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Abstract
This paper introduces the Passenger-Oriented Timetabling problem with flexible frequencies (POT-
flex) in the context of railway planning problems. POT-flex aims at creating feasible railway
timetables minimising total perceived passenger travel time. The contribution of the POT-flex
lies in its relaxation of the generally adopted assumption that line frequencies should be a fixed
part of the input. Instead, we consider flexible line frequencies, encompassing a minimum and
maximum frequency per line, allowing the timetabling model to decide on optimal line frequencies to
obtain better solutions using fewer train services per line. We develop a mixed-integer programming
formulation for POT-flex based on the Passenger-Oriented Timetabling (POT) formulation of [13]
and compare the performance of the new formulation against the POT formulation on three instances.
We find that POT-flex allows to find feasible timetables in instances containing bottlenecks, and
show improvements of up to 2% on the largest instance tested. These improvements highlight the
cost that fixed line frequencies can have on timetabling.
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1 Introduction

Railway timetabling is part of a larger set of problems commonly referred to as railway
planning problems. Because railway planning problems are generally solved sequentially [6, 2],
the input of the timetabling problem relies on the output of previously solved problems. These
problems include decisions regarding the infrastructure of the network, and the definition of
a set of train lines and line frequencies. In this paper, we study the impact of line frequencies
in the generation of periodic timetables, i.e. timetables that recur at regular intervals with a
fixed time period. In particular, we evaluate the cost of fixed line frequencies on timetables
from a passenger perspective.
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(a) Timetable with 2 “fast” trains and 3 “slow” trains.
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(b) Timetable with 3 “fast” trains and 3 “slow” trains.

Figure 1 Example that timetables with more trains can lead to worse perceived travel times.
The blue lines at each station represent the minimum headway time.

An inherent limitation of addressing railway planning problems sequentially is that
it often results in situations where solving one problem may give rise to sub-optimal or
infeasible solutions in subsequent problems [2]. In the case of periodic timetabling, the
line frequencies determined in earlier stages of the planning process can sometimes not be
realised simultaneously, meaning that no feasible timetable exists. Furthermore, even if a
timetable for the given frequencies is found, it may be sub-optimal with respect to perceived
passenger travel time, defined as a weighted sum of waiting time at the origin, in-train time,
and transfer time. While it is generally assumed that increased line frequencies lead to
improved timetables, this might not hold due to infrastructural constraints or mismatches
with passenger demand. In contrast, we argue that reduced frequencies may lead to lower
perceived travel times.

▶ Example 1. Because the use of fewer train services (hereandafter referred to as trains) per
line to obtain better timetables may appear counter-intuitive, let us examine the example
presented in Figure 1. We consider a network containing 3 stations S1, S2, and S3, where the
arrival of passengers at the stations is assumed to be uniformly distributed. Let us consider
two lines, ℓ1 and ℓ2, where ℓ1 is a fast line with stops {S1,S3} (whose trains are depicted
with straight lines in Figure 1) and ℓ2 is a slower line with stops {S1,S2,S3} (whose trains
are depicted with dashed lines in Figure 1). Both lines have a maximum frequency of 3 and
share the same tracks (no overtaking is allowed). In Figure 1a, we can see that a maximum
of 5 trains can be scheduled by alternating trains from lines ℓ1 and ℓ2 without violating
the headway constraints, i.e. the minimum time between two train arrivals ensuring safe
operation of the timetable, depicted with the blue lines. Due to the headway constraints, we
cannot add another train for ℓ1 if we want to keep the same alternating structure. Nonetheless,
a timetable containing 6 trains is feasible by arranging them as shown in Figure 1b. This
results in a larger maximum waiting time between two trains for passengers going from S1 to
S2 or from S2 to S3 (35 minutes instead of the 21 minutes in Figure 1a). Let the rate of
passenger arrival be 1 passenger per minute. Then, for passengers going from S1 to S2 or
from S2 to S3, the total waiting time is (22 × (22/2)) + (19 × (19)) + (19 × (19/2)) = 603 in
the first timetable and (36 × (36/2)) + (12 × (12/2)) + (12 × (12/2)) = 792 in the second
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timetable. If the demand from stations S1 to S2 and S2 to S3 is large enough relative to the
demand from S1 to S3, a timetable containing fewer trains can lead to lower total perceived
passenger travel time.

Our research expands on the mathematical formulation developed by [13] for the Strategic
Passenger-Oriented Timetabling (SPOT) problem. Our contribution is threefold; First, we
introduce a variant of the timetabling problem to minimise perceived travel time discussed
in [13, 11] that allows to choose line frequencies flexibly. We call this new problem the
Passenger-Oriented Timetabling problem with flexible frequencies (POT-flex). Second, we
provide a MILP formulation for the POT-flex problem. Third, we provide insights on the
cost that the fixed line frequency assumption has on total perceived passenger travel time.
We implement and solve the POT and the POT-flex problems on three instances to highlight
the factors impacting optimal line frequency decisions.

