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Abstract
This paper considers facility location problems within dynamic flow networks, shifting the focus from
minimizing evacuation time to handling situations with a constrained evacuation timeframe. Our
study sets two main goals: 1) Determining a fixed-size set of locations that can maximize the number
of evacuees, and 2) Identifying the smallest set of locations capable of accommodating all evacuees
within the time constraint. We introduce flowt(S) to represent the number of evacuees for given
locations S within a fixed time limit t. We prove that flowt functions is a monotone submodular
function, which allows us to apply an approximation algorithm specifically designed for maximizing
such functions with size restrictions. For the second objective, we implement an approximation
algorithm tailored to solving the submodular cover problem. We conduct experiments on the real
datasets of Chiang Mai, and demonstrate that the approximation algorithms give solutions which
are close to optimal for all of the experiments we have conducted.
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1 Introduction

The facilities location problem [12] is one of the well-known problems for finding the optimal
location of facilities that optimizes certain criteria, such as minimizing costs, under the
given constraints and considerations. In terms of a graph G = (V, E), the standard problem
statement is to identify a subset S from V comprising of k nodes. This subset S should have
the property that it minimizes the length of the longest shortest path from any node v ∈ V

to a node within the subset S. There are several approximation algorithms proposed for this
standard problem statement such as [16, 2].
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10:2 Submodularity Property for Facility Locations of Dynamic Flow Networks

The dynamic network [7, 8] is a graph that includes information that changes over time.
An illustrated example of a dynamic network is a plan for evacuating people from nodes in a
static graph, represented by the intersection of roads, to facilities when the edge, represented
by the road that connects these nodes’ locations. Every node v ∈ V starts off with a varying
number of evacuees at the onset of evacuation. However, each edge e ∈ E has a capacity
limit that restricts the number of people it can accommodate at any given moment. The
time-expanded networks approach outlined in [7] can be used to determine the best possible
evacuation plan. By leveraging this method, it is feasible to compute the necessary time
frame for the complete evacuation of individuals. If there exists a time constraint on the
evacuation, this technique can also be used to estimate the maximum number of evacuees
that can be transported to safe facilities within the specified time limit.

Extending the problem formulation of facility location to a dynamic network is natural.
The goal would be to identify a collection of facilities that could minimize the evacuation
time. Several algorithms were proposed for the case of path graph [10], tree [13], and general
graphs [1], as summarized in [11].

1.1 Our Contributions

While the majority of prior research has centered around minimizing evacuation time, we
argue, based on [15], that real-world evacuations often operate under strong time constraints.
This observation has led us to examine the following two variants of facility location problems
within dynamic networks:

Problem 1: Given a number of facilities, locate a set of facilities which can accommodate
the maximum number of evacuees in a given time.
Problem 2: Locate a smallest set of facilities which can accommodate all evacuees in a
given time.

We may consider that both of the problems are closer to the k-center problem where we aim
to minimize the maximum evacuees time.

Our main contribution of this paper is:

Define flowt(S) as the count of evacuees that can be accommodated by facilities
positioned at a set of nodes, S, in time t. We demonstrate that flowt exhibits the
properties of a monotone submodular function.

Consequently, Problem 1 can be reformulated as the maximum submodular function
problem subject to size constraints, as discussed in [14]. The greedy algorithm, which carries
an approximation ratio of 1− 1/e, which is approximately equal to 0.63, can be deployed,
delivering a (1− 1/e)-approximation algorithm for Problem 1. On the other hand, Problem
2 can be reformulated as the minimum submodular cover problem [18]. We can employ the
O(log n)-approximation algorithm for the problem to solve Problem 2.

