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Abstract
We study the long-term behavior of dynamic traffic equilibria and find that it heavily depends on
whether spillback is captured in the traffic model or not. We give an example where no steady state
is reached. Although the example consists of a single-commodity instance with constant inflow rate,
the Nash flow over time consists of infinitely many phases. This is in contrast to what has been
proven for Nash flows over time without spillback [3, 7].

Additionally, we show that similar phase oscillations as in the Nash flow over time with spillback
can be observed in the co-evolutionary transport simulation MATSim. This reaffirms the robustness
of the findings as the simulation does (in contrast to Nash flows over time) not lead to exact user
equilibra and, moreover, models discrete time steps and vehicles.
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1 Introduction

Reliable transport models are a central instrument to design efficient transport systems that
provide accessibilities to locations of interest for people and goods and at the same time
reduce the transport system’s negative effects like environmental pollution or its significant
contribution to climate warming.

Arguably, static (i.e., time-independent) models are still the mainstay of transport
modeling, despite their shortcomings in particular with respect to temporal effects [1]. An
important reason is that they are less complex than dynamic (i.e., time-dependent) models,
well-studied, and usually have unique solutions under relatively light conditions [16, 10, 14].
Often, static models are motivated with the argument that they are at least able to model a
stable long-term situation of their dynamic counterpart. This stable long-term situation –
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11:2 Spillback Changes the Long-Term Behavior of Dynamic Equilibria

called steady state – is in this context defined as a situation which is reached after an initial
warm-up phase where congestion builds up on the links of the network and then remains
constant (as long as the overall demand remains stable). But does such a steady state exist?

For the dynamic flows over time model (in the single sink-source setting), Cominetti
et al. [3] proved the existence of a steady state which is reached in finite time under the
necessary condition that the minimal s-t cut is larger or equal to the constant network inflow
rate. Olver et al. [7] generalized this result by proving that even without this condition, a
Nash flow over time will reach a final stable phase in finite time (whereby in a final stable
phase, queue length do not need to be constant but at least only change linearly, forever into
the future).

That result, however, assumes that no spillback occurs, i.e., traffic jams are never longer
than a link. This can be achieved by making the particles infinitely small or by giving links
unlimited storage capacity. As the occurrence of a spillback determines whether a local
over-saturation of a link affects other (upstream) links – and maybe even blocks intersections
or road segments – it is critical for a realistic model to be able to capture spillback effects.
Recently, the aforementioned flows over time model has been extended to also capture
spillback effects [13]. It is well-known that spillback can have a significant impact on the price
of anarchy, i.e., on the efficiency of the equilibrium [5, 11, 15]. Our study complements this
related work by identifying another effect that changes when spillback effects are modeled.

Our contribution

We study the long-term behavior of Nash flows over time capturing spillback effects and
show that they do not necessarily reach a steady state and not even a stable phase. This is
of high relevance as it changes two fundamental properties that have been proven for the
long-term behavior of Nash flows over time without spillback: On the one hand, we show
that – in contrast to what Cominetti et al. [3] have proven for the case without spillback
– there are instances with spillback where Nash flow queue lengths do not become stable,
even if the minimal s-t cut exceeds the constant network inflow rate. Additionally, the same
example shows that – in contrast to what Olver et al. [7] have proven for the case without
spillback – Nash flows over time with spillback even do not necessarily reach a situation
where queues increase linearly forever (i.e., a stable phase).

With that, this study shows that it is essential to include spillback effects into dynamic
network models to realistically model effects over time.

Moreover, we show that the Nash flow over time with spillback can consist of an infinite
number of phases – even for a single commodity with constant inflow rate. This shows
that there are instances where no algorithm exists to calculate Nash flows over time with
spillback that runs in polynomial time dependent on the input size, as doubling the value of
the considered time horizon doubles the number of phases. In the studied example, the Nash
flow phases behave periodically, though.

