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Abstract
Line planning, i.e. choosing routes which are to be serviced by vehicles in order to satisfy network
demands, is an important aspect of public transport planning. While there exist heuristic procedures
for generating lines from scratch, most theoretical investigations consider the problem of choosing
lines only from a predefined line pool. We consider the line planning problem when all simple paths
can be used as lines and present an algorithm which is fixed-parameter tractable, i.e. it is efficient on
instances with small parameter. As a parameter we consider the treewidth of the public transport
network, along with its maximum degree as well as the maximum allowed frequency.
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1 Introduction

Motivation. Automating public transport planning is a challenging task and traditional
approaches split it into multiple stages, as seen in [13] and Figure 1. Lines form a foundational
building block for all following planning stages. In this context, lines are (simple) paths in
the public transport network that have to be covered by vehicles end-to-end. Which lines are
chosen highly impacts the subsequent planning steps like timetabling and vehicle scheduling.
On the one hand, lines influence the routes and transfers that passengers take, determining
the network quality from the passenger’s perspective, and on the other hand, they determine
the majority of the operating costs.

Line planning refers to selecting a subset of lines and their frequencies, called line concept,
from a given set of lines, the line pool. While there is ample literature on line planning for a
given fixed line pool, see [20], the construction of line pools is often neglected.

Instead of designing a line concept from a given line pool, we consider the set of all simple
paths as candidates. This greatly extends the solution space and has a high potential to give
better results. Thus our approach integrates line pool generation and line planning phases
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4:2 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth
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Figure 1 Common sequential approach for public transport planning, adapted from [13] (top).
We consider the integration of line pool generation and line planning into a single step (bottom).

into one single problem which we call line planning on all paths (LPAL). This integrated
problem is not yet thoroughly researched, and although its hardness has been investigated
recently [15], not much is known about how to solve it efficiently in practice, if that is even
possible, and how much it improves over previous methods.

Throughout the research literature on line planning, different objective functions have
been considered. From the passengers’ perspective, one wants to maximize the number of
direct travelers [7] or to minimize the travel time [21, 6]. Here, it is especially difficult to
model passenger behavior realistically, see [12, 19]. In this paper we focus on minimizing the
operating costs of a line concept as originally introduced in [8], where assigning passenger
routes in a previous step guarantees that passengers can travel on favorable routes, see e.g. [7].
Our cost model includes path-dependent and -independent costs, where the former can be
used to model costs for the distance covered on a line and the latter can represent costs
of maintaining a vehicle. All costs are frequency-dependent, meaning they scale with the
number of vehicles operated per line. We do not model frequency-independent costs, since it
was shown [15] that doing so makes (LPAL) NP-hard even on the most simple graph classes.

It was shown previously in [15] that (LPAL) is NP-hard and cannot even be approximated
to a reasonable degree in polynomial time, assuming P ̸= NP . This is supported by the fact
that all but the most elementary families of graphs exhibit an exponential number of possible
simple paths in terms of the graph order. In fact it is unknown whether (LPAL) is even
contained in NP since the line concept could be any subset of an exponentially sized line
pool – simply writing it down may not be possible in polynomial time. Given these hardness
results, the question arises whether it is at all feasible to solve (LPAL) in practice.

This motivated us to investigate the parameterized complexity of (LPAL). We consider
the problem’s complexity not only depending on the input size, but also depending on some
extra parameter. A parameterized problem is called fixed parameter tractable (FPT) if we
can solve it in time f(k)nO(1), where k is the parameter, n is the input size, and f is an
arbitrary function. Obtaining such a result furthers our theoretical understanding of the
problem, discerning what exactly makes instances hard to solve. Crucially, an FPT-algorithm
can also be useful in practice, if the evaluated instances can be expected to have a small
parameter.

In particular, we consider the graph parameter treewidth, which was introduced by
Robertson and Seymour [18] and has become an indispensable graph invariant for studying
algorithmic problems which are intractable in their general form. At its core, treewidth
captures the notion of how close a graph is to being a tree. One could say that graphs of
bounded treewidth are “thickened trees”. Trees have a simple and hierarchical structure,
making them easier to analyze and work with compared to more complex graphs. Treewidth
generalizes this concept by allowing cycles and measuring the extent to which a graph deviates
from a tree-like structure.

Numerous problems are linear-time solvable on graphs for which the treewidth is restric-
ted [1, 2]. This is the case, for example for Maximum independent set, Chromatic number
and Hamiltonian circuit. The latter is especially relevant, since the problem of finding a
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Hamiltonian path is used to obtain various hardness results for line planning [15]. In fact,
Courcelle [9] showed in his seminal work that every graph property definable in monadic
second-order logic can be decided in linear time on graphs of bounded treewidth. Furthermore
Integer linear programming (ILP), which is ubiquitous in discrete optimization, becomes
tractable when the constraint interaction graph has bounded treewidth and the variables
have a bounded domain [10].

From a practical view-point, treewidth is a very natural parameter to consider in the
context of transportation planning. For example, networks modeling cities that developed
along an arterial road or near a river can be intuitively understood as being like “trees, but
thicker”, i.e. having comparatively small treewidth. More abstract examples are grids and
ring graphs (concentric rings connected by spokes). It turns out that when the number of
spokes is fixed, the resulting networks have bounded treewidth, no matter how many rings
we add. Similarly, when we consider grids where one of the dimensions is fixed and the other
one arbitrary, we have bounded treewidth [4]. Many street networks contain such graphs as
substructures (striking examples are New York or Paris).

compute nice
tree decomposition T ILP construction solve ILP (exploiting

tree decomposition)

iteratively build
line concept

T ILP instructions

T

stage 1 stage 2 stage 3

Figure 2 Overview of our line planning algorithm. In the preprocessing stage, a tree decom-
position T of the input graph is computed, which is used in all stages of the algorithm. First we
construct an ILP (stage 1). Then this ILP is solved, exploiting the given tree-like structure (stage 2).
The solution is fed into our assembly algorithm (stage 3) which finally constructs an optimal line
concept.

