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Abstract
With the increasing popularity of cycling as a mode of transportation, there is a growing need for
efficient routing algorithms that consider the specific requirements of cyclists. This paper studies the
optimization of bicycle routes while minimizing the number of stops at traffic signals. In particular,
we consider three different types of stopping strategies and three types of routes, namely paths,
trails, and walks. We present hardness results as well as a pseudo-polynomial algorithm for the
problem of computing an optimal route with respect to a pre-defined stop bound.
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1 Motivation

Cities around the world are increasingly recognizing the importance of promoting sustainable
and efficient transportation options, including bicycle traffic. Cycling has been shown to
have numerous health and ecological benefits, including reducing air pollution, increasing
physical activity, and reducing greenhouse gas emissions. Consequently, there has been a
growing interest in exploring alternative approaches to optimize bicycle traffic in cities and
many factors such as traffic volume, road surface quality, and the availability of bike lanes
can help making cycling a more efficient and enjoyable mode of transportation.

Research has shown that the travel time and the length of the route are not the only
factors that influence the route choice of cyclists. Other factors such as the number of
stops are also crucial in determining the attractiveness of a given route. Often, cyclists
prefer routes with fewer stops and more opportunities for continuous movement [15], because
frequent stops and starts can be physically demanding, reduce overall speed, and increase
the likelihood of accidents.

To reduce the number of stops for cyclists, there are two main options. The first option is
to optimize traffic signals to create a more efficient flow of bicycle traffic. The second option
is to offer cyclist-dependent routes that are specifically designed to match the speed of the
cyclists and which, using information about the signal coordination, arrive at green traffic
lights most of the time.

Implementing the first of these two options can be very challenging compared to optimizing
traffic lights for cars. Motorized vehicles generally operate within a narrow speed range and
tend to form platoons, which can be exploited in signal coordination [8, 9] and is used in signal
control systems, such as TRANSYT [12] or SCOOT [6]. In contrast, cyclists’ speeds can vary
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1:2 Optimal Bicycle Routes with Few Signal Stops

by a factor of three or more and cyclists are much less likely to form platoons [18]. Especially
when optimizing coordination for both bicycles and cars simultaneously, this causes similar
difficulties as, for example, the integration of public transit priority into coordination [14].

In contrast, offering a route optimized for cyclists, along with real-time traffic updates and
available through a smartphone application, can significantly enhance the cycling experience
and encourage more people to consider cycling as a mode of transportation. Consequently,
here we will study the underlying algorithmic problems of finding routes with few stops.

Related Literature. The problem of finding shortest routes with few stops has similarities
to dynamic shortest paths with time-dependent travel times, to shortest paths with time
windows, as well as to constrained shortest paths.

Time-dependent travel times are often used in traffic literature to model the influence of
slow-moving traffic and congestion. In particular, the first in-first out property (FIFO) must
be taken into account. FIFO means that later entry into an edge also means later arrival at
the end of an edge, so overtaking is not possible.

If FIFO holds, a shortest path can be found with Dijkstra-like approaches [3]. In non-
FIFO settings, Orda and Rom [10] observed that there may not even exist a finite solution,
i.e., a route with finitely many links, if waiting at vertices is not allowed. Recently, Zeitz [19]
elaborated these results by showing that this problem is strongly NP-hard even for piecewise
linear delay functions represented by a sequence of breakpoints with integer coordinates.
However, waiting in this context always means voluntary waiting to profit from a better
transit time in the future, whereas mandatory waiting, e.g, at red signals, is directly included
in the travel time function.

A generalized version with separate delay and cost functions including costs for waiting
was investigated by Orda and Rom [11]. The authors show that a suitable choice of these
functions leads to the situation that no finite optimal solution exists, but they also discuss
various conditions that guarantee the existence of finite solutions.

Traffic signals induce a special kind of delay, where FIFO usually holds. Consequently,
in a network with periodic traffic signals, shortest paths with respect to travel time can be
found in polynomial time as was shown by Ahuja et al. [1]. In the same paper, the authors
also consider minimum cost paths, in particular, they use penalties to give more weight to
waiting. Here, the problem of finding a minimum cost path becomes NP-hard in general.

Another application of routing with periodic time windows was investigated by Kleff et
al. [7]. These authors compute the set of Pareto-optimal solutions for the route planning
problem with temporary driving bans, like driving bans on trucks on Sundays, and rated
parking areas, i.e., different locations cause different costs for waiting.

In our approach, we are going to count stops separately, that is, stops can be seen as a
bounded resource. Such constrained shortest paths are weakly NP-complete in general, see,
e.g., [5]. However, we use a rather special resource consumption function here which only
applies during periodic time intervals. We will see that this may cause the optimal route
to contain cycles. Similar effects can be observed in energy-efficient routing with variable
resource constraints [17].

