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Abstract
The ongoing electrification of logistics systems and vehicle fleets increases the complexity of associated
vehicle routing or scheduling problems. Battery-powered vehicles have to be scheduled to recharge
in-service, and the relationship between charging time and replenished driving range is non-linear. In
order to access the powerful toolkit offered by mixed-integer and linear programming techniques, this
battery behavior has to be linearized. Moreover, as electric fleets grow, power draw peaks have to be
avoided to save on electricity costs or to adhere to hard grid capacity limits, such that it becomes
desirable to keep recharge rates dynamic. We suggest a novel linearization approach of battery
charging behavior for vehicle scheduling problems, in which the recharge rates are optimization
variables and not model parameters.
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1 Introduction and Problem Overview

The Electric Vehicle Scheduling Problem (EVSP) extends the classic Vehicle Scheduling
Problem to include the scheduling of recharge events such that vehicle batteries are never
fully depleted in-service. European operators prefer to recharge their vehicles at depots and
fast chargers at selected locations to minimize infrastructure acquisition costs (cf. [3]). The
amount of replenished charge depends non-linearly on the charging time and the initial state
of charge (soc). Moreover, as electric fleet sizes continue to grow, operators have begun
adopting active charge management tools which may not always recharge at full capacity.
Power grid limitations at the depot can bound the total admissible electricity usage over
time, pricing schemes may incentivize smoothing out peak loads, and there are even case
studies with bi-directional chargers where electric bus batteries fed charge back into the
grid (cf. [5]), effectively applying negative charge rates. Therefore, on top of the non-linear
charging behavior, vehicle scheduling procedures have to take dynamic recharge rates into
account instead of a priori fixing them to the highest available rate.
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15:2 Non-Linear Charge Functions

To the best of our knowledge, [6] is the only paper on electric vehicle scheduling to
explicitly treat the recharge rate as a decision variable to bound the total simultaneous power
draw. However, like in the majority of the available literature (cf. surveys [2, 10]), a linear
charging behavior is assumed, which may cause solutions to be infeasible in practice or to
underestimate driving ranges depending on the exact data used [8].

We have identified three approaches in the EVSP literature to take non-linear battery
behavior into account. [11] and [4] suggest an energy (state) expansion in analogy to the
well-known time expansion. While not mentioned by either authors, one could incorporate
recharge rate decisions by allowing connections between different charge states at recharge
facilities. Naturally, this comes at the cost of an exponential increase in problem size.

A branch-and-check procedure is proposed in [1] for an EVSP application of tow trains
at a factory which seem return to their charging facility after every tow duty. Once a master
problem finds an integer solution, charge states are explicitly computed from exact charge
functions along vehicle courses and infeasible solutions are cut off via subtour elimination
constraints. It is unclear how this approach extends to general EVSP settings where vehicles
have to be explicitly scheduled for detours to reach charging facilities.

Originally proposed in [7], and adopted by a growing number of publications, is a piecewise
linear approximation of a function that maps the time spent charging an empty battery to
the resulting soc. This approach has the advantage that it is easy to incorporate into MILPs
by standard techniques, but it does not allow dynamic recharge rates.

In this paper we develop a linearization technique for battery charging behavior with
dynamic recharge rates from a general battery model.

2 Recharging a Battery

According to the literature, e.g., [9], batteries under load have a terminal voltage

Vterm = VOC(y) − R · I (1)

depending on the soc y and the current I. The open circuit voltage VOC and R are properties of
individual batteries. Note that charging currents are negative by convention, so Vterm ≥ VOC .
In general, VOC is a monotonically increasing non-linear function of the soc.