The remainder of this paper is organised as follows. Section 2 provides an overview of the
related literature regarding periodic passenger-oriented timetabling models. Furthermore,
Section 3 provides a description of the POT-flex problem with flexible frequencies and Section
4 defines the Mixed Integer Linear Programming formulation of the flexible frequency model.
Finally, Section 5 provides insights on the improvements of our model over one with fixed
frequencies on three instances of interest, and in Section 6, a conclusion is drawn.

2 Passenger-Oriented Timetabling in the Literature

Many periodic timetabling models, including ours, use as a basis the Periodic Event Scheduling
Problem (PESP) as defined by [17]. PESP is used to find feasible periodic timetables and
is known to be NP-complete [17]. The addition of passenger routing aiming at creating
passenger-oriented timetables makes the problem even more complex. Some papers attempt
to tackle those issues and offer applicable methods minimising total passenger travel time
starting from the moment that passengers leave the origin [14, 18, 4].

In this paper, we consider the importance of both line frequency decisions and adaption
time, defined as time difference between the passenger desired departure time and the
scheduled departure, in the passenger-oriented timetabling problem. We primarily refer to
[15] for an extensive review on line planning and cite [16, 7, 10, 3] regarding the integration
of line planning and timetabling. Beyond integration of line planning and timetabling, some
papers also consider how to address infeasibilities stemming from the input in the timetabling
problem [12]. To the best of our knowledge, only a few papers consider adaption time as
part of their objective. We refer to [1, 20, 13, 11] where adaption time is included in the
timetabling objective and [5] where it is included in line planning.

As aforementioned, this paper expands on the Mixed Integer Linear Programming (MILP)
formulation of [13] for the Strategic Passenger-Oriented Timetabling (SPOT) problem. The
objective of SPOT is to create a timetable that minimises the total perceived passenger
travel time. In the SPOT problem, lines are assumed to have fixed frequencies and headway
constraints are not taken into account. In [11], the authors solve the Passenger-Oriented
Timetabling (POT) problem, an extension of the SPOT that considers headway constraints,
using an iterative heuristic. They define a starting solution by solving the SPOT problem,
then use a Lagrangian heuristic to generate feasible solutions with respect to the headway
constraints. The possibility to not schedule some train services is added in the Lagrangian
heuristic in order to find a feasible timetable.

Although the approach in [11] allows for reduction of line frequencies, it is only done to
find feasible solutions and not better solutions. In this paper, we research an extension of
the POT problem introducing the concept of flexible frequencies, such that a minimum and
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maximum frequency per line is used as part of the input. Flexible frequencies allow the model
to find feasible solutions in instances where the maximum frequencies cannot be realised,
and better solutions in instances where the reduction of line frequencies is beneficial for the
passengers’ perceived travel time. We denote this new problem as the POT-flex problem.

3 Problem Definition

This section introduces and describes the concepts necessary in the definition of the problem
studied in this paper. The input of the POT-flex problem is defined in Section 3.1. Then,
we describe how to define the problem on a graph in Section 3.2. Finally, we describe the
perceived passenger travel time in Section 3.3.

3.1 Problem input and problem parameters
In order to solve the POT-flex problem, we consider the following input:
An Infrastructure Network: the infrastructure network contains the information about capa-

city of the stations, the different tracks that can be used by trains, the safety requirements
(defined as the minimum time difference allowed between trains using the same infra-
structure), and the minimum transfer time (the minimum amount of time required for
passenger transfer between two lines at a station).

A Line Set L: Each line ℓ ∈ L is defined by the sequence of stations that the train visits, the
subset Sℓ of stations where the train stops (altering the dwell time of trains at a station),
the type of rolling stock used (altering the maximum speed and therefore the minimum
travel time), and the minimum and maximum frequencies, respectively f

ℓ
and f ℓ. We

assume that lines have the same frequency in both directions. Furthermore, throughout
this paper, we define a train as two train services following the sequence of stops related
to a line ℓ (one train service per direction). Trains are not considered to be rolling stock.

An OD-matrix: For each pair k of two stations, the passenger demand dk to go from the
first station to the second station is given in the Origin-Destination (OD) matrix.

A Time Period T : the time period is the interval of time during which events, representing
the arrival or departure of a train at a station, are scheduled. Each event can be scheduled
at a discrete point in time t ∈ {0, . . . , T − 1}. Those events are then repeated every T

units of time.
Using the aforementioned input, the goal is to create a periodic timetable for the lines
defined in the line set, subject to the constraints defined by the infrastructure network, that
minimises the total perceived passenger travel time, using the OD-matrix as an estimation
of passenger demand. We define the problem on a directed graph called the event-activity
network [8].