Our Contribution. In this paper, we study the routing with periodic time windows induced
by traffic signals for different route types (namely paths, walks, and trails), different cyclist
types with respect to waiting behavior, and for bounded or unlimited number of stops,
respectively. In Section 2, we present the notation and basic properties. Complexity results
are discussed in Section 3 and algorithmic results are presented in Section 4. Note that some
results of this paper are based on the Master’s thesis of Markus Rogge [13].
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2 Basic Model and Properties

In this section, we will fix the notation, introduce the model, and show some of its basic
properties.

2.1 Basic Model
We start with an underlying graph with vertex set V and edge set E that is supposed to
represent our road network. Without loss of generality, we use directed edges here, since every
bidirectional road can be modeled by a forward and a backward arc. Each edge also has an
integral transit time which is given by the function τ : E → N0. Furthermore, for a realistic
modeling of practical instances, we use expanded intersections. That is, an intersection is not
only represented by a single vertex, but there are vertices for each entry and exit, as well as
arcs for each permissible turning direction. A “standard” intersection is shown in Figure 1.

Figure 1 Standard approach of handling different turning directions at a single intersection with
separate arcs. Here, two roads are crossing each other. Thus, there are four entry points and four
exit points at the intersection. If, for example, left turning is not allowed, then the corresponding
arcs can be deleted.

Some edges E′ ⊆ E of our road network are equipped with traffic signals. Usually, these
should be interior edges of the expanded intersections (see Figure 1). To keep it simple, we
assume that all traffic signals follow a periodic switching regime with a common cycle time
and that all signals have exactly one green phase and one red phase per cycle1. Taking all
these parts together, this yields a signalized network.

▶ Definition 1. A signalized network N = (V, E, E′, T, τ, γ, λ) consists of
a vertex set V ,
a set of directed edges E,
a subset E′ ⊆ E of edges with signals,
a common cycle time T ∈ N = {1, 2, 3, . . . },
a transit time function τ : E → N0 = {0, 1, 2, . . . },
a function γ : E′ → {0, . . . , T − 1} describing the start time of a green phase, and
a function λ : E′ → {1, . . . , T − 1} describing the length of the green phase.

1 More sophisticated settings can also be modelled with these assumptions. If there is no common cycle
time, then one could consider the least common multiple of all cycle times. Several green phases within
one cycle can be modelled via parallel arcs where every of those arcs represents one of the green phases.
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1:4 Optimal Bicycle Routes with Few Signal Stops

When moving through the network, a red traffic light on edge e ∈ E′ keeps us from
entering this edge. To determine whether a signal is red or green at a given point in time,
we define the function green : E′ × N0 → {0, 1} that returns 1 if and only if the traffic light
of the given edge is green at the given time step. More precisely, green is defined as follows:

green(e, t) =
{

1, if kT + γ(e) ≤ t < kT + γ(e) + λ(e) for some k ∈ N0

0, otherwise

Note that the function green is periodic in the argument t with period length T .
Now, we are looking for a route for a cyclist starting at an origin vertex s ∈ V , ending

in a destination vertex d ∈ V . In general, we would like to allow to visit vertices or edges
more than once. Therefore, we distinguish walks, trails, and paths. A walk is an ordered
list P = (v0, e1, v1, . . . , ek, vk) of vertices and edges such that for any i ∈ {1, . . . , k} edge
ei = (vi−1, vi). A trail is a walk where every edge is present at most once. A path is a trail
where every vertex is present at most once.

In difference to the “normal” shortest path problem, in our setting it is possible to wait
at certain vertices. Therefore, we need the following extension of the definitions of walks,
trails, and paths. A timed walk (trail, path) P = (P, π) consists of a walk (trail, path)
P = (v0, e1, . . . , ek, vk) and a time function π that assigns to every edge ei of P an entering
time from N0 such that the following conditions hold:

for every edge ei it holds that π(ei) ≥ π(ei−1) + τ(ei−1) and
for every edge ei ∈ E′ it holds that green(ei, π(ei)) = 1.

The first condition ensures that an edge is not entered before the previous edge has been
traversed. Nevertheless, waiting is possible here. The second condition ensures that the
cyclists only enter signalized edges if the traffic signal is green. Note that edges can appear
more than once in P if P is not a trail. Every appearance of an edge is treated separately
and is assigned its own π-value.

We always start at time t = 0. The arrival time α(P) of a timed walk (trail, path)
P = (P, π) is the time when the cyclist arrives at the last vertex of P , i.e., if ek is the last
edge of P , then α(P) = π(ek) + τ(ek).