Chargers must keep battery voltage and charging current within safety limits Vmax and
−Imax, moreover, operating near those limits accelerates battery aging. Consequently, vehicle
batteries are usually replenished following a Constant Current - Constant Voltage (CC-CV )
charging scheme. Initially, a roughly constant current is applied causing the soc to increase
nearly linearly accompanied by a rising terminal voltage. Once Vterm hits some threshold,
at most Vmax, the charger switches to a constant voltage phase, limiting the maximum
incoming current as given in (1) by fixing Vterm to the threshold value. Note that a high
initial current will force this cut-off to happen earlier, causing more time to be spend in
the slower CV phase. The battery is defined to be full once the maximum charging current
permitted by the battery voltage drops below some minimum dictated by the battery and
charger combination.

In the EVSP literature on non-linear charging, this behavior is usually modeled using a
charge curve that maps the time t spent charging an initially empty battery at presumably
full power to the final soc. In accordance with the CC-CV charging scheme, the charge curve
is initially linear until some time tV and then monotonically and concavely grows towards
the maximum soc as the charge rate decreases during the CV phase.

Since we wish to keep the charge rate dynamic, we think of charge curves as solutions of
differential inequalities.
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▶ Definition 1. A charging power profile is a function f : [0, 1] → [0, 1] that maps the
(relative) battery soc to the (relative) maximal charge rate, and that is of the form

f(y) =
{

fCC , y < yV

fCV (y), y ≥ yV ,
(2)

where fCV is differentiable, monotonically non-increasing, and satisfies fCV (yV ) = fCC ,
fCV (1) = 0.

▶ Example 2. Equation (1) for the terminal voltage yields the power profile

f(y) = min
(

−R · Imax

K
,

Vmax − VOC(y)
K

)
(3)

where K scales the soc to be within [0, 1]. Note that f need not be differentiable in yV .

▶ Definition 3. Given a charging power profile f , a charge curve mapping time to soc is a
differentiable function ξ : [0, ∞) → [0, 1] satisfying

(i) ξ(0) = 0,
(ii) there exists tfull > 0 such that ξ(t) = 1 for t ≥ tfull,
(iii) 0 < ξ′(t) ≤ f(ξ(t)) for all t ∈ [0, tfull).

▶ Observation 4. Charge curves are bijective as functions from [0, tfull] to [0, 1].

▶ Definition 5. The maximum power charge curve ζ is the charge curve satisfying condition
(iii) at equality, i.e, ζ is the unique solution to the autonomous non-linear ordinary differential
equation ζ ′ = f(ζ) with boundary conditions (i) and (ii).

In general, there is no closed form for ζ on the CV segment and it has to be determined
empirically or computed numerically from a given f . We want to emphasize the distinct
interpretations of f , ξ and ξ′: f yields the maximum permissible rate the charger may apply
to the battery at its current soc. It is a property of the battery and charger combination
and needs to be fixed a priori as part of the model. The charge curve derivative ξ′ gives the
actually applied charge rate at time t of a particular charging process. By condition (iii),
throttling the rate is explicitly allowed. Subsequently, ξ gives the resulting soc of charging
an initially empty battery for t time units at the rate its derivative specifies. See Figure 1
for an example of these three functions with ξ = ζ.

The current state-of-the-art in the literature of using a piecewise linear interpolation of ζ

does not permit charge rate throttling. Conceivable generalizations to incorporate dynamic
recharge rates into such a model, i.e., treating the choice of ξ as a decision variable for every

tV = 55 95
time (min)

yV = 80

100

so
c 

(%
)

tV = 55 95
time (min)

ch
ar

ge
 ra

te

yV = 80 100
soc (%)

ch
ar

ge
 ra

te

Figure 1 CV segment of an example ζ, ζ′, and the underlying profile f (left to right) modeled
after real electric bus fast charging data. The linear CC segment is mostly cropped out.
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recharge event, seem to be cumbersome. Moreover, if a piecewise linear approximation of
ζ is used, its derivative is piecewise constant and the model therefore can only consider a
discrete set of charge rates, which is inadequate for the CV phase. Furthermore, since the
piecewise constant derivative periodically overestimates the actual charge rate, approximate
models may underestimate recharge durations and overestimate final charge states.

