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Abstract
Periodic timetabling for highly utilized railway networks is a demanding challenge. We formulate
an infrastructure-aware extension of the Periodic Event Scheduling Problem (PESP) by requiring
that not only events, but also activities using the same infrastructure must be separated by a
minimum headway time. This extended problem can be modeled as a mixed-integer program by
adding constraints on the sum of periodic tensions along certain cycles, so that it shares some
structural properties with standard PESP. We further refine this problem by fixing cyclic orders
at each infrastructure element. Although the computational complexity remains unchanged, the
mixed-integer programming model then becomes much smaller. Furthermore, we also discuss how
to find a minimal subset of infrastructure elements whose cyclic order already prescribes the order
for the remaining parts of the network, and how cyclic order information can be modeled in a
mixed-integer programming context. In practice, we evaluate the impact of cyclic orders on a
real-world instance on the S-Bahn Berlin network, which turns out to be computationally fruitful.
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1 Introduction

Any public transportation network revolves around its timetable. A timetable is not only
central for passengers to arrange their journeys, but also in the typical planning process of
public transport (see, e.g., [9]), the timetable serves as a base for cost-sensitive planning
steps such as vehicle and crew scheduling. It is therefore indispensable for the success of a
public transportation system to operate a carefully designed timetable.

Timetabling for railway networks is a particularly demanding task, since an operationally
feasible timetable must guarantee a high level of safety: Two trains must always be separated
by a sufficient spatial and temporal distance. In the classical railway safety logic, the railway
infrastructure is divided into block sections, and at any point in time, each block section can
be occupied by at most one train. In recent years, the demand for trains has been increasing,
and it is likely to grow further, given the major role that railway transport is supposed to
attain in the future. However, infrastructure capacities do not grow as fast. For example,
from 1995 to 2022, the number of freight trains in Germany has almost doubled, the number
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of passenger trains has increased by roughly a third, whereas the size of the network shrank
by 12% [16]. This boosts the importance of modeling safety constraints with high precision
in order to not waste optimization potential.

There have been several successful approaches in mathematical optimization of railway
timetables [9], but these models are typically aperiodic. A large quantity of railway networks,
especially suburban networks, are however operated with a periodic timetable, where trips
repeat with a certain period time T . Mathematically, periodic timetable optimization can
be expressed in terms of the Periodic Event Scheduling Problem (PESP) [17]. There is a
decent amount of literature on periodic timetabling using PESP (e.g., [14, 12, 15, 6, 7]),
but the safety considerations typically remain on a very coarse level. For example, headway
activities can separate two events, e.g., two departures of two trains on the same track, by at
least a certain minimum headway time [7]. This approach is however only workable when
dwelling and turnaround times of trains are extremely small, or neglected entirely. In fact,
classical headway activities alone cannot resolve what is called the track occupation problem
in the recent paper [10]. For example, when a train occupies a track from minute 0 to 10 for
turnaround, a second train might arrive at the same track at minute 5 and leave at minute
15. All events are separated by at least 5 minutes of headway time, so that this timetable
would be feasible in the standard PESP model, although it is in fact operationally infeasible.
To our knowledge, there is only little literature where periodic timetabling is combined with
a proper infrastructure-derived modeling of safety constraints (e.g., [3]).

We try to close this gap by introducing Infrastructure-Aware PESP: In addition to a
PESP instance on an event-activity network G, we are given a set of infrastructure elements
that we can think of as block sections, and each activity in G is associated to at most one
such infrastructure element. We demand that any pair of distinct activities associated to the
same infrastructure element e must be separated by a minimum headway time he ≥ 0. We
then formulate a mixed-integer programming model for Infrastructure-Aware PESP using
constraints described in [10] that resolve the track occupation problem.

Not unexpectedly, solving Infrastructure-Aware PESP is challenging: PESP alone is
an NP-hard optimization problem [17], and even medium-sized instances have withstood
attempts to solve them to optimality. For example, none of the instances of the benchmark
library PESPlib [4] have been solved to optimality, even though a variety of algorithms is
available [14, 13, 5, 1, 2]. It is in the nature of safety constraints that they affect pairs of
events or activities, so that they contribute a major part of the problem size. However,
in highly utilized networks, we have the following intuition: Fixing the timetable on parts
that are operating close to capacity limits should have far-reaching consequences on the
less crowded parts of the network. We will however not fix a specific timetable, but rather
a cyclic order of activities associated to a common infrastructure element. For example,
the S-Bahn Berlin network has several block sections that are used by as much as 7 trains
within the period time of 20 minutes, while a minimum headway time of 2.5 minutes between
two succeeding trains is desired. In particular, fixing the order of the trains on that block
section leaves only little degrees of freedom for a timetable. Since we are considering periodic
timetables, we do not consider total orders, but cyclic orders, i.e., we consider the orders
(a0, a1, a2), (a1, a2, a0), (a2, a0, a1) of three activities a0, a1, a2 as equivalent, but different
to (a0, a2, a1). We then define Infrastructure-Aware Fixed-Cycle-Order PESP, where we
prescribe a specific local cyclic order of the activities on each infrastructure element. On
a realistic instance, it is probable that cyclic orders of close-by infrastructure elements are
related or even must necessarily be the same, so that we also investigate algorithmic methods
to capture the mutual compatibility of those local cyclic orders.
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As a practical use case for our theoretical machinery, we evaluate Infrastructure-Aware
PESP and the impact of orders on a real-world instance comprising the full S-Bahn Berlin
network. It turns out that fixing cyclic orders has significant positive impact on performance
in practice, although our additions maintain the computational complexity of PESP. We
furthermore evaluate various methods to enhance Infrastructure-Aware PESP by information
on local cyclic orders and their compatibility with each other.

In Section 2 we recall the basics of PESP. We introduce Infrastructure-Aware PESP and
investigate a few theoretical properties in Section 3.1. Cyclic orders enter the picture in
Section 3.2, and we describe how to work with them algorithmically in Section 3.3. Moving
forward, we dedicate Section 4.1 to detailing the practical characteristics of the S-Bahn Berlin
scenario that we use for testing. After analyzing cyclic orders on this instance in Section 4.2, we
finally present in Section 4.3 the results and interpretations of our computational experiments.
Section 5 ends the paper with our ideas for further research.

2 The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) [17] is the usual mathematical model for
optimizing periodic timetables in public transport. It has been discussed in numerous works,
and we here very briefly recapitulate its main contents and formulations. An instance of the
problem is given as a tuple (G, T, ℓ, u, w), comprising a directed graph G with |V (G)| = n

and |A(G)| = m, whose nodes are events and arcs are activities, a period time T ∈ N, vectors
ℓ ∈ RA(G) and u ∈ RA(G) of lower and upper bounds on the arcs, respectively, and an
arc-weight vector w ∈ RA(G)

≥0 .