We are especially interested in the number of stops on our timed path P . A stop on edge
ei of P occurs if either i = 1 and π(ei) > 0 or i > 1 and π(ei) > π(ei−1) + τ(ei−1). This in
particular means that we count waiting on the first edge as a stop no matter whether there is
a red light or not. We define σ(P) as the number of stops of the timed walk (trail, path) P.

Moreover, we consider three different types of cyclists:
Impatient cyclists do not stop at green signals. When waiting at a red signal, they start
as soon as the signal turns green.
Predictive cyclists also do not stop at green signals, but they are allowed to wait at a
green light if they arrived there during the red phase.
Relaxed cyclists are allowed to stop wherever they want. In particular, they are allowed
to stop at green signals and on edges E \ E′.

Figure 2 visualizes the differences of the three cyclist types. Note that in reality most
cyclists will behave like the impatient cyclists. However, we will show later (Lemma 5) that
predictive cyclists have an advantage over impatient cyclists in certain situations. On the
other hand, relaxed cyclists will not perform better than predictive cyclists.

We will study two different routing problems in this paper.
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t

Figure 2 Time-space diagram of the three cyclist types impatient (dashed), predictive (solid),
and relaxed (dotted). The impatient cyclist has to endure three stops. The predictive cyclist waits
extra time at the first stop at the fourth traffic signal on edge (v3, v4) so that the destination can be
reached without another stop. The relaxed cyclist is already waiting at a green traffic signal.

▶ Problem 1 (Quickest path (trail, walk)).
Input: A signalized network N = (V, E, E′, T, τ, γ, λ), source s ∈ V , destination d ∈ V .
Task: Compute a timed path (trail, walk) P starting in s and ending in d such that the

arrival time α(P) is minimal.

▶ Problem 2 (Quickest path (trail, walk) with few stops).
Input: A signalized network N = (V, E, E′, T, τ, γ, λ), source s ∈ V , destination d ∈ V , stop

bound K ∈ N0.
Task: Compute a timed path (trail, walk) P starting in s and ending in d with σ(P) ≤ K

such that the arrival time α(P) is minimal.

For both problems, we have to consider three types of routes and three types of cyclists,
which initially results in 18 different problems that have to be studied.

2.2 Basic Properties
We continue this section with discussing some basic properties of the model. First, we present
an example to justify the consideration of trails and walks.

▶ Example 2. Consider the network in Figure 3. All edges have transit time τ ≡ 1. There
is a single traffic signal at edge e′ = (v, d). For a suitable choice of parameters, it can be
advantageous to travel through the cycle and to use e = (u, v) more than once. If, e.g.,
T = 20, γ(e′) = 10, and λ(e′) = 5, then the s-d-path P using the cycle three times (that is, e

is traversed four times) yields an arrival time α(P) = 12 at vertex d. This is the optimal
solution for K = 0. Yet, it is possible to arrive at d at time 11, but this implies a stop
somewhere in the network.

The classic shortest path problem fulfills subpath optimality, i.e., every subpath of an
optimal s-d-path ending in some intermediate vertex v is also an optimal s-v-path. This
crucial property is exploited by many shortest path algorithms such as Dijkstra’s algorithm.
We can use Example 2 to show that this property does not hold in our setting.

ATMOS 2023
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s u v

w

d

Figure 3 Simple network with τ ≡ 1 for all edges and a single traffic signal on edge e′ = (v, d).
Vertex v can be reached at time t = 2, but if the signal is not green at this time, it can be
advantageous to use the cycle and, thus, edge e = (u, v) again to avoid stopping.

▶ Observation 3. There is no guaranteed subpath optimality for quickest paths (walks,
trails) with few stops. In particular, it can be advantageous to arrive later at a particular
intermediate vertex.

Proof. We again consider the network in Figure 3 and we add an edge e′′ from s to v with
τ(e′′) = 10. Although, v can be reached at time t = 2 via u, this always implies a stop or a
cycle in the route. Thus, using e′′ and arriving at v no sooner than t = 10 is the optimal
path without stopping. ◀

The previous observation implies that we have to deal with a much richer combinatorial
variety if we want to solve the problem algorithmically. However, taking a closer look at the
above mentioned 18 subproblems, we observe that some of these cases coincide.

▶ Observation 4. The time function π of a timed path (trail, walk) for the impatient cyclists
is completely determined by its edges. Contrary, every timed path (trail, walk) is feasible for
the relaxed cyclists.

The following result shows that we can always adjust a given route such that it is feasible
for predictive cyclists without increasing the number of stops or the arrival time and without
changing the used edges.