3 Recharge Modeling with Dynamic Rates

Consider a recharge event and let [ts, te] be its time interval and ys the initial soc at ts. Let
∆ be a function operator working on charge curves as

∆ξ(y, t) = ξ(ξ−1(y) + t) − y; (4)

which is well-defined by Observation 4 if we choose ξ−1(1) = tfull. ∆ξ gives the difference
between the final charge state reached from an initial charge state y of a charging process of
duration t. Consequently, the final soc at te is then ∆ξ(ys, te − ts) + ys.

∆ξ can be evaluated iteratively.

▶ Lemma 6. For a charge curve ξ, let y0 = ys and θi > 0, yi = yi−1 + ∆ξ(yi−1, θi) for
i = 1, . . . , k. Then ∆ξ(ys,

∑k
i=1 θi) = yk − ys.

Proof. By induction: For k = 1 the claim is trivially true, so let k > 1 and exercise

yk − ys = yk−1 + ∆ξ(yk−1, θk) − ys = ∆ξ(ys,

k−1∑
i=1

θi) + ∆ξ(∆ξ(ys,

k−1∑
i=1

θi) + ys, θk)

= ξ(ξ−1(ξ(ξ−1(ys) +
k−1∑
i=1

θi)) + θk) − ys = ξ(ξ−1(ys) +
k∑

i=1
θi) − ys = ∆ξ(ys,

k∑
i=1

θi), (5)

where the second line is the result of applying (4) to the outer and then inner occurrence of
∆ξ in the rightmost term on the first line. ◀

Moreover, if the time steps θi admit an equidistant discretization θ, the soc yi at the end of
any time step is yi−1 + ∆ξ(yi−1, θ) from the immediately preceding charge state. By fixing
the step size we obtain a unary recharge function depending solely on the initial soc and we
may write ∆ξ(y) = ∆ξ(y, θ).

▶ Lemma 7. Let ζ be a maximum power charge curve w.r.t. a charging power profile f .
Then for fixed time step θ > 0, ∆ξ(y) ≤ ∆ζ(y) for every y ∈ [0, 1] and charge curve ξ of f .

Proof. Monotonicity of f and the mean value theorem assert the claim by contradiction. ◀

▶ Corollary 8. ξ ≤ ζ for every charge curve ξ of f .

This formally asserts the intuitive observation that maximizing the charge rate does
maximize the obtained charge state. More importantly, Lemma 7 guarantees that the
computation scheme justified with Lemma 6 can be modified by introducing charge increment
variables φi such that yi = yi−1 + φi and φi ≤ ∆ζ(yi−1). Any sequence of positive φi can be
associated with a sequence of ∆ξ(yi) for some charge curve ξ and vice versa. Additionally,
we may allow φi to become zero to temporarily suspend charging or possibly even negative
if charge is fed back into the grid, although we will assume φi ≥ 0 for the remainder of this
paper. Furthermore, we can incorporate φi into the objective function to consider time or
peak-dependent pricing, and we can add φi to additional constraints limiting the total power
draw per time step.
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▶ Definition 9. For a maximum power charge curve ζ, let Φ ··=
{

(y, φ) ∈ [0, 1]2 | φ ≤ ∆ζ(y)
}

be the charge increment variable domain.

▶ Observation 10. Since ∆ζ(y) ≤ 1 − y and 0 ≤ ∆ζ(0) ≤ θfCC , Φ is the intersection of the
triangle spanned by the unit vectors in the upper right quadrant of the two-dimensional plane
and the area below the graph of ∆ζ, see Figure 2 for an illustration.
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Figure 2 The shaded area is Φ on [0.5, 1] for the charge curve presented in Figure 1 with θ = 5min.