In general, this study highlights the importance of dynamic transport models: There are
effects over time that do not vanish after an initial warm-up phase. Although the importance
of dynamic transport models has been apparent for real-world applications with high time
dependency, it is still a common motivation for the use of static models that they model the
situation beyond the initial warm-up phase, i.e., the steady state. However, we show that
such a steady state does not necessarily exist, even for very simple instances.

The given example is not limited to the flows-over-time model. We also study its outcome
in the multi-agent transport simulation MATSim [4]. It can be seen that also this simulation
does not necessarily lead to a steady state and similar phase oscillations are visible. This
shows that the non-existence of a steady state with spillback is not limited to continuous
models (as the simulation models discrete time steps and discrete vehicles).
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As MATSim is based on a co-evolutionary process which iteratively improves the users’
choice, it does not result in exact user equilibria. The fact that the Nash flow phase oscillations
can still be observed supports the robustness of this finding. However, the results of the
simulation also show that the phase oscillations become rarer the more randomness (or
error) is included in the co-evolutionary process. Moreover, phase oscillations even become
indistinct and vanish in the long term when we average out the deviations resulting from the
specific random seeds in the simulation.

The remainder of this paper is structured as follows. The next section concentrates on the
long-term behavior of Nash flows over time with spillback. We describe the model, present
the considered example and analyze the oscillating long-term behavior of the resulting phases
of the Nash flow over time. In Section 3 we transfer the example to the co-evolutionary
transport simulation MATSim. Section 4 draws a conclusion based on the findings.

2 Long-term behavior of dynamic equilibira in fluid queuing networks
with spillback

2.1 Flows over time with spillback
We consider a network consisting of a directed graph G = (V, E) with a source node s and
and sink node t. Each link e ∈ E is equipped with free-flow transit time τe ≥ 0, an in- and
outflow capacity rate ν+

e > 0 and ν−
e > 0, and most importantly, a storage capacity σe > 0.

From time 0 on, infinitesimally small flow particles are released with constant network
inflow rate of R > 0 at the source s. The particles, each seen as a single agents, travel into
the network with the goal to reach the destination as fast as possible. After entering a link e,
the particles first traverse this link, which takes τe seconds. Arriving at the end of the link,
they may have to wait in a queue, which forms if the outflow rate of the link exceeds the
outflow capacity, or if spillback occurs. These queues always operate at the maximum rate,
so either with outflow capacity rate (in the case of no spillback) or with a throttled rate
which might happen if a downstream link is full. After the waiting time particles reach the
next node and decide which outgoing link they want to take to continue their journey.

Spillback occurs if the total volume of flow that is on a link e from v to w (so either
traversing or waiting in the queue) reaches the storage capacity σe. In this case, the inflow
capacity rate of e is immediately reduced to the outflow capacity rate (or in the case that the
outflow capacity is already throttled to this throttled value). This ensures that links never
become overfull. As flow cannot wait on nodes, this might lead to a reduction of the outflow
capacity rate of upstream links (i.e. incoming links at v). If there is more than one incoming
link, the reduction of the capacity rate is done proportionally, i.e., the spillback factor cv

at v is the maximum value of (0, 1] such that – if all outflow capacities of incoming links
of v are multiplied by this value – flow conservation at v is possible (and throttled inflow
capacity rates are respected). For more details on these flow dynamics refer to [13] and [11].

A Nash flow over time (also called dynamic equilibrium) in this setting is a feasible flow
over time in which each particle travels from s to t on a shortest path. They form a Nash
equilibrium in the following sense: Each agent considers the chosen paths of all other agents.
This determines the given flow over time f . (Note that a single infinitesimally small agent
does not have any impact on the flow over time so it does not matter if the agent considers
the flow over time with or without themself.) We identify agents by the time they enter the
network, so let θ ≥ 0 be the agent that starts their journey at time θ. With the given flow
over time it is possible to determine the travel time of θ for any s-t path in the network. We
call f a Nash flow over time if every agent travels along a path that has the shortest travel
time over all possible path choices. For a mathematically precise definition, see [13] and [11].