▶ Lemma 5. Let N = (V, E, E′, T, τ, γ, λ) be a signalized network and s, d ∈ V . For any
timed s-d-path (trail, walk) P = (P, π) there is a timed s-d-path (trail, walk) P ′ = (P, π′)
with α(P ′) ≤ α(P) and σ(P ′) ≤ σ(P) that is feasible for the predictive cyclist.

Proof. We construct the path P ′ using the same edges as in P , i.e., we only adjust the time
function π′ of P ′. Due to Observation 4, P is feasible for the relaxed cyclists, but there may
be stops that are not allowed for the predictive cyclists.

Let ei be the first edge where P stops, but predictive cyclists are not allowed to stop
at ei. We change the time function π′ as follows. P ′ continues directly, i.e., if i > 1, then
π′(ei) = π′(ei−1) + τ(ei−1) and if i = 1, then π′(ei) = 0. This also implies that up to this
point P ′ has fewer stops than P since the stop at ei was removed. Also at subsequent green
and non-signalized edges, P ′ does not stop according to the rule for the predictive cyclists.
Only when P ′ arrives at a red signal at edge ej , P ′ uses this stop to wait for P, that is,
π′(ej) = π(ej). This adds one more stop to P ′, but still P ′ has at most as many stops as P.
Figure 2 shows this construction for a single stop in a time-space diagram where the path P ′

of the predictive cyclist is visualized by the solid line and the path P of the relaxed cyclist is
visualized by the dotted line.

We continue with this procedure for all further occurrences of stops of P ′ that are invalid
for the predictive cyclists. In this way, P ′ arrives at the destination d not later than P and
has at most as many stops as P. ◀
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As a consequence we can refrain from considering the relaxed cyclists separately, as for
each route of the relaxed cyclists there is a route of the predictive cyclists with equal or
better arrival time and number of stops.

▶ Lemma 6. If there is no bound on the number of stops, then the set of quickest trails/walks
for a given s-d-pair always contains a timed s-d-path that is feasible for the impatient cyclists.

Proof. We only need to discuss this claim for the impatient cyclists, since routes for the
impatient cyclists are also optimal for the predictive/relaxed cyclists if the number of stops
does not matter, as it follows directly from the definition, that the predictive and the relaxed
cyclists never overtake the impatient cyclists on the same route.

Suppose an optimal timed route P = (P, π) contains a vertex at least twice, for example
vi, vj ∈ P with vi = vj and i < j. This means there is a cycle within the route. We can
delete this cycle from the route, i.e., delete all vertices from vi+1 to vj and the corresponding
edges. To again obtain a proper timed route for the impatient cyclist, we have to adjust
the entering time of (vi, vj+1) and all subsequent edges in π. We simply choose the earliest
possible feasible time. Note that due to the optimality of the original route, there is a vertex
vk, k > j, from which the time function no longer needs to be adjusted.

Repeating this procedure iteratively for all cycles yields a feasible path for the impatient
cyclists that has the same arrival time as P. ◀

This result also implies that we can bound the maximal number of stops of a quickest
walk.

▶ Proposition 7. In a signalized network with n = |V | edges, there exists a quickest path
(trail, walk) with at most n − 1 stops.

Proof. By Lemma 6, there is a quickest path from s to d that is feasible for the impatient
cyclists and, thus, also for the predictive and the relaxed cyclists. This path contains at most
n vertices and, hence, n − 1 edges. Therefore, it also has at most n − 1 stops. ◀

In consequence, the problem of the quickest path (trail, walk) with few stops is only
interesting for K < n.

3 Hardness Results

In this section we will prove that Problem 2 is NP-hard for path, trail and walk and any type
of cyclists. To this end, we consider the following problem.

▶ Problem 3 (x-y-Hamiltonian Path).
Input: A directed graph G = (V, E), two vertices x, y ∈ V

Task: Decide whether there is a Hamiltonian path in G, i.e., a path containing all vertices
of V , that starts in x and ends in y.

This problem is NP-complete [4]. We now prove that the Quickest Path and the Quickest
Trail Problem with few stops are strongly NP-hard, i.e., there is no pseudo-polynomial
algorithm unless P = NP.

▶ Theorem 8. The Quickest Path Problem with few stops and the Quickest Trail Problem
with few stops (Problem 2) are strongly NP-hard for all three types of cyclists and every fixed
number of stops K ≥ 0.

ATMOS 2023
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x y z0 z1 zK−1 zK

G τ = 1

γ = n − 1

τ = 1

γ = n + 1

τ = 1

γ = n + 2K − 1

· · ·

Figure 4 The construction of the proof of Theorem 8.