In order to obtain a linearization of the charging process, we need to approximate Φ
by a polygon. In particular, we have to approximate the function graph of ∆ζ with a
concave piecewise linear function so that we can replace φi ≤ ∆ζ(yi−1) by linear inequalities.
The left- and rightmost linear segment of such an approximation might be φi ≤ θfCC and
φi ≤ 1 − yi−1. Fitting the rest of the boundary in general requires finding an acceptable
trade-off between approximation accuracy and possible charge state overestimation.

▶ Theorem 11. Let ζ be a maximum power charge curve w.r.t. a charging power profile f .
Furthermore, let fCV be concave. Then the corresponding charge increment variable domain
Φ is convex for any time step size θ > 0.

Proof. By Observation 10 it suffices to show that ∆ζ is concave or equivalently, ∂2

∂y2 ∆ζ ≤ 0.
Computing the second derivative (note that ζ ′ is differentiable almost everywhere) we see

∂2

∂y2

(
ζ(ζ−1(y) + θ) − y

)
= ζ ′(ζ−1(y))ζ ′′(ζ−1(y) + θ) − ζ ′′(ζ−1(y))ζ ′(ζ−1(y) + θ)

ζ ′(ζ−1(y))3 (6)

and plugging in ζ ′(t) = f(ζ(t)) and ζ ′′(t) = f ′(ζ(t))f(ζ(t)) we obtain

∂2

∂y2 ∆ζ(y) =
(
f ′(ζ(ζ−1(y) + θ)) − f ′(y)

) f(ζ(ζ−1(y) + θ))
f(y)2 . (7)

Since f is non-negative, the sign of ∂2

∂y2 ∆ζ is entirely dictated by f ′(ζ(ζ−1(y) + θ)) − f ′(y).
Note that y = ζ(ζ−1(y)) ≤ ζ(ζ−1(y) + θ) because ζ is monotonically increasing. Moreover,
since we have f ′ ≡ 0 approaching yV from the left and f ′

CV ≤ 0 by Definition 1, concavity
of fCV extends to the entirety of f . Thus, f ′ is monotonously non-increasing on its entire
domain and we obtain f ′(y) ≥ f ′(ζ(ζ−1(y) + θ)). Therefore, ∂2

∂y2 ∆ζ ≤ 0 and Φ is convex. ◀

Hence, a straightforward piecewise linear interpolation yielding an inequality of the
form φi ≤ myi−1 + b per linear segment will do if f is concave. These inequalities can be
incorporated directly into any mixed-integer linear program for the EVSP. By Lemma 7 and
Theorem 11, computing the soc via the φi along a recharge event is then guaranteed to never
overestimate the final soc and the approximation error at the boundary is well understood
numerically.

ATMOS 2023
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▶ Proposition 12. Let ∆ζ̃ be a piecewise linear spline interpolation of ∆ζ. Then the
approximation error is∥∥∆ζ − ∆ζ̃

∥∥ ≤ θh2

8 ∥f ′′
CV ∥ (8)

where h is the width of the largest linear segment.

Proof. It is a well-known result that the linear spline approximation error is bounded by
h2 ∥(∆ζ)′′∥ /8. Using Taylor approximation for some t∗ ∈ (ζ−1(y), ζ−1(y) + θ),

f ′(ζ(ζ−1(y) + θ)) = f ′(y) + θ
∂

∂t
f ′(ζ(t∗)) = f ′(y) + θf ′′(ζ(t∗))f(ζ(t∗)) (9)

and plugging into (7) yields ∥(∆ζ)′′∥ ≤ θ ∥f∥2 ∥f ′′∥ / ∥f∥2 = θ ∥f ′′∥. ◀

The key observation enabling the approach presented in this paper is that while the
maximum charge rate as a function of time (given by ζ ′) is usually convex during the CV
phase, there are reasonable battery models where the rate as a function of battery soc (given
by f) is concave (see Figure 1) and the shape of ∆ζ and thus Φ is dictated by the latter.
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