
Assignment Based Resource Constrained Path
Generation for Railway Rolling Stock Optimization
Boris Grimm #Ñ

Freie Universtät Berlin, Germany
Zuse Institute Berlin, Germany

Ralf Borndörfer # Ñ

Freie Universtät Berlin, Germany
Zuse Institute Berlin, Germany

Julian Bushe #

Zuse Institute Berlin, Germany

Abstract
The fundamental task of every passenger railway operator is to offer an attractive railway timetable
to the passengers while operating it as cost efficiently as possible. The available rolling stock
has to be assigned to trips so that all trips are operated, operational requirements are satisfied,
and the operating costs are minimum. This so-called Rolling Stock Rotation Problem (RSRP)
is well studied in the literature. In this paper we consider an acyclic version of the RSRP that
includes vehicle maintenance. As the latter is an important aspect, maintenance services have to be
planned simultaneously to ensure the rotation’s feasibility in practice. Indeed, regular maintenance
is important for the safety and reliability of the rolling stock as well as enforced by law in many
countries. We present a new integer programming formulation that links a hyperflow to model
vehicle compositions and their coupling decisions to a set of path variables that take care of the
resource consumption of the individual vehicles. To solve the model we developed different column
generation algorithms which are compared to each other as well as to the MILP flow formulation
of [2] on a test set of real world instances.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases Railway Rolling Stock Optimization, Integer Programming, Column Genera-
tion

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.13

1 Introduction

The fundamental task of every passenger railway operator is to offer an attractive railway
timetable to the passengers while operating it as cost efficiently as possible. The available
rolling stock has to be assigned to trips so that all trips are operated, operational requirements
are satisfied, and the operating costs are minimum. This so-called Rolling Stock Rotation
Problem (RSRP) is well studied in the literature, for example in [6] or [4]; we refer to [12] for
a detailed overview. An important aspect in optimizing railway rolling stock rotations is the
scheduling of maintenance services. Indeed, regular maintenance is important for the safety
and reliability of the rolling stock as well as enforced by law in many countries. However,
each maintenance service causes additional costs not just for the service itself but also for
deadhead trips to and from the maintenance location, and the opportunity costs arising from
the unavailability of the vehicle to operate trips for the duration of the service. Therefore,
integrating maintenance planning into rolling stock rotation planning is of central importance
for finding efficient solutions. This holds particularly for railway companies that operate
long-distance routes, where a vehicle typically does not end in the same depot after each
day of operation. In the railway literature it is often the case that the considered models

© Boris Grimm, Ralf Borndörfer, and Julian Bushe;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 13; pp. 13:1–13:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grimm@zib.de
https://www.zib.de/members/grimm
mailto:borndoerfer@zib.de
https://www.zib.de/borndoerfer
mailto:bushe@zib.de
https://doi.org/10.4230/OASIcs.ATMOS.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Assignment Based Resource Constrained Path Generation

and solution approaches are highly tailored to the specific requirements, operational rules,
and setting of the respective railway operator. The way in which maintenance services are
handled or not is no exception to that.

In [4] an arc-based and a path-based model to optimize rotations for instances modeling
a cyclic one-day vehicle schedule of a regional railway operator were presented. Compositions
of different train types were considered in the sense that the number of vehicle types in a
composition is taken into account, but without explicit handling of couplings. Maintenance
is considered in the path-based model in the sense that for each maintenance constraint and
each vehicle type a certain share of the paths must contain a maintenance service. Both
models where solved by an LP-based heuristic.

Rolling stock rotations for a single vehicle type with a fixed composition for a cyclic
one-day planning horizon are studied in [7]. Turns and maintenance services are determined
by a MILP Model that uses a resource flow to track the resource consumption of each vehicle;
it is solved by a commercial MILP-Solver.

A path-based mixed integer program is introduced in [10] in order to find rolling stock
rotations for the S-tog trains in Copenhagen. Deadhead trips are not considered and
an explicit predecessor-successor relation is considered for turns between trips. Although
coupling is not modeled explicitly, the order of vehicles in a composition is, and composition
changes are possible. Maintenance services are considered to be carried out after the vehicle
arrives at a depot, and unit specific distance limits are included as a maximum distance
threshold. The presented model is solved by a branch and price algorithm combining column
generation and branch and bound.

[13] consider fixed maintenance services which are already integrated into the timetable
and which a fraction of the vehicles have to visit. Three MIP formulations that are based on
the flow model of [6] are introduced to optimize short re-scheduling situations for scenarios of
Nederlandse Spoorwegen. The models very explicitly take into account multiple vehicle types
and model coupling and decoupling as well as the position of each vehicle in a composition.
A MIP solver is used to solve the models.

A two-stage MILP approach is presented by [14] to optimize a cyclic two day planning
horizon of the Chinese high speed railway system. In the first stage an adaptation of [6] is
used to compute optimized rotations for vehicle types, followed by a second MILP-stage to
assign maintenance-feasible trip sequences to individual vehicles.

In this paper we present a novel integer linear formulation to model the Rolling Stock
Rotation Problem with maintenance constraints as well as approaches to tackle the resulting
model. Though being based on the work of [2] where a mixed integer linear program,
based on a graph-based hypergraph, was developed to optimize rolling stock rotations, the
model presented here uses path-based variables to take care of the resource consumption of
individual vehicles instead of using an arc based resource flow. In contrast to [10] positions of
vehicle types in operated vehicle compositions and their impact on turnings between the trips
are considered. As the model contains exponentially many variables if all paths variables
were added explicitly, different column generation algorithms are presented to solve a model
with a suitable selection of path and hyperarc variables.

The paper is structured as follows. Section 2 presents a description of the hypergraph
that is used to model the RSRP and a novel integer linear programming formulation to
solve it. Section 3 describes several column generation algorithms that we use to tackle
this formulation. In Section 4 we show the results of our computational study, that gives a
comparison of the column generation algorithms and the approach of [2] on a test set of real
world instances. Finally, a conclusion and outlook is given in Section 5.