3.2 Event-Activity Network
An event-activity network (EAN) is a directed graph G = (V, A) where V is the set of events
to be scheduled and A is the set of activities that link the events. Each event i ∈ V represents
the arrival or departure of a train at a station. Therefore, every event is defined by its station,
line, train index (denoting if it is first, second, etc... train of a line in the period), direction
(forward or backward), and whether it is an arrival or departure event. An activity (i, j) ∈ A

is a directed arc that represents the time difference between two events i and j such that
(i, j) ∈ A. The lower- and upper-bounds for the time duration that activities can take is
defined by activity constraints. In our model, we consider four different type of activities;
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[5,55]

[5,55] [5,55] [5,55]

Figure 2 Event Activity Network of Instance 2; The black straight arrows represent the drive
and dwell activities of a line, the dashed blue arrows represent the headway activities between trains,
and the red dashed-dotted arrows represent the transfer activities.

Drive activities represent the time spent by a train travelling from one station to another.
The lower-bound of a drive activity constraint is defined by the minimum travel time given
the distance and the maximum speed of the train between two stations. The upper-bound
is defined by the maximum allowed deviation from the minimum travel time.

Dwell activities represent the time spent by a train at a station. This time is used by
passengers to either enter or leave a train. We use dwell activity constraints to impose a
lower-bound to the time that a train spends at a station.

Transfer activities represent the time allocated for the transfer of a passenger from one train
to another. Transfer activity constraints provide a lower bound for transfer times such
that passengers have the time to go from one platform to another. A good timetable
aims at reducing the time of these transfer activities while enabling passengers to make
their transfers.

Safety/Headway activities represent infrastructure constraints that guarantee a safe opera-
tion. Safety activity constraints define the minimum time difference between the arrival
or departure of two trains using the same tracks. This minimum headway time ensures
that no collision is possible if all trains operate according to the timetable.

Activity constraints ensure the proper definition of a timetable from both an operational and
passenger-oriented perspective. All activity constraints are needed to ensure the successful
execution of the timetable from an operational perspective. Only the drive, dwell, and
transfer activities are needed to evaluate the quality of the timetable from a passenger
perspective. An example of EAN with its associated activity bounds is displayed in Figure 2.

3.3 Perceived Passenger Travel Time
Our objective is to minimise the perceived passenger travel time. In doing so, we consider
two elements:
1. The travel time of a passenger is defined as the sum of the drive, dwell, and transfer

activity lengths for the route taken by the passenger. However, those activities do not
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weight equally in the eyes of the passenger. For instance, a route that contains a transfer
does not have the same appeal to passengers as a route of similar time duration without
a transfer.

2. For passengers, the amount of time spent waiting for the train at the origin station is
equally important, if not more so, compared to the actual travel time. The amount of
time between the arrival of the passenger at a station and the start of his travel route is
called the adaption time.

Both of those points are accounted for in the objective function through the addition of
penalties for in-route transfers and the addition of penalised adaption time. Our objective is
to minimise the sum of passengers’ perceived travel time. The perceived travel time of a
passenger is defined as

(γw · Wr + Yr) with Yr =
∑

∀a∈r:a∈A

[ya + γt1t(a)] (1)

where γw is the adaption time penalty factor, Wr is the adaption time of the passenger for
his route r, and Yr is the route’s length defined by the sum of its associated drive, dwell,
and transfer activity lengths ya, with a penalty of γt for transfer activities ensured by the
indicator function 1t(a) equal to 1 if a is a transfer activity.

Finally, for the purpose of our formulation, we make the following assumptions. The first
assumption is that the arrival of passengers at their origin station is uniformly distributed.
This ensures that the timetable is optimised for passengers arriving at any point in time
during the period. The second assumption is that passengers always take the route with the
lowest perceived travel time. Finally, we assume that train capacities are infinite such that
the rolling stock is not taken into account in the timetabling model.

4 Formulating the Passenger-Oriented Timetabling Problem as a
Mixed-Integer Linear Program

This section introduces our formulation for the POT-flex problem. This new formulation is
an extension of the POT formulation of [11] where the activity constraints and the objective
are modified to account for selection of the optimal line frequency. Section 4.1 describes the
addition of flexible frequencies in the activity constraints. Then, Section 4.2 introduces the
objective and the rest of the model. Finally, Section 4.3 describes the full formulation.