Through numerical experimentation, we demonstrate that the algorithms provide solutions
that are closely aligned with optimal solutions. We construct a real dataset from the road
network, road capacity, and the resident count in each region of Chiang Mai, Thailand. For
Problem 1, we compare the capacity of evacuees accommodated by facilities derived from
the greedy algorithm against optimal solutions from an exhaustive search. We observe that
the differences across all tested cases do not exceed 5%. For Problem 2, we notice that the
approximation algorithm can find an optimal solution for our dataset.
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1.2 Paper Organization
This paper is organized as follows. The motivation and reviews of previous studies are
compiled in the introduction section. The second section is the statement of our problem,
together with notations, basic concepts, and the Ford-Fulkerson algorithm, which we mainly
use in this study. The proof of submodularity of the function flowt, the value of maximum
flow from source node to sink node, is presented in the third section. The experiments with
results to illustrate two solved problems are presented in the fourth section. The last section
shows the concluding remarks, including comments and possible future works.

2 Preliminaries

2.1 Problem Definition
Let N = (G, S, n, c, d) be the network such that G = (V, E) is an undirected graph with a set
of vertices V and a set of edges E . S ⊆ V is a set of facilities that are the evacuation centers
for evacuees. Each vertex v has the number of evacuees n(v), and each edge e = (v1, v2)
consists of a capacity c(e) and a transit time d(e). The capacity c(e) represents the maximum
number of evacuees which can transit from v1 to v2 in one unit time, and the transit time
d(e) represents the amount of time that evacuee transit from v1 to v2.

To understand the problem formulation, let us consider a toy example. Let V = {u, v},
E = {(u, v)}, and S = {u}. To calculate the minimum evacuation time from u to v, we divide
the evacuees into ⌈n(u)/c(e)⌉ groups such that each group has the number of evacuees equals
c(e) except for the last group which has the number of evacuees at most c(e). After that, we
send each group of evacuees from u to v, which means the first group will arrive v at t = d(e)
and the last group will arrive v at t = d(e) + ⌈n(u)/c(e)⌉ − 1.

When there are more nodes in G, there can be a congestion. If there are evacuees from
other nodes to u and there are still evacuees in u. The latter evacuees must wait until the
earlier evacuees have been evacuated.

Define flowt(S) as the count of evacuees that can be accommodated by facilities positioned
at a set of nodes, S, in time t. In this study, we will consider two facility location problems
in the dynamic network N .

▶ Problem 1. Consider a facility location problem which aims to evacuate the maximum
number of persons in the given amount of time. In particular, given t, κ ∈ Z+, we give an
algorithm which outputs S ⊆ V such that |S|= κ and flowt(S) is maximized.

▶ Problem 2. Consider a facility location problem which aims to minimize the number of
facilities such that all of the evacuees can evacuate in the given amount of time. In particular,
given t, n ∈ Z+ when n is the number of evacuees, we give an algorithm which outputs S ⊆ V
such that flowt(S) = n and |S| is minimized.

To calculate the maximum number of evacuees whose evacuation time is less than or
equal to t, time-expanded network Gt(S), a static flow network for a dynamic flow network,
was first proposed by Ford and Fulkerson [6]. The vertices of Gt(S) are divided into three
parts. The first part is x∗ and ζ∗, which is a source node and sink node, respectively.
The second part is v(t′) for v ∈ V and t′ ∈ {0, 1, 2, ...t}, and the last part is u∗ for u ∈ S.
Furthermore, the edges of Gt(S) are separated into five parts as follows. The first part
is (x∗, v) for v ∈ V with a capacity n(v). The second part is (v(t), v(t + 1)) for v ∈ V and
t ∈ {0, 1, 2, ..., t − 1} with an infinite capacity. If there is edge e = (v1, v2) ∈ E , then there
are edges (v1(t′), v2(t′ + d(e))) with a capacity c(e) for t′ ∈ {0, 1, 2, ..., t− d(e)} which is the
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10:4 Submodularity Property for Facility Locations of Dynamic Flow Networks

third part of edges in Gt(S). The fourth part is (u(t′), u∗) with an infinite capacity for u ∈ S

and t′ ∈ {0, 1, 2, ..., t}. The last part is (x∗, ζ∗) with an infinite capacity. Figure 1 shows an
example of the correspondence between a given static graph and its time-expanded network.
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Figure 1 (left) An example of a static graph in which A, B are source nodes and C, D are sink
nodes, with their evacuee number at each node. The pair (a, b) on the edge of the graph represents
transit time a with capacity b. (right) the dynamic network representing each node at the time i,
for i = 1, ..., t.

