platform. In each case,
the tool provided precise predictions of the energy consumption and helped to identify
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energy bottlenecks. In conclusion, our work provides a useful approach to analyse energy
consumption in embedded systems. A potential avenue for extension is to include peripheral
energy consumption for system-level analysis [31]. We believe that our approach can help
to design more energy-efficient embedded systems and applications, which is a crucial step
towards sustainable development.
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A LEON3 Energy Model Selection

Table 4 All supported PMCs by
EnergyAnalyzer.

# Counter # Counter # Counter

C0 TIME C5 WBHOLD C14 LDST
C1 ICMISS C7 IINST C15 LOAD
C2 ICHOLD C11 BRANCH C16 STORE
C3 DCMISS C12 CALL
C4 DCHOLD C13 TYPE2

Table 5 Coarse-grained Model Results for the Gaisler
GR712RC platform.

Model Expression MAPE[%]
Train Test

Energy [J]
All Supported
All Events

E = 0.155261 + 2.94155e-08 × C0

+2.5661e-09 × C2 + 9.93453e-09 × C5

+8.97535e-10 × C12 + 3.21255e-09 × C13

+6.14384e-09 × C15 + 4.54827e-08 × C16

1.14 0.29

Energy [J]
All Supported
Bottom-Up

E = 0 + 3.19557e-08 × C0

+5.79224e-08 × C16
1.20 1.38

Energy [J]
All Supported
Top-Down

E = 0.131077 + 3.13122e-08 × C0

+9.17778e-09 × C5 + 2.99043e-09 × C15

+3.92999e-08 × C16

1.02 1.54

Energy [J]
All Supported
Full-Exhaustive

E = 0.131087 + 3.13122e-08 × C0

+9.17779e-09 × C5 + 2.99043e-09 × C14

+3.63095e-08 × C16

1.02 1.54

Energy [J]
IsaCache
All Events

E = 0 + 1.18567e-06 × C3

+5.9072e-07 × C12 + 3.88949e-08 × C13

+8.03337e-08 × C14 + 6.89885e-08 × C16

8.38 24.03

Energy [J]
IsaCache
Bottom-Up

E = 0 + 3.93365e-08 × C7

+1.87111e-07 × C16
5.84 8.24

Energy [J]
IsaCache
Top-Down

E = 0 + 3.93365e-08 × C7

+1.87111e-07 × C16
5.84 8.24

Energy [J]
IsaCache
Full-Exhaustive

E = 0 + 3.93365e-08 × C7

+1.87111e-07 × C16
5.84 8.24

We have chosen the ISA+Cache subset of PMCs shown in Table 1 because these events
can be statically predicted with highest accuracy. However, there are more events that
are statically predictable. A list of all the supported PMCs can be found in Table 4, with
further information available in the L3STAT User Manual [4]. Separate models are generated
using each of the PMC subsets. In addition to using the bottom-up and top-down search
algorithms, detailed in [20], the relatively small PMC sets also allow for a full-exhaustive
search to be used. The resulting models are then compared against a model that uses all
available PMCs. Table 5 presents the results of the coarse-grained model generation and

WCET 2023

https://doi.org/10.4230/LIPIcs.ECRTS.2018.24
https://doi.org/10.1109/ECRTS.2015.17
https://doi.org/10.5258/SOTON/393673
https://doi.org/10.1145/1347375.1347389


9:14 EnergyAnalyzer

evaluation. The train and test benchmark sets used are the same as the ones used for
the fine-grain model generation and validation, presented in [20]. As expected, the models
computed using the larger All Supported PMC list perform better than the ones using the
ISA+Cache list. However, it is interesting to note that the three search algorithms exploring
the ISA+Cache PMCs all converge on the same model with the STORE event present in
all models generated, regardless of PMC selection and search method. The reason why the
ISA+Cache models perform worse than the All Supported models is that the TIME event,
which is the single best predictor of power/energy according to previous work [18, 17], is not
included in the list. However, the reduced precision during microarchitectural analysis for
the All Supported subset outweigh the higher model accuracy. Additionally, it seems that if
only one search algorithm can be used due to time limitation, the top-down search seems
to produce overall better models than bottom-up and very similar models to full-exhaustive
while taking only a fraction of the time to search through the list of events.
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