Proof. We start with the Quickest Path Problem. We reduce the x-y-Hamiltonian Path
Problem to that problem. Let G = (Ṽ , Ẽ) and x, y ∈ Ṽ be an instance of the x-y-Hamiltonian
Path Problem. Let n = |Ṽ | and let K ≥ 0 be an arbitrary fixed stop bound. We define
the signalized network N = (V, E, E′, T, τ, γ, λ) as follows (see Figure 4 for an illustration).
The vertex set V is equal to Ṽ ∪ {z0, . . . , zK}. The set of edges with signals E′ is equal to
{(y, z0)} ∪ {(zi, zi+1) | 0 ≤ i ≤ K − 1}. The edge set E is equal to Ẽ ∪ E′. The cycle time
T is set to n + 2K. For all edges e ∈ E we set τ(e) = 1. We set the starting time of the
green phase γ((y, z0)) = n − 1 and the green length to λ((y, z0)) = 1. Furthermore, we set
γ((zi, zi+1)) = n + 2i + 1 and λ((zi, zi+1)) = 1 for all i ∈ {0, . . . , K − 1}.

We claim that there is a timed path P starting in x and ending in zK with no more
than K stops and an arrival time less than or equal to n + 2K if and only if there is an
Hamiltonian path from x to y in G.

First assume that we have a Hamiltonian path from x to y in G. Following this path in
N , the cyclists arrive at y without any stop at time step n − 1. Since γ((y, z0)) = n − 1,
they can enter edge (y, z0) without any stop and arrive at z0 at time step n. Since the green
phase of the edge (z0, z1) starts at time step n + 1, the cyclists have to stop at z0 and arrive
at z1 at time step n + 2. Repeating this for all i, we see that the cyclists always arrive at zi

at time step n + 2i and have to wait one time step for green. Thus, finally the cyclists arrive
at zK at time step n + 2K having stopped exactly K times.

Now assume that there is a timed path P = (P, π) in N starting in x and ending in zK

with no more than K stops and an arrival time less than or equal to n + 2K. This path
has to enter the edge (y, z0) at time step n − 1 at the latest since otherwise the next green
phase will start only in the next time frame at time step 2n + 2K − 1. Note that before time
step n − 1, the edge (y, z0) is not green. Hence, the entering time π((y, z0)) is exactly n − 1.
Using the same arguments as above, we see that the cyclists have to stop at every vertex zi

with 0 ≤ i < K. Hence, the cyclists do not stop at any vertex before z0. This implies that
the subpath of P between x and y must contain n − 1 edges and, thus, this subpath forms a
Hamiltonian path of G between x and y.

We now reduce the Quickest Path Problem with few stops to the Quickest Trail Problem
with few stops. To this end, we replace every vertex v in the network N by two vertices vin

and vout. All incoming edges of v in N now ends in vin and all outgoing edges start now
in vout. Furthermore, we add the edge (vin, vout) with transit time 0. We call the resulting
network N ′. It is easy to observe that there is a one-to-one mapping from the timed paths in
the original network to timed paths in N ′ with the same arrival time and the same number
of stops. Furthermore, every trail in N ′ is a path. Therefore, solving the Quickest Trail
Problem with few stops on N ′ solves the Quickest Path Problem with few stops on N .2

2 Note that one can also prove the hardness of the Quickest Trail Problem if one forbids edges with transit
time 0. The idea is to prove that the x-y-Hamiltonian Path Problem stays NP-hard even if the input is
a directed graph that was created by replacing every vertex v by two vertices vin and vout as described
above.
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v0 v1 v2 vn−1 vn z0 z1 zK−1 zK

τ = a1

τ = 0

τ = a2

τ = 0

· · ·

· · ·
· · ·

τ = an

τ = 0

τ = 1

γ = S

τ = 1

γ = S + 2

· · ·

τ = 1

γ = S + 2K − 2

Figure 5 The construction of the proof of Theorem 9.

Note that in both proofs the size of the used integers is polynomial in n (since K is a
fixed constant). Therefore, any pseudo-polynomial algorithm for the Quickest Path (Trail)
Problem would be polynomial in n on the constructed instances and, thus, both problems
are strongly NP-hard. ◀

The idea of the proof of Theorem 8 does not work for walks since one cannot prevent
that cycles are used to achieve the correct arrival time at the first traffic light. Nevertheless,
we can show that the Quickest Walk Problem with few steps is NP-hard using the following
well-known NP-hard problem.

▶ Problem 4 (Partition).
Input: A set A = {a1, . . . , an} ⊊ N.
Task: Decide whether there is a subset A′ ⊆ A such that

∑
ai∈A′ ai = 1

2
∑

ai∈A ai.

