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Abstract
There is growing interest in including fairness in optimization models. In particular, the concept of
fairness over time, or, long-term fairness, is gaining attention. In this paper, we focus on fairness
over time in online optimization problems involving the assignment of work to multiple homogeneous
workers. This encompasses many real-life problems, including variants of the vehicle routing problem
and the crew scheduling problem. The online assignment problem with fairness over time is formally
defined. We propose a simple and interpretable assignment policy with some desirable properties.
In addition, we perform a case study on the capacitated vehicle routing problem. Empirically, we
show that the most cost-efficient solution usually results in unfair assignments while much more fair
solutions can be attained with minor efficiency loss using our policy.
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1 Introduction

While most optimization literature focuses on minimizing costs or maximizing efficiency, there
is growing interest in including fairness in optimization models. In particular, fairness over
time is desirable for sequential decision making. It relates to the situation where a central
decision maker is faced with a multi-period optimization problem involving multiple agents,
and the goal is to maximize fairness (minimize unfairness) of the (dis)utilities that agents
gain from the solution. A mixed-integer programming framework has been proposed for the
offline version of the problem, in which the optimization problems to be solved in all time
periods are known in advance [1, 2]. The online version of the problem, where instances are
revealed in a dynamic fashion, has been studied for, among other things, resource allocation
[5] and railway crew planning [8].

In this paper, we restrict our attention to fairness over time in the context of online
assignment problems. We define assignment problems as combinatorial problems that involve
dividing the solution into blocks of work to be assigned to workers. Many real-life problems,
including vehicle routing and crew scheduling, can be modeled in this way. In each time
period, a local problem instance is revealed, and a solution must be determined with a cost
that is within a pre-determined factor of the minimum cost. Next, the solution is assigned to
a fixed group of workers whose utilities are updated accordingly. The goal is to determine
solutions and assignments such that the unfairness of the workers’ (dis)utilities is minimized.
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2 The Online Assignment Problem with Fairness over Time

2.1 Problem Description
We consider a sequential decision making problem with a planning horizon of length T . In
each period t ∈ T , the decision maker receives an instance (ct(·), X t) of a combinatorial
optimization problem, where ct(·) and X t denote its cost objective and its feasible region,
respectively. The decision maker has to choose a solution xt ∈ X t

α. Here, X t
α denotes the set

of acceptable solutions to the local problem of period t, parameterized by α. In principle,
the definition of the set of acceptable solutions can be very general. In this paper, we focus
on cost-efficient solutions to avoid pathological cases of perfectly fair but highly inefficient
solutions. Specifically, we define X t

α to be the set of feasible solutions whose costs are within
a factor (1 + α) of the minimum cost, i.e.,

X t
α =

{
x ∈ X t : ct(x) ≤ (1 + α) min

z∈X t
ct(z)

}
. (1)

Varying α allows us to characterize the trade-off between efficiency and equity.
We assume that each solution xt ∈ X t can be partitioned into n pieces of work (xt

1, . . . , xt
n)

that must be assigned to n homogeneous workers. As such, the work assignment can be freely
permuted without changing its cost. With a slight abuse of notation, for each permutation
π ∈ Πn of {1, . . . , n}, we define the mapping π(·) : Rn → Rn by π(y1, . . . , yn) = (yπ1 , . . . , yπn

).
We assume that xt ∈ X t if and only if π(xt) ∈ X t. We do not distinguish between
a permutation of subvectors of (xt

1, . . . , xt
n) and a permutation of coordinates of an n-

dimensional vector as long as they follow the same order.
Each assignment of xt yields a payoff vector p(xt) ∈ Rn, representing the payoffs to the

n workers. Since the workers are homogeneous, we assume that the same piece of work xt
i

yields an identical payoff to each worker, i.e., p(π(xt)) = π(p(xt)) for all permutations π.
Payoffs are aggregated in a linear fashion, such that the current utility vector equals the
sum of all previous payoff vectors, i.e., ut =

∑t
τ=1 p(xτ ). We let ϕ(·) denote an unfairness

measure of the worker’s utilities satisfying the definition of the inequity measure in [6], e.g.,
the difference between the largest and smallest utilities. Our goal is to determine online
a sequence of solutions (x1, . . . , xT ) ∈

∏T
t=1 X t

α such that ϕ(uT ) is minimized. The offline
version of the online assignment problem with fairness over time (OAPFoT) reads as

min
x,u

ϕ(uT )

s.t. ut = ut−1 + p(xt), xt ∈ X t
α, t = 1, . . . , T,

u0 = 0.

In brief, in each time period t, the problem can be split into the following three steps:
1. Defining the set the acceptable solutions. In the case of X t

α being cost-efficient solutions
as defined in (1), we must compute the optimal cost miny∈X t ct(y) to explicitly define
X t

α. We assume that a suitable algorithm is available for this problem, and consider this
step to be outside the scope of this paper.

2. Picking an acceptable solution. A criterion, which may or may not depend on ut−1,
has to be decided in order to pick a solution from X t

α. Then, potentially we need to
solve an optimization problem associated with that criterion, which we refer to as the
α-subproblem, to obtain a particular acceptable solution zt.

3. Assigning the solution to workers. If the criterion we use in Step 2 has not yet taken ut−1

into account, we may need to determine how to assign the solution zt obtained in Step 2
to workers to obtain xt = π(zt). In other words, we decide upon a permutation π.
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The latter two steps can be used to minimize ϕ. Proposing good strategies for picking and
assigning solutions is the main goal of this paper. In the remainder of this work, we analyze
the performance of the following combination of strategies. In Step 2, we propose to pick the
solution whose payoffs minimize the inequity function, i.e., we pick zt ∈ arg minz∈X t

α
ϕ(p(z)).

The rationale behind this strategy is that solutions with equitable payoffs, when properly
assigned, lead to equitable utilities. In Step 3, we make use of a simple policy that assigns
work, in increasing order of payoffs, to workers, in decreasing order of current utility. Some
theoretical justifications for this assignment policy are provided in Section 2.3.

2.2 Complexity of the Problem
We first present some results regarding the complexity of OAPFoT. A simple reduction from
the partition problem yields the following proposition.

▶ Proposition 1 (N P-hardness of the Offline OAPFoT). The offline version of OAPFoT is
N P-hard even if the original cost minimization problem is solvable in polynomial time and
T = 1, or even if each X t

α contains only solutions identical up to a permutation and n = 2.

The above results indicate that even the offline assignment problem is hard to solve. We now
turn our attention to online assignment policies.

▶ Definition 2 (Online assignment policy). An online assignment policy is a function τ(·, ·)
that maps any combination of a utitlity vector u ∈ Rn and a payoff vector p ∈ Rn to a
permutation π ∈ Πn.

Informally, each policy determines how the next payoffs should be assigned to workers based
on their current utilities and the next payoffs. Due to the online nature of the problem, it is
easy to see that no such policy can always attain minimum unfairness.

▶ Proposition 3 (Non-existence). For n ≥ 2 and t ≥ 3, there does not exist an online
assignment policy that attains perfect fairness on all instances that admit perfect fairness.

2.3 A Simple Online Assignment Policy
We close this section with some positive results for one particular policy that is rather
intuitive and simple to implement. This policy, which we refer to as the best-to-worst policy
(BTW) and denote by τBTW, assigns payoffs, in increasing order, to workers, in decreasing
order of current utility. More formally, πBTW := τBTW(u, p) satisfies πBTW

i (p) < πBTW
j (p)

if ui > uj and only if ui ≥ uj with ties broken arbitrarily. We next show that this policy is
always locally optimal in the unfairness measure ϕ.

▶ Proposition 4 (Local optimality of BTW). Let u, p ∈ Rn and ϕ be an inequity measure. It
holds that πBTW = τBTW(u, p) ∈ arg min

π∈Πn
ϕ(u + π(p)).

Proof. Assume without loss of generality that p1 ≤ p2 ≤ . . . ≤ pn, u1 ≤ u2 ≤ . . . ≤ un,
and πBTW

i = n − i + 1 for i = 1, . . . , n. Let π ∈ arg min
π∈Πn

ϕ(u + π(p)), and let i be the

smallest index for which πi < n − i + 1, i.e., for which the assignments of π and πBT W

differ. This implies that there exists a j > i for which πj = n − i + 1 > πi. Recall that,
by construction, pπi

≤ pπj
. If pπi

= pπj
, then we can reverse the assignments of i and j

without affecting the resulting utilities. Otherwise, we have pπi
< pπj

, and reversing the
assignments of i and j constitutes a Pigou-Dalton transfer that can only decrease unfairness
[6]. Note that the smallest index satisfying our condition is now increased by at least one.

ATMOS 2023
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Hence, in at most n − 1 of such transfers we can convert the assignment determined by π

into that determined by πBT W . Since each transfer can only decrease unfairness, it holds
that ϕ(u + πBT W (p)) ≤ ϕ(u + π(p)). Therefore, πBT W ∈ arg min

π∈Πn
ϕ(u + π(p)). ◀

In addition, under the BTW policy the unfairness at any stage is bounded by the
maximum unfairness of any set of payoffs. We present a simplified version of this result for
range unfairness, defined as the largest difference between payoffs/utilities.

▶ Proposition 5 (Bounded range unfairness). Under the best-to-worst policy and with ϕ(u) =
maxi=1,...,n ui − mini=1,...,n ui, it holds that ϕ(ut) ≤ maxτ=1,...,t ϕ(pτ ) for all t = 1, . . . , T .

The above result is the main motivation for minimizing the unfairness of the payoffs in our
proposed strategy, as it further minimizes an upper bound of ϕ(ut) for all t.

3 Case Study: Capacitated Vehicle Routing Problem

We perform a case study on the capacitated vehicle routing problem (CVRP) to test the
effectiveness of our proposed strategies and to analyze the role of the budget parameter α.
We define the payoff of a route in terms of either its distance or its load, i.e., we use both
variable-sum and constant-sum payoffs [3]. As the unfairness measure ϕ, we use the range,
defined as the largest difference in payoffs between any two routes. Solving the α-subproblem,
i.e., zt ∈ arg minz∈X t

α
ϕ(p(z)), now corresponds to selecting a set of routes for which the

range, in terms of either distance or load, is minimized, subject to the α-budget constraint.
This problem strongly relates to the CVRP with route balancing, for which no efficient exact
algorithms are known.

We now introduce the necessary notations for the α-subproblem, omitting time indices
t for brevity. Let N denote the set of customers, K denote the number of vehicles, i.e.,
workers, and B denote the cost of the most cost-efficient solution. We denote by R the set
of all feasible routes and we introduce a binary variable xr, ∀r ∈ R that takes value 1 if
route r is selected. The cost and payoff of route r are denoted by cr and pr, respectively.
Binary parameter air indicates whether customer i ∈ N is visited by route r. We model the
range using variables η and γ representing the maximum payoff and the minimum payoff,
respectively. We model the maximum and minimum based on the last customer of the route.2
Binary parameter bir indicates whether customer i is the last on route r. Finally, let M be
an upper bound on the minimum payoff of any route. Our formulation for the α-subproblem
now reads as

min η − γ

s.t.
∑
r∈R

airxr = 1, ∀i ∈ N,∑
r∈R

prbirxr ≤ η, ∀i ∈ N,

M

(
1 −

∑
r∈R

birxr

)
+
∑
r∈R

prbirxr ≥ γ, ∀i ∈ N,∑
r∈R

crxr ≤ B(1 + α),
∑
r∈R

xr = K, x ∈ {0, 1}R.

2 We build on the formulation for the min-max multiple traveling salesman as presented by N. Bianchessi,
C. Tilk, and S. Irnich at Column Generation 2023 in Montréal.
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We solve the above program using branch and price, in which we solve a pricing problem
for each possible last customer at each node of the search tree. The pricing problems
are solved using bidirectional labeling and the ng-route relaxation [4]. Since we consider
symmetric instances of the CVRP, we strengthen the formulation by enforcing that the index
of the last customer along a route is at least that of the first customer. We branch on the
last customer first, followed by arcs, and separate rounded capacity inequalities at the root
node of the branching tree.

The set-up of our experiments is as follows. Similar to [3], we generate a sequence of 20
daily instances of N = 15 customers by taking disjoint subsets of instance X-n641-k35 [7]. This
yields a single online instance of T = 20 time periods. We use K = 5 vehicles (one for each
worker, i.e., n = 5), and set the vehicle capacity of each instance to Q = ⌈ 1

K−1
∑N

i=1 qi − 1⌉.
We consider values of α in {0, 1%, . . . , 10%}, and use the best-to-worst policy to assign routes
to workers. We solve the LP-relaxation of the restricted master problem using CPLEX 22.1.0.
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Figure 1 Results for the distance (top) and load (bottom) resources for different values of α.

Results of our case study for both the distance and load resource are summarized in
Figure 1. For each value of α, we present the range of the payoffs (p), utilities (u), and the
computing time. All results are averaged over the periods in our planning horizon. In line
with Proposition 5, we find that the unfairness of the utilities is generally well below that of
the payoffs, showing the effectiveness of the best-to-worst policy. Both ranges of payoffs and
utilities decrease as α grows, though the effect is more pronounced for the payoffs. While we
observe similar patterns for distance and load, we note that the range of the load displays a
stronger reduction as a function of α. In addition, the range of the utilities is closer to that
of the payoffs for load than for distance.
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The computing times grow rapidly in α. We remark that the α-subproblem appeared
to be a lot harder to solve than the cost minimization problem. While an optimal solution
to the latter was always obtained within seconds, the former could take multiple hours for
α = 10%. This discrepancy can be attributed to the large integrality gap of our formulation,
resulting in large branch-and-bound trees, which can have more than 100,000 nodes.

4 Future Research

We consider several directions for future research. First, we aim to study the performance of
using a different criterion for picking acceptable solutions. In particular, we will base the
selection on current utilities ut−1 and select the solution zt = arg minzt∈X t

α
ϕ(p(zt) + ut−1).

This would effectively eliminate the need for an assignment policy, and would also require
a slight reformulation of the α-subproblem. Surprisingly, preliminary experiments indicate
that this approach might be counterproductive in some cases. Second, we aim to further
explore why the α-subproblem appears to be much harder than the original cost-efficient
problem. Hopefully, the resulting insights can be used towards the development of more
efficient solution methods. We experimented with the use of cutting planes from the vehicle
routing literature but these attempts proved ineffective, indicating the need for developing
other techniques. Finally, we plan to perform a case study on a large-scale crew scheduling
problem, to analyze the performance of our approach in settings with a larger number of
workers.
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