4.1 Flexible Line Frequencies in the PESP
The basis of the model is the Periodic Event Scheduling Problem (PESP) formulation as
defined by [17]. For simplicity, we use the notation [n] to represent a set {1, . . . , n}. Given
a set V of events, a set A ⊆ V × V of activities, intervals [lij , uij ] for all (i, j) ∈ A, and a
period length T , the PESP is to find a feasible periodic schedule, that is, find event times
π : V → {0, . . . , T − 1} and corresponding activity lengths yi,j satisfying

yij = πj − πi + Tpij ∀(i, j) ∈ A (2a)
lij ≤ yij ≤ uij ∀(i, j) ∈ A (2b)

pij ∈ Z ∀(i, j) ∈ A (2c)
πi ∈ {0, . . . , T − 1} ∀i ∈ V (2d)

where lij and uij are respectively the lower and upper bounds of the time an activity (i, j) ∈ A

can take. An important feature of this model is that if uij −lij ≥ T −1, the activity constraint
no longer bounds the event times πi and πj .
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In order to extend the model defined in (2a-2d) such that not all trains need to be
scheduled, we define the following notation; for a line ℓ ∈ L with minimum frequency f

ℓ
and

maximum frequency f ℓ, we assign to each train of the line in period T an index tr ∈ [f ℓ].
As aforementioned, trains here denote train services in both directions, such that if a train is
not scheduled for a line, it is not scheduled in both directions. We define the variable τℓ,tr

such that:

τℓ,tr =
{

1 if the train with index tr of line ℓ is scheduled
0 otherwise

We set τℓ,tr = 1 ∀ℓ ∈ L and ∀tr ∈ [f
ℓ
] to ensure that we run at least f

ℓ
trains of line ℓ.

Additionally, we define A[ℓ, tr] ⊆ A to be the set of activities related to the train tr of line ℓ

and V [ℓ, tr] ⊆ V the set of events related to the train tr of line ℓ. We will now focus on the
definition of the constraints for each type of activity.

The bounds of drive and dwell activities are defined as follows:

τℓ,trlij ≤ yij ≤ τℓ,truij ∀ℓ ∈ L, ∀tr ∈ [f ℓ], and ∀(i, j) ∈ A[ℓ, tr]. (3)

This allows us to define the constraints in two possible cases:
1. If τℓ,tr = 1, then this means that (3) is equal to (2b), and the train needs to be scheduled.
2. If τℓ,tr = 0, then train tr of line ℓ is not scheduled and therefore all drive activities of this

train will have length 0.

Now we consider the case of activities concerning two different trains (i.e. headway and
transfer constraints). Two trains are considered to be different if their train index tr and/or
lines ℓ are different. The goal is to make sure that the activity constraint is no longer binding
if one of the trains is not scheduled. Hence, we define for each ℓ, ℓ′ ∈ L, tr ∈ [f ℓ], and
tr′ ∈ [f ℓ′ ] such that (tr, ℓ) ̸= (tr′, ℓ′) the following constraints:

(τℓ,tr + τℓ′,tr′ − 1)lij ≤ yij ≤ uij + (2 − τℓ,tr − τℓ′,tr′)T
∀(i, j) ∈ A : i ∈ V [tr, ℓ], j ∈ V [tr′, ℓ′]. (4)

Then, we have the following possible cases for different values of τℓ,tr and τℓ′,tr′ :

Bounds τℓ,tr = 0 τℓ,tr = 1
τℓ′,tr′ = 0 [−lij , uij + 2T ] [0, uij + T ]
τℓ′,tr′ = 1 [0, uij + T ] [lij , uij ]

If one or both trains related to activity (i, j) are not scheduled in the timetable, then the
difference between the new lower- and upper-bound of the activity is greater than T . The
event times of scheduled trains are then no longer affected by transfer and headway activity
constraints related to non-scheduled trains. It can be noted that similar methods have been
applied by other authors to modify activity constraints but, to the best of our knowledge,
this has only been done to consider track choices in the PESP [19, 9].

4.2 Perceived Travel Time with Flexible Frequencies
The objective of the model is to minimise the total perceived passenger travel time. In this
section, we consider the formulation of the perceived passenger travel time given in the MILP
model of [13] and alter it to accurately model non-scheduled trains in the objective.
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Let us consider Rk the set of routes available for OD-pair k. That is, any route r ∈ Rk

starts at a departure event at the origin station of OD-pair k and ends at an arrival event at
its destination station. The set Rk is determined in a pre-processing step such as to discard
excessively long routes. Then, given a timetable π, we compute for each OD-pair k and each
available route r ∈ Rk the travel time

Yr(π) =
∑

(i,j)∈r

[
yij + γt · 1t(i, j)

]
+

∑
(ℓ,tr)∈r

Mτ
k · (1 − τℓ,tr) (5)

where 1t(i, j) is an indicator function equal to 1 if an activity (i, j) is a transfer activity,
and Mτ

k is a large enough penalty value such that a passenger is never assigned a route r

using a train that is not scheduled in the timetable. We must now ensure that the route
with smallest perceived travel time is chosen by the passenger. Let σ(r) be the first event of
the route r ∈ Rk, and let V k be the set of first departure events for all routes considered for
an OD-pair k such that

V k =
⋃

r∈Rk

{σ(r)} (6)

We define Y k
v to be the perceived travel time for passengers of OD-pair k from event v ∈ V k

onwards. It is important to note two things regarding how the computation of Y k
v is modelled

in the MILP formulation:
1. v might be the starting event of multiple routes. Since multiple transfers can be possible,

only once the timetable is built can we determine which route has smallest perceived
length among the routes in Rk starting at event v.