B. Grimm, R. Borndörfer, and J. Bushe 13:3

2 Solving the RSRP with Maintenance Paths

We tackle the Rolling Stock Rotation Problem with maintenance constraints in a very
similar way as [2] or [8], but with a different, namely, a path-based handling of the resource
consumption of the individual vehicles. Among other ideas, [2] employed a coarse-to-fine
approach where a part of the problem is solved on a less detailed coarse hypergraph layer, and
the coarse solution is used to find a solution to the original problem on the fine hypergraph
layer more efficiently. In the hypergraph model of [2] and [8], a binary hyperflow is used to
compute the vehicles movement and shunting decisions. An additional arc flow linked to the
hyperarcs is used to track the resource consumption for each individual vehicle. However,
the linear relaxation of this model allows that fractions of vehicles are maintained such
that the model systematically underestimates the number of maintenance services. This in
turn means that the lower bound provided by the linear relaxation is not very tight and, as
we have observed, can even schedule more maintenance services than the integer optimum.
To overcome this drawback, we present a path-based model of the Rolling Stock Rotation
Problem which provides a lower bound that is at least as tight as or tighter than the lower
bound provided by the flow-based model of [2]. To solve the model, we developed multiple
column generation algorithms which compute feasible paths, with respect to maintenance
rules, in a coarsened graph. The approaches were tested on real world instances for an
intercity railway network.

The ILP model used in this paper can be described as follows. Let T be the set of trips in
the timetable. We consider the RSRP as given by a graph-based hypergraph G := (V, A, H)
where V is a set of nodes, A a set of standard arcs, and H a set of hyperarcs. V contains nodes
for arrival or departure events of vehicles that operate trips in certain compositions of vehicles,
or events where vehicles become available or are required at begin or end of the planning
horizon, respectively. Let M ⊂ V be a set of service events where maintenance services can
be performed. The arc set A contains a standard arc (v, w) if a vehicle of the respective type
can transfer in an operationally feasible way from v to w. The hypergraph H also contains
hyperarcs h ∈ H, which are node disjoint subsets of A. If two arcs (a, b), (v, w) ∈ h ⊂ A

belong to a hyperarc h, this models the coupled transfer of two vehicles from a to b and from
v to w, respectively. For more details concerning the construction of such a graph-based
hypergraph we refer to [2]. Different from [2], but according to [8], we consider an acyclic
setting with a time horizon, which leads to the consideration of start and end conditions
for the rolling stock. Therefore let S, E ⊂ T define sets of dummy trips modeling these
conditions. For a start condition dummy trip s ∈ S, the trip’s arrival node is the location
of the respective vehicle at the beginning of the planning horizon. For an end condition
dummy trip e ∈ E the trip’s departure node is a location where a vehicle of that type can be
parked at the end of the planning horizon. Moreover, there are cost and resource functions
c : H → Q and r : H → Q that give the cost to operate and the resource consumption with
respect to maintenance services of a hyperarc h, respectively. The resource consumption of
trip s ∈ S is the initial level of resource consumption of the vehicle, while trips e ∈ E require
an extra resource buffer amount that must be kept available. Finally, HM ⊂ H defines the
set of hyperarcs that include maintenance services. The RSRP is the task of finding a cost
minimal hyperflow in G such that each sub-path of standard arcs between two hyperarcs of
HM is maintenance-feasible, i.e., taht the sum of resource consumptions along this path is
below a certain threshold R ∈ Q.

Figure 1 illustrates the hypergraph construction. It shows a snippet of a hypergraph
that models four trips. Each node refers to an arrival or departure event of a single vehicle.
Departure events are on the left hand side of the smallest surrounding box while arrival events

ATMOS 2023

13:4 Assignment Based Resource Constrained Path Generation

Trip 1 Trip 2

Trip 3 Trip 4

Figure 1 An Exmaple Hypergraph Modeling Four Trips.

are the nodes on the right. The trips 3 and 4 can be operated with a single vehicle composition
either in orientation tick (1st class is in front) or tock (2nd class is in front), the former is
shown as a single red arc surrounded by a white box while the latter is shown as a single
red arc surrounded by a gray box. Compositions itself are grouped into a surrounding blue
box. So there are two blue composition boxes for each of the two trips modeling two options
to operate them. Trips 1 and 2 can additionally be operated by a two vehicle composition
with orientation tick for both vehicles. Thus there are two white boxes surrounded by a
blue box. The four nodes – two arrival and two departure events – are connected by a single
hyperarc connecting the four nodes. All possible compositions to operate a trip are then
surrounded by a white box headlined with the trip’s name. The example shows the possible
turnings of the vehicles between the four trips. If for example trip 1 is operated by a single
vehicle composition with orientation tock (gray box), it has to be either succeeded by trip
2 operated by a single vehicle composition with orientation tock or trip 4 operated by a
single vehicle composition with orientation tick. Therefore there is an orientation change
for the turn between trip 1 and 4 while there is none between 1 and 2. A reason for that
could be a different direction, in which a vehicle has to depart when it operates trip 2 or 4,
or an additional deadhead trip for one of the two turns. Similarly, if trip 1 is operated by a
single vehicle composition with orientation tick (white box), it has to be either succeeded
by trip 2 operated by a single vehicle composition with orientation tick, or trip 4 operated
by a single vehicle composition with orientation tock. Additionally, it can also be coupled
to one of the two positions of the two-vehicle composition by which trip 2 can be operated.
Finally, if trip 1 is operated by a two vehicle composition with orientation tick for both
vehicles (white boxes), the vehicles can either procceed in two-vehicle composition of trip
2 using the hyperarc that connects the two arrival nodes of trip 1 with the two departure
nodes of the two-vehicle composition of trip 2, or the composition can be uncoupled such
that one vehicle is assigned to trip 2 and the other to trip 4. So there must be an orientation
change for turns of vehicles from Trip 1 to Trip 3 while vehicles that turn from Trip 1 to
Trip 2 maintain their orientation.