Note that the Partition problem is known to be weakly NP-hard, i.e., there is a pseudo-
polynomial algorithm for that problem [4].

▶ Theorem 9. The Quickest Walk Problem with few stops is NP-hard for all three types of
cyclists and every fixed number of stops K ≥ 0.

Proof. We reduce the Partition problem to our problem. Let A = {a1, . . . , an} ⊊ N be a
an instance of the Partition problem. Let S = 1

2
∑

i ai. Let K ≥ 0 be an arbitrary stop
bound. We define the signalized network N = (V, E, E′, T, τ, γ, λ) as follows (see Figure 5
for an illustration). Let V = {v0, . . . , vn, z0, . . . , zK}. For all i ∈ {1, . . . , n}, we have two
edges e1

i and e2
i in E from vi−1 to vi where τ(e1

i ) = ai and τ(e2
i ) = 0. Furthermore, for all

i ∈ {1, . . . , K}, we have an edge ez
i = (zi−1, zi) in E and E′ with τ(ez

i ) = 1, γ(ez
i ) = S + 2i

and λ(ez
i ) = 1. Similar, we have an edge (vn, z0) with τ((vn, z0)) = 1, γ((vn, z0)) = S and

λ((vn, z0)) = 1. We choose T to be S + 2K. Note that every walk in N is a path since the
network is acyclic.

We claim that there is a subset A′ ⊆ A such that
∑

ai∈A′ ai = S if and only if there is a
timed path from v0 to zK with arrival time at most S + 2K − 1 and at most K stops. First
assume that there is a subset A′ ⊆ A such that

∑
ai∈A′ ai = S. We choose the following

path P from v0 to zK . If ai ∈ A′, then we choose the edge e1
i , else we choose the edge e2

i .
Furthermore, we choose all the edges ez

i with 1 ≤ i ≤ K. We can choose the time function
π of the path in such a way that the cyclists arrive at vn at time step S without any stop
because

∑
ai∈A′ ai = S. Since the edge (vn, z0) is green at this time step, the cyclists can

enter it and arrive at z1 at time step S + 1. Here, the cyclists have to wait one time step for
green. Repeating this argument, the cyclists arrive at zi at time step S + 2i − 1 and have to
wait there for one time step. Overall, the cyclists arrive at zK at time step S + 2K − 1 with
K stops.

Now assume that there is a timed path P = (P, π) from v0 to zK with arrival time at
most S + 2K − 1 and at most K stops. As described above, it follows directly from the
construction that this path has to stop at edge (zi, zi+1) for all i ∈ {0, . . . , K −1}. Hence, the
path does not stop neither at an edge between vertices vi and vi+1 nor at the edge (vn, z0).
This implies that the path arrives at vn at time step S. We define the set A′ as follows:
A′ := {ai | e1

i ∈ P}. By the observation before, it must hold that
∑

ai∈A′ ai = S. ◀
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Chen and Yang [2] presented an algorithm for which they claim that, given a signalized
network, it finds a quickest path with a given maximal number of stops K in time O(Kn3),
where n is the number of vertices in the network. The authors do not specify what they
mean with the term “path”. Nevertheless, as we have seen in Theorem 8, all three options
for routes (path, walk, trail) are NP-hard. This either implies that P = NP or, more likely,
there is a flaw in the algorithm of Chen and Yang. In fact, we will show in the next section,
where Chen and Yang’s algorithm fails. Furthermore, we present an alternative approach
that has pseudo-polynomial running time and computes the quickest walk with few stops.

4 Algorithmic Results

Ahuja et al. [1] showed that signalized networks are FIFO graphs, i.e., arriving earlier at a
particular vertex can never result in arriving later at one of the following vertices. Using a
result by Dreyfus [3] from the 1960s, they showed that this result implies a polynomial-time
algorithm for quickest paths in signalized networks, i.e., Problem 1.

As mentioned in the last section, Chen and Yang [2] presented an algorithm that, as
they claim, solves Problem 2. This algorithm uses a labeling approach similar to Dijkstra’s
algorithm for shortest paths. While Dijkstra’s algorithm holds at most one label for every
vertex (the label with the current best arrival time at that vertex), Chen and Yang’s algorithm
holds for every vertex v and for every number k of stops the walk from s to v with at most
k stops and the best arrival time of all s-v-walks found so far. Thus, if a path arrives at a
vertex v and then via a cycle arrives at v again, then the arrival time and the number of
stops are not better than at the first arrival at v. This implies that this algorithm will never
use cycles. However, as we have seen in Example 2, it can be necessary to use cycles to stay
within a given stop bound. Furthermore, even if we forbid cycles, i.e., we restrict to paths,
Chen and Yang’s algorithm fails to find the quickest path with a given number of stops. This
is due to the fact that subpath optimality does not hold in this setting as we have seen in
Observation 3. It is easy to see that Chen and Yang’s algorithm already fails to solve the
example given in the proof of that observation.