When a predefined line pool is given, line planning can be solved using integer linear
programming (ILP) in a straight forward way. A variable is introduced for every line in the
line pool, representing the frequency of this particular line. Feasibility and costs of the line
concept are then easily modeled. It remains to solve the resulting integer program. This
remaining task, however, is practical only for small line pools, since no efficient algorithmic
solutions are known. When solving (LPAL), all possible simple paths must be considered as
line candidates. Indeed, since the number of possible paths of a graph grows exponentially
in the number of vertices, using this straight forward approach would result in an integer
program with an exponential number of variables, hence we can expect a doubly exponential
running-time in the worst case.

Contribution. In this paper we develop an algorithm solving (LPAL) on graphs G = (V,E)
of maximum degree ∆ with treewidth k and vehicle frequencies bounded by M in time
O(g1(k,M∆)|V | + g2(k)|V |2) for some functions g1 and g2. In other words, we show (LPAL)
is FPT when parameterized by treewidth combined with maximum degree and maximum
frequency. Our algorithm can be broken down into multiple stages, as shown in Figure 2.
First we need to compute a tree decomposition of the input graph. Using it we construct
an ILP having a number of variables which is linear in the number of vertices (stage 1).
We prove that if our input graphs additionally have bounded degree and edge frequencies,
this ILP can be solved in polynomial time (stage 2). The optimal solution provides the
instructions for building an optimal line concept. Finally we give an algorithm that carries
out these instructions in polynomial time (stage 3), hence solving (LPAL).

ATMOS 2023



4:4 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

We evaluated the practicality of our algorithm by measuring its running time on a set of
algorithmically generated instances. Additionally we compare the resulting line concepts to
those obtained by a heuristic line pool generation approach [11]. Here our algorithm manages
to reduce the costs by 36% on average.

2 Preliminaries

Graph Theory. Let G = (V,E) be a graph and V ′ ⊆ V . The subgraph of G induced by V ′

is G[V ′] := (V ′, {e ∈ E : e ⊆ V ′}). Let V be a set of vertices. The complete graph on V

is K(V ) := (V, {{u, v} : u, v ∈ V with u ̸= v}). Let G1 = (V1, E1) and G2 = (V2, E2) be
graphs. Their union is G1 ∪G2 := (V1 ∪ V2, E1 ∪ E2).

Line Planning. A line planning instance is a tuple (G, cfix, c, f
min, fmax), where

G = (V,E) is a graph representing a public transport network,
cfix ∈ R≥0 represents frequency-dependent fixed costs,
c : E → R≥0, e 7→ ce is a map representing the edge-dependent costs, and
fmin and fmax are integer frequency restrictions on E, e 7→ fmin

e (respectively e 7→ fmax
e )

such that fmin
e ≤ fmax

e for all edges e ∈ E. Note that the lower frequency restrictions fmin
e

allow for passengers traveling on favorable routes while the upper frequency restrictions
fmax

e represent safety constraints.

Paths and lines. Let G = (V,E) be a graph. We denote the set of all paths which are
subgraphs of G by P(G). We define P̂(G) := P(K(V )), which includes also paths using
edges absent in G. Any sequence v1, . . . , vk of k ≥ 2 vertices defines a path p ∈ P̂(G). To
shorten notation we will simply write p = v1, . . . , vk, slightly abusing the = sign. Note that
the reverse sequence vk, . . . , v1 defines exactly the same path, hence in our notation we treat
the sequences v1, . . . , vk and vk, . . . , v1 as equal. Let p ∈ P̂(G) be defined by v1, . . . , vk, and
W ⊆ V . The sub-sequence of v1, . . . , vk which contains only vertices contained in W defines
the path p|W .

A line concept (L, f) is a set of paths L ⊆ P(G), also called lines, with a frequency vector
f = (fℓ)ℓ∈L ∈ NL, i.e. fℓ is the frequency of line ℓ.

Let U be a set. A multiset over the universe U is a vector m ∈ NU . We can add multisets
together just like vectors. Define suppm := {x ∈ U : m(x) > 0} and |m| :=

∑
x∈U m(x). To

represent a line concept (L, f) we really just need the multiset f ∈ NP(G), since L = supp f .
At each edge e ∈ E, the lines sum up to a total frequency

F (L,f)
e =

∑
ℓ∈L : e∈E(ℓ)

fℓ,

where E(ℓ) denotes the edge set of ℓ. A line concept is feasible if for each edge e ∈ E the
frequency restrictions are satisfied, i.e. fmin

e ≤ F
(L,f)
e ≤ fmax

e .
The cost of a path p ∈ P(G) is cost(p) := cfix +

∑
e∈E(P ) ce. We define cost((L, f)) :=∑

ℓ∈L fℓ ·cost(ℓ). An equivalent representation is cost((L, f)) =
∑

e∈E F
(L,f)
e ce+cfix ·

∑
ℓ∈L fℓ.

With this notation, we can formally define the line planning on all lines problem.

▶ Definition 1. Given a line planning instance, the line planning on all lines problem (LPAL)
is to find a feasible line concept with minimal costs.
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Tree decompositions. A tree decomposition of a graph G is a tuple (T,B) where T is a tree
and B = {Bt : t ∈ V (T )} is a family of subsets of V (G), one for each vertex of T such that

(i)
⋃

t∈V (T ) Bt = V (G),
(ii) for every edge uv ∈ E(G) there exists a t ∈ V (T ) with {u, v} ⊆ Bt, and
(iii) every triple t1, t2, t3 of vertices in V (T ) satisfies: if t2 is on the unique t1-t3-path in T ,

then Bt1 ∩Bt3 ⊆ Bt2 .
The width of a tree decomposition (T, {Bt : t ∈ V (T )}) is maxt∈V (T ) |Bt| − 1. The minimum
width over all tree decompositions of a graph G is the treewidth of G.

Let G be a graph of treewidth k. A tree decomposition (T, {Bt : t ∈ V (t)}) of G is nice if
its width is k and T can be rooted at a vertex r such that

every vertex of T has at most two children,
if a vertex t ∈ T has two children t1 and t2, then Bt1 = Bt2 = Bt (t is a join node),
if a vertex t ∈ T has exactly one child t′, then either Bt ⊊ Bt′ and |Bt| = |Bt′ | − 1 (t is a
forget node) or Bt′ ⊊ Bt and |Bt| = |Bt′ | + 1 (t is an introduce node),
if t is a leaf of T , then |Bt| = 1 (t is a leaf node), and
|V (T )| ∈ O(k|V |).