2. There might exist another route with a different starting event v′ ̸= v minimising the
perceived travel time of the passenger arriving before v. In such a case, the passenger
might not want to start his route with event v, wait longer at the origin station, and take
the new route with starting event v′.

To account for these situations, Y k
v is defined by minimising the weighted sum of two

components. The first component of Y k
v , representing the (potential) additional adaption

time from event v, can be written as

γw · (∆v,v′), with ∆v,v′ = πv′ − πv + Tαv,v′ (7)

for each starting event v′ ∈ V k. In Equation (7), ∆v,v′ is the difference in time between
starting events v and v′, and αv,v′ is a binary variable used to model the modulo operator
ensuring that ∆v,v′ ∈ {0, . . . , T − 1}. The second component is the travel time of the route
r ∈ Rk with starting event σ(r) = v′. For each OD-pair k ∈ OD and event v ∈ V k we define
Y k

v as

Y k
v = min

v′∈V k,r∈Rk:σ(r)=v′
{∆v,v′ · γw + Yr} . (8)

The demand dk ∀k ∈ OD is assumed to be uniformly distributed over the period. Hence,
the number of passengers between an event v and its preceding event v with perceived travel
time Y k

v is equal to dk/T multiplied by the time difference between event v ∈ V k and the
latest preceding event v′ ∈ V k according to timetable π. Let this time difference be denoted
Lk

v , then, we have

Lk
v := min

v′∈V k\{v}
{∆v′,v}. (9)
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Furthermore, the average adaption time of the passengers arriving during this time interval,
defined as W k

v , is equal to half the length of the time interval, that is,

W k
v = 1

2Lk
v . (10)

Using this notation, the objective function of the problem can be rewritten as∑
k∈OD

dk

T

∑
v∈V k

Lk
v · (γw · W k

v + Y k
v ). (11)

4.3 Passenger-Oriented Timetabling Model with Flexible Frequencies
Using the constraints and objective defined in Sections 4.1 and 4.2, we can write the MILP
of the Passenger-Oriented Timetabling problem with flexible frequencies as

min
∑

k∈OD

dk

T

∑
v∈V k

Lk
v · (γw · W k

v + Y k
v ) (12a)

s.t. yij = πj − πi + Tpij ∀(i, j) ∈ A (12b)
τℓ,trlij ≤ yij ≤ τℓ,truij ∀ℓ ∈ L, ∀tr ∈ [f ℓ], (12c)

and ∀(i, j) ∈ A[ℓ, tr],
yij ≥ (τℓ,tr + τℓ′,tr′ − 1)lij ∀(i, j) ∈ A : i ∈ V [tr, ℓ], (12d)

j ∈ V [tr′, ℓ′],
and (ℓ, tr) ̸= (ℓ′, tr′),

yij ≤ uij + (2 − τℓ,tr − τℓ′,tr′)T ∀(i, j) ∈ A : i ∈ V [tr, ℓ], (12e)
j ∈ V [tr′, ℓ′],

and (ℓ, tr) ̸= (ℓ′, tr′),
τℓ,tr = 1 ∀ℓ ∈ L, ∀tr ∈ [f

ℓ
], (12f)

Yr =
∑

(i,j)∈r

[
yij + γt · 1t(i, j)

]
∀k ∈ OD, ∀r ∈ Rk (12g)

+
∑

(ℓ,tr)∈r

Mτ
k · (1 − τℓ,tr)

∆v,v′ = πv′ − πv + Tαv,v′ ∀k ∈ OD, v ∈ V k, (12h)
v′ ∈ V k\{v}

Lk
v = min{T, min

v′∈V k\{v}
{∆v′,v}} ∀k ∈ OD, v ∈ V k, (12i)

αv,v′ = 1 − αv′,v ∀k ∈ OD, v ∈ V k, (12j)
v′ ∈ V k\{v}

Y k
v = min

v′∈V k,r∈Rk:σ(r)=v′
{∆v,v′ · γw + Yr} ∀k ∈ OD, v ∈ V k, (12k)

W k
v = 1

2Lk
v ∀k ∈ OD, v ∈ V k, (12l)

variable domains (12m)

The objective function (12a) represents the sum of perceived passenger travel time for all
OD-pairs. Constraints (12b) define the time duration of an activity (i, j) ∈ A. Constraints
(12c) define the lower- and upper-bounds on the duration of drive and dwell activities, and
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Constraints (12d-12e) represent respectively the lower- and upper-bounds on the duration of
transfer and headway activities. Constraints (12f) ensure that the minimum train frequencies
are met. Constraints (12g) define the perceived duration of a route r. Constraints (12h)
measure the time difference between two starting events of an OD-pair k and Constraints
(12i) measure the time difference between an event v and its closest predecessor. Constraints
(12j) ensure that for each pair (v, v′) : v, v′ ∈ V k and v ̸= v′, either αv,v′ or αv′,v (but
not both) is equal to 1. Constraints (12k) measure the minimum perceived travel time
of a passenger who arrived at the station between event v and its predecessor. Finally,
Constraints (12l) measure the average waiting time of a passenger before an event v. The
variable domains (12m) are available in Appendix A.