2.1 A Path-Based Integer Linear Programming Model to the RSRP
Here is an integer programming model of the RSRP. We denote by H(t) ⊂ H the set of
hyperarcs that operate trip t ∈ T , by H(a) ⊂ H the set of hyperarcs that contain arc a ∈ A,
and by P (a) the set of maintenance feasible paths in (V, A) that contain arc a ∈ A. The
model contains three different types of integer decision variables, namely, xh for all h ∈ H,
zp for all p ∈ P , where P denotes the set of maintenance feasible paths in (V, A), and slack
variables st for t ∈ T .

B. Grimm, R. Borndörfer, and J. Bushe 13:5

min
∑
h∈H

chxh +
∑
t∈T

Mst (RSRPpath)

s.t.
∑

h∈H(t)

xh + st = 1 ∀t ∈ T, (1)

∑
h∈H(a)

xh −
∑

p∈P (a)

zp = 0 ∀ a ∈ A, (2)

∑
p∈P +

m

zp −
∑

p∈P −
m

zp = 0 ∀ m ∈ M, (3)

st ∈ {0, 1} ∀ t ∈ T, (4)
xh ∈ {0, 1} ∀ h ∈ H, (5)
zp ∈ {0, 1} ∀ p ∈ P. (6)

The objective function (RSRPpath) minimizes the costs of vehicle movements associated
with the chosen hyperarcs and penalties resulting from uncovered trips. Constraints (1)
stipulate that each trip is either operated by a suitable composition hyperarc or that slack
costs are paid. In case of a dummy trip for start or end conditions the slack costs are zero.
Constraints (2) make sure that each standard arc contained in a chosen hyperarc is covered by
a feasible maintenance path, and that flow conservation holds. The equalities (3) handle the
conservation of paths entering and leaving a maintenance service location; these constraints
are only considered in some of our algorithms, namely, those in which generated paths are
split into subpaths at each visited maintenance service location. Finally, constraints (4),(5),
and (6) define the variable domains.

The model potentially contains an exponentially large number of path variables. We there-
fore developed a number of column generation procedures to generate promising maintenance
paths in order to solve the linear programming relaxation of this formulation.

3 Column Generation Approaches to the Path-Based ILP Formulation

To tackle the RSRPpath-formulation we run a column generation approach with different
schemes to dynamically generate promising maintenance-feasible paths. Column generation
is a technique best suited to solve MILP formulations with a very large set of variables
compared to the number of constraints. It is based on the observation that there are very few
basic variables in an optimal solution and that most others are zero. In a nutshell a so called
restricted master problem – usually the original problem restricted to a subset of variables –
is solved to obtain a primal and a dual solution vector x̄ and π, respectively. Based on the
dual information a pricing problem is solved to find variables with negative reduced cost. If
there are no such variables the actual primal incumbent can not be improved anymore and
is thus optimal. Otherwise variables with negative reduced cost are added to the restricted
master problem and the next iteration begins. For deeper insights on the topic of column
generation we refer to [5]. In our application the restricted master problem RSRPres is the
RSRPpath-formulation restricted to the variables st for all t ∈ T and xh for all h ∈ Ht, the
constraints (1) and (2) where already variables are present, and the constraints (3) for nodes
s ∈ S ∪ E. All other constraints are added at the time when one of the associated variables
is added.

ATMOS 2023

13:6 Assignment Based Resource Constrained Path Generation

Listing 1 Algorithm 1: Column Generation Algorithm.
Input : Hypergraph G = (V, A, H), cost function c, resource function r,
maximum tolerance for optimality gap ε, number of vehicles k

Output : Generated paths P ′ and hyperarcs H ′ such that RSRPres has
optimality gap of at most ε

1 Initialize : H ′ ← HT , P ′ ← ∅, L← 0
2 do
3 π ← dualSolve (RSRPres(H ′, P ′))
4 c̄← calculateReducedCostFunction (c, π)
5 P ∗ ← calculateShortestMaintenancePathsTemplate ((V, A), c, r)
6 if c̄(p) ≥ 0 ∀p ∈ P ∗ then
7 break
8 end
9 P ′ ← P ′ ∪ P ∗

10 H ′ ← H ′ ∪
⋃

a∈p∈P
H(a)

11 x∗ ← objectiveValue (π)
12 L← max(x∗ + k min{c̄(p)|p ∈ P}, L)
13 while (x∗ − L)/x∗ > ε

14 return H ′ ,P ′

In the pricing problem we have to check for promising variables xh for H \ Ht and zp for
all maintenance feasible paths p ∈ P with negative reduced cost. In the latter case this can
be done by solving the minimization problem

c∗
P := min

{∑
a∈p

c(a) +
∑
a∈p

πa | p ∈ P

}
,

which is a resource constrained shortest path problem in D = (V, A) with cost function
ĉ : A → Q, ĉ(a) := c(a) + πa and resource function r. As it is possibly the case that the
restricted master problem RSRPres does not yet cover some arcs a ∈ A by at least one
hyperarc, we compensate for that by using the cost function

c̄ : A → Q, c̄(a) :=
{

c(a) + πa ∀a ∈ A : ∃h ∈ HRSRPres
: a ∈ h,

c(a) else,

where HRSRPres
denotes the set of hyperarcs present in RSRPres. Solving the optimization

problem

c̄∗
P := min

{∑
a∈p

c̄(a) | p ∈ P

}

gives a set of promising hyperarc and path variables to add to RSRPresin case of c̄∗
P < 0,

or proves that the column generation process can be stopped. The pseudo code for this
algorithm is given in Algorithm 1.