Kloks [16] proved that every graph G has a nice tree decomposition. Nice tree decompositions
are a useful tool that simplify the derivation of algorithms which are parametrized in the
treewidth of the input graph.

3 Line planning is FPT

Assume we are given an instance I = (G, cfix, c, f
min, fmax) of (LPAL) where G has

treewidth k and maximum degree ∆, together with a nice tree decomposition (T,B) of G of
width k. Let r be the root of T . Without loss of generality, we can assume Br = ∅ (this can
be achieved by adding up to k + 1 additional forget nodes). We want to work along the tree
decomposition, from the bottom up, hence the following definitions are useful: For t ∈ V (T )
we set

Gt := G

 ⋃
t′∈V (T ) : t′ is a

descendant of t in T

Bt′

 and G+
t := Gt ∪K(Bt).

Note that G+
t may contain edges that are not present in the original graph G. These virtual

edges are only used temporarily by our algorithm, as an intermediate step in constructing
lines. We found that when we want to build up a line concept by using a sequence of local
modifications, the virtual edges are a crucial ingredient. At the tree decomposition’s root,
no virtual edges are present and it holds: G = Gr = G+

r .
Our (LPAL)-algorithm consists of three stages (see Figure 2):

1. construct an ILP,
2. solve that ILP,
3. iteratively construct a line concept, guided by the ILP solution.
We first present the procedure of stage 3, as it motivates the ILP construction. This stage
can be understood on its own, with the caveat of some values being “to be determined”.

3.1 Path operations and path patterns
Our algorithm constructs an optimal solution by starting with an empty line concept and
iteratively applying the four following path operations. They change the line concept only
locally, hence they are especially suited for graphs of bounded treewidth. In the following we
view line concepts as multisets of simple paths.

ATMOS 2023



4:6 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

Initialization. We add a single-edge path containing exactly two vertices from V (G) to a
line concept. This edge does not necessarily exist in G.

Extension. Let p = u1u2 . . . uk ∈ P̂(G) and v ∈ V (G)\V (p). We say that p′ := vu1u2 . . . uk

is the extension of p at u1 with v. This relation is denoted by p (u1,vu1)−−−−−→ p′.

Subdivision. For p = u1u2 . . . uk ∈ P̂(G) and v ∈ V (G) \ V (p) we say that p′ :=
u1 . . . uivui+1 . . . uk is the subdivision of p at uiui+1 with v. This relation is denoted by
p

(uiui+1,uivui+1)−−−−−−−−−−−→ p′.

Join. Let V1, V2 ⊆ V such that B := V1 ∩ V2 ≠ ∅. Let p ∈ P̂(G), and define p1 := p|V1 and
p2 := p|V2 . We say p is the join of p1 and p2 at B. This relation is denoted by (p1, p2) B−→ p.

Path patterns. We now define a formal notion that allows us to focus on the local behavior
of path operations on a subset of vertices B, discarding non-local information.

Let G be a graph and B ⊆ V (G) a vertex subset of G. For a path p ∈ P̂(G) we set πB(p)
to be the sequence obtained in the following way: Replace every occurrence of vertices u /∈ B

in p by □. Then replace any runs of multiple □-symbols by a single □. Every output of πB

which is not the singleton □ is a path pattern on B. The set of all path patterns on B is
denoted by Pat(B), that is Pat(B) = πB(P̂(G)) \ {□}. Observe that every path pattern
contains at least two symbols, no two □’s are consecutive, and every vertex of B appears at
most once. Further, the length of a path pattern is at most 2|B| + 1 (the bound is tight if
and only if every symbol of B appears exactly once and every second symbol is a □). We
can obtain every pattern of Pat(B) by choosing a permutation of a subset of B and for each
two consecutive elements of the permutation choosing whether they should be separated by
a □. Hence

|Pat(B)| =
|B|∑

m=1
m! · 2m+1 ≤ (|B|)! · 2|B|+2.

Path operations can be extended to also work on path patterns. Then πB has useful
properties in relation to path operations. Let p, p′, p1, p2 ∈ P̂(G) and u, v, w ∈ B. It holds:

p
(u,wu)−−−−→ p′ if and only if πB(p) (u,wu)−−−−→ πB(p′),

p
(uv,uwv)−−−−−−→ p′ if and only if πB(p) (uv,uwv)−−−−−−→ πB(p′),

(p1, p2) B−→ p′ if and only if (πB(p1), πB(p2)) B−→ πB(p′).
Let p ∈ P̂(G) and B′ ⊆ B. Then πB′(p) = πB′(πB(p)).

3.2 Assembly algorithm
Algorithm 1, when called on node t of the tree decomposition, computes a line concept for the
graph G+

t . We have split the sub-procedures of Algorithm 1 into Algorithm 2, Algorithm 3
and Algorithm 4. The algorithm needs to be supplied with the tree decomposition (T,B)
and some integers ituv, et

p,p′ , st
p,p′ and jt

p1,p2
for each node t ∈ T . These integers control how

many path operations are applied, and the meaning of their subscripts will become apparent
from reading Algorithm 1. We call them instruction variables; in Subsection 3.3 we discuss
how to determine their values.

▶ Theorem 2. There are functions g1, g2 : N → N such that Algorithm 1 produces a line
concept L with | supp L| ∈ O(ng1(k)) and runs in time O(n2g2(k)), where n := |V (G)|.
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Algorithm 1 Line concept assembly algorithm.

1: function assemble(t)
2: if t is a leaf then
3: return {} ▷ empty line concept
4: else if t is a forget node then
5: t′ = unique child of t
6: return assemble(t′)
7: else if t is an introduce node then
8: t′ = unique child of t
9: w′ = the vertex introduced by t

10: return assemble_introduce(t, t′, w)
11: else if t is a join node then
12: t1, t2 = children of t
13: return assemble_join(t, t1, t2)
14: end if
15: end function

The proof of Theorem 2 can be found in Appendix A.