It is easy to observe the relationship between the maximum number of nodes and the
maximum flow, as concluded in the following proposition. The correctness of this proposition
is straightforward from [7].

▶ Proposition 1. Given a dynamic flow network Gt(S) and a time horizon t, let flowt(S) be
the value of the maximum flow from x∗ to ζ∗ in Gt(S). The maximum number of evacuees
whose evacuation time is less than or equal to t is equal to flowt(S).

2.2 Maximum Flow and Flow Decomposition
While the concept of the maximum flow problem and the Ford-Fulkerson algorithm are
fundamental to graph theory, one might consider their inclusion unnecessary. However,
given their instrumental role in demonstrating our main results in Section 3, we assert their
discussion is crucial for maintaining the completeness of this paper.

In graph theory, the maximum flow problem is a well-known optimization problem. In
the problem, a network, (G = (V, E), s, t, c), is defined as a directed graph, G = (V, E), with
the capacity function c : E → Z+ such that each edge (u, v) ∈ E has a capacity c(u, v) ∈ Z+
that represents the maximum amount of flow that can be sent through it. s ∈ V is the source
node and t ∈ V is the sink node. Let f : E → Z≥0 be a function that represents the flow,
f(e) be the flow that is sent through the edge e. Finding the maximum flow value from a
source node to a sink node under the capacity constraint and flow conservation is the main
concept to solve this problem.

Capacity constraint is the limitation of the amount of flow which can be sent through
each edge. The amount of flow that can be sent through must be less than or equal to the
capacity of that edge which means for all e ∈ E, f(e) ≤ c(e).
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The flow conservation is the property that for any vertex that is not a source node or
sink node, the incoming and outgoing flows are equal. That is for all v ∈ V \{s, t},∑

u:(u,v)∈E

f(u, v) =
∑

u:(v,u)∈E

f(v, u). (1)

The value of flow which is denoted by |f | is the amount of outgoing flow in a source node
which is equal to the amount of incoming flow in a sink node. That is

|f | =
∑

u:(s,u)∈E

f(s, u) =
∑

v:(v,t)∈E

f(v, t). (2)

f is a feasible flow if f satisfies capacity constraint and flow conservation. Therefore, the
maximum flow problem aims to find a feasible flow f such that |f | is maximized. The
maximum value of flow in a flow network can be calculated using the Ford-Fulkerson
algorithm [6]. The algorithm is described as in Algorithm 1.

The algorithm outputs a set of path flows α. For each p ∈ α, let the set of edges of p be
E(p) and the flow value of p be ν(p). For each e ∈ E, define

(3)fα(u, v) = max

 ∑
p∈α:(u,v)∈p

ν(p)−
∑

p∈α:(v,u)∈p

ν(p), 0

 .

It is known that fα is a maximum flow of G. We call the graph Gα in Line 4 of the algorithm
as a residual graph obtained from G and the path flow set α.

Algorithm 1 Ford-Fulkerson Algorithm [6].

Input: Directed graph G = (V, E, c), source node s ∈ V , sink node t ∈ V

Output: A set of path flows α such that fα is a maximum flow of G

1 α← ∅
2 Gα ← (V, E0, c0) such that E0 = E ∪ {(v, u) : (u, v) ∈ E} and c0(e) = c(e) for e ∈ E

and c0(e) = 0 otherwise
3 while there exists an s-t path p with edge sets E(p) and ν(p) = min

e∈p
c(e) > 0 in the

graph Gα do
4 α← α ∪ {p}
5 For each (u, v) ∈ E(p), Gα(u, v)← Gα(u, v)− ν(p) and

Gα(v, u)← Gα(v, u) + ν(p)
6 end

Let |E| be the number of edges and |f | be the value of maximum flow. Then, the time
complexity of the Ford-Fulkerson algorithm in the time-expanded network is O(|E||f |).

It is worth mentioning that the Ford-Fulkerson algorithm is not incorporated into our main
algorithms. Instead, we reference it solely for our submodularity proof. In practical scenarios,
we prefer using more efficient maximum flow algorithms like the Dinic algorithm [3, 4] or the
Edmonds-Karp algorithm [5].