ATMOS 2023



11:4 Spillback Changes the Long-Term Behavior of Dynamic Equilibria

It is far from trivial to see if these flows over time exist at all. Fortunately, it has been
proven by Sering and Vargas Koch [13] that Nash flows over time always exist in the spillback
setting (under some natural condition on the network). Thereby, the path choice of an
agent θ does only depend on the path choices of all agents entering the network before time
θ. That is, we have a network-wide FIFO (first in first out) principle: Agents cannot be
overtaken by following agents and, therefore, are not impacted by them by any means. Even
better, intervals of agents always choose the same path (more precisely the same convex
combination of paths). This means that a Nash flow over time can be decomposed into
phases corresponding to the choices of an interval of agents. For example in Figure 2, all
agents entering the network within [0, 14) choose the middle path; agents entering within
[21, 50) split up between the middle and the lower path, more precisely a rate of two takes
the middle path and a rate of four takes the lower path.

These phases are called thin flow phases and the flow split is given by very specific static
flows called spillback thin flows; see [13]. These flows can be computed with the help of a
mixed integer program, which leads to a constructive algorithm for a Nash flow over time:
Start with the empty network (1), compute a spillback thin flow for the current configuration
(2), determine for how long this phase will be valid (3), and compute the Nash flow over time
for this phase by simulating it with the flow split given by the spillback thin flow. Step (2)
to (4) can be repeated to extend the Nash flow over time until a final phase is found (i.e., a
phase that is valid forever). For Nash flows over time in the model without spillback this
final phase is always reached in finite time [7] but for the spillback model we show that no
such final phase exists and, therefore, such an algorithm may not terminate.

2.2 Periodic long-term behavior of Nash flows over time with spillback
The oscillating long-term behavior of Nash flows over time can be observed in the example
given in Figure 1. All demand (six flow units per second; in the following denoted as vol/s)
travels from s to t through the network. There are three possible paths: The upper path,
the middle path and the lower path. Free-flow travel times (in s) per link are given in black,
outflow capacities (in vol/s) in red ovals, and storage capacities (in vol) in green boxes.

Because of the specific choice of the travel times, outflow-, and storage capacities, an
interesting Nash flow pattern arises: There is no point in time when a steady state is reached.
Path inflow rates change periodically over time and no stable queue lengths are reached
(neither constant nor linearly increasing). This special pattern will be described in the
remainder of this section.

Note that the network resembles Braess’ network [2] with adapted travel times and
capacities. This network is well-known to be hard for selfish routing network flows. Similar
to the original Braess’ network, the present example contains a Braess’ paradox: If one
removes the middle link v3v4, the equilibrium travel time is much lower (and queue length
are constant). Accordingly, one can show that the price of anarchy in the present example is
unbounded, which is in line with previous research on the impact of spillback on the price of
anarchy [5, 11, 15].

Phase description of the Nash flow over time

Figure 2 shows the resulting phases of the Nash flow over time. A phase consists of agents θ

departing in a specific time interval and experiencing similar network conditions. The phase
illustrations are, therefore, given from the perspective of the agents.
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Figure 1 The network used in this study. Free-flow travel times [s] per link are stated as black
numbers, outflow capacities [vol/s] in red ovals, and storage capacities [vol] in green boxes. Links
without a label for storage capacities have unlimited storage. The network inflow rate constitutes
six flow units per second traveling from s to t through the network.
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Figure 2 Consecutive thin flow phases of the Nash flow over time in the present example. There
are infinitely many of them, as phase five to eight repeat periodically every 18 seconds. θ denotes
the network entrance time of the agents forming the phases. The small numbers close to the links
(in black) denote the path inflow rates during the phase. The small numbers on top of the spillback
nodes (in red) denote the spillback factor – the outflow capacity rates of all incoming links are
reduced by this factor. Between the phases the event that triggered the previous phase to end is
indicated. Note that the events between the phases are not in chronological order, but from the
perspective of the agents; e.g. all agents of the second phase (i.e., all agents entering the network
within [14, 19)) experience a non-full link v1v2 but a full link v2v3 even though time-wise v1v2

becomes full before v2v3. The links are colored by their category: Inactive links do not belong to
any fastest s-t path in the corresponding phase; on non-queuing links, the first agent of the interval
is not delayed; on queuing links (also called resetting links in the literature), all agents of the interval
have to wait in a queue; and full links are full when the first agent of the interval reaches its tail.