Algorithm 2 Line concept assembly sub-procedure: introduce.

1: function assemble_introduce(t, t′, w)
2: L = assemble(t′)
3: for v ∈ Bt′ do
4: L += (wv, itwv)
5: end for
6: for p, p′ ∈ Pat(Bt) and u ∈ Bt′ with p

(u,wu)−−−−→ p′ do
7: L′ = subtract(L, p, et

p,p′)
8: L += extend(L′, u, w)
9: end for

10: for p, p′ ∈ Pat(Bt) and u, v ∈ Bt′ with p
(uv,uwv)−−−−−−→ p′ do

11: L′ = subtract(L, p, st
p,p′)

12: L += subdivide(L′, uv, w)
13: end for
14: return L

15: end function

3.3 ILP construction
In the following we construct an integer linear program P(LPAL)(I, (T,B)) from the (LPAL)
instance I and the tree decomposition (T,B). By solving it, we can determine the instruction
variable values which lead to an optimal feasible line concept. The ILP constraints must
ensure that each path operation the assembly algorithm wants to apply is possible, and that
the final line concept is feasible. The ILP objective corresponds to the cost of the resulting
line concept, hence minimizing it leads to an optimal solution to (LPAL).

For each node t ∈ T we construct a set of constraints, depending on the node type (leaf,
introduce, forget, join) of t, which become a part of the whole ILP. The constraint variables
are shared between neighboring nodes.

ATMOS 2023



4:8 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

Algorithm 3 Line concept assembly sub-procedure: join.

1: function assemble_join(t, t1, t2)
2: L = {}
3: L1 = assemble(t1)
4: L2 = assemble(t2)
5: for p1, p2, p

′ ∈ Pat(Bt) with (p1, p2) Bt−−→ p′ do
6: L′

1 = subtract(L1, p1, j
t
p1,p2

)
7: L′

2 = subtract(L2, p2, j
t
p1,p2

)
8: L += join(L′

1, L
′
2, Bt)

9: end for
10: return L+ L1 + L2
11: end function

Algorithm 4 Line concept subtraction.

1: function subtract(L, p, c)
2: L′ = {}
3: while c > 0 do
4: (path, count) = L.find(p)
5: if count > c then
6: L -= (path, c)
7: L′ += (copy(path), c)
8: c = 0
9: else

10: L.erase(path)
11: L′ += (path, count)
12: c -= count
13: end if
14: end while
15: return L′

16: end function

We have 6 different flavors of variables associated with each node t, describing what
happens at t during the line concept construction process:

ituv: How many copies of the path uv are initialized?
et

p,p′ : How often do we extend a path of pattern p into a path of pattern p′?
st

p,p′ : How often do we subdivide a path of pattern p into a path of pattern p′?
jt

p1,p2
: How often do we join a path of pattern p1 with a path of pattern p2?

ct
p: How many paths of pattern p do we have, after the construction finishes node t?
f t

e: What is the frequency of the resulting line concept on edge e?
The ct

p- and f t
e-variables simply track the current construction state, hence we call them

state variables. They are firmly constrained using the following equality constraints:

Leaves. Here Algorithm 1 returns an empty line concept, thus

for p ∈ Pat(Bt): cℓ
p = 0
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Join nodes. Algorithm 1 effectively sums up the children’s line concepts, but joins some of
the lines, depending on the jt

p1,p2
-variables. Each individual join removes two lines and adds

a new one:

for each p ∈ Pat(Bt): ct
p = ct1

p + ct2
p +

∑
(p1,p2)

Bt−−→p

jt
p1,p2

−
∑

(p,p2)
Bt−−→p′

jt
p,p2

−
∑

(p1,p)
Bt−−→p′

jt
p1,p

Forget nodes. Let w be the forgotten vertex. No changes are made to the child’s line
concept, but we project the lines onto a smaller set of path patterns.

for p ∈ Pat(Bt): ct
p =

∑
p′∈Pat(Bt′ )
πBt (p′)=p

ct′

p′

Additionally we track the frequencies of each forgotten edge e ∈ E− := {{w, u} : u ∈ Bt}.

for e ∈ E−: f t
e =

∑
p′∈Pat(Bt′ )

e on p′

ct′

p′

Since the forgotten vertex cannot appear again further up in the tree decomposition, these
frequencies will remain fixed from this point forward, i.e. f t

e is also the final line concept’s
frequency of e. It is possible that E− ⊈ E(G), but the final line concept cannot be allowed
to use edges outside of E(G), hence we demand

for e ∈ E− \ E(G): f t
e = 0

For actual edges of G we use the following constraint to ensure feasibility of the final line
concept:

for e ∈ E− ∩ E(G): fmin
e ≤ f t

e ≤ fmax
e

Introduce nodes. Let w be the introduced vertex. Algorithm 1 continues with the child’s
line concept, adds and transforms some of the lines. The newly added lines consist of a single
edge; they can be produced only by the introduction operation, hence

for p = wv ∈ Pat(Bt) with v ∈ Bt′ : ct
p = itwv

For other path patterns p ∈ Pat(Bt) that contain w, we have three cases: Firstly, if w is
at the end of p and is next to another vertex u ∈ Bt, then lines having the pattern p are
precisely the ones that result from the extension operation:

for p (u,wu)−−−−→ p′: ct
p′ = et

p,p′

Secondly, if w has two neighboring vertices u, v ∈ Bt in p, then lines having the pattern p

are precisely the ones that result from the subdivision operation:

for p (uv,uwv)−−−−−−→ p′: ct
p′ = st

p,p′

Thirdly, if w is next to a □ in p, then no line having the pattern p can be created by
Algorithm 1:

for p ∈ Pat(Bt) containing w next to □: ct
p = 0

ATMOS 2023



4:10 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

The case of p ∈ Pat(Bt) not containing w remains, i.e. p ∈ Pat(Bt′). Here we find the lines of
child’s line concept, but we have to subtract lines that were transformed using the extension
or subdivision operations:

for p ∈ Pat(Bt′): ct
p = ct′

p −
∑

p
(u,wu)−−−−→p′

et
p,p′ −

∑
p

(uv,uwv)−−−−−−→p′

st
p,p′

Now our variables can track the results of Algorithm 1 at each node, but under the
assumption that all operations prescribed by the instruction variables actually succeed. We
do not want to assume, but guarantee this, hence we need more constraints.