Note that the Objective (12a) and Constraints (12i) and (12k) are not yet linear in
this formulation. Further detail about the linearisation of the constraints and objective is
available in Appendix C for the interested reader.

5 Experiments

The model defined in Section 4 is implemented in Java 13.0.3 and solved using CPLEX
22.1.0 for three instances. All experiments are run on the Dutch National Supercomputer
Snellius with 32 cores and 240 Gb of RAM per experiment. Each experiment is run until
optimality, or until the memory limit is exceeded. The solution of the POT formulation
(also implemented in Java 13.0.3 solved using CPLEX 22.1.0) from [11] using the maximum
frequency f ℓ as fixed frequency is used as a benchmark for solution quality. We consider for
each instance the time period to be T = 60 (minutes), the penalty values to be γt = 20 and
γw = 2, and double-track railway segments (i.e. no overtaking).

S1

S2

S3 S4

S5

S6

16

11

10

15

21

(a) Instance 1.

S1

S2

S3

21
16

21

16

(b) Instance 2.

S1 S2 S3 S4 S5

S6

S7

10 11
20

31

2 5

(c) Instance 3.

Figure 3 Test instances. Coloured squares next to stations are used to indicate when a line goes
thought the station but does not stop at the station (transit station). The straight (green) lines
represent line ℓ1, the dashed (purple) lines represent line ℓ2, the dotted (blue) lines represent line ℓ3,
and the dash-dotted (orange) lines represent line ℓ4.

5.1 Instances
The model is tested on three instances visualised in Figure 3. Each instance provides a
different insight regarding the price of fixed frequencies in the creation of timetables. The
complexity of both formulations only allows us to prove the optimality of the solutions of
Instance 2, thereby limiting the maximum size of instances that can be studied.

In Instance 1, we consider a network using a central connection (S3-S4) extensively, leading
to a bottleneck. For this instance, a fixed line frequency of 2 for all stations is infeasible for
POT formulation. In comparison, the POT-flex formulation with (f

ℓ
, f ℓ) = (1, 2) provides

insight into which lines can be increased to obtain a better feasible timetable.
In Instances 2 and 3, we consider, similar to the example in the introduction, a “slow” line

that stops at all stations and a “fast” line only stopping at the main stations. We call stations
where some lines go through but do not stop transit stations. These instances provide insights
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in situations where there is a large time difference between the departure from the first
station and the arrival at the last station between two lines. These situations are common
in real life instances such as in the Dutch Railway Network. Further, Instance 3 contains
an additional line and additional stations to study the performance of the formulation for a
larger instance that also includes transfer decisions.

The OD-matrices used to simulate the demand in the instances are defined as follows.
We define OD(n) as the OD-matrix such that the demand dk of any OD-pair k where the
origin and the destination are main stations (i.e. not transit stations) is equal to n times the
demand dk′ where k′ is an OD-pair such that either the origin or the destination is a transit
station. This allows us to evaluate Instances 2 and 3 for varying demand from the transit
stations in comparison to the rest of the network. Instance 1 is tested with OD(1) ( uniform
demand), and Instances 2 and 3 are tested with OD(0.1) (high demand at transit stations),
OD(1), and OD(10) (low demand at transit stations). For consistency, we keep the same
total number of passengers for each OD-matrix of each instance. The matrices are available
in Appendix D.2.

Table 1 Results of the experiments for Instance 1.

Objective Optimality Gap Optimal Frequencies
f

ℓ
f ℓ POT POT-flex POT POT-flex ℓ1 ℓ2 ℓ3 ℓ4

Instance 1 1 1 127,000 127,000 6.47% 6.53% 1 1 1 1
1 2 infeasible 107,964 - 16.1% 1 2 2 1
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Figure 4 Objective values of the POT and POT-flex formulations for Instances 2 and 3.

5.2 Results
As aforementioned, only Instance 2 can be solved to optimality under the memory restrictions
using both formulations. We therefore provide the optimality gaps for the best found solutions
of Instances 1 and 3 respectively in Tables 1 and 3.

Table 1 summarises the solutions found for Instance 1. As the (maximum) frequency
increases to 2, the POT problem fails to find a feasible solution. In contrast, the POT-flex
model not only finds a feasible solution, but also selects the best combination of trains such
as to minimise the total perceived travel time. This highlights the feasibility repair advantage
of POT-flex over POT to find solutions minimising perceived passenger travel time.
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Table 2 Line frequencies of the solution of the POT-flex problem and objective difference with
the solution of the POT problem with fixed frequency f ℓ for Instances 2 and 3.*The best found
solutions for Instance 3 are not proven by the solver to be optimal. Optimality gaps are presented in
Table 3.