Column generation often suffers from so-called tailing off: The closer the objective value of
the incumbent approaches the optimal objective value, the smaller becomes the improvement
of the objective function in each iteration. We therefore apply an additional stopping criterion
in terms of a progress threshold. It applies when c(x̄)−kc̄∗

P

c(x̄) ≤ ε, where ε is a given threshold
and k := |S| is the number of vehicles (of the respective type).

B. Grimm, R. Borndörfer, and J. Bushe 13:7

3.1 Coarsening Projections for the RSRP Hypergraph
Our algorithms are based on the previously mentioned hypergraph coarsening scheme
developed by [11]. In the node set V of our original hypergraph G, a node v ∈ V represents
an arrival or departure event e ∈ {a, d} of a vehicle of some type r operating a trip t ∈ T in
a chosen composition q at position i with orientation o. This node can be represented by a
tuple v := (e, t, r, q, i, o). The first coarsening of the hypergraph G is defined by the mapping

[·] : V → [V], [(e, t, r, q, i, o)] := (e, t, r, q)

which omits the position and the orientation of the node. We accordingly coarsen the arc
and hyperarc sets to

[A] := {([v], [w]) ∈ [V]2 | ∃ (v, w) ∈ A} and [H] := {
⋃

(v,w)∈h

([v], [w]) | ∃ h ∈ H}.

These three sets define a coarsened hypergraph [G] := ([V], [A], [H]), which we call the
configuration layer. Similarly, we define a third layer called the vehicle layer by the mapping

[[·]] : V → [[V]], [[(e, t, r, q, i, o)]] := (e, t, r),

which additionally omits the composition. The sets of arcs and hyperarcs of the vehicle layer
[[G]] := ([[V]], [[A]], [[H]]) are defined as

[[A]] := {([[v]], [[w]]) ∈ [[V]]2 | ∃ (v, w) ∈ A} and [[H]] := {
⋃

(v,w)∈h

([[v]], [[w]]) | ∃ h ∈ H}.

The costs of a hyperarc belonging to one of the coarse layers are conservatively defined
as c : [H] → Q, c([h]) := min{c(h′) | h′ ∈ H : [h′] = [h]} and c : [[H]] → Q, c([[h]]) :=
min{c(h′) | h′ ∈ H : [[h′]] = [[h]]}, respectively.

The idea behind these graph contractions is that the coarsened graph becomes much
smaller, but hopefully looses only little information, such that algorithms will run faster on
the coarse graph, but still generate fesaible solutions and, in particular, maintenance-feasible
paths. We remark that the coarsening projections of arc, hyperarcs, and path always result
in underestimations of their respective costs, i.e., [c]([p]) < c(p) always holds.

Trip 1 Trip 2

Trip 3 Trip 4

(a) Fine layer H.

Trip 1 Trip 2

Trip 3 Trip 4

(b) Configuration layer [H].

Trip 1 Trip 2

Trip 3 Trip 4

(c) Vehicle layer [[H]].

Figure 2 An Example for the Layers built by [·] and [[·]] for the Hypergraph of Figure 1.

3.2 Generating Maintenance Feasible Paths Using Coarsened
Hypergraphs

The most crucial part of every column generation algorithm is to generate the best suited new
variables as fast as possible. A straight forward idea to come up with promising maintenance
paths is to solve the induced resource constrained shortest path problem (SPPRC) which is

ATMOS 2023

13:8 Assignment Based Resource Constrained Path Generation

a well studied problem, see [9] for more details. To this purpose, we implemented a Label
Setting Algorithm that first computes a topological ordering of the nodes in the graph, then
traverses the graph in this order and stores labels at each node for all Pareto-optimal sub-path.
The pseudo-code for a version that returns the best n paths is shown in Algorithm 3. Remark
that it is easy to handle the initial resource consumption of vehicles as this only requires to
set the resource consumption variables of the initial labels to their respective values. Note
that it is possible (though not required in our application) to enforce in this way at least one
maintenance service stop for each vehicle, which is a constraint that is hard to include into
the flow formulation of [2]. Using Algorithm 3 with n = 1 as the shortest path routine in
Line 5 of Algorithm 1 results in our first column generation algorithm, which adds exactly
one path per iteration.

To take better advantage of the layered structure of our hypergraph, we implemented
an additional resource constrained shortest path algorithm whose pseudo code is given in
Algorithm 4. The idea is the following: In each iteration of the column generation algorithm,
the path search iteratively computes for each vehicle i ∈ {1, ..., k} a coarse maintenance-
feasible path qi with minimum coarse reduced cost in the configuration layer by running
Algorithm 3 on [G] := ([V], [A], [H]). After that, a fine maintenance feasible path pi is again
computed by Algorithm 3 on the subgraph (Vqi

, Aqi
) induced by qi. The nodes Vpi

and
all adjacent arcs of A are then removed from G before the next path for vehicle i + 1 is
computed. If at least one maintenance feasible path pi with c̄(pi) < 0 was generated, the
set Pi :=

⋃k
i=1{pi} is added to the variables of the RSRPres. As it could be the case that

there is no fine maintenance feasible path pi in the subgraph induced by qi, or all feasible
ones are already added, we iterate through a set of shortest coarse paths until we find a
feasible fine path. In our computational experiments this happens rarely. Both algorithms
were implemented and evaluated in the master thesis [3].

Table 4 of the Appendix shows computational results for these two algorithms and shows
that the algorithms are able to compute significantly better lower bounds for specific instances,
but for a substantial price in terms of run time, and with the drawback that generated paths
are often not able to cover all trips in an integer way. This motivated the development of a
procedure that aims at a (more) simultaneous generation of paths.