▶ Definition 1 ([17]). Given an instance (G, T, ℓ, u, w) as above, the Periodic Event Schedul-
ing Problem (PESP) is to find a periodic timetable π ∈ RV (G) and a periodic tension
x ∈ RA(G) such that
a) πj − πi ≡ xa mod T for all a = (i, j) ∈ A(G),
b) ℓ ≤ x ≤ u,
c) w⊤x is minimum,
or to decide that no such π and x exist.

If π is a periodic timetable, then a corresponding periodic tension is given by setting
xa := [πj − πi − ℓa]T + ℓa for all a = (i, j) ∈ A(G), where [·]T denotes the modulo T operator
with values in [0, T ). Conversely, a periodic timetable can be recovered from a periodic
tension by a graph traversal (see, e.g., [6, Theorem 9.8]).

We assume that ℓ and u are integral, so that by [14] the feasibility of a PESP instance
implies the existence of an integral optimal solution. Moreover, we require that G contains
no loops and that 0 ≤ ℓ ≤ T − 1 and 0 ≤ u − ℓ ≤ T − 1; this can always be achieved by
preprocessing [6].

In the context of railway timetabling, events typically model arrivals or departures of
trains at stations. Activities represent, e.g., driving between two adjacent stations, dwelling
or turning at a station, or passenger transfers. Moreover, headway activities can be used to
guarantee minimum distances between two events; we will discuss the modeling of safety
constraints in more detail in Section 3.1. The weights w often estimate the number of
passengers using a specific activity, so that w⊤x can be interpreted as the total travel time
of all passengers. Alternatively, the weights can be used to minimize the number of vehicles.
We refer to [7] for further modeling aspects of PESP.

ATMOS 2023
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Several mixed-integer programming formulations for PESP are known [6]. We focus on
the cycle-based formulation, which relies on the cycles of an integral cycle basis B of G [8]:

Minimize
∑

a∈A(G)

waxa

s.t.
∑

a∈A(G)

γaxa = Tzγ γ ∈ B

ℓa ≤ xa ≤ ua a ∈ A(G)
zγ ∈ Z γ ∈ B

(1)

3 The Infrastructure-Aware Periodic Event Scheduling Problem

3.1 Infrastructure Awareness

Having railway timetabling in mind, we will be working with a special version of PESP
that is “infrastructure-aware”. Along with a PESP instance (G, T, ℓ, u, w) we also have an
infrastructure map η : A → E, where A ⊆ A(G), and E is a set of infrastructure elements.
For each e ∈ E, we define Ae := η−1(e), i.e., the set of arcs that share the same infrastructure
element e, and thus A =

⋃
e∈E Ae.

In railway terms, we think of the infrastructure elements as block sections, so that no
two trains can occupy the same block section at the same time. The set Ae consists of those
driving, dwelling or turnaround activities that share the common infrastructure element e.
Of course, G might contain, e.g., passenger-related activities such as transfers, that do not
need to be associated to an infrastructure element, and this is why A is only required to be a
subset of A(G). An exemplary railway infrastructure and event-activity network, illustrating
the sets E and Ae, is depicted in Figure 1.

Station 1 Station 2
1A

1B

2A

2B3

(a) A sample railway infrastructure. Station 1 and 2 have one platform with two tracks each, the section
between Station 1 and 2 is single-track. As set E of infrastructure elements, we consider five block sections
labeled with corresponding tracks: E = {1A, 1B, 2A, 2B, 3}.

▷ ▷

◁◁

▷ ▷

◁◁

▷ ▷

◁◁

▷ ▷

◁◁

▷ ▷

◁◁

▷

◁

1B

1A

3 2B

2A

(b) A mesoscopic event-activity network G for three lines operating on the infrastructure depicted in
Figure 1a. Yellow vertices are departure events, white vertices are arrival events, and the arrows indicate
the direction. Two lines pass through Station 1 and 2 in both directions, while a third line is turning on
track 2A. We associate distinct colors to the infrastructure elements e ∈ E, and the activities in the set
Ae are all colored with the color of e. For a periodic timetable to be operationally feasible, it is necessary
that activities of the same color do not overlap in time.

Figure 1 An interpretation of Infrastructure-Aware PESP in the context of railway timetabling.
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The goal is to find a solution to a given PESP instance such that two distinct activities
a1 = (i1, j1) and a2 = (i2, j2) mapping to same infrastructure element η(a1) = η(a2) = e are
never scheduled to temporally overlap, but instead are separated by a minimum headway
time he ≥ 0 in the following sense (see also Figure 2):

he

xa1

he

xa2

π(j1)

π(i1)

π(j2)

π(i2)

2

1
0

11

10

9

8

7
6

5

4

3

Figure 2 A visualization of two sched-
uled activities a1 = (i1, j1), a2 = (i2, j2) ∈
Ae for some e ∈ E on a clock, T = 12.
Definition 2 requires that the distance
[π(i2)−π(i1)]T must be at least xa1 (filled
blue sector) + he (dotted blue sector).

▷

i1
▷

j1

▷

i2

▷

j2

[ℓa1 , ua1 ]

[ℓa2 , ua2 ]

[0, T − 1] [he , T − he ]
[0, T − 1]

[he, T − he]

Figure 3 The Q3 formulation for the pairs (a1, a2)
and (a2, a1), where a1 = (i1, j1), a2 = (i2, j2) ∈ Ae,
a1 ̸= a2, introduces two directed 3-cycles q(a1, a2)
(green) and q(a2, a1) (purple). The Q3 constraints state
that the periodic tension along each of these cycles sums
up to T . As shown in [10], the Q3 constraints are equi-
valent to the activity separation constraints (2).

▶ Definition 2. Let (G, T, ℓ, u, w) be a PESP instance, let η : A → E be an infrastructure
map, and let h ∈ RE

≥0. The Infrastructure-Aware PESP is to find a periodic timetable π with
a corresponding tension x that optimally solve PESP on (G, T, ℓ, u, w), subject to the activity
separation constraints

[πi2 − πi1 ]T ≥ xa1 + he (2)

for all e ∈ E and all a1 = (i1, j1), a2 = (i2, j2) ∈ Ae := η−1(e) with a1 ̸= a2, or to decide
that no such solution exists.

▶ Remark 3. To avoid the degeneracy that arises when xa1 = he = 0 in (2), we will from
now on work with a positivity assumption: We require that for each e ∈ E that he > 0 or
that ℓa > 0 holds for all a ∈ Ae.