The next fundamental concept we use in our proof is flow decomposition [17]. The concept
is introduced in the following theorem:

▶ Theorem 2 (Flow Decomposition Theorem [17]). For any flow f of G = (V, E, c), there are
feasible path flow set α such that:
1. For all p ∈ α, E(p) ⊆ E

2. |α|≤ |E|.
3. |f |=

∑
p∈α

ν(p).

ATMOS 2023



10:6 Submodularity Property for Facility Locations of Dynamic Flow Networks

By this theorem, if we have an arbitrary feasible flow, we can decompose it into path
flows. The set of path flows will be used at our submodularity proof in the next section.

2.3 Submodularity of Functions flowt

A submodular function is a mathematical function defined on finite sets satisfying the
property that, when adding an element to a smaller set, the difference in value will be greater
than or equal to the difference in value when adding it to a larger set, as shown in the
following definition [9].

▶ Definition 3. If V is a finite set, a function f : 2V → R is submodular if every S, S′ ⊆ V

with S ⊆ S′ and every k ∈ V − S′ then f(S ∪ {k})− f(S) ≥ f(S′ ∪ {k})− f(S′).

Submodular functions can be classified into a class of monotone functions and non-
monotone functions. In this study, we will mainly focus on monotone functions, a function
in which the value of a smaller set is less than or equal to that of a larger set.

▶ Definition 4. A set function f is monotone if for every S ⊆ S′, then f(S) ≤ f(S′).

In optimization, monotone submodular functions have a considerable advantage since their
properties can guarantee that the greedy algorithm is an efficient approximation algorithm.
In a computationally efficient way, these algorithms can give solutions that are close to the
optimal solution with a provable ratio between the solution from the algorithm and the
optimal solution.

In this paper, we show that flowt is a submodular function. It is clear that flowt is a
monotone function since flowt is the function of maximum flow in a time-expanded network;
it is obvious that when the set of sink nodes is larger, the maximum flow will increase. As a
result, we can use the algorithm in [14] to give a 0.63-approximation algorithm for Problem 1.
The algorithm is shown in Algorithm 2.

Algorithm 2 Greedy algorithm for Problem 1 based on the algorithm for the submodular
function maximization problem in [14].

Input: The function flowt : 2|V| → Z≥0, the number of facility κ

Output: Set of facility S

1 S ← ∅;
2 while |S|< κ do
3 v∗ ← arg max

v∈V
flowt(S ∪ {v})

4 S ← S ∪ {v∗}
5 end

Furthermore, we can solve Problem 2 by an O(log(n))-approximation algorithm when n

is the total number of evacuees. The algorithm is shown in Algorithm 3

3 Proof for Submodularity Property

We prove the submodularity property of the flowt function in this section. We denote an
inverse of edge e = (u, v) as ē = (v, u). The proof is begun with the following definition:

▶ Definition 5. Consider a graph G = (V, E, c) such that s, t ∈ V . An s-t path flow of
G, represented as p, can be determined by E(p), a subset of E combined with {ē : e ∈ E}.
This subset represents the directed edges along the path. Additionally, the flow value of p is
symbolized by ν(p).
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Algorithm 3 Greedy algorithm for Problem 2 based on the algorithm for the submodular
cover minimization problem in [18].

Input: The function flowt : 2|V| → Z≥0, the number of evacuees n

Output: Set of facility S

1 S ← ∅;
2 while flowt(S) < n do
3 v∗ ← arg max

v∈V
flowt(S ∪ {v})

4 S ← S ∪ {v∗}
5 end

Let α be a set of s-t path flows. We say that α is an s-t path flow set of a graph
G = (V, E, c) if, for any e ∈ E such that ē ∈ E,

(4 )−c(ē) ≤
∑

p∈α:e∈E(p)

ν(p)−
∑

p∈α:ē∈E(p)

ν(p) ≤ c(e),

and, for e ∈ E such that ē /∈ E,

(5 )0 ≤
∑

p∈α:e∈E(p)

ν(p)−
∑

p∈α:ē∈E(p)

ν(p) ≤ c(e),

We say that α is an s-t maximum path flow set of G if, for any s-t path flow set of G denoted
by α′,

∑
p∈α′ ν(p) ≤

∑
p∈α ν(p).