Operation applicability constraints. Firstly each instruction variable must be non-negative.
For introduce nodes we have:

for each p, p′ ∈ Pat(Bt) and u ∈ Bt′ with p
(u,wu)−−−−→ p′: et

p,p′ ≥ 0

for each p, p′ ∈ Pat(Bt) and {u, v} ⊆ Bt′ with p
(uv,uwv)−−−−−−→ p′: st

p,p′ ≥ 0
for each v ∈ Bt′ : itwv ≥ 0

And for join nodes:

for each p1, p2, p
′ ∈ Pat(Bt) with (p1, p2) Bt−−→ p′: jt

p1,p2
≥ 0

Then we need to ensure that our operations do not subtract more lines than available. For
introduce nodes this can be expressed as

for p ∈ Pat(Bt′): ct′

p ≥
∑

p
(u,wu)−−−−→p′

et
p,p′ +

∑
p

(uv,uwv)−−−−−−→p′

st
p,p′ ,

or equivalently: ct
p ≥ 0.

The join operation subtracts a line from each child line concept, hence we need two constraints
for each p ∈ Pat(Bt):

ct1
p ≥

∑
(p,p2)

Bt−−→p′

jt
p,p2

ct2
p ≥

∑
(p1,p)

Bt−−→p′

jt
p1,p

This concludes the ILP constraints. Now we will define the linear objective of our ILP.

Objective. The final line concept’s cost can be determined by counting the effective number
of lines and the frequencies at each edge. The f t

e-variables already keep track of the edge
frequencies. For each e ∈ E(G) we have a unique forget node t where e is forgotten. In our
objective, f t

e gets the weight of ce.
The number of lines can be counted by counting the number of path operations. The

introduce operation increases the number of lines, whereas a join reduces the number of
lines. Subdivision and extension operations make no change. Hence in our objective all
itwv-variables get a weight of cfix and all jt

p1,p2
-variables get a weight of −cfix.

All other variables have a weight of 0. We arrive at the following linear objective:∑
t∈T, e∈E

t is a forget node
t forgets e

ce · f t
e +

∑
t∈T

t is an introduce node
wv∈Pat(Bt)

cfix · itwv −
∑
t∈T

t is a join node

(p1,p2)
Bt−−→p

cfix · jt
p1,p2
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▶ Theorem 3. Feeding the solution of P(LPAL)(I, (T,B)) into Algorithm 1 yields an optimal
solution to I.

Proof. The statement follows from the following two claims (i.e. we produce a feasible
solution to I that is at least as good as an optimal one):
1. Let x be a solution to P(LPAL)(I, (T,B)) of cost c. Then Algorithm 1, when supplied

with x, produces a feasible line concept of cost c.
2. There exists a function ψ such that for any feasible line concept L of cost c it holds: ψ(L)

is a feasible solution to P(LPAL)(I, (T,B)) of cost c.
Claim 1 follows directly from the construction of P(LPAL)(I, (T,B)), where we already argued
the correctness of each constraint.

Claim 2 is proved in Appendix B. ◀

3.4 Solving the ILP
We will now show that the dynamic programming approach of [10, Theorem 6] can be applied
to solve our ILP, proving that (LPAL) is FPT when parameterized by treewidth, fmax and ∆.
Let M be an upper bound for fmax, i.e. for all e ∈ E we have fmax

e ≤ M .
First note that the total number of variables and constraints of the ILP can be bounded

by O
(

|T | maxt′∈T |Pat(Bt′)|2
)

= O
(

|V |k
(
(k + 1)! · 2k+3)2

)
.

Now we have to consider the incidence graph HI of our ILP and provide an upper bound
for its treewidth. The vertices of HI are composed of the variables as well as the constraints
of the ILP. A variable v is adjacent to a constraint a in the graph if and only if v occurs in
a. The given nice tree decomposition (T,B) can be transformed into a tree decomposition
(T,BI) of HI by defining the bag B′

t associated with t ∈ T , informally, as follows:

B′
t := {constraints of t} ∪ {variables of t} ∪ {variables of all children of t}.

It is possible to bound

|B′
t| ∈ O

(
max
t′∈T

|Pat(Bt′)|2
)

= O
((

(k + 1)! · 2k+3)2)
,

hence the treewidth of HI can be bounded by a function in the treewidth of G.
We also need to bound the absolute value of every variable for any feasible assignment.

All variables are non-negative, i.e. we only need to provide upper bounds. The variables
f t

e ≤ fmax
e are already taken care of. We observe that for any feasible assignment, for all

t ∈ T and p ∈ Pat(Bt) it must hold: ct
p ≤ ∆ · fmax

e . This is because any path pattern
p ∈ Pat(Bt) must contain at least one vertex v of G, and any path fitting p must walk over
some edge incident to v. The total maximum frequency of these edges cannot exceed ∆ ·fmax

e .
It follows that the jt

p1,p2
-variables also have to respect this bound. The remaining variables

irreversibly increase some ct
p, hence they are bounded by ∆ ·M as well. Therefore we define

our bound Γ := ∆M and can apply [10, Theorem 6] to obtain an algorithm solving the ILP
in time O(g(k,M∆)|V |) for some function g.

▶ Corollary 4. On any graph G = (V,E) of maximum degree ∆ with treewidth k and
fmax ≤ M , the problem (LPAL) can be solved in time O(g1(k,M∆)|V | +g2(k)|V |2) for some
functions g1 and g2.

Proof. We use Bodlaender’s algorithm [3] to compute a tree decomposition of width k for G
in linear time (assuming k is fixed). We convert it into a nice tree decomposition [16]. Then
we apply our algorithms. Combining Theorem 3 with Theorem 2 and the running time for
solving the ILP, the claim follows. ◀

ATMOS 2023



4:12 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

We hypothesize that there is an algorithm solving P(LPAL)(I, (T,B)) in a time that is not
dependent on M∆, which would imply that (LPAL) is FPT parameterized only by treewidth.