In words, the constraints (2) state that the activity a2 cannot start before a1 has finished
and an additional time of he has passed. The constraints hence do not only separate events
as standard headway activities do, but they also separate activities, which is necessary, e.g.,
as soon as trains have comparatively long dwelling times on a track [10]. For reasons that
will become apparent later, we do not model the activity separation constraints (2) directly,
but we choose to use the equivalent “Q3” formulation introduced in [10]. To do so (see also
Figure 3), for any pair of distinct arcs a1 = (i1, j1) and a2 = (i2, j2) in the same set Ae we add
a headway arc aI = (j1, i2) with bounds [he, T − he], as well as a headway arc aII = (i2, i1)
with bounds [0, T − 1], thereby creating a directed 3-cycle q(a1, a2) on the arcs a1, aI, aII. All
such auxiliary arcs have weight 0. Let us denote as Gh the digraph of the original instance
augmented with all necessary headway arcs, and let Bh be an integral cycle basis of Gh.

ATMOS 2023
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Then the following is a mixed-integer programming model for Infrastructure-Aware PESP:

Minimize
∑

a∈A(Gh)

waxa

s.t.
∑

a∈A(Gh)

γaxa = Tzγ γ ∈ Bh

ℓa ≤ xa ≤ ua a ∈ A(Gh)
zγ ∈ Z γ ∈ Bh

(Q3 constraints)
∑

a∈q(a1,a2)

xa = T e ∈ E, a1, a2 ∈ Ae, a1 ̸= a2

(3)

Note that we express the Q3 constraints in terms of periodic tensions rather than of
periodic offset variables as was done in [10].

▶ Remark 4. The number of Q3 constraints in (3) is
∑

e∈E |Ae|(|Ae| − 1). In particular,
standard PESP arises when |Ae| ≤ 1 for all e ∈ E. This also implies that Infrastructure-
Aware PESP is NP-complete, because it belongs to NP, and for any PESP instance, setting
E := A(G) and η(a) := a for all a ∈ A(G) yields an equivalent Infrastructure-Aware PESP
instance with |Ae| = 1 for all e ∈ E.

The following polyhedral property is inherited from PESP:

▶ Lemma 5. Consider a feasible instance for Infrastructure-Aware PESP. Then there is an
optimal solution (x, z) to (3) and a spanning forest F of Gh such that xa = ℓa or xa = ua

for all a ∈ A(F ).

Proof. Let (x∗, z∗) be an optimal solution to (3). Then x∗ is also optimal for the linear
program that arises when fixing z to z∗. We can therefore assume that x∗ is a vertex of the
polytope

P := {x ∈ RA(Gh) | Γx = Tz∗, Qx = T, ℓ ≤ x ≤ u}, (4)

where Γ is the matrix with the vectors in Bh as rows, and Q is the matrix that has the
incidence vectors of all Q3 constraint cycles q(a1, a2) as rows. Since Bh is a cycle basis, Γ
spans the cycle space of Gh, so that the row span of Q is contained in the row span of Γ.
We therefore conclude that for the vertex x∗, the set of arcs a ∈ A(G) for which one of the
inequalities ℓa ≤ x∗

a or x∗
a ≥ ua is tight, must induce a maximal cycle-free subgraph of Gh,

i.e., a spanning forest. ◀

We quickly note that the Q3 constraints and the positivity assumption (Remark 3) have
implications on upper bounds.

▶ Lemma 6. Let (x, z) be a feasible solution to (3), and let π be a corresponding periodic
timetable. For all e ∈ E with |Ae| ≥ 2, we have 0 ≤ xa < T for all a = (i, j) ∈ Ae where
xa = [πj − πi]T .

Proof. Let e ∈ E and |Ae| ≥ 2, and let a1 = (i1, j1) ∈ Ae.
We first suppose he > 0. Then a1 is part of a Q3 constraint for a cycle q(a1, a2) using a

headway arc aI in (3), and hence 0 ≤ ℓa ≤ xa ≤ T − xaI ≤ T − he < T . Since [πj1 − πi1 ]T
and xa1 congruent modulo T and are both contained in [0, T ), they must be equal.

Now suppose that he = 0 and ℓa1 > 0. Using (2), we find xa1 ≤ [πi2 − πi1 ]T < T , so that
again xa1 = [πj1 − πi1 ]T . ◀

With that, we can derive the following degree bounds.
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▶ Lemma 7. Let (G, T, ℓ, u, w, η, h) be a feasible instance for Infrastructure-Aware PESP,
let E′ ⊆ E be any subset of infrastructure elements, and define A′ :=

⋃
e∈E′ Ae.

a) If he > 0 for every e ∈ E′, then

∀i ∈ V (G) : degA′(i) ≤ |E′|, (5)

where degA′(i) is the total degree of v in the subgraph of G with arc set A′.
b) Instead, if he = 0 for every e ∈ E′ and ℓa > 0 for every a ∈ A′, then

∀i ∈ V (G) : max
{

δ+
A′(i), δ−

A′(i)
}

≤ |E′|, (6)

where δ+
A′(i) and δ−

A′(i) are, respectively, out-degree and in-degree of i in the subgraph of
G with arc set A′.

Proof.
a) Suppose he > 0 for some e ∈ E′, and that there is a node i such that two arcs that are

both in Ae are incident with i. If i is the tail of both arcs, then they are of the form
a1 = (i, j) and a2 = (i, k). Using he > 0, xa1 ≥ ℓa1 ≥ 0 and (2), we have

0 < xa1 + he ≤ [πi − πi]T = 0, (7)

which cannot be. If i instead is the head of both arcs, then they are of the form a1 = (j, i)
and a2 = (k, i), and by (2),

[πk − πj ]T ≥ xa1 + he and [πj − πk]T ≥ xa2 + he. (8)

Without loss of generality, we can assume xa1 ≥ xa2 , and hence have k scheduled between
i and j, but then, using Lemma 6,

[πk − πj ]T ≥ xji + he = [πi − πj ]T + he = [πi − πk]T + [πk − πj ]T + he > [πk − πj ]T , (9)

which cannot be either. Finally, they could be of the form a1 = (j, i) and a2 = (i, k), and
again by (2) and noting that xa1 = [πi − πj ]T due to Lemma 6,

xa1 = [πi − πj ]T ≥ xa1 + he > xa1 (10)

which is also impossible. We conclude that if he > 0, then i can be incident with at most
one arc of Ae. Consequently, if he > 0 for every e ∈ E′, then i is incident with at most
|E′| arcs that are contained in A′.

b) Suppose instead that he = 0 for some e ∈ E′, as well as ℓa > 0 for every a ∈ A′. We
observe that the contradiction (7) is still valid due to xa1 ≥ ℓa1 > 0. Moreover, (9) holds
because [πi − πk]T = xa2 ≥ ℓa2 > 0 by Lemma 6. We therefore conclude that at most one
arc of Ae can enter i, and at most one arc of Ae can leave i. This implies b). ◀

These bounds have strong consequences on the structure and connectivity of G, if the
instance is to be feasible at all. We consider, for example, the case when A = A(G), and
|E| = 1.