OD(0.1) OD(1) OD(10)
f

ℓ
f ℓ ℓ1 ℓ2 ℓ3 ∆ Obj ℓ1 ℓ2 ℓ1 ∆ Obj ℓ1 ℓ2 ℓ3 ∆ Obj

Instance 2
1 3 3 3 - 0% 3 3 - 0% 3 3 - 0%
1 4 4 2 - 8.7% 4 3 - 3% 4 3 - 1.7%
1 5 5 1 - 26.3% 5 2 - 14.5% 5 3 - 9%

Instance 3* 1 3 3 3 3 0% 3 3 3 0% 3 3 3 0%
1 4 4 2 4 2% 4 3 4 1.3% 4 4 4 0%

Table 3 Optimality gaps of the best solutions of the POT and POT-flex for Instance 3.

OD(0.1) OD(1) OD(10)
f

ℓ
f ℓ POT POT-flex POT POT-flex POT POT-flex

Instance 3 1 3 4.15% 11.05% 3.78% 11.36% 4.60% 9.89%
1 4 5.88% 18.01% 6.34% 19.08% 3.98% 18.18%

Figure 4 shows the objective values of the POT and POT-flex formulations for Instance 2
and 3. Table 2 reports on the line frequencies selected in the optimal solution of POT-flex
and the improvements in % between the found solutions of POT-flex and POT with fixed
frequencies f ℓ. Note that the solutions found for Instance 3 are not proven to be optimal by
the solver, hence, Table 3 provide the optimality gaps for the solutions of Instance 3. This
is one of the primary limitations of the formulation, as due to its complexity, even small
instances can not be easily solved to optimality (or proven to be optimal by the solver).

The results show in Instances 2 and 3 that, as the number of trains to schedule increases,
the POT-flex formulation leads to equal or lower objectives than the POT formulation by not
scheduling certain trains. As the demand for transit stations increases, the importance of a
timetable that provides a lower perceived travel time for transit stations at the expense of a
lower frequency for another line becomes an apparent trade-off for the model and can lead to
significant improvements. In Instance 2, this can lead to up to a 26.3% improvement by not
scheduling 4 trains. While the large scale of this improvement is likely due to the small size
of Instance 2, we can observe similar improvements of smaller magnitude for Instance 3 by
reducing the frequency of ℓ2, leading to a 2% improvement in objective. Furthermore, these
improvements are made despite the larger optimality gap of the POT-flex solution, resulting
from larger feasibility region of the POT-flex problem. The fact that such improvements
are possible, even in small instances, shows the price that one may pay by assuming fixed
frequencies.

6 Conclusion

In this paper, we introduce and study the Passenger Oriented Timetabling Problem with
flexible frequencies (POT-flex). We develop a MILP formulation and provide insights on
the advantages of providing more freedom to the timetabling model through experiments
on three instances. The POT-flex formulation allowed to find solutions for instances where
the maximum frequencies could originally not be simultaneously realised, and showed up to
2% improvements in total perceived passenger time for the largest tested instance. These
improvements all came from the ability of the model to select the optimal line frequencies
with respect to the demand. These improvements represent the cost that fixed frequency can
have on timetabling.
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A Notation

Table 4 Notation of the sets, variables, and constants used throughout the paper.

Sets
Notation Description

OD Set of all Origin-Destination pairs
L Set of lines in the network

Rk Set of routes serving an OD-pair k

V Set of events
V k Set of starting event of routes serving an OD-pair k

V [ℓ, tr] Set of events related to train tr in line ℓ

A Set of Activities
A[ℓ, tr] Set of activities related to train tr in line ℓ

Constants
Notation Description

T Cycle Period
dk Number of passengers per cycle period T for an OD-pair k

γt Penalty value for a transfer activity in a route
γw Penalty factor for the waiting time until the next route chosen
Mτ

k Big-M penalty value for a route containing a train that is not scheduled
Variables

Notation Description Domain
πi time at which event i ∈ V happens {0, . . . , T − 1}
yij duration of activity (i, j) ∈ A Z≥0

pij
modulo parameter used for the shift from one cycle period to another,
for activity (i, j) ∈ A

Z≥0

τℓ,tr binary variable indicating whether a train (ℓ, tr) is scheduled {0,1}

Yr
perceived travel time by a passenger from an OD-pair k for a route
r ∈ R Z≥0

∆v,v′ time difference between event v and v′ [0, T ]

Lk
v

number of minutes before event v, in which no other departure
event for OD-pair k takes place [0, T ]

Y k
v

perceived travel time for passengers of OD-pair k, from the timing
of event v onwards Z≥0

αv,v′
binary variable ensuring the correct determination of the time
difference between event v and v′ {0,1}

W k
v

expected waiting time for passenger for OD-pair k, for who event v

is the next departure event [0, T/2]

B Lower Bound for Non-Scheduled Train Penalty in Route Length
Computation

For computational stability, it is important to chose a value of Mτ
k that is as low as possible.