ATMOS 2023
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It is important to understand that this agent view is different from a snapshot view. The
latter shows the dynamics of the network over time as one is used to from visualizations of
simulations. The former shows the view of the decision-making agent. For this, the state of
the links as they will be when the agent will be there is important. Note that with the agent
view events between the phases do not appear in chronological order, but in the order the
agents are impacted by them.

To understand this perspective, let us first consider the network filling up (corresponding
to the phases in the first line of Figure 2). In the first three phases (consisting of all agents
entering the network before time 21), all flow takes the shortest middle path.

For link v1v2 this means that from time 1 onward (i.e., after the first agent has passed
link sv1), a flow rate of 6 vol/s enters the link. Due to the bottleneck given by the outflow
capacity, only a rate of 3 vol/s leaves the link after the free-flow travel time, i.e., from time 2
onward. Hence, at time 20, there is a flow volume of 19 · 6 − 18 · 3 = 60 on this link, which
means that it becomes full at this moment. This is the time when agent θ = 19 arrives at v1.

Let us consider link v2v3 now: From time 2 on, a flow rate of 3 vol/s enters this link,
but due to the even smaller bottleneck, only a rate of 2 vol/s leaves it, starting at time 3.
Hence, at time 30 a total flow volume of 28 · 3 = 84 has entered the link and a flow volume
of 27 · 2 = 54 has left, i.e., at that time the flow volume reaches the storage capacity of 30
and the link becomes full. The agent departing at θ = 14 reaches this link at time 30, thus,
from the perspective of departing agents, v2v3 is full from θ = 14 on, thus, earlier than v1v2
(see the phase illustration in Figure 2).

For brevity, we are not going through all details of the Nash flow phases, here. Exemplarily,
let us examine the phase shift between phase three and four in more detail in the following:
Consider an (infinitesimally small) agent departing at time 20. From her perspective, both
links v1v2 and v2v3 are full. Due to spillback across node v1 from snapshot time 20 on, the
outflow capacity of link sv1 reduces to 3 vol/s. Note that it is not 2 vol/s, because at this
snapshot time, the downstream link v2v3 is not full yet. So, agent θ = 20 has 3 flow volumes
in the queue on link sv1 ahead of her, meaning that she needs one second for traversing the
link plus one second for waiting and reaches node v1 at time 22. Consider the agents ahead
of her: The first one needs 3 seconds to reach v3, and from then on v3 discharges agents with
a rate of 2 vol/s. As agent θ = 20 has 20 · 6 = 120 agents ahead of her, this needs another 60
seconds, i.e., she can finally leave v2v3 at time 63, and, with that, 41 seconds after arriving
at node v1. Thus, the bypass with 42 seconds travel time is still slightly longer.

This, however, changes for agent θ = 21. He reaches v1 at time 24 (transit time of 1 plus
a waiting time of 2). 21 · 6 = 126 agents are ahead of him, i.e., he can leave v2v3 at time
3 + 63 = 66, i.e., 42 seconds after arriving at node v1. If he takes the lower path instead,
he would experience the same travel time. For that reason, the lower path or, in particular,
v1v3 becomes active for agent θ = 21.

The following agents split 2 : 4 between the middle and the lower path such that travel
times on both paths stay balanced during the whole phase (for all agents θ ∈ [21, 50); see
Figure 2). At snapshot time 24, when agent θ = 21 enters link v1v2, agents still leave the
link with the full outflow capacity of 3 vol/s as the downstream link v2v3 only becomes full
at snapshot time 30. With that, the queue on v1v2 decreases again (by 1 vol/s for 6 time
steps, and then stays constant) such that spillback dissipates from node v1. Nevertheless,
the queue on sv1 does not decrease but stays constant. On the other hand, link v3v4 starts
growing a queue (from the perspective of the agents).