▶ Theorem 8. Consider an instance of Infrastructure-Aware PESP with infrastructure map
η : A = A(G) → {e} such that G is weakly connected, |A(G)| ≥ 1. If the instance is feasible,
then exactly one of the following holds:
a) he > 0 and G consists of a single arc.
b) he = 0 and G is a directed path.
c) he = 0 and G is a simple directed cycle.

ATMOS 2023



7:8 Periodic Timetabling with Cyclic Order Constraints

Proof. This is immediate from Lemma 7. ◀

▶ Corollary 9. Infrastructure-Aware PESP is solvable in polynomial-time on instances with
|E| = 1 and A = |A(G)|.

Proof. If there is only a single infrastructure element e, and Ae = A(G), it is necessary for
any feasible solution (x, z) of (3) to satisfy

∑
a∈A(G) xa ≤ T in order to separate all arcs from

each other. By Theorem 8, each weakly connected component of G is a path or a cycle. For
each cycle γ, we then must have

∑
a∈γ xa = T , because periodic tensions along a cycle sum

up to an integer multiple of the period time, this multiple is at most T due to arc separation,
but it is also larger than 0 because of the positivity assumption. We deduce that G is either
a single cycle or a disjoint union of paths. In the latter case, solving Infrastructure-Aware
PESP is trivial: Either x∗ = ℓ is an optimal solution, or the instance is infeasible. In the
single cycle case, Infrastructure-Aware PESP is solved by the simple linear program

min{w⊤x | γ⊤x = T, ℓ ≤ x ≤ u}, (11)

observing that the condition γ⊤x = T is both necessary and sufficient to guarantee non-
overlapping of the activities along the cycle. ◀

3.2 Cyclic Orders
We have seen in Corollary 9 that directed cycles play a special role within Infrastructure-
Aware PESP: In the trivial case that |E| = 1 and that G is a directed cycle, we could boil
down the Q3 constraints to a single constraint, namely that the periodic tensions along the
cycle sum up to T . This is due to the fact that the directed cycle fixes a cyclic ordering of its
activities. Our aim is now to mimic this for an arbitrary number of infrastructure elements.
To this end, we will fix for each e ∈ E a cyclic order of the activities in Ae.

▶ Definition 10 ([11]). Let S be a finite set. Two total orders (a0, . . . , an−1) and (b0, . . . , bn−1)
on S are cyclically equivalent if there is an integer k such that for all i ∈ {0, . . . , n − 1} holds
ai = b[i+k]n

. A cyclic order on S is an equivalence class ∆ of total orders on S with respect
to cyclic equivalence.

We will denote both a total order and the cyclic order given by its equivalence class by
(a0, . . . , an−1), and apply this concept directly to PESP:

▶ Definition 11. Let (G, T, ℓ, u, w) be a PESP instance with periodic timetable π. Suppose
that ∆ = (a0, . . . , an−1) is a cyclic order of a subset S = {a0, . . . , an−1} ⊆ A(G), where
ak = (ik, jk) for all k ∈ {0, . . . , n − 1}. We say that π respects the cyclic order ∆ on S if
(πi0 , πj0 , πi1 , πj1 , . . . , πin

, πjn
) defines a cyclic order in the equivalence class of ≤.

We return to Infrastructure-Aware PESP. Since in any feasible solution, for each infra-
structure element e ∈ E, the activities do not overlap, any such solution gives rise to a cyclic
order on Ae.

▶ Theorem 12. Let (G, T, ℓ, u, w, η, h) be an Infrastructure-Aware PESP instance, let x be
a feasible solution to (3) with corresponding periodic timetable π. Let e ∈ E be an arbitrary
infrastructure element, and write Ae = {a0, . . . , an−1} with ak = (ik, jk) for k ∈ {0, . . . , n−1}.
a) The timetable π respects some cyclic order on Ae.
b) The timetable π respects ∆e = (a0, . . . , an−1) on Ae if and only if

∑
a∈Ae

xa +
n−1∑
k=0

[πi[k+1]n
− πjk

]T = T. (12)
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c) The following constraint implies that π respects ∆e and all Q3 constraints associated to e

in (3):∑
a∈Q(∆e)

xa = T (13)

where Q(∆e) is the directed cycle in Gh consisting of the arcs in Ae and the headway arcs
aI

ak,a[k+1]n
between jk and i[k+1]n

with bounds [he, T − he] that have been added for the
Q3 formulation in the cycle q(ak, a[k+1]n

), k ∈ {0, . . . , n − 1}.

Proof. a) Any pair of activities is separated by h in the sense of Definition 2.
b) If π respects ∆e, then there is a cyclic shift of (πi0 , πj0 , πi1 , πj1 , . . . , πin , πjn) which is a

total order with respect to ≤. This is equivalent to

[πj0 − πi0 ]T + [πi1 − πj0 ]T + · · · + [πjn−1 − πin−1 ]T + [πi0 − πjn−1 ]T = T, (14)

because the left-hand side is congruent to 0 modulo T , and [·]T can in fact be omitted
except at exactly one summand. Due to the positivity assumption, [πjk

− πik
]T = xak

for
all k, so that (12) is equivalent to (14).

c) We first note xaI
ak,a[k+1]n

= [πj[k+1]n
− πik

]T . Hence, if (13) holds, then (12) holds, and
thus π respects ∆e. Consider for k ̸= l a cycle q(ak, al) defining a Q3 constraint at e ∈ E.
Since (πik

, πjk
, πil

) is a subsequence of (πi0 , πj0 , πi1 , πj1 , . . . , πin
, πjn

), which is a cyclic
shift of a total order with respect to ≤,∑

a∈q(ak,al)

xa = [πjk
− πik

]T + [πil
− πjk

]T + [πik
− πil

]T = T. (15)

◀

We now define a version of Infrastructure-Aware PESP, where cyclic orders at each
infrastructure element are fixed.

▶ Definition 13. Let (G, T, ℓ, u, w, η, h) be an instance of Infrastructure-Aware PESP, and
let ∆e be a set of cyclic order on Ae for each e ∈ E. The Infrastructure-Aware Fixed-Cycle-
Order PESP is to find a solution to Infrastructure-Aware PESP that additionally respects
∆e on Ae for all e ∈ E, or to decide that no such solution exists.

The Infrastructure-Aware Fixed-Cycle-Order PESP has to be treated with caution,
because fixing cyclic orders beforehand will in general have severe impacts on feasibility and
optimization potential. However, there are practical situations, where such information is
known or can be propagated (see also Section 3.3).