To overcome this problem, we present an alternative approach that not only takes these
non-FIFO behaviour and possible cycles into account but also distinguishes between the
different types of cyclists that we have introduced in Section 2. Due to Lemma 5, we do not
need to consider the relaxed cyclists.

We will use the following terminology. The absolute time refers to the time the cyclist
has used so far in total. The relative time is the time step in the set {0, . . . , T − 1} that
describes the time step with respect to the cycle time T .

▶ Algorithm 1. The algorithm consists of three phases.

Phase 1: Initialization. For every vertex v and every time step θ ∈ {0, . . . , T −1}, we create
an array Mθ

v with K + 1 entries. The entry Mθ
v [k] contains a label (t, k, v) with (absolute)

arrival time t at v which has relative time θ and exactly k stops. We initialize every entry
Mθ

v [k] with the label (∞, k, v) except for the entry M0
s [0] which is assigned the label (0, 0, s).

Furthermore, we create a priority queue Q and insert the label (0, 0, s) into Q. In Q the
labels are ordered lexicographically.

Phase 2: Label Propagation. As long as Q is not empty, we extract the lexicographically
smallest label (t, k, v) from Q, i.e., for all other labels (t′, k′, v′) ∈ Q it holds that either
t < t′ or t = t′ and k ≤ k′. Now we iterate through the outgoing edges of v. Let e = (v, w)
be such an edge.
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1. If e has no traffic light, i.e., e /∈ E′, then we create the label (t + τ(e), k, w).
2. If e ∈ E′ and green(e, t) = 1, then we also create the label (t + τ(e), k, w).
3. If e ∈ E′ and green(e, t) = 0, then we consider two cases:

a. If we have an impatient cyclist: Let θ ∈ {1, . . . , T − 1} be the smallest number such
that green(e, t + θ) = 1; we create the label (t + θ + τ(e), k + 1, w).

b. If we have a predictive cyclist: For each θ ∈ {1, . . . , T − 1} with green(e, t + θ) = 1,
we create the label (t + θ + τ(e), k + 1, w).

For each created label L′ = (t′, k′, v′), we check whether it dominates another label. In
particular, we check whether at vertex v′, relative time θ′ ≡ t′ mod T and stop count k′ the
label at entry Mθ′

v′ [k′] has a worse (absolute) arrival time. If this is the case, then this label
will be replaced by L′ both in Mθ′

v′ and in Q.

Phase 3: Final Output. If we only want to solve Problem 2, then we can stop our algorithm
as soon as the lexicographically smallest label in Q is at vertex d. We then return the
absolute arrival time and the stop count of that label.

However, our algorithm is able to solve a more general problem. By running the algorithm
until Q is empty we can give for each vertex v and each number of stops k the quickest walk
(of impatient or predictive cyclists, respectively) from s to v with exactly k stops. This can
be determined by running through every relative time step θ ∈ {0, . . . , T − 1} and search
for the smallest absolute arrival time in the entries Mθ

v [k]. We store these times in an array
Ω ∈ N|V |×(K+1).

Note that in Phase 2 we could also dominate labels where both the arrival time and the
stop count is larger than in the constructed labels. However, we have refrained from doing
so as we also want to compute the quickest routes with an exact number of stops given. Also
note that although for a bounded number of stops the relaxed cyclists have no better arrival
time than the predictive cyclists (see Lemma 5), for a fixed number of stops the relaxed
cyclists might have a better arrival time as they can use a walk with less stops and better
arrival time and stop somewhere unnecessarily. Similarly, the relaxed cyclists can achieve
stop numbers that are infeasible for the predictive cyclists.

▶ Theorem 10. Given a signalized network N = (V, E, E′, T, τ, γ, λ), Algorithm 1 finds an
array Ω ∈ N|V |×(K+1) with the following property: If there is a timed s-v-walk in N with
exactly k stops for the impatient or predictive cyclist, then Ω[v, k] contains the arrival time
of the quickest of those walks for the respective cyclist.

Proof. Firstly, let us shortly recall how a simple proof of Dijkstra’s algorithm works. Let S

be the set of vertices that were already processed by Dijkstra’s algorithm, then one shows
that the following two invariants hold during the algorithm:
1. for every vertex v ∈ S, the label of v is the length of a shortest path from s to v.
2. for every vertex v /∈ S, the label of v is the length of a shortest path from s to v that

only uses vertices of S as inner vertices.