Under the earlier defined parameters, it is interesting to note that E(p) might not always
be a subset of E, despite p being a path flow of the graph G = (V, E, c). In fact, when
applying the Ford-Fulkerson algorithm to determine path flows, the output set of edges may
not necessarily be confined within E.

The following definition will focus on a particular instance of path flows that does not
incorporate edges in the set {ē : e ∈ E}.

▶ Definition 6. Consider a graph G = (V, E, c) such that s, t ∈ V . Let α be a set of s-t path
flow. We say that α is a one-sided s-t path flow set if:
1. for all p ∈ α, E(p) ⊆ E, and,
2. for all e ∈ α,

∑
p∈α:e∈E(p)

ν(e) ≤ c(e).

We can construct a one-sided path flow set from a path flow set using the flow decompos-
ition algorithm introduced in the previous section.

Recall the graph Gt(S) defined in the previous section. Let F (S) be the collection of
all x∗-ζ∗ maximum path flow sets of Gt(S). By the definition, we obtain the following
proposition.

▶ Proposition 7. For any S ⊆ S′, there is α ∈ F (S) and α′ ∈ F (S′) such that α ⊆ α′.

Proof. Let Gα = (V, Eα, c) be a residual graph obtained from the graph Gt(S) and the path
flow set α. Let E′ = Eα ∪ {(v∗, ζ∗) : v ∈ S′\S}. Consider a function c′ : E′ → Z≥0 ∪ {∞}
such that c′(e) = c(e) for all e ∈ Eα and c′(e) = ∞ for all e ∈ {(v∗, ζ∗) : v ∈ S′\S}. We
can apply the Ford-Fulkerson algorithm to the graph G′ = (V, E′, c′). Let β be the set of
path flows obtained from the Ford-Fulkerson algorithm. It is straightforward to confirm that
α′ = α ∪ β is an x∗-ζ∗ maximum path flow set of G(S′). Hence, α′ ∈ F (S′). ◀

ATMOS 2023



10:8 Submodularity Property for Facility Locations of Dynamic Flow Networks

For each α ∈ F (S), let Gα = (V, Eα, c) be a residual graph obtained from the graph
Gt(S) and the path flow set α. Let E∗

k = Eα ∪ {(k∗, ζ∗)}, c∗
k(e) = c(e) for all e ∈ Eα,

c∗
k((k∗, ζ∗)) = ∞, and G∗

k = (V, E∗
k , c∗). We use the previous proposition to prove the

subsequent lemma.

▶ Lemma 8. There is α ∈ F (S), α′ ∈ F (S ∪ {k}) such that α ⊆ α′ and, for all p ∈ α′ − α,
k∗ ∈ E(p). Furthermore, α′ − α is a maximum path flow set of G∗

k.

Proof. We construct α, α′ based on the proof of Proposition 7. To have α′ ∈ F (S ∪ {k}, it
is straightforward that α′ − α is a maximum path flow set of the residual graph G∗

k.
We then show that, for all p ∈ α′ − α, k∗ ∈ E(p) by contradiction. Let assume that

β = α′ − α there is a path p ∈ β such that k∗ /∈ E(p). Then, there exists s ∈ S such that
s∗ ∈ E(p). Then, let us consider β as an x∗-ζ∗ maximum path flow set of G∗. By the flow
decomposition, we can construct a one-side path flow set of G∗ from β. Let us denote that
one-side path flow set by β′. Since there exists p ∈ β such that s∗ ∈ E(p), there exists p′ ∈ β′

such that s∗ ∈ E(p′). We obtain that p′ is a path in G∗. This contradicts with the fact that
α ∈ F (S). ◀

We are ready to prove the following theorem which confirms the submodularity for the
considered function flowt.