Theorem 12 allows to formulate Infrastructure-Aware Fixed-Cycle-Order PESP as a mixed-
integer linear program: We can prescribe a specific cyclic order at each infrastructure element
e ∈ E by adding the constraints (13) to (3). A very elegant consequence of Theorem 12
is that the

∑
e∈E |Ae|(|Ae| − 1) Q3 constraints can then be discarded. Since then also the

headway arcs of the form aII used in the Q3 constraints lose their significance, they can be
deleted as well, so that the model size drops considerably. Figure 4 visualizes this effect.

▶ Remark 14. Several results carry over to the setting of fixed cyclic orders: Infrastructure-
Aware Fixed-Cycle-Order PESP is NP-complete with the same reasoning as in Remark 4. If
there is only one infrastructure element to which all arcs are associated, then Infrastructure-
Aware Fixed-Cycle-Order PESP is polynomial-time-solvable. Furthermore, the spanning
forest property Lemma 5 carries over to Infrastructure-Aware Fixed-Cycle-Order PESP.
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▷i3

▷j3

▷ i2▷j2

▷ i1

▷ j1

▷i0 ▷ j0

(a) When no cyclic order on Ae is fixed, then
the Q3 constraints state that the periodic tension
along each directed 3-cycle q(ak, al) for k ̸= l must
sum up to T .

▷i3

▷j3

▷ i2▷j2

▷ i1

▷ j1

▷i0 ▷ j0

(b) When a cyclic order ∆e on Ae is fixed, it
suffices to require that the periodic tension along
a single cycle, namely the directed Hamiltonian
cycle that is induced by ∆e, adds up to T . Here,
∆e = (a0, a1, a2, a3).

Figure 4 Arcs in the Q3 formulation for Infrastructure-Aware PESP vs. (13) for Infrastructure-
Aware Fixed-Cycle-Order PESP for Ae = {a0, a1, a2, a3}, ak = (ik, jk), k ∈ {0, 1, 2, 3}. Choosing a
cyclic order ∆e on Ae corresponds to choosing a directed Hamiltonian cycle Figure 4b in the digraph
Figure 4a built by the union of the cycles q(ak, al) for ak, al ∈ Ae, k ̸= l.

3.3 Propagating Cyclic Orders and Chronological Constraints
The Infrastructure-Aware Fixed-Cycle-Order PESP requires formally to fix a cyclic order
at each infrastructure element. This might be a tedious task not only due to the number
of infrastructure elements, but also since the cyclic orders need to be compatible between
“related” infrastructure elements. Such an information is often present in real-world scenarios,
and we suggest two strategies to exploit this computationally.

3.3.1 Identifying Maximal Infrastructure Elements
Let T denote a set of trips and let τ : A → T be a map whose restriction to each Ae is
injective, i.e., no two arcs in the set Ae for a given infrastructure element e can be associated
with the same trip. We call τ(Ae) the set of trips on e. We introduce a binary relation ⪯
on E by defining e ⪯ e′ if and only if τ(Ae) ⊆ τ(Ae′) and all trips on e must necessarily
appear in the same cyclic order on e′. That is, we want that ∆e is a subsequence of ∆e′ ,
when identifying arcs with their trips.

For example, if two branches of a railway network join, and there is no possibility of
overtaking, then the order ∆e′ of the arcs in Ae′ , i.e., of the trips τ(Ae′), on the first
common infrastructure element e′ is already fixing the order ∆e of the trips τ(Ae) on the
last infrastructure element e on each branch before joining.

The relation ⪯ is a preorder on E. To prescribe a cycle ordering at each e ∈ E, it is
hence enough to fix a cycle ordering at each maximal element of ⪯.

Algorithmically, we can construct a directed infrastructure graph H such that (e, e′) ∈
A(H) if and only if e ⪯ e′. We then contract directed cycles in H, so that H becomes acyclic
and ⪯ becomes a partial order. In practical terms, elements belonging to a directed cycle
are associated with the same set of trips, and those must appear in the same cyclic order.
The maximal elements of the partial order can then be identified with the sinks of H, i.e.,
the vertices with out-degree 0.

A real-world example of the resulting directed acyclic graph is given in Figure 5.
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3.3.2 Chronological Constraints
It might be beneficial not to fix cyclic orders everywhere, but only at some infrastructure
elements. Moreover, not all cyclic orders are equally good, for example, when regular patterns
of trains are desired. We are therefore seeking to add the enforcing and compatibility of
cyclic orders to the mixed-integer programming formulation of Infrastructure-Aware PESP.

To this end, at each e ∈ E, we introduce a binary variable σe
∆{0, 1} for each cyclic order

∆ on Ae, and enforce ∆ or not via the big-M constraints∑
a∈Q(∆)

xa ≤ Tσe
∆ + T |Ae|(1 − σe

∆) e ∈ E, ∆ cyclic order on Ae (16)

∑
a∈Q(∆)

xa ≥ Tσe
∆ + 2T (1 − σe

∆) e ∈ E, ∆ cyclic order on Ae (17)

∑
∆ cyclic order on Ae

σe
∆ = 1 e ∈ E (18)

which are derived from (13). If σe
∆ = 1, then (16) and (17) enforce ∆ on Ae. Otherwise, if the

order ∆ is not respected, then
∑

a∈Q(∆) xa ̸= T , and due to the positivity assumption and the
fact that

∑
a∈Q(∆) xa is an integral multiple of T , we must have

∑
a∈Q(∆) xa ≥ 2T . Note that

(17) is redundant for feasible integer solutions, but it strengthens the linear programming
relaxation. Note that the cycle Q(∆) is composed of |Ae| pairs (a, aI) of arcs that are part of
a q-cycle, so that xa + xaI ≤ T by virtue of the Q3 constraints (3). In particular, we always
have

∑
a∈Q(∆) xa ≤ T |Ae|.

The compatibility of orders among elements e ⪯ e′ can be modeled by

σe
∆ ≤

∑
∆′ cyclic order on Ae′
restricting to ∆ on Ae

σe′

∆′ e ∈ E, ∆ cyclic order on Ae (19)

∑
∆ cyclic order on Ae

induced by ∆′ on Ae′

σe
∆ ≤ σe′

∆′ e ∈ E, ∆′ cyclic order on Ae (20)

Note that using the sum in (19) and (20) is justified by (18).

4 Computational Results

4.1 Instances
We evaluate the use of cyclic orders in a case study of two detailed real-world instances
of Infrastructure-Aware PESP. Both instances comprise the full S-Bahn Berlin network, a
suburban commuter rail network consisting of 16 lines, which is operated periodically with a
period time of 20 minutes. Since the timetable is planned with a resolution of 0.1 minutes on
a mesoscopic scale and we want to stick to integral bounds, we therefore consider T = 200.
The (lower) bounds for driving, dwelling and turnaround activities are derived from the
2022 annual timetable. We further assume that driving activities are fixed, i.e., lower and
upper bound coincide. The infrastructure information and the minimum headway times he

are set according to the planning parameters at DB Netz AG, which is responsible for the
S-Bahn Berlin timetable. The network contains several stretches where 6 or 7 trains ride per
direction and 20 minutes, so that planning a conflict-free timetable is demanding. On the
other hand, fixing a cyclic order on an infrastructure element with high usage is expected to
largely limit the degree of freedom for timetabling the remaining parts of the network.
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Our first instance i1 does not consider transfer activities, because our data does not
contain any information about passenger flows. The arc weights are simple: They are 2 for
all arcs that are relevant for passengers, and 1 otherwise, e.g., for turnarounds. The rationale
is that feasibility is a major issue, but there is still an incentive to minimize dwelling and
turnaround times, with a priority on dwelling. Moreover, this approach is also suitable to
minimize the required number of vehicles.

To make the case study a little more meaningful, we created a second instance i2 with
an artificial passenger flow. For each station, we counted the number of public transport
trips, including subway, buses and trams, departing at that station within a typical peak
hour, and use that number as a demand per station. We then simulate 100,000 passengers
that pop up on a station, distributed according to the demand, and use the shortest route
according to the annual timetable to their destination, which is sampled with the help of a
gravity model. The second instance hence contains transfer activities, and the weights are
chosen according to the number of passengers using the activity in question.

Some characteristics of both instances are summarized in Table 1.

Table 1 Characteristics of our two instances.

Instance type # nodes # total arcs # headway arcs # transfer arcs
i1 (without transfers) 2412 8439 6027 0
i2 (with transfers) 2412 9405 6027 966

4.2 Maximal Infrastructure Elements
A consequence of fixing the driving activities is that in most cases, it will be superfluous
to add cyclic orders for driving activities, as they are implied by the ones for dwelling
inequalities. However, there are exceptions, e.g., single-track sections.

It turns out that ⪯ as defined in Section 3.3.1 has 22 maximal elements out of 192
infrastructure elements, so that fixing a cyclic order at only 22 infrastructure elements
suffices to prescribe a cyclic order at each infrastructure element. The poset induced by ⪯ is
visualized in Figure 5.

4.3 Experiments
All our experiments were conducted on an Intel i7-9700K CPU with 32 GB RAM, using
Gurobi 10. Preliminary runs used the standard MIP formulation of PESP presented in
[17], which proved to be unreasonably slower than the cycle formulation even at solving
trivial instances, and so all tests presented here use the cycle formulation, as in (1). A quite
influential choice when using the cycle formulation is that of which cycle basis to use, and in
this paper we used two options. For some tests, we used a strictly fundamental cycle basis
arising from a bfs-tree, which we will denote as Bbfs. For other tests, we instead used a
strictly fundamental cycle basis arising from a minimum span spanning tree, which we will
denote as Bspan.

First and foremost, we tested i1, modeled as seen in (3). Using Bspan, a primal solution
is found after 1 minute and 12 seconds, with a 17% gap, and the optimal solution is found
after 20 minutes and 26 seconds, when also proven optimality is achieved. The optimal value
is 3058. Instead, using Bbfs, no primal solution was found within 3 hours, with almost no
dual bound to speak of either. Nonetheless Bbfs proved to be quite good when many orders
are fixed.
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Figure 5 The directed acyclic graph induced by ⪯ for both instances has 22 sinks (green), which
identify the maximal infrastructure elements as in Section 3.3.1. The vertex labels indicate the
number of infrastructure elements that are equivalent w.r.t. ⪯. The five columns show from left to
right the infrastructure elements used by 3 to 7 trains within 20 minutes, we omitted the ones with
2 trains or less.

Next, we tested if and how much solving speed would improve by fixing order information.
To do so, we took the annual timetable of the S-Bahn and derived feasible cyclic orders
to impose onto the activities Ae per each stationary infrastructure e ∈ E. Note that the
objective value of the annual timetable is 5128 in i1, and 673759 in i2.

We then conducted tests with different levels of fixing and using both bases Bbfs and
Bspan. For the transfer-less instance, results of these tests can be seen in Table 2. The same
tests were conducted on i2, whose results can be found in Table 3. With the added transfers
the instance is particularly harder to solve. In fact, without fixing any orders, a primal
solution is found only after 51 minutes and 22 seconds, and at the mark of the hour the gap
to dual bound is 64.2%, with objective value 483716.

Note that the improvements in objective value for i1 and i2 compared to the annual
timetable have to be taken with a grain of salt: The minimum turnaround times in our
model are quite low and can only be achieved with a second driver, which is practically
feasible, but only in exceptional cases. Moreover, our gravity model might not reflect the
actual passenger distribution.

Finally, now only using the cycle basis Bspan and i1, in Table 4 we show various test
results that include the σ variables introduced in Section 3.3. The sets displayed in the “Test
configuration” column indicate a list of the sizes of Ae’s for which we added corresponding
σ variables to the model. For each such σ variable we always include equations as seen in
(16) and (18). Test configurations marked by the letter b, also include equations as seen in
(17), bounding below. Test configurations marked by the letter l, also include equations as
seen in (19) and (20), linking orders for compatibility. Finally, test configurations marked
by the letter r are ones were we enforced regularity on the σ’s there included, meaning any
σ∆ is there set to 0 if ∆ ≥ 4 and ∆ consecutively orders two activities of the same line.
This applies only when a line is operated with higher frequency than once per 20 minutes,
because in this case, it is not desirable that two trips of the same line are directly succeeding.
It is important to note that, except for enforced regularity, all σ-constraints are merely
descriptive of timetable behaviour, as they are all redundant with respect to the base model
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of Infrastructure-aware PESP. For that reason, it is entirely possible to use a continuous
relaxation of the σ variables instead of proper binary variables, since it is entirely unnecessary
to find perfectly integral values for all σ’s. All tests showed that this is always very beneficial,
and so all tests use continuous σ’s.

4.4 Interpretation of Results
As expected, fixing order information greatly improves solving time, as seen in Table 2,
although the cycle basis choice remains quite influential. In general it can be observed that
the more orders are fixed, the more Bbfs is faster than Bspan, and vice versa. The former
basis, by nature of the spanning tree from which it arises, is characterized by particularly
short cycles (average of ∼4 arcs per cycle). The latter, instead, also by nature of the spanning
tree from which it arises, is characterized by particularly long cycles (average of ∼93 arcs
per cycle). Generally, we do not know enough about the performance of cycle bases in
solving PESP, but preliminary tests, also using other cycle bases of intermediate average
cycle length, seemed to confirm this inverse relationship, namely “short” bases being better
with lots of order-fixing, and “long” bases being better in less constrained settings. Using a
more meaningful objective value, that of i2, also the tests shown in Table 3 confirm the same
pattern shown in the previous table. In fact, faster times in Table 2 are almost invariably
matching to smaller optimality gaps in Table 3.