Consequently, we chose Mτ
k as the maximum travel time over all routes that the corresponding

OD-pair could take, plus the waiting time for a full period, that is

Mτ
k := max

r′∈Rk
{Ȳr′} + γwT = max

r′∈Rk

 ∑
(i,j)∈r′

uij + γt · 1t(i, j)

 + γwT. (13)

This ensures that there always will be a route in Rk that has a shorter travel time than Mτ
k .

Hence, no route containing an activity related to a train that is not scheduled will be chosen.
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C Linearisation of the Mixed Integer Linear Program

C.1 Linearisation of the Minimum Time Difference Between Two Routes
Since Lk

v appears both in constraint (12i) and in the objective function, our first step is
to find a way to linearise this variable. Let us introduce a variable Ak

v that denotes for an
OD-pair k the time difference between the starting event v and its predecessor starting event.
That is, Ak

v := ∆v̂,v for v̂ being the departure event in V k that precedes v, or

Ak
v :=

{
minv̂∈V k\v{(πv − πv̂) mod T} if |V k| > 1

T otherwise

Then, for each OD-pair k, The variable Ak
v is defined using the following set of constraints:

0 ≤ ∆v,v′ = πv′ − πv + Tαv,v′ ∀v ∈ V k, ∀v′ ∈ V k \ {v} (14a)
αv,v′ + αv′,v = 1 ∀v ∈ V k, ∀v′ ∈ V k \ {v} (14b)

0 ≤ Ak
v ≤ ∆v′,v ∀v ∈ V k, ∀v′ ∈ V k \ {v} (14c)∑

v∈V k

Ak
v = T (14d)

Constraints (14a) computes the time difference between two events v and v′, and con-
straints (14b) allows us to determine which event happens first within the period. If
αv,v′ = 0, then event v is scheduled before event v′ in the period (and therefore πv′ > πv).
Constraint (14c) restricts the maximum value of Ak

v such that Ak
v can be at most the minimum

time difference between v and any other event v′. Together with constraints (14d), which
ensures that the sum of all times between events is be equal to T , this set of constraints
ensures that Ak

v is the minimum length of time between v and the next event v′.
This property is kept even when v and/or v′ belong to non-scheduled trains as, because

Y k
v = minv′∈V k

{
Yr + ∆v,v′ · γw|r ∈ Rk, σ(r) = v′}, even if a train is not scheduled, the next

scheduled train will be selected due to the large penalty for a non-scheduled train.

C.2 Linearisation of the Objective Function
Due to the relationship between W k

v and Lk
v defined in Constraints (12l), the objective

function can be rewritten as∑
k∈OD

dk

T

∑
v∈V k

Lk
v · (γw · W k

v + Y k
v ) =

∑
k∈OD

dk

T

∑
v∈V k

γw

2 (Lk
v)2 + Lk

v · Y k
v (15)

As the objective is quadratic with respect to Lk
v , we must linearise it. Using the previously

defined variable Ak
v , we define a new variable xk

v,d such that

xk
v,d =

{
1 if Ak

v ≥ d

0 otherwise
∀k ∈ OD, v ∈ V k, d ∈ {1, . . . , T}

Ak
v =

T∑
d=1

xk
v,d

This allows us to rewrite (Ak
v)2 as follows:

(Ak
v)2 =

T∑
d=1

(2d − 1) · xk
v,d
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Furthermore, we introduce the variable Rk
v,d = xk

v,d · Y k
v such that Rk

v,d takes the value Y k
v

(length of shortest route starting from v for OD-pair k) if the interval Ak
v corresponding to v

is greater than or equal to d, and the value 0 otherwise. To set Rd
v to the required values we

impose that

Y k
v − uk

v × (1 − xk
v,d) ≤ Rk

v,d ≤ uk
v × xk

v,d. (16a)

where uk
v is a parameter defining an upper bound on the length of a shortest route over all

timetables. Since the upper-bound is most likely defined based on the maximum penalty a
cancelled train will have, then

uk
v = max

r∈Rk

 ∑
(ℓ,tr)∈r

Mτ
k


Which represents the maximum amount of times that the penalty Mτ

k can be applied for an
OD-pair k. Given the set Rk of possible routes, this can easily be computed beforehand.
Using those two new variables, we can rewrite the objective as:∑

k∈OD

dk

T

∑
v∈V k

Lk
v · (γw · W k

v + Y k
v ) =

∑
k∈OD

dk

T

∑
v∈V k

γw

2 (Ak
v)2 + