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Abstract
We consider the Capacitated Resupply Problem in which locations with a given demand rate should
be resupplied by vehicles such that they do not run out of stock and the number of vehicles is
minimised. Compared to related problems, we consider the scenario where the payload of the
vehicles may not suffice to bring the stock level back to full capacity. We focus on the Homogeneous
Capacitated Resupply Problem and present both simple policies that provide 2-approximations and
an optimal greedy policy that runs in pseudo-polynomial time.
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1 Introduction

There are numerous applications, such as disaster relief and expeditions in harsh environments,
where people operating at different locations need periodic resupply of commodities such as
food, fuel and medicines. Such resupplies can typically be performed using faster motorized
(off-terrain) vehicles. Recent advances in drone technology make fast resupply at remote
locations increasingly possible. In many of the mentioned applications, it is vital that the
stock of the commodities never drops below a critical level for a sustained period of time.
An interesting tactical question is how many vehicles are needed to sustain all the stocks of
the commodities above the critical level.

We consider a periodic resupply problem for a single commodity. In this problem we
have a set of locations with associated capacities and demand rates. The goal is to determine
whether the stock levels can be indefinitely sustained above a critical threshold by a set of
vehicles that have an associated maximum payload. Several variants of the problem can be
considered. The locations and vehicles can either be homogeneous or heterogeneous and
each vehicle may or may not have a sufficient payload to fully restock locations to maximum
capacity. Hence, partial restocking or multi-vehicle convoys can be considered.

Our problem, which we formally define in the next section, has a relation with periodic
scheduling problems, such as the Pinwheel Scheduling problem [4], the Windows Scheduling
problem [2], and the Periodic Latency problem [3]. In each of these problems, we are given
integers pi, and we have to schedule job i at least once in any period of pi consecutive
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time-units. In the Windows Scheduling problem, we seek the minimum number of vehicles
that are needed for a feasible solution, whereas the other two problems are concerned with
feasibility only. From our problem’s perspective, they all implicitly assume that each time a
visit to a location is scheduled, its inventory is restocked to its full capacity. In our problem,
it is possible that a vehicle’s payload is not sufficient to restock a location to its full capacity,
introducing interplay between payload and capacity. Also, the UAV resupply scheduling
problem considered in [1] has some similarities with our model, but again locations are
restocked (recharged) to their full capacity at each visit. We leave a full comparison of our
model with the related literature for the full version of this paper.

In this article, we discuss the general problem and show it is intractable. We then
focus on the homogeneous variant and study several simple policies that we prove to give
2-approximations. Finally, we present a greedy policy that is able to find a feasible schedule
for the optimal number of vehicles and explain how the optimal number of vehicles can be
found in pseudo-polynomial time.

2 Problem Description and Complexity

In this article we consider a single commodity problem as there is often a commodity that
is most important in terms of size and weight. We consider discrete time-units, and at
time-unit zero, each location starts with initial stock at maximum capacity. We then apply
the following procedure: each time-unit each vehicle resupplies at most one location by a
round-trip from a depot. If a location is resupplied, the payload from the vehicle is added to
the stock at the location up to its capacity within the time-unit. At the start of a time-unit,
consumption decreases the stock level of locations by the demand rate. If the stock drops
below 0 after consumption, we call this a stock-out, a situation we want to avoid. We formally
define the decision variant of our problem as follows:

Capacitated Resupply Problem (CRP)
Instance: A set of n ∈ N locations N = {1, . . . , n} to be supplied, m ∈ N vehicles
available for resupply, vectors c ∈ Nn and r ∈ Nn with the maximum capacity and the
demand rates per location, and p ∈ N the maximum payload of the vehicles.
Question: Is it possible to perform resupply of the locations with the given vehicles, such
that there is never a time-unit where a stock-out occurs?

We show that CRP is intractable by a reduction from the Pinwheel Scheduling problem.
In this problem, we have n′ jobs with periods p1, . . . , pn′ . In each time-unit, we can schedule
one job. The question is whether we can construct a perpetual schedule such that job i is
scheduled in any period of pi consecutive time-units. It is not known whether the Pinwheel
Scheduling problem is NP-complete, or even contained in NP. It was shown by [5] that there
cannot be a polynomial time exact algorithm for the Pinwheel Scheduling problem, unless
Satisfiability can be solved in expected time O(nlog n log log n), which is deemed unlikely.

▶ Theorem 1. There is no polynomial time exact algorithm for CRP, unless the Satisfiability
problem can be solved in expected time O(nlog n log log n).

Proof. Given an instance of the Pinwheel Scheduling problem, i.e., p1, . . . , pn′ , create an
instance of CRP as follows. Create a location for each job, where location i has ri =∏n′

j=1 pj/pi, and ci = c =
∏n′

j=1 pj . Furthermore, we set p =
∏n′

j=1 pj , and m = 1. Now, we
can verify there exists a feasible resupply schedule for this instance of CRP if and only if
there is a feasible schedule for the original instance of the Pinwheel Scheduling problem. ◀
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The proof above shows it is hard to distinguish instances of CRP where one vehicle is
sufficient, and instances for which at least two vehicles are necessary. This implies that for
any α < 2, there is no α-approximation for minimizing the number of vehicles, unless we
can solve the Pinwheel Scheduling problem in polynomial time. The same holds for the
Windows Scheduling problem, which can be seen as the multi-vehicle version of the Pinwheel
Scheduling problem. For the Windows Scheduling problem, a 2-approximation is known [2].
It is an open question whether a 2-approximation exists for the optimization version of CRP.
For now, we focus on the following homogeneous special case of this challenging problem:

Homogeneous Capacitated Resupply Problem (HCRP)
Instance: n ∈ N locations to be supplied, m ∈ N vehicles available for resupply, c ∈ N the
maximum capacity per location, r ∈ N the demand rates at the locations, and p ∈ N the
maximum payload of the vehicles, where p ≤ c.
Question: Is it possible to perform resupply of the locations with the given vehicles, such
that there is never a time-unit where a stock-out occurs?

More specifically, we consider the optimization variant where we seek the smallest m such
that no stock-out occurs. As the input of an instance consists of four numbers, a polynomial
time algorithm must be polynomial in log n, log c, log r, and log p.

3 Resupply policies

Let us now define the structure of the policies that we consider for the HCRP.

▶ Definition 2 (Policy). A policy π(xt, t, j) : Nn × N × N → N takes a vector xt of stock
levels at the locations right after the demand of time-unit t, the current time-unit t, and a
vehicle index j, and produces the index of the location it visits in time-unit t.

In each time-unit t we apply the policy π to the current stock vector xt, by adding
the payloads of the m available visiting vehicles during time-unit t up to the capacity and
subtracting the demand of time-unit t + 1 as follows:

xt+1
i = min

{
c, xt

i + p
∣∣V t

i

∣∣} − r, with V t
i =

{
j : j ∈ {1, . . . , m}, π(xt, t, j) = i

}
(1)

We are interested in when policies can guarantee a stock-out never occurs, i.e., xt ≥ 0
for any time-unit t. We define the minimum number of vehicles needed to operate policy π

without a stock-out as m∗(π) and m∗ as the minimum number of vehicles needed by any
possible policy. We observe that the total supply per time-unit (at most mp) should exceed
the total demand per time-unit (nr), otherwise the stocks will keep decreasing in the long
run. It follows that m∗ ≥

⌈
nr
p

⌉
. Furthermore, we argue that interesting cases have r < p,

i.e., the vehicle payload is greater than the demand at a location. If the demand exceeds
the payload, we can assign dedicated vehicles to each location and derive an instance with
m′ = m − n

⌊
r
p

⌋
, c′ = c − p

⌊
r
p

⌋
, r′ = r − p

⌊
r
p

⌋
which has r′ < p.

We now introduce three simple policies with specific operational advantages and consider
their performance. First, the Wrap Around Policy produces a schedule where vehicles visit the
same location consecutively, resulting in a sense of short-term consistency of the operations.
Second, the No Migration Policy assigns a single vehicle to each location. Finally, the Shift
Policy has a single sequence of visits operated by all vehicles at different offsets in time,
resulting in consistent operations for the vehicles.

ATMOS 2023



18:4 Simple Policies for Capacitated Resupply Problems

▶ Policy 1 (Wrap Around Policy). The Wrap Around Policy πWA assigns r consecutive visits
to each location and divides these sequentially within a period of p time-units. For example,
if r = 3 and p = 5, vehicle 1 visits location 1 in the first three time-units and location 2 in
time-units 4 and 5, whereas vehicle 2 visits locations 2 in the first time-unit, location 3 in
time-units 2, 3 and 4, and location 4 in time-unit 5, etcetera. Formally, this is defined as:

πWA(xt, t, j) = 1 +
⌊

(t − 1 mod p) + (j − 1)p
r

⌋
(2)

▶ Theorem 3. Policy 1 is optimal with m∗(πW A) =
⌈

nr
p

⌉
vehicles if c

r ≥ p.