It is worth to note that the optimal value of each test varies, as fixing orders at different
infrastructure elements constrains the problem differently. In that sense, it is then interesting
to observe and compare how much closer to the global optimum (3058) some test configurations
end up, sometimes with relatively little time increase, such as test [i ̸= 7].

As per Table 4, the main takeaway is that, indeed, including descriptive σ variables and
constraints is of significant aid to solving time, as long as the size of the model does not
excessively increase. This size increase is always driven by the presence of unreasonably
many σ variables for all possible cyclic orders of large Ae’s. In greater detail, we can say that
constraints of the form (17), marked by b in the tests, seem to only hinder the solver, whereas
it is harder to pass judgement on linking constraints, marked by l. Although detrimental
when infrastructure with larger Ae’s is involved, linking constraints seem to be of use when
applied to infrastructure with small Ae’s. This might be because of an amplification of the
issues already created by the increasing size of the model. Another reason for that could
be akin to what makes continuous σ’s perform better than binary σ’s, i.e., letting such
descriptive constraints be less precise may allow better agility. Finally, we note that enforced
regularity, marked by r, is powerful when infrastructure with larger Ae’s is involved, which
is of no surprise, since many cyclic orders of larger sets are irregular, and therefore many σ

constraints would then be greatly simplified by forcing the indicator variable to 0.

5 Future Work

Given the high variance in performance with respect to the choice of cycle basis, it is tempting
to investigate further bases, e.g., cycle bases that combine “long” cycles that correspond
to activities used by lines, and “short” cycles such as the q-cycles in the Q3 formulation.
Moreover, since the number of possible cyclic orders explodes in larger instances, it is natural
to think about dynamic generation of σ-variables. Finally, given that fixing a cycle order
boosts running times, we imagine that a heuristic, that optimizes first for a given cycle order
and then modifies that order by local k-opt moves and optimizes again, could be beneficial
to solve realistic and also larger Infrastructure-Aware PESP instances.



E. Bortoletto, N. Lindner, and B. Masing 7:15

References

1 R. Borndörfer, N. Lindner, and S. Roth. A concurrent approach to the periodic event scheduling
problem. Journal of Rail Transport Planning & Management, 15:100175, 2020. Best Papers of
RailNorrköping 2019. doi:10.1016/j.jrtpm.2019.100175.

2 E. Bortoletto, N. Lindner, and B. Masing. Tropical Neighbourhood Search: A New Heuristic for
Periodic Timetabling. In M. D’Emidio and N. Lindner, editors, 22nd Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022), volume
106 of Open Access Series in Informatics (OASIcs), pages 3:1–3:19, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2022.3.

3 F. Fuchs, A. Trivella, and F. Corman. Enhancing the interaction of railway timetabling
and line planning with infrastructure awareness. Transportation Research Part C: Emerging
Technologies, 142:103805, September 2022. doi:10.1016/j.trc.2022.103805.

4 M. Goerigk. PESPlib - A benchmark library for periodic event scheduling, 2012. URL:
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/.

5 P. Großmann, S. Hölldobler, N. Manthey, K. Nachtigall, J. Opitz, and P. Steinke. Solving
Periodic Event Scheduling Problems with SAT. In H. Jiang, W. Ding, M. Ali, and X. Wu,
editors, Advanced Research in Applied Artificial Intelligence, Lecture Notes in Computer
Science, pages 166–175, Berlin, Heidelberg, 2012. Springer. doi:10.1007/978-3-642-31087-4_
18.

6 C. Liebchen. Periodic timetable optimization in public transport. PhD thesis, Technische
Universität Berlin, Berlin, 2006.

7 C. Liebchen and R. H. Möhring. The Modeling Power of the Periodic Event Scheduling Problem:
Railway Timetables — and Beyond. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. D.
Zaroliagis, editors, Algorithmic Methods for Railway Optimization, Lecture Notes in Computer
Science, pages 3–40, Berlin, Heidelberg, 2007. Springer. doi:10.1007/978-3-540-74247-0_1.

8 C. Liebchen and L. Peeters. Integral cycle bases for cyclic timetabling. Discrete Optimization,
6(1):98–109, February 2009. doi:10.1016/j.disopt.2008.09.003.

9 R. M. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and
methods. OR Spectrum, 33(4):843–883, October 2011. doi:10.1007/s00291-009-0189-0.

10 B. Masing, N. Lindner, and C. Liebchen. Periodic Timetabling with Integrated Track Choice
for Railway Construction Sites. Technical Report 22-26, Zuse Institute Berlin, 2022. URL:
https://nbn-resolving.org/urn:nbn:de:0297-zib-88626.

11 N. Megiddo. Partial and complete cyclic orders. Bulletin of the American Mathematical
Society, 82(2):274–276, 1976.

12 K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Habilitation
Thesis, Universität Hildesheim, 1998.

13 K. Nachtigall and J. Opitz. Solving Periodic Timetable Optimisation Problems by Mod-
ulo Simplex Calculations. In M. Fischetti and P. Widmayer, editors, 8th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08),
volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.ATMOS.2008.1588.

14 M. A. Odijk. Construction of periodic timetables, part 1: A cutting plane algorithm. Technical
Report 94-61, TU Delft, 1994.

15 L. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus Universiteit Rotter-
dam, January 2003.

16 Allianz pro Schiene e. V. Das Schienennetz in Deutschland, 2023. Retrieved on 08/07/2023.
URL: https://www.allianz-pro-schiene.de/themen/infrastruktur/schienennetz/.

17 P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM
J. Discret. Math., 2:550–581, 1989.

ATMOS 2023

https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/10.4230/OASIcs.ATMOS.2022.3
https://doi.org/10.1016/j.trc.2022.103805
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
https://doi.org/10.1007/978-3-642-31087-4_18
https://doi.org/10.1007/978-3-642-31087-4_18
https://doi.org/10.1007/978-3-540-74247-0_1
https://doi.org/10.1016/j.disopt.2008.09.003
https://doi.org/10.1007/s00291-009-0189-0
https://nbn-resolving.org/urn:nbn:de:0297-zib-88626
https://doi.org/10.4230/OASIcs.ATMOS.2008.1588
https://www.allianz-pro-schiene.de/themen/infrastruktur/schienennetz/


7:16 Periodic Timetabling with Cyclic Order Constraints

A Appendix – Tables

Table 2 Fixed order test on i1, with cycle basis Bbfs in the white rows, and cycle basis Bspan in
the gray rows. The “Test configuration” column indicates a list of the sizes of Ae’s for which the
order was fixed. For example, in test [i ̸= 5] = {3, 4, 6, 7} we fixed the cyclic orders for each and
every e ∈ E with |Ae| ̸= 5, meaning all those of size in {3, 4, 6, 7}, and similarly for other rows. The
time limit of each test was 15 minutes.