The Nash flow phases continue to process as depicted in Figure 2. Let us concentrate on
the main aspects in the following. For more details and examples on how Nash flows over
time with spillback evolve in general, the reader is referred to previous studies [11, 13].
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The fourth phase ends with the moment when travel times on all three paths become
equal, and, with that, the upper path becomes active and used. This happens at departure
time θ = 50. With phase five, the warm-up phase has ended and from now on phase five to
eight repeat cyclically every 18 seconds.

The increased inflow to link v1v2 causes the queue on that link to grow again. Simultane-
ously (so for the same agents) only 1/3 of the flow uses the link v2v3 (which was full at the
beginning) causing it to become non-full. For agents entering only 3 seconds later, v1v2 gets
full again, which means that the queue on this link can no longer grow. As a consequence,
all flow travels through the middle path, which leads to spillback across v1. For agents
entering only one second later, v2v3 becomes full yet again, but this does not change the
flow behaviour. For agents entering seven seconds later, the outflow rate of link v1v2, which
was 3 vol/s before, is reduced to 2 vol/s due to spillback arriving at v2 (from the perspective
of the particle). For that reason, the lower path (which was active all the time but not used
by any flow) is used again causing link v1v2 to become non-full. Finally, for agents entering
seven seconds later, the upper path becomes active, which results in the same situation as at
the beginning of the loop (phase five) with the only difference that the queue on the first
link sv1 has increased. Since the storage capacity on this link is unbounded and all the flow
has to traverse this link in any case, the loop repeats indefinitely.

Flow values, travel times, and queue length of the Nash flow over time

Figure 3 shows the cumulative flow values of flow particles in the Nash flow over time for the
three different routes in the present example for the first 200 seconds. When the distribution
of flow particles on the three routes changes between the phases of the Nash flow over time,
this can be observed in the plot by changes in line slopes.

Figure 5 and Figure 6 illustrate the link travel time and volume of queuing flow particles
in the Nash flow over time for the two most interesting links sv1 and v3v4. The plots verify
that the queue (and, with that, the travel time) on the first link keeps growing (in phases
6 + 4k and 7 + 4k, k ∈ N0, respectively; see Figure 2) and never decreases. Hence, also
overall travel time in the network (which is depicted in Figure 4) increases over time. This
shows that the network throughput is strictly smaller than the inflow rate, although the
minimal s-t cut is larger, and, thus, it would be possible to send all flow through the network
without delay. Such an inefficient Nash flow is typical for a Braess-like instance, though.
Note that Nash flow travel times of all flow particles with the same departure time are equal,
independent of their route, as all flow particles share the same origin and destination.

The steps in the link travel time plot for the first link (see Figure 5) exactly correspond
to the time intervals of the phases from Figure 2: Link travel time increases when spillback
occurs, i.e., when the next link is full. Interestingly, the corresponding steps on the queue
volume plot in Figure 6 happen more seldom. This is because queue volumes increase on link
sv1 as long as flow particles experience a situation with larger in- than outflow (in this case
due to spillback from v1v2). Note that this might be longer than the departure time interval
of the agents corresponding to that phase. Consider for example the spillback phases six and
seven. The first agent of that phases, θ = 53, arrives at node v1 at time 53 + 1 + 2 = 56. The
last agent θ = 61 arrives 24 seconds later at v1, i.e., the queue volume increase holds on for
these 24 seconds, although the two phases together only have a length of 8 seconds (in terms
of departure time at s). Afterwards, the queue volume stays constant for 10 seconds, which
corresponds to the length of the departure time interval of phases eight and nine, because
travel time on sv1 stays constant in that time period. Together, one Nash flow phase cycle
of 18 seconds corresponds to a queue volume period of 34 seconds, and the queue volume
periods repeat periodically, similar to the Nash flow phases.
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For link v3v4, the periods for the travel time and the queue volume in Figure 5 and
Figure 6 have the same length, because the travel time does not increase every period but
oscillates around a stable value dependent on the Nash flow phase oscillation. Both measures
have a period length of 34 seconds.