Proof. Consider the first time-unit of a location where the stock starts decreasing below the
maximum stock level c. Since it takes at least c

r ≥ p time-units for a stock-out to occur,
and there are fewer than p time-units until the next visit, no stock-out can occur. The total
decrease in stock level is at most (p − r + 1)r. Then, the location is visited in the next r

time-units where the stock level can increase by rp − (r − 1)r. After these visits the location
is at full capacity again. We establish that no location can run out of stock. ◀

▶ Lemma 4. If each location is visited at intervals of at most
⌊

p
r

⌋
time-units, no stock-out

occurs.

Proof. The ratio p
r which is the number of time-units before stock-out after performing a

resupply, assuming the stock does not exceed capacity. Since we assume c ≥ p it holds that
c
r ≥

⌊
p
r

⌋
. If each location is visited at least every

⌊
p
r

⌋
time-units, the total supply satisfies

the total demand and no stock-outs can occur. ◀

▶ Policy 2 (No Migration Policy). The No Migration Policy πNM divides all locations over
all vehicles such that each location is always visited by the same vehicle. It repeats this
assignment every

⌊
p
r

⌋
time-units. This implies the first vehicle visits locations 1, . . . ,

⌊
p
r

⌋
, the

second vehicle locations
⌊

p
r

⌋
+ 1, . . . , 2

⌊
p
r

⌋
, and so on. Formally, this is defined as follows:

πNM(xt, t, j) = 1 + (j − 1)
⌊p

r

⌋
+

(
(t − 1) mod

⌊p

r

⌋)
(3)

▶ Theorem 5. Policy 2 gives a 2-approximation with m∗(πNM ) =
⌈

n
⌊p/r⌋

⌉
vehicles.

Proof. From Lemma 4, it follows that no stock-out occurs with Policy 2. As each vehicle has
a periodic schedule of length ⌊p/r⌋, this results in

⌈
n

⌊p/r⌋

⌉
vehicles. Using that ⌊x⌋ ≥ x/2

for x ≥ 1, and ⌈nx⌉ ≤ n⌈x⌉ for n ∈ N, we get an approximation guarantee of

m∗(πNM)
m∗ =

⌈
n

⌊ p
r ⌋

⌉
m∗ ≤

⌈
n

⌊ p
r ⌋

⌉
⌈

nr
p

⌉ ≤

⌈
n

1
2

p
r

⌉
⌈

nr
p

⌉ ≤
2
⌈

nr
p

⌉
⌈

nr
p

⌉ = 2. (4)

◀

▶ Policy 3 (Shift Policy). The Shift Policy πSH lets each vehicle visit the same sequence
of locations 1, . . . , n, but varies the starting point of each vehicle within this sequence by
increments of

⌊
p
r

⌋
. Thus this policy repeats after n time-units. For example, if n = 10, p = 9

and r = 3, vehicle 1 start at location 1, vehicle 2 starts at location 4, vehicle 3 starts at
location 7 and vehicle 4 starts at location 10. Formally, this is defined as follows:

πSH(xt, t, j) = 1 +
(

t − 1 + (j − 1)
⌊p

r

⌋)
mod n (5)
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▶ Theorem 6. Policy 3 gives a 2-approximation with m∗(πNM ) =
⌈

n
⌊p/r⌋

⌉
vehicles.

The proof of Theorem 6 is similar to the proof of Theorem 5. Note that both Policy 2
and Policy 3 are optimal if p/r is an integer, i.e., if p is an integer multiple of r. The next
example shows that the analysis for both Policy 2 and Policy 3 is tight.

▶ Example 7. Consider an instance with n = 10, r = 10, p = 19, and c = 30. Then, Policy
2 and 3 both result in a schedule with m =

⌈
n

⌊p/r⌋

⌉
= 10 vehicles. However, the optimal

number of vehicles is equal to 6 with the following schedule. Apply the idea of Policy 3 to 5
vehicles with a shift of ⌈p/r⌉ = 2. Then, add a sixth vehicle with a schedule that is out of
sync with the other schedules. This implies that both policies are a factor 5

3 off. In general,
we can set r = n, p = 2n − 1, and c = 3n, with n even. Then, Policy 2 and 3 use n vehicles,
whereas there is an optimal schedule that uses n/2 + 1 vehicles.

4 A Greedy Policy

Up until now we considered policies for which the required number of vehicles can be easily
derived, as they are only dependent on the current time-unit, which provides operational
benefits. It is also interesting to consider a policy that assigns vehicles based on the current
stock level. We consider a greedy policy that aims to maximally postpone stock-outs.