3.3 Assignment Based Resource Constrained Path Generation Algorithm
The main algorithmic contribution of this paper is the Assignment Based Resource Con-
strained Path Generation Algorithm shown in Algorithm 2. It is motivated by the observation
that the paths that are generated in later iterations, even if they have negative reduced costs,
often lack complementary paths that are needed to cover all trips. The general idea behind
the algorithm is to avoid this situation by simultaneously computing paths for the entire set
of vehicles. This is done by solving an assignment problem that assigns a successor trip to
each trip in the super-coarse layer [[G]]. The ensuing predecessor-successor relations result
in implicit paths in G. Due to the integrality of the Assignment Problem they often produce
an integral solution of the RSRPpath – if all computed paths are maintenance feasible. In
order to improve the lower bound or to terminate this method is combined with a single
resource constrained shortest path computation.

The algorithm works as follows. At first a single iteration of Algorithm 4 is done to
compute a single coarse resource constrained shortest path q in the configuration layer [G].
This path defines a subgraph (V (q), A(q)) ⊆ G, where V (q) and A(q) denote the sets of
nodes and arcs that can be projected by [·] on nodes or arcs of q. In this subgraph a shortest
maintenance feasible path p is determined by Algorithm 3 and added to P ′. If no such

B. Grimm, R. Borndörfer, and J. Bushe 13:9

Listing 2 Algorithm 2: Assignment Based Path Generation.
Input : Hypergraph (V, A, H), cost function c, gap
tolerance ϵ, number of vehicles k, coarseining projections [·], [[·]]
Output : Sets H ′ ⊂ H and paths P ′ ⊂ P with min{c̄(p)|p ∈ P ′} < 0 or P ′ = ∅
1 Initialize : H ′ ← ∅, P ′ ← ∅, L← 0
2 π ← dualSolve (RSRPres(H ′, P ′))
3 H ′, P ′ ← calculateCoarse2FineShortestPathSet (k = 1, [n] = 64, n=1)
4 if P ′ = ∅ then
5 break
6 end
7 [[c̄]]← calculateSuperCoarseReducedCostFunction (c, π)
8 [c̄]← calculateCoarseCostFunction (c, π)
9 c̄← calculateFineCostFunction (c, π)
10 [[A]] ⊃ A′ ← solveAssignment (([[V]], [[A]]), [[c̄]])
11 [[P]]← computeMaintenanceFeasiblePathDecompostion (A′)
12 for [[p]] ∈ [[P]] do
13 [G][[p]] ← ([V ([[p]])], [A([[p]])])
14 q ← calculateCoarseShortestPath ([G][[p]], [c], [r], n = 1)
15 p← calculateFineShortestPath ((A(q), V (q)), c̄, r, n = 1)
16 P ′ ← P ′ ∪ {p}
17 H ′ ← H ′ ∪H(p)
18 end
19 return H ′, P ′

path exists or c̄(p) > 0, the path generation is stopped. Otherwise we set up the following
assignment problem for the vehicle layer [[G]] and reduced cost function [[c̄]], adding arcs
(v, v) to [[A]] ∀v ∈ [[S]] ∪ [[E]] with [[c̄]](v, v) := 0.

min
∑

a∈[[A]]

[[c̄]](ya) (AP)

s.t.
∑

a∈[[A]]+
v

ya = 1 v ∈ [[V (t)]], ∀t ∈ T, (7)

∑
a∈[[A]]−

v

ya = 1 v ∈ [[V (t)]], ∀t ∈ T, (8)

ya ∈ [0, 1] a ∈ [[A]]. (9)

The two sets of constraints (8) and (7) AP assign to each node of the vehicle layer a
predecessor and a successor. The objective function ensures that this is done in a cost
minimal way according to the super coarse reduced cost [[c̄]]. Remark that each trip t ∈ T

has exactly two nodes in [[V]], an arrival and a departure node. The problem is solved with
an implementation of the Primal Hungarian Method of [1]. Because of the acyclic structure of
the graphs, the solution translates into a set of paths [[P]] (and loops for unused start or end
vehicles) in the vehicle layer. Each path [[p]] defines disjoint subgraphs ([V ([[p]])], [A([[p]])])
of the configuration layer [G] that can be projected onto [[p]]. For each of these subgraphs we
compute a shortest coarse maintenance feasible path q with respect to [c̄] with Algorithm 3,
and from that a shortest maintenance feasible path p with respect to c̄, which are added to
P ′. Denote the set of generated hyperarcs by H ′ = {h ∈ H | ∃a ∈ p : a ∈ h}. The sets P ′

and H ′ are returned as promising variables for the next iteration of the column generation
round.

ATMOS 2023

13:10 Assignment Based Resource Constrained Path Generation

Table 1 Characteristics of the Test Instances.

Instance |T | |M | |[V]| |V | |[H]| |H|
Instance 1-3 215 5 259 518 40362 159286
Instance 4-6 267 4 315 630 66227 264054
Instance 7-8 274 4 274 548 70702 281748
Instance 9-11 276 4 276 562 71123 283406
Instance 12-14 276 4 276 562 71362 284402
Instance 15-17 284 4 284 568 75602 301362
Instance 18-20 62 20 69 138 3374 13414

3.4 Improving the IP by Using Subpaths
In all our approaches to solve the RSRP, we generate paths to solve the root LP. This can
cause problems for the solution of the IP, as it might be hard to find subsets of path that
jointly cover all trips. To overcome problem this we implemented for all of our algorithms a
variant that splits each s-e-path at each maintenance service location into a set of subpaths.
These subpaths are added to the master problem, coupled together by a path conservation
constraint (3) for each maintenance service and each split, repsectively. Note that we can
ignore the dual variables of the constraints (3) becasue we are still computing maintenance
feasible paths with minimum reduced cost from a start trip to an end trip. The reason for
that is that it is not possible to end a path at a maintenance service stop. Thus there must
be exactly one subpath that enters and exactly one that leaves the maintenance service stop
such that the associated dual variables cancel in an s-e-path. The construction increases
flexibility in future iterations as solutions can be combined from subpaths, and are not limited
to the set of generated s-e-paths. Note also that it is not possible to construct a path that is
not maintenance-feasible. We refer to the variant of Algorithm 2 using maintenance-feasible
subpaths as Algorithm 2+subpath in Section 4.