4 Experiments

We experimentally evaluated our algorithm on a set of algorithmically generated instances,
measuring its running time and comparing the results against a heuristic based approach. Our
implementation, including code to reproduce the experiments, is provided as supplementary
material. In the ILP solving stage (stage 2) we used the state-of-the-art solver Gurobi [14].

Instance generation. The underlying graphs of our test instances are what we call ring
graphs. For any r ≥ 1 and s ≥ 2, a ring graph is constructed by joining r rings, having s
vertices each, using s spokes that meet in a central vertex. Formally we define G := (V,E)
with V := {(0, 0)} ∪ {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ s} and

E :={{(i, j), (i+ 1, j)} : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s}
∪{{(i, j), (i, j + 1)} : 1 ≤ i ≤ r, 1 ≤ j ≤ s− 1}
∪{{(i, s), (i, 1)} : 1 ≤ i ≤ r} ∪ {{(0, 0), (1, j)} : 1 ≤ j ≤ s}.

We evaluated our algorithm on ring graphs for various choices of r and s.
For each test instance we defined cfix := 50 and for all edges e ∈ E we set ce := 5 and

fmax
e := 20.

We simulated the following simplified passenger behavior to obtain values for fmin:
Between each pair of vertices u and v we generate 50 passengers that want to travel between
them. Each passenger wants to move on a shortest path between u and v. Hence we choose
a random shortest path and count for each edge e ∈ E, how many passengers want to travel
over it. This generates a passenger count de for each edge e ∈ E. Then we define the vehicle
capacity C := (|V | − 1)2 and finally fmin

e := ⌈de/C⌉.

Heuristic algorithm. We compare the results of our algorithm, which chooses an optimal
line concept from the set of all paths, against an algorithm which chooses an optimal line
concept from a given line pool. The line pool is generated using the algorithm from [11].
Then the optimal line concept (restricted to this line pool) is determined by solving an
integer program, where each line ℓ from the pool has its own frequency variable fℓ.

Results. We evaluated 27 test instances, with r ranging between 2 and 9, and s ranging
between 3 and 6. The maximal treewidth of the considered instances was 5. For each instance
we obtained costo, which is the cost of an optimal line concept resulting from our method,
and costh, the cost of the line concept computed by the heuristic. We computed the average
of the improvement ratio costo/costh, which is approximately 0.64. Thus our algorithm
managed to reduce the costs by 36% on average.

We measured the running time of our algorithm, each of the three stages separately. It
was run on a personal computer with an Intel Core i7-4790K CPU. The time taken by stage
3 was at most 1 second on all instances. The ILP construction (stage 1) took at most 24.1
seconds on instances with treewidth 5. The ILP solving (stage 2) took at most 97 seconds
on instances with treewidth 5.
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5 Conclusion and outlook

Line planning on all lines (LPAL) means allowing all simple paths as possible lines in a public
transport supply. This large search space yields more options and, hence, better solutions for
optimal public transport planning. After the mostly discouraging hardness results of [15], we
now provided a fixed-parameter tractable algorithm that could be used to solve this problem
in practice. This marks just the beginning of the parameterized study of (LPAL), since many
questions remain open:

When our algorithm is combined with algorithms for the later stages of public transport
planning and applied to real-world datasets, how much does the quality of the results
improve?
Can the ILP we constructed be solved by an FPT-algorithm that is not parameterized
by the degree nor fmax?
Can the runtime dependence on the treewidth k be reduced to a single-exponential of the
form O(ak) for some constant a?

Applying our approach to other formulations of line planning would also be interesting.
For example, circular lines instead of paths could be considered, as in [17]. Another example
would be replacing the fixed frequency bounds with a flow formulation that models passenger
behavior [5].
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is in O(| suppL′| + n), where L′ is the subtracted multiset. Introduce nodes as well as join
nodes make a constant number of subtractions. Since in total no more than the whole of L
(respectively L1 and L2) can be subtracted, the total time taken by subtractions at one node
is in O(n).

Let t be a forget node. Here no new lines are added, and in the code it looks like nothing
at all is happening, but this is deceiving: Since Bt is different from Bt′ , the encodings χt

and χt′ are also different – hence the dictionary data structure needs to be rebuilt entirely.
This can be achieved in time in O(| suppL|), which by induction is O(n).

Let t be an introduce node. The introduction operation adds at most a constant number
of new lines. Extension and Subdivision both work by first subtracting a multiset L′ of lines,
transforming it into a multiset L′′, then adding L′′ back. We implement the subtraction
such that all lines except one, i.e. | suppL′| − 1 lines are removed completely from L. The
transformation does not change the number of lines, i.e. | suppL′′| = | suppL′|, thus a single
iteration increases | suppL| by at most 1. Only a constant number of iterations take place,
hence the desired upper bounds follow.

The same arguments show that join nodes only add a constant number of lines, taking
linear time to do so. The line concept sums can be computed efficiently by concatenating a
constant number of linked lists. ◀

B Correctness of the ILP

Proof of Theorem 3, claim 2. Let L = (L, f) be a feasible line concept with cost b.

Definition and feasibility of ψ

We define ψ by giving an assignment to every variable of the ILP. At the same time we show
that this assignment is feasible.

For any t ∈ T we use the shorthand Vt := V (Gt).
Then ψ assigns for each t ∈ T and p ∈ Pat(Bt):

ct
p :=

∑
ℓ∈L

πBt (ℓ|Vt )=p

f(ℓ).

Let t be a leaf node. Then |Vt| = 1, hence for all ℓ ∈ L the filtered path ℓ|Vt
contains at

most one vertex. Since path patterns need to have a length of at least two, for all p ∈ Pat(Bt)
we have ∅ = {ℓ ∈ L : πBt

(ℓ|Vt
) = p} and hence ct

p = 0.