▶ Theorem 9. Let S ⊆ S′, then flowt(S ∪ {k})− flowt(S) ≥ flowt(S′ ∪ {k})− flowt(S′)

Proof. Let α ∈ F (S). By Proposition 7, there are α′ ∈ F (S′) and α′′ ∈ F (S′ ∪ {k}) such
that α ⊆ α′ ⊆ α′′. For all p ∈ α′′ − α′, we can assume from Lemma 8 that k∗ ∈ p. By
flowt(S′ ∪{k})− flowt(S′) =

∑
p∈α′′−α′

ν(p), we obtain that flowt(S′ ∪{k})− flowt(S′) is equal

to the flow value at edge (k∗, ζ∗) in α′′.
Let E∗

sk = Eα ∪ {(s∗, ζ∗) : s ∈ S′ ∪ {k}}, c∗
sk(e) = c(e) for all e ∈ Eα, c∗

sk((s∗, ζ∗)) =∞
for all s ∈ S′ ∪ {k}, and G∗

sk = (V, E∗
sk, c∗). Let β = α′′ − α. We can consider β as an

x∗-ζ∗ maximum path flow set of G∗. By the flow decomposition, we can construct a one-side
path flow set of G∗ from β. Let us denote that one-side path flow set by β′. Also, let us
denote β′

k as a set of path flows in β which passes k∗, i.e. β′
k := {p ∈ β′ : (k∗, ζ∗) ∈ E(p)}.

The flow at the edge (k∗, ζ∗) in α′′ is equal to
∑

p∈β′
k

ν(p), and, by the previous paragraph,∑
p∈β′

k

ν(p) = flowt(S′ ∪ {k})− flowt(S′).

The path flow set β′
k is a path flow set of G∗

k because, for all e ∈ G∗
k,

∑
p∈β′

k
:e∈p

ν(p) ≤∑
p∈β′:e∈p

ν(p) ≤ c(e). The path flow set α ∪ β′
k is then a path flow set of G(S ∪ {k}). Hence,

the maximum flow value of G(S ∪ {k}) is at least
∑

p∈α
ν(p) +

∑
p∈β′

k

ν(p). We obtain that:

(6)

flowt(S ∪ {k})− flowt(S) ≥
∑
p∈α

ν(p) +
∑

p∈β′
k

ν(p)−
∑
p∈α

ν(p)

=
∑

p∈β′
k

ν(p)

= flowt(S′ ∪ {k})− flowt(S′) ◀
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4 Experimental Results

4.1 Data
An example for verifying the proposed method is derived from a graph of a road network
extracted from the city of Chiang Mai, generated by the open data from the project “Urban
Observatory and Citizen Engagement by Data-driven and Deliberative Design: A Case Study
of Chiang Mai City”. The information on the roads (road width and length) and population
number is stored as .csv file, which can be opened using QGIS software.

A B C D E

FGHI

J
K

L M
N O

P
Q

R
ST

U

V

Figure 2 (left) An example of a selected network from a map of Chiang Mai (from Google
Map) (right) the planar graph generated from the map such that the nodes are derived from the
intersections of roads, and edges are roads.

4.2 Data Extraction
Based on the provided information, the graph nodes represent the intersection of roads. The
capacity of each edge is interpreted as two times the width of the road, and the transit time
is computed from the length of the road.

Since the population number information is stored as the population number per district,
the following instruction illustrates the assignment of the population to each node of the
graph. Assume that the considered region consisting of D1, ..., Dn districts with population
number n(D1), ..., n(Dn), respectively.
1. Generate the ordinary Voronoi diagram which generators are the graph nodes over the

considered region.
2. For each Voronoi region, consider whether it belongs to district(s). Then compute the

area of each district contained within each Voronoi polygon.
Suppose that V (v) is the Voronoi region of the node v such that V (v) = V1(v)∪ ...∪Vp(v)
and Vi(v) ⊆ Dk for some k.

3. The number of population at node v is computed by

n(v) =
∑

i

Area(Vi ∩Dk)
Area(Dk) × n(Dk).