4 Computational Results

We evaluate all our algorithms on real world test set of long distance rolling stock rotation
problems. All instances model an acyclic planning horizon of one week. Turnings including
deadheads and additional turnaround trips are possible between each pair of trips as long
as time and spacial constraints are met. Additional characteristics of the instances and the
resulting numbers of coarse and fine nodes and hyperarcs are given in Table 1. In all of
our instances we consider an initial resource consumption level of 0. Despite this idealized
setting, almost all (optimal) solutions of the considered instances require each vehicle to have
at least one maintenance service during the one week planning horizon.

All of our column generation procedures were implemented in the software tool ROTOR
which is a railway rolling stock optimizer developed at ZIB and described in [11]. We ran our
column generation routines with a run time limit of 2 hours to solve the linear programming
relaxation. Afterwards the resulting IP formulation RSRPres is solved without any additional
generation of paths. In spite of ROTOR’s tailor-made branching scheme, we use CPLEX
with a run time limit of 4 hours to have a more accessible comparison. All computations
were performed on Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz and 64 GB of RAM. All
restricted master problems that arise during column generation as well as the integer program
that results from the column generation were solved using CPLEX 12.8.0.0 with an IP
tolerance of 0.01 and a maximum of four threads in parallel.

B. Grimm, R. Borndörfer, and J. Bushe 13:11

Table 2 Computational Results for the linear relaxation of the final RSRPres.

Algorithm 2 Algorithm 2+subpath Flow
Instance CPU(s) Bound CPU(s) Bound CPU(s) Bound
Instance 1 7220 0.970 7231 0.971 3 1
Instance 2 4283 1.000 3360 1 3 0.998
Instance 3 150 0.998 87 0.997 3 1
Instance 4 7271 0.858 7208 0.858 25 1
Instance 5 7251 0.979 4733 1 24 0.980
Instance 6 204 0.997 214 0.997 24 1
Instance 7 7234 0.952 2693 1 5 0.968
Instance 8 498 0.998 220 0.998 5 1
Instance 9 7220 0.855 7275 0.855 5 1
Instance 10 6314 0.997 2951 1 5 0.968
Instance 11 505 0.997 185 0.997 5 1
Instance 12 7278 0.856 7248 0.856 5 1
Instance 13 6279 1 2537 0.999 5 0.968
Instance 14 170 0.998 187 0.997 5 1
Instance 15 7222 0.845 7208 0.845 5 1
Instance 16 7209 0.997 3079 1 5 0.966
Instance 17 262 0.997 239 0.997 5 1
Instance 18 378 1 125 0.996 1 0.971
Instance 19 275 0.996 122 1.000 1 1
Instance 20 118 0.994 80 0.994 1 1

In Table 2 we compare the solution process for the linear relaxation of RSRPpath for
three different algorithms: Algorithm 2 adding s-e-paths only, Algorithm 2+subpaths adding
subpaths, and the Flow model of ROTOR. For each of the three algorithms Table 2 contains
two columns. The columns headlined CPU(s) show the computation time of the column
generation procedure of the respective algorithm in CPU seconds. The columns Bound show
the best lower bounds of the algorithms relative to the best known bound that was computed
by any of the three algorithms (marked by an integer 1 in bold font instead of a float 1.000).
The comparison shows that although the path formulation gives in theory a better bound, it
was only able to compute the best bound in 7 of the 20 cases, which is due to the run time
limit. It becomes also clear that the better bound requires a lot of run time. Comparing the
two versions of Algorithm 2 shows that the version where subpaths are added significantly
outperforms the other version in sense of run time and bound quality; a results that is of
course again related to the run time.

In Table 3 the characteristics of the solution process and the solutions of the final RSRPres

formulations is shown. For each of the three algorithms, Table 2 contains three blocks of
columns headlined CPU(s), Cost, and Gap. The first column marks the computation time in
seconds that was required by the respective algorithm to solve the underlying IP formulation
up to an LP-IP gap of 1% or to reach the run time limit. The Cost column contains relative
costs compared to the minimum cost that was found by any of the three algorithms. The
last column gives the LP-IP gap of the solutions found by the three algorithms compared
to the best lower bound by any of the algorithms. Comparing the solution quality of the
integer solutions shows that in 75% of the instances one of the path formulations finds an
integer solution with a lower objective function value than the solution ROTOR computes.
The cost and Gap column for Algorithm 2 shows a significant outlier for Instance 1. This is
due to the fact that the computed solutions were not able to cover all trips in the timetable
and thus have to use slack variables which have a huge impact on the objective function
value. A direct comparison of the two variants of Algorithm 2 reveals that although the
version without adding subpaths is able to best solve 10 compared to 7 instances, it still gets
outperformed by the variant that add subpaths as the latter one computes superior solutions
it the sense of lower average objective function values.

ATMOS 2023

13:12 Assignment Based Resource Constrained Path Generation

Table 3 Computational Results for Solution Process of the Final IP of RSRPres.