Let t be a forget node which forgets v ∈ Bt′ \Bt. Then ψ assigns the f t
e variables in the

way which is required by the equality constraints:

for each e ∈ E−: f t
e :=

∑
p′∈Pat(Bt′ )

e on p′

ct′

p′

Consider any ℓ ∈ L which visits v. Since t is forgetting v, all neighbors of v in G must have
been introduced already, i.e. are contained in Vt′ . Hence any edge e ∈ E− occurs on ℓ if and
only if it occurs on ℓ|Vt′ , if and only if it occurs on πBt′ (ℓ|Vt′ ). Using this we see that f t

e is
the frequency exhibited by L:

for each e ∈ E−: f t
e =

∑
p′∈Pat(Bt′ )

e on p′

∑
ℓ∈L

πB
t′ (ℓ|V

t′ )=p′

f(ℓ)
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=
∑
ℓ∈L

e on πB
t′ (ℓ|V

t′ )

f(ℓ)

=
∑
ℓ∈L

e on ℓ

f(ℓ) = F (L,f)
e .

Since L is a feasible line concept, it follows that the constraints on the f t
e-variables are

satisfied. There is one more set of constraints to verify, for each p ∈ Pat(Bt):∑
p′∈Pat(Bt′ )
πBt (p′)=p

ct′

p′ =
∑

p′∈Pat(Bt′ )
πBt (p′)=p

∑
ℓ∈L

πB
t′ (ℓ|V

t′ )=p′

f(ℓ)

=
∑
ℓ∈L

πBt (πB
t′ (ℓ|V

t′ ))=p

f(ℓ)

=
∑
ℓ∈L

πBt (ℓ|Vt )=p

f(ℓ) = ct
p,

using the facts Bt ⊆ Bt′ and Vt = Vt′ .

Now let t ∈ T be an introduce node which introduces w ∈ Bt \ Bt′ . Then ψ assigns
the instruction variables in the way which is required by the equality constraints. This
immediately fulfills the non-negativity constraint. Since T is a tree decomposition, no
neighbor of w can yet be forgotten, i.e. each neighbor is currently in the bag or coming later,
hence contained in the set Bt ∪ (V \ Vt). Thus for all ℓ ∈ L it holds: If w occurs on πBt

(ℓ|Vt
),

then it is not adjacent to □. Thus for all p ∈ Pat(Bt) containing w adjacent to □ it holds:

ct
p =

∑
ℓ∈L

πBt (ℓ|Vt )=p

f(ℓ) = 0,

as is required. Let p ∈ Pat(Bt′) and consider some ℓ ∈ L with πBt′ (ℓ|Vt′ ) = p. If w does
not occur on ℓ, then πBt

(ℓ|Vt
) = p. Otherwise ℓ|Vt

can be created from ℓ|Vt′ by applying an
extension or subdivision operation. Therefore we have:

ct′

p =
∑
ℓ∈L

πB
t′ (ℓ|V

t′ )=p

f(ℓ)

=
∑
ℓ∈L

πBt (ℓ|Vt )=p

f(ℓ) +
∑

p
(u,wu)−−−−→p′

∑
ℓ∈L

πBt (ℓ|Vt )=p′

f(ℓ) +
∑

p
(uv,uwv)−−−−−−→p′

∑
ℓ∈L

πBt (ℓ|Vt )=p′

f(ℓ)

= ct
p +

∑
p

(u,wu)−−−−→p′

ct
p′ +

∑
p

(uv,uwv)−−−−−−→p′

ct
p′ ,

which was the last set of constraints to check for this type of node.

Finally let t ∈ T be a join node with children t1 and t2. It holds: Bt = Bt1 = Bt2 . For
each p1 ∈ Pat(Bt1), p2 ∈ Pat(Bt2) with (p1, p2) Bt−−→ p the function ψ assigns the following
non-negative value:

jt
p1,p2

:=
∑
ℓ∈L

πBt (ℓ|Vt1
)=p1

πBt (ℓ|Vt2
)=p2

f(ℓ).
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We first check the operation applicability constraints. Let p1 ∈ Pat(Bt). We have∑
p2,p′∈Pat(Bt)

(p1,p2)
Bt−−→p′

jt
p1,p2

=
∑

p2,p′∈Pat(Bt)

(p1,p2)
Bt−−→p′

∑
ℓ∈L

πBt (ℓ|Vt1
)=p1

πBt (ℓ|Vt2
)=p2

f(ℓ)

=
∑
ℓ∈L

πBt (ℓ|Vt1
)=p1

∑
p′∈Pat(Bt)

(p1,πBt (ℓ|Vt2
))

Bt−−→p′

f(ℓ)

≤
∑
ℓ∈L

πBt (ℓ|Vt1
)=p1

f(ℓ) = ct1
p1
,

where we use the fact that when p1 and p2 are given, there exists at most one p′ with
(p1, p2) Bt−−→ p′. Symmetrically we can verify for each p2 ∈ Pat(Bt):∑

p1,p′∈Pat(Bt)

(p1,p2)
Bt−−→p′

jt
p1,p ≤ ct2

p2
.

Define L◦ := {ℓ ∈ L : (πBt(ℓ|Vt1
), πBt(ℓ|Vt2

)) Bt−−→ πBt(ℓ|Vt)}, i.e. the subset of lines which
could possibly result from a join operation at t. We claim that the following holds for all
ℓ ∈ L \ L◦ and p ∈ Pat(Bt):

πBt
(ℓ|Vt

) = p ⇐⇒ πBt
(ℓ|Vt1

) = p ⊕ πBt
(ℓ|Vt2

) = p,

where ⊕ denotes exclusive or. Let p ∈ Pat(Bt). It holds:

ct
p − ct1

p − ct2
p

=
∑
ℓ∈L

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑
ℓ∈L

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑
ℓ∈L

πBt
(ℓ|Vt2

)=p

f(ℓ)

=
∑
ℓ∈L◦

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt2

)=p

f(ℓ)

+
∑

ℓ∈L\L◦

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑

ℓ∈L\L◦

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑

ℓ∈L\L◦

πBt
(ℓ|Vt2

)=p

f(ℓ)

=
∑
ℓ∈L◦

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt2

)=p

f(ℓ).

We also obtain:∑
(p1,p2)

Bt−−→p

jt
p1,p2 −

∑
(p,p2)

Bt−−→p′

jt
p,p2 −

∑
(p1,p)

Bt−−→p′

jt
p1,p

=
∑

(p1,p2)
Bt−−→p

∑
ℓ∈L

πBt
(ℓ|Vt

)=p

πBt
(ℓ|Vt1

)=p1

πBt
(ℓ|Vt2

)=p2

f(ℓ) −
∑

(p,p2)
Bt−−→p′

∑
ℓ∈L

πBt
(ℓ|Vt

)=p′

πBt
(ℓ|Vt1

)=p

πBt
(ℓ|Vt2

)=p2

f(ℓ) −
∑

(p1,p)
Bt−−→p′

∑
ℓ∈L

πBt
(ℓ|Vt

)=p′

πBt
(ℓ|Vt1

)=p1

πBt
(ℓ|Vt2

)=p

f(ℓ)
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=
∑
ℓ∈L◦

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt2

)=p

f(ℓ).

Hence

ct
p − ct1

p − ct2
p =

∑
(p1,p2)

Bt−−→p

jt
p1,p2 −

∑
(p,p2)

Bt−−→p′

jt
p,p2 −

∑
(p1,p)

Bt−−→p′

jt
p1,p,

meaning that the constraints for this node are satisfied.

Cost equivalence of ψ

Now we want to show that the cost of this assignment ψ is equal to the cost of (L, f). It
holds:

cost((L, f)) = cfix
∑
ℓ∈L

f(ℓ) +
∑
ℓ∈L

∑
e∈E(ℓ)

cef(ℓ).

Each e ∈ E occurs exactly once in the set of forgotten edges E− for some forget node t. As
argued before, we have

f t
e =

∑
ℓ∈L

e on ℓ

f(ℓ),

and since cost(f t
e) = ce, these variables account for the second term of cost((L, f)).

For each t ∈ T we define θt to be the total cost caused by all i- and j-variables which
belong to t or descendants of t. We claim that, under the defined assignment of ψ, it holds:

θt = cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ),

which we will prove by induction:
For leaf nodes t we clearly have

θt = 0 = cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ).

Let t be a forget node with child t′. It holds that Vt = Vt′ and θt = θt′ since here no
costs for i- or j-variables are added. The equality follows.

Let t be an introduce node that introduces w, with child t′. It holds:∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ) =
∑
ℓ∈L

w on ℓ
|ℓ|Vt |=2

f(ℓ) +
∑
ℓ∈L

w on ℓ
|ℓ|Vt |>2

f(ℓ) +
∑
ℓ∈L

w not on ℓ
|ℓ|Vt |≥2

f(ℓ)

=
∑

ℓ∈L, v∈Bt′
πBt (ℓ|Vt )=wv

f(ℓ) +
∑
ℓ∈L

w on ℓ
|ℓ|V

t′ |>1

f(ℓ) +
∑
ℓ∈L

w not on ℓ
|ℓ|V

t′ |≥2

f(ℓ)

=
∑

ℓ∈L, v∈Bt′
πBt (ℓ|Vt )=wv

f(ℓ) +
∑
ℓ∈L

|ℓ|V
t′ |≥2

f(ℓ).
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Therefore:

θt = θt′
+ cfix

∑
v∈Bt′

ct
wv = θt′

+ cfix
∑

ℓ∈L, v∈Bt′
πBt (ℓ|Vt )=wv

f(ℓ)

= θt′
+ cfix

∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ) − cfix
∑
ℓ∈L

|ℓ|V
t′ |≥2

f(ℓ) = cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ).

Let t be a join node with children t1 and t2. Let ℓ ∈ L◦. Then |ℓ|Vt
| ≥ 2,

∣∣ℓ|Vt1

∣∣ ≥ 2 and∣∣ℓ|Vt2

∣∣ ≥ 2. Consider on the other hand ℓ ∈ L \ L◦. If |ℓ|Vt
| ≥ 2 holds, then either

∣∣ℓ|Vt1

∣∣ ≥ 2
or

∣∣ℓ|Vt2

∣∣ ≥ 2, but not both. It follows:

θt = θt1 + θt2 − cfix
∑

(p1,p2)
Bt−−→p

jt
p1,p2

= cfix
∑
ℓ∈L∣∣ℓ|Vt1

∣∣≥2

f(ℓ) + cfix
∑
ℓ∈L∣∣ℓ|Vt2

∣∣≥2

f(ℓ) − cfix
∑

(p1,p2)
Bt−−→p

∑
ℓ∈L

πBt
(ℓ|Vt

)=p

πBt
(ℓ|Vt1

)=p1

πBt
(ℓ|Vt2

)=p2

f(ℓ)

= cfix
∑
ℓ∈L∣∣ℓ|Vt1

∣∣≥2

f(ℓ) + cfix
∑
ℓ∈L∣∣ℓ|Vt2

∣∣≥2

f(ℓ) − cfix
∑
ℓ∈L◦

f(ℓ)

= cfix
∑
ℓ∈L◦∣∣ℓ|Vt1

∣∣≥2

f(ℓ) + cfix
∑
ℓ∈L◦∣∣ℓ|Vt2

∣∣≥2

f(ℓ) + cfix
∑

ℓ∈L\L◦∣∣ℓ|Vt1

∣∣≥2

f(ℓ) + cfix
∑

ℓ∈L\L◦∣∣ℓ|Vt2

∣∣≥2

f(ℓ) − cfix
∑
ℓ∈L◦

f(ℓ)

= 2cfix
∑
ℓ∈L◦

f(ℓ) + cfix
∑

ℓ∈L\L◦

|ℓ|Vt |≥2

f(ℓ) − cfix
∑
ℓ∈L◦

f(ℓ)

= cfix
∑
ℓ∈L◦

f(ℓ) + cfix
∑

ℓ∈L\L◦

|ℓ|Vt |≥2

f(ℓ)

= cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ).

This concludes the proof that for all t ∈ T :

θt = cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ).

For the root r of T we have Vr = V , hence:

θr = cfix
∑
ℓ∈L

|ℓ|≥2

f(ℓ) = cfix
∑
ℓ∈L

f(ℓ),

so the first term of cost((L, f)) is correctly accounted for as well. ◀
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