4.3 Results
To set up experiments, we use a graph of a road network with 22 nodes, where the total
number of evacuees is 1455, and 30 edges. We assume that unit time in a time-expanded
network is 3 seconds; in one meter of road width, two evacuees can evacuate, and in 3 seconds,
evacuees can evacuate 2 meters. The experiments were done for both problems as follows.
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4.3.1 Experiment Results for Problem 1

The objective of the experiments in problem 1 is to find the facilities’ location by Algorithm
2 among the given graph with 2, 3, 4, and 5 facilities such that the facilities in each case will
be located on the node of the given graph. Furthermore, we can find the optimal facility
location by considering all possible Cn,k cases. In this section, we will show the facility
location from Algorithm 2 and the optimal facility location with the number of evacuees
whose evacuation time is less than or equal to 3 minutes. The results are shown in Table 1
with Figure 3 and 4.

Table 1 The table of the result from Algorithm 2 in Problem 1. The table includes the set
of facility locations, and the number of evacuees whose evacuation time is less than 3 minutes,
comparing to the optimal facility location set by considering all of the possible C22,k.

Facilities No. (k) Result from Algorithm Result from Enumeration Cn,k

Set of Nodes No. Evacuees Set of Nodes No. Evacuees
2 [I, K] 625 [I, K] 625
3 [I, K, T ] 826 [I, L, V ] 870
4 [I, K, T, C] 983 [I, L, V, C] 1027
5 [I, K, T, C, G] 1115 [I, L, V, B, G] 1159

Figure 3 Result of facility locations from Algorithm 2 showed by orange nodes, which is the
same location with and the optimal facility location by considering all possible locations in the case
of two facilities.

The experiment result shows that, in the case that the number of facilities is 2, the set of
facilities from the greedy algorithm is the same as the optimal solution. On the other hand,
when the number of facilities is 3, 4, and 5, the solution from the greedy algorithm is slightly
different from the optimal solution because the greedy algorithm may not guarantee that the
solution from the algorithm will be the same as the optimal solution.

4.3.2 Experiment Result for Problem 2

In Problem 2, we use Algorithm 3 with the same data set as Problem 1 to find the set of
facilities S such that the number of facilities is minimized and the evacuation time of all
evacuees is less than or equal to 5 minutes. It is worth noting that, in the minimization
problem, we do not fix the number of facilities but aim to minimize it.
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Figure 4 (left) Results of facility locations from Algorithm 2 with 3, 4, and 5 facilities (right)
results of optimal facility locations by considering all of the possible locations with 3, 4, and 5
facilities. Orange nodes show the locations of facilities.

The result from the experiment shows that the number of optimal facilities in this data is
equal to 4 when we employ Algorithm 3, in which the set of facility locations is [B, F, J, Q].
This satisfies the optimal solution acquired from enumerating all possible locations, as shown
in Figure 5.

5 Concluding Remarks

In this study, we proposed the proof of the submodularity of the function flowt, which is
defined by the maximum flow of a time-expanded network with a given time t from a static
graph, which is the function that represents the number of evacuees whose evacuation time
is less than or equal to t. This property enables us to apply the greedy algorithm for solving
the facility location problem of dynamic flow networks by finding the locations that maximize
the number of evacuees whose evacuation time is less than or equal to 3 minutes and the
location where the number of them is minimized, making every evacuee evacuate within 5
minutes. We also found the minimum number of facilities such that all evacuees can evacuate
within the given time. The experimental results for Problem 1 in the case of 2, 3, 4, and
5 facilities, and Problem 2, showed practical examples with spatial data. This shows that
applying the greedy algorithm guaranteed by the submodularity proof to the real data on
larger dynamic flow networks is reasonable.
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Figure 5 The facility locations (orange nodes) from Algorithm 3, which is the same location as
the optimal facility location by considering all possible locations.

Based on the proof of submodularity, developing an efficient and robust approximation
algorithm for solving the facilities location problem with a larger network is challenging. It
would be useful for planning purposes, especially in the evacuation due to disasters in the
near future.

We have created a real dataset for evacuation plan in Chiang Mai and have tested with
the dataset. However, as a future work, we are planning to conduct more experiments with
other datasets including the datasets with larger sizes.
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