Algorithm 2 Algorithm 2+subpath Flow
Instance CPU(s) Cost Gap CPU(s) Cost Gap CPU(s) Cost Gap
Instance 1 14420 53,816 6297,00 14431 1,193 41,79 14404 1 18,87
Instance 2 11483 1,004 2,32 8474 1 1,89 14404 1,011 2,97
Instance 3 151 1 0,49 88 1,000 0,52 13 1,003 0,81
Instance 4 14472 1,161 52,03 14409 1 30,90 14422 1,019 33,35
Instance 5 7371 1,007 1,62 4765 1 0,94 14408 1,010 1,97
Instance 6 205 1 0,57 215 1,003 0,89 12 1,001 0,65
Instance 7 7280 1,011 1,70 2696 1 0,62 14420 1,006 1,27
Instance 8 501 1 0,58 220 1,001 0,67 51 1,004 1,00
Instance 9 14420 1,055 40,06 7296 1 32,74 14407 1,050 39,40
Instance 10 6325 1 0,47 2954 1 0,47 14411 1,003 0,80
Instance 11 509 1 0,57 185 1,001 0,68 25 1,003 0,83
Instance 12 7287 1,000 35,62 7319 1,000 35,62 14410 1 35,61
Instance 13 6304 1 0,81 2544 1,004 1,19 14410 1,003 1,14
Instance 14 171 1 0,54 187 1,001 0,65 43 1,001 0,66
Instance 15 7229 1,000 36,87 7216 1,001 36,99 14409 1 36,87
Instance 16 7223 1 0,77 3082 1 0,77 14420 1,000 0,78
Instance 17 263 1 0,55 240 1,001 0,66 44 1,002 0,72
Instance 18 382 1,001 1,41 162 1,133 14,79 14402 1 1,28
Instance 19 277 1 0,75 132 1,010 1,79 4794 1,008 1,53
Instance 20 119 1,200 20,93 82 1,002 1,03 1 1 0,80

5 Conclusion and Outlook

In this paper we presented a novel path based ILP-formulation to the Rolling Stock Rotation
Problem as well as sophisticated column generation algorithms to tackle the Problem.
Although the presented algorithms were designed with the focus of generating tight lower
bounds for the Rolling Stock Rotation Problem with maintenance constrains, it turns out
that it was even possible to compute high quality integer solutions for practically relevant
instances, albeit for the price of longer running times as compared to the flow model of
ROTOR. Moreover, we were able to solve the instances considered in this paper by solely
generating paths, respectively subpaths, of the root relaxation, without any additional path
generation later on in the branching tree. This favorable outcome might be a consequence
of a good overall fit of the generared paths, which in turn is caused by extended degrees of
freedom from the subpath construction and the generation of maintenance-feasible paths
with a fleet focus in the assignment based generation approach. Additional research is needed
to further improve the run time of the path generation.

References

1 M. L. Balinski and R. E. Gomory. A Primal Method for the Assignment and Transportation
Problems. Management Science, 10(3):578–593, April 1964. doi:10.1287/mnsc.10.3.578.

2 Ralf Borndörfer, Markus Reuther, Thomas Schlechte, Kerstin Waas, and Steffen Weider.
Integrated optimization of rolling stock rotations for intercity railways. Transportation Science,
50(3):863–877, 2016. doi:10.1287/trsc.2015.0633.

3 Julian Bushe. Rolling stock rotation optimization with maintenance paths. Master’s thesis,
Technische Universität Berlin, 2021.

4 Valentina Cacchiani, Alberto Caprara, and Paolo Toth. Solving a real-world train-unit
assignment problem. Mathematical Programming, 124(1):207–231, July 2010. doi:10.1007/
s10107-010-0361-y.

5 Jacques Desrosiers and Marco E Lübbecke. A primer in column generation. In Column
generation, pages 1–32. Springer, 2005.

https://doi.org/10.1287/mnsc.10.3.578
https://doi.org/10.1287/trsc.2015.0633
https://doi.org/10.1007/s10107-010-0361-y
https://doi.org/10.1007/s10107-010-0361-y

B. Grimm, R. Borndörfer, and J. Bushe 13:13

6 Pieter-Jan Fioole, Leo Kroon, Gábor Maróti, and Alexander Schrijver. A rolling stock
circulation model for combining and splitting of passenger trains. European Journal of
Operational Research, 174(2):1281–1297, 2006. doi:10.1016/j.ejor.2005.03.032.

7 Giovanni Luca Giacco, Andrea D’Ariano, and Dario Pacciarelli. Rolling stock rostering
optimization under maintenance constraints. Journal of Intelligent Transportation Systems,
18(1):95–105, 2014. doi:10.1080/15472450.2013.801712.

8 Boris Grimm, Ralf Borndörfer, Markus Reuther, Stanley Schade, and Thomas Schlechte. A
propagation approach to acyclic rolling stock rotation optimization. In 7th International
Conference on railway operations modelling and Analysis (RailLille 2017), pages 688–698,
2017.

9 Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints. In
Column generation, pages 33–65. Springer, 2005.

10 Richard M. Lusby, Jørgen Thorlund Haahr, Jesper Larsen, and David Pisinger. A branch-
and-price algorithm for railway rolling stock rescheduling. Transportation Research Part B:
Methodological, 99:228–250, 2017. doi:10.1016/j.trb.2017.03.003.

11 Markus Reuther. Mathematical Optimization of Rolling Stock Rotations. PhD thesis, Technical
University Berlin, 2017. URL: https://depositonce.tu-berlin.de/handle/11303/6309.

12 Per Thorlacius, Jesper Larsen, and Marco Laumanns. An integrated rolling stock planning
model for the Copenhagen suburban passenger railway. Journal of Rail Transport Planning &
Management, 5(4):240–262, 2015. doi:10.1016/j.jrtpm.2015.11.001.

13 Joris C. Wagenaar, Leo G. Kroon, and Marie Schmidt. Maintenance appointments in railway
rolling stock rescheduling. Transportation Science, 51(4):1138–1160, 2017. doi:10.1287/trsc.
2016.0701.

14 Qingwei Zhong, Richard M. Lusby, Jesper Larsen, Yongxiang Zhang, and Qiyuan Peng.
Rolling stock scheduling with maintenance requirements at the Chinese high-speed railway.
Transportation Research Part B: Methodological, 126:24–44, 2019. doi:10.1016/j.trb.2019.
05.013.