In sum, the analysis of phases and queue length of the Nash flow over time in this instance
has shown that there is no point in time when a steady or stable state is reached, and
there exist infinitely many oscillating phases in the Nash flow over time. To be precise, the
oscillating pattern of the lines in Figures 3–6 repeats indefinitely.

3 Long-term behavior of equilibria in a discrete, co-evolutionary
transport simulation

This section shows that it is not only a theoretical finding that the phases of a dynamic
equilibrium oscillate infinitely and no steady state is reached when spillback effects are
modeled. When we apply the co-evolutionary transport simulation MATSim to the same
instance as in Section 2, similar phase oscillations can be observed. This is interesting as the
simulation does (in contrast to Nash flows over time) not lead to an exact user equilibrium
and, moreover, it models discrete time steps and vehicles (whereas Nash flows over time are
continuous). For a detailed model comparison the reader is referred to our previous study
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Figure 7 Iterative, co-evolutionary cycle of MATSim [4].

[17]. Despite the different perspectives, both models behave very similar. Our previous
experiments indicate that Nash flows over time are the limit of the convergence processes
when decreasing the vehicle size and time step length in the simulation coherently [17].
Accordingly, we were able to mathematically prove the convergence of the flow models [12],
and, even further, that Nash flows over time converge to competitive packet routing games
(similar to MATSim) with decreasing refinement level [8].

3.1 The multi-agent transport simulation MATSim
In MATSim, the road network is represented by a directed graph. Each link is defined by a
free-flow travel time, a flow capacity and a storage capacity. The storage capacity determines
the number of vehicles which fit on a link spatially. An exceeded storage capacity effects
that vehicles have to remain on the upstream link and, as such, the model allows to model
spillback effects. MATSim’s traffic simulation handles each link as a first-in-first-out (FIFO)
queue. A vehicle that enters a link is immediately put into the FIFO queue and a so-called
earliest exit time is set as the entrance time plus the link’s free-flow travel time. In each
time step, MATSim’s traffic simulation checks the following conditions to determine whether
a vehicle can leave the queue of a given link: (1) The vehicle is at the head of the queue,
(2) the link’s earliest exit time has passed since the vehicle entered the link, (3) the flow
capacity of the link is sufficient, and (4) the next link has sufficient space left, i.e., its storage
capacity is not exceeded. When a vehicle leaves a link its flow volume is subtracted from the
remaining flow capacity for this time step. If a sufficient flow capacity for the flow volume of
the next vehicle remains, this other vehicle is allowed to leave the link. Otherwise, a next
vehicle can only leave once sufficient flow capacity has accumulated over the following time
step(s). When no vehicle wants to leave the link for some time, the flow capacity does not
accumulate more than its value per time step, i.e., flow capacity cannot be saved for the
future.

MATSim is based on a co-evolutionary algorithm, i.e., an iterative process where in each
iteration a fraction of agents is allowed to change their plans by choosing from a set of good
responses with the goal to improve their (individual) score. This procedure leads to a state
where most of the agents do not have any incentive to deviate, but this does not necessarily
correspond to an exact user equilibrium. The co-evolutionary algorithm consists of the
three steps mobsim, scoring and replanning and is illustrated in Figure 7. The flow model
described above corresponds to the mobsim module, where plans of agents are executed on
the network. Next, all executed plans are evaluated by the scoring module (in this study,
scores are only based on the experienced travel times). Based on these scores, agents either
change their plans within their current plan choice set or generate completely new plans
during replanning. In this study, agents are only allowed to change their routes, whereas in
general changes along other choice dimensions (e.g., departure time or mode choice) can be
represented in MATSim [4]. During re-routing, agents use the knowledge of all travel times
in the network of the last iteration and, based on those, choose the shortest possible route
based on the last iteration.
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Simulation setup for the present study

For the present study, we use a simulation time step size of 1/16 seconds, and, in line with
our previous study [17], the square of this as the vehicle size. MATSim’s co-evolutionary
algorithm is run for 1000 iterations. At the beginning, all agents of the simulation are
equipped with the three possible routes and aim to find their best option within that plan
choice set over the iterations. In the first 800 iterations, 1/3 of the agents choose the plan
with the best score (i.e., lowest travel time in this case), 1/3 stay with their last choice, and
the other 1/3 of the agents apply a logit model to choose a plan from their choice set, i.e.,
a plan is chosen with a certain probability based on the score. From iteration 800 on, the
logit-model-based strategy is switched off and the probability of the other two strategies
becomes 50 : 50. Additionally, a method of successive averaging is applied on the score of the
plans from iteration 800 onwards. With that, the plan scores become more stable between
iterations which supports convergence towards a stable choice.

Some parts of MATSim depend on random values. In this setup this mainly applies to
the logit model used to choose plans from the choice set of the agents. One can influence the
randomness by choosing the initial random seed of the simulation. Based on this initial value,
the simulation will then set the random seed to a different value in each iteration. With the
same initial seed, two different simulation runs will underlie the same random values, though.
To be able to analyze the deviations depending on the specific random values, we, therefore,
repeat the simulation with 20 different initial random seeds.

We analyze the present example for an inflow time interval of [0, 500], i.e. in each simulation
run agents depart within the first 500 seconds of simulation time (with the aforementioned,
constant inflow rate). This keeps the run time within reasonable limits and still shows the
relevant pattern of phase oscillations.

3.2 Long-term behavior of equilibria in MATSim
The oscillating phases of the Nash flow over time (see Section 2.2) can also be observed in
MATSim: Figure 8 illustrates the queue volumes over time in the simulation for the two
links sv1 and v3v4 with the most interesting behavior. The plots show the full period of
queue increase and decrease for the simulation time of 500 seconds. (All following figures are
zoomed into the first 300 seconds of the simulation to better see the phase structures.) For
all following figures, the right plot shows the values for a specific random seed run; the left
plots show the average value over all random seed runs.

First of all, we can see a lot of phase switches where path inflow rates change (identified
by changes in line slopes). They are particularly distinct in the plots on the right that show
a selected random seed run. Interestingly, the phases in MATSim become the longer the
more time has passed. Probably, this is because the simulation does never result in exact
best solutions, but includes some randomness in agents’ route choice. This causes small
errors that accumulate over time and, again, increase the inaccuracy of the route choice of
the following agents. In the present example, this leads to slightly fewer agents using the
current best path in the simulation than in the Nash flow over time. Accordingly, queues
on the best path in the simulation built up a bit slower. Therefore, the balancing of route
travel times, which is necessary for the phase shifts, happens later than in the Nash flow.
Hence, phases expand.

The expansion of phases can also be seen in the right part of Figure 9, which depicts link
travel times on the two links sv1 and v3v4: In particular, the link travel times on the first
link show the aforementioned delayed increase for later phases (by a decreasing slope).
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Figure 8 Flow volume of delayed vehicles in MATSim for the two links sv1 and v3v4 – on the
left, averaged over all random seed runs; on the right, corresponding to a selected random seed run.
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Figure 9 Link travel time on sv1 and v3v4 in MATSim dependent on the link enter time – on the
left, averaged over all random seed runs; on the right, corresponding to a selected random seed run.
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Figure 10 Cumulative flow values of vehicles in MATSim for the three different routes – on the
left, averaged over all random seed runs; on the right, corresponding to a selected random seed run.
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Figure 11 Travel time of vehicles in MATSim dependent on their departure time. The left plot
shows the average travel time over all routes and random seed runs, the right plot the average travel
time for one specific random seed run and each route separately.

Figure 10 shows the cumulative flow values on the three different routes in the simulation.
Again, the oscillating route distribution depending on the phases and their expansion over
time can be seen, especially for the selected random seed run on the right.

The effect that most of the phase oscillation vanishes in the long run, when the results
are averaged over multiple random seed runs (see all left plots in Figures 8–10), is an
interesting side finding of this study. The reason for this effect is a natural consequence of the
aforementioned error in the simulation that accumulates over time. As this error is heavily
dependent on the random values that are used in the simulation (i.e., the initial random
seed), the deviations from the exact user equilibrium are dependent on the random values as
well. With that, the results of the different random seed runs diverge more and more, the
more time has passed, i.e., the more error has accumulated. Clearly, averaging over multiple
random seed runs, therefore, averages out the long-term oscillations and results in stable,
average line slopes. This is important as it might result in significantly different results.
While modeling transport realistically, one usually is not interested in average network travel
times or queue length, but wants to know where and when congestion occurs and which
effects exist over time.

Because fewer agents use the middle route in the simulation than in the perfect Nash flow
due to the aforementioned deviations over time, another interesting side effect occurs: The
overall travel time (see Figure 11) is slightly lower compared to the Nash flow over time (the
higher the departure time, the lower the slope of the plot). This means that the simulation
leads to a slightly better overall situation – not because of intelligent measures, but because
of randomness and inaccuracy.

However, the right plot of Figure 11 also shows that the travel time in the simulation
is not fully converged: Some agents travel longer than other agents with the same (or
later) departure time and can, therefore, improve by unilaterally changing their route. In
consequence, we assume that route travel times, and, with that, cumulative flow values
would approximate further to the Nash flow over time values if the co-evolutionary learning
approach of the simulation was run for even more iterations and, thus, would result in a
situation that is closer to the exact user equilibrium. Alternatively, one could force the
agents in the simulation to choose their routes sequentially, one after the other, depending
on their departure time. Because our example constitutes a single-commodity instance, this
would result in the perfect user equilibrium [6]. However, real-world traffic will never be so
perfectly distributed. Instead, the observed deviations that the co-evolutionary approach
results in, might even rather align with how real-world travelers make their decisions and
are, therefore, also relevant to study on its one.
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4 Conclusion and outlook

This study has shown that dynamic Nash flows capturing spillback effects do not necessarily
reach a steady state, i.e., a situation with constant queue lengths. Moreover, there are
(indeed very simple) instances where the phases of the Nash flow over time oscillate infinitely.
As a consequence, the long-term behavior of dynamic equilibria heavily depends on the
fact whether spillback is captured in the model or not. These findings also highlight the
importance of dynamic transport models in general. Additionally, we have shown that similar
phase oscillations as in the Nash flows over time model can be observed in the multi-agent
transport simulation MATSim. This supports robustness of the findings as the simulation
does (in contrast to Nash flows over time) not lead to exact user equilibria and, moreover,
uses discrete time steps and vehicles.

However, we also observed a significant deviation in the results when more randomness
is added to the co-evolutionary process of finding a stable state in the simulation. This is
because there is a strong dependence between following vehicles in the example considered
here. A route change of a preceding vehicle influences the travel time of all following vehicles.
Thus, deviations from the user equilibrium accumulate and persist over time and cause even
further deviations/errors. Still, the simulation outcome always had a structure similar to the
Nash flow over time. It would be an interesting follow-up question whether there exists an
example where these vehicle dependencies and accumulated errors result in a structurally
different solution, or, whether the co-evolutionary algorithm of the simulation might even
result in a chaotic solution, e.g. a grid lock, whereas the Nash flow over time does not.

Related to this is the question regarding continuity of dynamic equilibria, i.e., whether
small perturbations to the instance can lead to structurally different equilibrium solutions.
Although continuity of Nash flows over time has been proven recently for the case without
spillback [7], simulation studies have shown, that the co-evolutionary approach of MATSim
can lead to situations where a small change in the agent behavior can lead to huge changes in
the congestion pattern [9]. We assume, this discrepancy also stems from the presence/absence
of spillback effects. It would be interesting to investigate this further.

In the present example, the Nash flow over time consists of an infinite number of phases,
but the same three phases repeat periodically. A naturally next question is whether there
exists an instance with finite input and pure infinite output. This would finally rule out the
efficient calculation of Nash flows over time with spillback.
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