▶ Policy 4 (Greedy Policy). The greedy policy πGR assigns the vehicles to the locations
with the lowest current stock levels. We define the sequence σ(x) as a permutation of
the indices 1, . . . , n in increasing lexicographic order of their stock levels and indices, i.e.,
(xσ(x)i

, i) ≤lex (xσ(x)j
, j) for any i < j. Now the greedy policy is defined as follows:

πGR(xt, t, j) = σ(x)j (6)

▶ Theorem 8. The greedy policy πGR is optimal, i.e. m∗(πGR) = m∗.

Proof. Given the current stock level xt
i of a location i and assuming no future restocks occur,

the time until a stock-out occurs can be expressed as xt
i

r . In order to detect a stock-out, we
only need to be concerned with the lowest stock level xt

min = mini=1...n xt
i.

First, we argue that the total stock level over all locations increases by the maximum
amount possible with the greedy policy. Consider another policy that prefers restocking a
location i which has a higher stock level than a location j that is not restocked by that policy.
We thus have xt

i > xt
j . It is clear to see that the maximum amount that can be restocked at

location i is at most the amount that can be restocked at location j, as c − xt
i < c − xt

j .
Second, we argue that the greedy policy maximally postpones stock-outs. Consider

another policy that at time-unit t prefers restocking a location i which has a higher stock
level than a location j that is not restocked by that policy. In case xt+1

j > xt+1
min, location j is

not critical and xt+1
min will be equal for both policies. In case xt+1

j = xt+1
min, the xt+1

min of the
greedy policy will be greater than or equal to that value of the other policy.

We conclude that among all policies, the greedy policy maximally postpones stock-outs
as it maximally increases the total stock at the most critical locations. As locations are
otherwise identical, the greedy policy can avoid stock-outs with m∗ vehicles. ◀

If n/m is integer, the greedy schedule visits each location exactly once in each period
of n/m consecutive time-units. It is easy to check if no stock-out can occur. If n/m is not
integer, note that the time between two visits to a location in the greedy schedule is either
⌊n/m⌋ or ⌈n/m⌉. Observe that for the HCRP the greedy policy coincides with a round-robin
policy defined as πRR(xt, t, j) = 1 + (j − 1 + mr) mod n. For each location this results in a
schedule with ns periods of ⌊n/m⌋ time-units and nl periods of ⌊n/m⌋ + 1 time-units.

ATMOS 2023



18:6 Simple Policies for Capacitated Resupply Problems

▶ Theorem 9. If n/m /∈ N, the following statements hold.
If ⌈n/m⌉ ≤ ⌊p/r⌋, then the greedy schedule is feasible.
If ⌈n/m⌉ ≥ ⌊p/r⌋ + 2, then the greedy schedule is infeasible.
Else, the greedy schedule is feasible if and only if

min {c, (ns + 1)p − ns⌊p/r⌋r} ≥ nl (⌊p/r⌋ + 1) r − (nl − 1)p. (7)

Proof. If ⌈n/m⌉ ≤ ⌊p/r⌋, then every location is visited at least once every ⌊p/r⌋ time-units.
Hence, by Lemma 4, the schedule is feasible.

If ⌈n/m⌉ ≥ ⌊p/r⌋ + 2, then the number of time-units between any two visits to a location
is at least ⌊p/r⌋ + 1 which therefore consumes more than p between any two consecutive
visits. Thus, the stock will eventually drop below 0.

Else, the refill after ns periods of length ⌊p/r⌋ time-units should be at least the decrease
in nl periods of length ⌊p/r⌋ + 1 time-units. If this inequality holds, the greedy schedule is
feasible. It is also necessary, since a violation will lead to a stock-out. ◀

We now argue that we can solve the optimisation variant of the HCRP in pseudo-
polynomial time. By using a binary search, we can solve the optimization variant by solving
the decision variant O(log n) times. For this, Theorem 9 can be used which takes at most O(n)
time as πRR has a period of at most n time-units. More precisely, when ⌈n/m⌉ = ⌊p/r⌋ + 1,
we can find ns and nl from the periodic schedule with length at most lcm(n, m)/m. Hence,
we can find m∗ for HCRP in O(n log n) time, which is pseudo-polynomial in the input size.

5 Conclusions and Future Research

We consider the capacitated resupply problem (CRP) where locations with a given demand
rate should be resupplied to avoid a stock-out. We show the CRP to be intractable and
consider the homogeneous variant (HCRP) for which we present several policies. We conclude
with a greedy policy that can be used to find the optimal solution in pseudo-polynomial time.

The insights provided form the basis for extending the analysis to problems with more
realistic characteristics, such as multi-commodity resupply, locations with differing capacity
and (time-varying) demand, vehicles with different payloads, and travel times that may
not be insignificant compared to the resupply time. We believe these extensions provide
interesting opportunities for future research.
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