ATMOS 2023

https://doi.org/10.1016/j.ejor.2005.03.032
https://doi.org/10.1080/15472450.2013.801712
https://doi.org/10.1016/j.trb.2017.03.003
https://depositonce.tu-berlin.de/handle/11303/6309
https://doi.org/10.1016/j.jrtpm.2015.11.001
https://doi.org/10.1287/trsc.2016.0701
https://doi.org/10.1287/trsc.2016.0701
https://doi.org/10.1016/j.trb.2019.05.013
https://doi.org/10.1016/j.trb.2019.05.013

13:14 Assignment Based Resource Constrained Path Generation

Listing 3 Algorithm 3: Calculate Shortest Path Labels with Resource Constraints.
Input : Graph G=(V, A), topological ordering of V, start and end node
sets S and E, cost function c, resource function r, integer n.
Output : Label of k minimum cost maintenance feasible s-e-path
1 // initialize empty pareto sets at each node
2 foreach v ∈ V do
3 labels (v) ← ∅
4 end
5 bestEndLabelsList ← sortedListOfLength (n)
6 // create labels at initial departure nodes
7 foreach v ∈ V do
8 label ← createStartLabel (v)
9 labels (v). add(label)
10 end
11 // relax outgoing arcs of nodes in topological order
12 for i ∈ {1, ..., n} do
13 if vi /∈ E then
14 foreach a = (vi, w) ∈ A+

vi
do

15 foreach label ∈ labels (vi) do
16 newLabel ← createLabel (label , a, c, S)
17 if newLabel is feasible then
18 if newLabel is not dominated of lables (w) then
19 labels (w). add(newLabel)
20 labels (w). discardLabelsDominatedBy (newLabel)
21 end
22 end
23 end
24 end
25 end
26 //if vi is a terminal arrival node
27 else
28 // labels at each node ordered by ascending cost
29 for candidateLabel in labels (vi) do:
30 if cost(candidateLabel) < cost(bestEndLabel) then
31 bestEndLabelsList . insert (candidateLabel)
32 end
33 end
34 end
35 end
36 return bestEndLabelsList

B. Grimm, R. Borndörfer, and J. Bushe 13:15

Listing 4 Algorithm 4: Calculate Coarse2Fine Shortest Path Set.
Input : Hypergraph (V, A, H), cost function c, gap
tolerance ϵ, number of vehicles k, coarseining projection [·],
number of coarse paths [n], number of fine paths [n]
Output : Sets H ′ ⊂ H and paths P ′ ⊂ P with min{c̄(p)|p ∈ P ′} < 0 or P ′ = ∅
1 Initialize : H ′ ← HT , P ′ ← ∅, L← 0
2 π ← dualSolve (RSRPres(H’,P ’))
3 [c̄]← calculateCoarseReducedCostFunction (c, π)
4 c̄← calculateFineCostFunction (c, π)
5 Q← ∅ \\ Set of shortest coarse paths
6 [G]← ([V], [A])
7 for i = 1, ..., k do
8 Qi ← calculateCoarseShortestPath ([G], [c], [r], [n])
9 if min{[c](q) | q ∈ Q1} ≥ 0 then
10 break
11 end
12 for qi ∈ Qi do
13 Pqi ← calculateFineShortestPath ((A(qi), V (qi)), c̄, r, n)
14 if |Pqi | > 0 then
15 P ′ = P ′ ∪ Pqi

16 [G]← deleteArcsAndNodesOfPath ([G], qi)
17 break
18 end
19 end
20 end
21 if min{c̄(p) | p ∈ P ′} ≥ 0 then
22 return H ′, P ′

23 end
24 H ′ ← H ′ ∪

⋃
p∈P ′

⋃
a∈A(p) H(a)

25 return H ′, P ′

Table 4 Computational Results for Algorithm 3 and Algorithm 4.

LP IP
Relative Objective CPU(s) Relative Obj. Gap(%)

Id F A1 A2 F A1 A2 A1 A2 F A1 A2
1 0.992 0.992 0.992 6 18912 4705 54.0 21.43 0.8 98.2 95.3
3 0.865 0.912 0.912 13 71792 28441 48.3 38.90 8.8 98.1 97.7
4 0.994 0.997 0.997 34 70940 15739 43.5 1.000 0.3 97.7 0.3
6 0.758 0.885 0.885 34 66011 10923 21.6 6.822 11.4 95.9 87.0
7 0.759 0.991 0.992 21 99375 18538 27.9 0.972 3.6 97.6 0.9
9 0.995 0.999 0.999 21 48371 18179 27.1 0.996 0.4 96.3 0.1
11 0.786 0.999 0.999 10 60850 21799 19.4 0.950 5.0 95.1 0.1
12 0.996 0.999 0.999 17 49164 15475 33.5 0.995 0.5 97.0 0.1
14 0.748 0.970 0.970 25 154049 10850 35.6 10.19 3.0 97.3 90.5
15 0.991 0.992 0.992 1 297 191 197.2 1.196 0.7 99.5 17.1
18 0.959 0.991 0.991 1 520 493 147.9 1.216 0.9 99.3 18.5
20 0.996 0.999 0.999 18 65313 10362 33.0 0.998 0.2 97.0 0.1
17 0.996 0.998 0.999 23 76086 12305 48.3 0.996 0.4 97.9 0.1

ATMOS 2023

	1 Introduction
	2 Solving the RSRP with Maintenance Paths
	2.1 A Path-Based Integer Linear Programming Model to the RSRP

	3 Column Generation Approaches to the Path-Based ILP Formulation
	3.1 Coarsening Projections for the RSRP Hypergraph
	3.2 Generating Maintenance Feasible Paths Using Coarsened Hypergraphs
	3.3 Assignment Based Resource Constrained Path Generation Algorithm
	3.4 Improving the IP by Using Subpaths

	4 Computational Results
	5 Conclusion and Outlook