Test configuration Time to primal (s) Time to optimal (s) Optimal value
[i ≥ 3] = {3, 4, 5, 6, 7} 1 12 3967
[i ≥ 3] = {3, 4, 5, 6, 7} 54 55 ”
[i ≥ 4] = {4, 5, 6, 7} 1 13 ”
[i ≥ 4] = {4, 5, 6, 7} 65 75 ”
[i ≥ 5] = {5, 6, 7} 11 66 3948
[i ≥ 5] = {5, 6, 7} 87 100 ”
[i ≥ 6] = {6, 7} 34 194 ”
[i ≥ 6] = {6, 7} 144 179 ”
[i ≥ 7] = {7} 218 840 3661
[i ≥ 7] = {7} 163 178 ”
[i ̸= 3] = [i ≥ 4] 1 13 3967
[i ̸= 3] = [i ≥ 4] 65 75 ”
[i ̸= 4] = {3, 5, 6, 7} 11 30 3951
[i ̸= 4] = {3, 5, 6, 7} 87 99 ”
[i ̸= 5] = {3, 4, 6, 7} 11 20 3967
[i ̸= 5] = {3, 4, 6, 7} 64 72 ”
[i ̸= 6] = {3, 4, 5, 7} 40 80 3855
[i ̸= 6] = {3, 4, 5, 7} 151 161 ”
[i ̸= 7] = {3, 4, 5, 6} 27 60 3351
[i ̸= 7] = {3, 4, 5, 6} 29 68 ”
[i ≤ 3] = {3} − − −
[i ≤ 3] = {3} 92 555 3058
[i ≤ 4] = {3, 4} − − −
[i ≤ 4] = {3, 4} 103 387 3175
[i ≤ 5] = {3, 4, 5} − − −
[i ≤ 5] = {3, 4, 5} 126 319 3191
[i ≤ 6] = [i ̸= 7] 27 60 3351
[i ≤ 6] = [i ̸= 7] 27 60 ”
[i ≤ 7] = [i ≥ 3] 1 12 3967
[i ≤ 7] = [i ≥ 3] 1 12 ”
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Table 3 Fixed order test on i2, with cycle basis Bbfs in the gray rows, and cycle basis Bspan in
the white rows. The time limit for each test was 15 minutes.

Test configuration Time to primal (s) Gap at 15’ mark Primal bound
[i ≥ 3] = {3, 4, 5, 6, 7} 61 5.99% 482429
[i ≥ 3] = {3, 4, 5, 6, 7} 139 35.4% ”
[i ≥ 4] = {4, 5, 6, 7} 70 6.50% ”
[i ≥ 4] = {4, 5, 6, 7} 156 36.5% ”
[i ≥ 5] = {5, 6, 7} 274 8.41% ”
[i ≥ 5] = {5, 6, 7} 136 37.6% ”
[i ≥ 6] = {6, 7} 124 9.67% ”
[i ≥ 6] = {6, 7} 394 38.7% ”
[i ≥ 7] = {7} 731 18.5% 482885
[i ≥ 7] = {7} 250 44.1% 482429
[i ̸= 3] = [i ≥ 4] 70 6.50% 482429
[i ̸= 3] = [i ≥ 4] 156 36.5% ”
[i ̸= 4] = {3, 5, 6, 7} 76 7.69% ”
[i ̸= 4] = {3, 5, 6, 7} 164 37.8% ”
[i ̸= 5] = {3, 4, 6, 7} 74 5.34% ”
[i ̸= 5] = {3, 4, 6, 7} 173 30.4% 484741
[i ̸= 6] = {3, 4, 5, 7} 341 9.33% 482429
[i ̸= 6] = {3, 4, 5, 7} 164 36.1% ”
[i ̸= 7] = {3, 4, 5, 6} 79 10.9% ”
[i ̸= 7] = {3, 4, 5, 6} 121 36.5% ”
[i ≤ 3] = {3} − − −
[i ≤ 3] = {3} − − −
[i ≤ 4] = {3, 4} − − −
[i ≤ 4] = {3, 4} 669 51.8% 484007
[i ≤ 5] = {3, 4, 5} − − −
[i ≤ 5] = {3, 4, 5} 133 40.3% 482429
[i ≤ 6] = [i ̸= 7] 79 10.9% ”
[i ≤ 6] = [i ̸= 7] 121 36.5% ”
[i ≤ 7] = [i ≥ 3] 61 5.99% ”
[i ≤ 7] = [i ≥ 3] 139 35.4% ”
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7:18 Periodic Timetabling with Cyclic Order Constraints

Table 4 Tests with σ-constraints on i1, in various configurations, using cycle basis Bspan. The
“Number of rows” column indicates the number of rows in the model after presolving. Time values
to optimality that improve on the baseline model of the first row are shown in bold. The time limit
for each test was 1 hour.

Test configuration Time to primal (s) Time to optimal (s) Number of rows
{} 72 1226 5745
{3} 68 275 5863
{4} 68 200 5964
{5} 76 642 6374
{6} 134 1693 12476
{7} 356 2673 17995
{3} + b 114 1006 5981
{4} + b 110 482 6168
{5} + b 144 501 6998
{6} + b 406 0.13% after 1h 19196
{7} + b 550 1674 30235
{4} + r 132 261 5951
{5} + r 60 608 6350
{6} + r 43 835 12476
{7} + r 149 1353 16746
{3, 4} 114 579 6082
{3, 5} 73 571 6492
{3, 6} 213 1742 12594
{3, 7} 167 1209 18112
{4, 5} 180 496 6593
{4, 6} 167 681 12695
{4, 7} 333 1597 18214
{5, 6} 99 630 13105
{5, 7} 200 625 18624
{6, 7} 240 1923 24726
{3, 4} + l 190 462 6088
{3, 5} + l 75 550 6492
{3, 6} + l 140 1447 12598
{3, 7} + l 295 1221 18118
{4, 5} + l 113 932 6605
{4, 6} + l 147 670 12725
{4, 7} + l 392 2025 18232
{5, 6} + l 121 732 13153
{5, 7} + l 220 1171 18648
{6, 7} + l 860 3212 25206
{3, 4, 5, 6, 7} 684 0.93% after 1h 25692
{3, 4, 5, 6, 7} + l 352 1.29% after 1h 26320
{3, 4, 5, 6, 7} + r 120 1138 24406
{3, 4, 5, 6, 7} + l + r 165 1967 24716
{3, 4, 5, 6, 7} + b 1354 1.65% after 1h 45598
{3, 4, 5, 6, 7} + l + b 3039 2.44% after 1h 46226
{3, 4, 5, 6, 7} + r + b − − 44313
{3, 4, 5, 6, 7} + l + r + b 3596 6.53% after 1h 44623
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