As our algorithm processes a vertex several times, we have to adapt the proof. Instead of
considering only vertices as elements of S, we consider tuples (θ, k, v) where θ ∈ {0, . . . , T −1},
k ∈ {0, . . . , K} and v ∈ V . We say that a timed walk P = (P, π) uses a tuple (θ, k, v) as
timed waypoint if there is an edge ei = (w, v) ∈ P with π(ei) = t and θ ≡ (t + τ(ei)) mod T

such that P has used exactly k stops when arriving at v at time step t + τ(ei). Such a timed
waypoint corresponds to the entry Mθ

v [k] in Algorithm 1.
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Whenever the algorithm extracts a label (t, k, v) from Q, we add the tuple (t mod T, k, v)
to S. We claim that the following two invariants hold during the algorithm.

1. For every tuple (θ, k, v) ∈ S let Mθ
v [k] = (t, k, v). Then t is the minimal arrival time of a

timed s-v-walk in N that arrives at v at relative time step θ with exactly k stops.
2. For every tuple (θ, k, v) /∈ S let Mθ

v [k] = (t, k, v). Then t is the minimal arrival time of a
timed s-v-walk in N that arrives at v at relative time step θ with exactly k stops and
only uses tuples of S as inner timed waypoint.

At the beginning, S is empty and both invariants trivially hold true. Now assume that
both invariants hold and we add the new tuple A = (θ, k, v) to S. To show that the first
invariant still holds true, it is sufficient to show that the invariant holds for the tuple A. Let
t be the first entry of the label in Mθ

v [k]. Assume there is a timed s-v-walk P that arrives at
v before time step t. As the second invariant was true for A before A was added to S, P has
to use some timed waypoint that is not in S. Let (θ′, k′, v′) be the first timed waypoint on
P that is not in S. There is a label (t′, k′, v′) in Q with t′ mod T ≡ θ′. Due to the second
invariant, t′ is exactly the arrival time of path P at v′. The way the algorithm extracts the
next label from Q, t′ ≥ t holds. This contradicts the choice of P.

It remains the show that the second invariant holds after adding A = (θ, k, v) to S. If the
minimal arrival time for walks using only elements of S as timed waypoints has decreased for
some B = (θ′, k′, v′) /∈ S to the value t′, then the new best timed s-v′-walk P ′ has to use the
timed waypoint A as the second last waypoint. As was shown above, the arrival time in Mθ

v [k]
is optimal. In Phase 2 of Algorithm 1 we have propagated this arrival time to the neighbors
of v in an optimal manner, in particular to the vertex v′. Therefore, Mθ′

v′ [k′] = t′. ◀

Finally, we discuss the running time of the algorithm.

▶ Proposition 11. For a given signalized network N = (V, E, E′, T, τ, γ, λ), Algorithm 1
needs running time O(|V |2 · T 2 · K) where K is the bound on the maximal number of stops.

Proof. There are O(|V | · T ) arrays Mθ
v with O(K) entries each. Thus, these arrays have

O(|V | · T · K) many entries in total. Every of those entries is extracted from the queue Q at
most once. Using a heap, this extraction can be done in time O(log(|V | · T · K)) ⊆ O(|V | · T )
as K can be bounded by |V |, due to Proposition 7. After the extraction, we have to create at
most |V | · T new labels3 in Phase 2 of the algorithm and have to update their arrival times.
This can be done in constant time per label, i.e., the total time for every extracted label is
O(|V | · T ). This leads to the given running time bound. ◀

5 Conclusion

In this paper we have shown how we can use algorithmic ideas to avoid unwanted stops in
bicycle routes. As we have seen, using cycles in routes and waiting at lights that are already
green can be advantageous to avoid stops. Adding a constraint on the number of stops makes
the route finding problem more difficult: The problem of finding the optimal route is then
weakly NP-hard and we have presented a corresponding pseudo-polynomial algorithm. This
new algorithm corrects a flaw in the approach of Chen and Yang [2].

3 In real-world instances, this bound can be significantly improved since road networks usually have small
vertex degrees.
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Our results lead to a variety of new questions. In order to use our approach to design
practically usable routings for cyclists one should take into account further aspects. Right
now, the avoidance of stops may cause long detours. A better objective may be to look for
a route that is at most, e.g., 10 % longer than the shortest path and has as few stops as
possible. Instead of stopping, one may also consider slowing down or accelerating for a short
period of time, that is, one could try to develop a model with variable speeds. Furthermore,
we only have used fixed-time traffic signals so far, but also adaptive signals are commonly
used in practice. However, this would add some uncertainty to the problem which can be
addressed with the integration of techniques similar to those used in, e.g., [16] to find reliable
shortest routes.
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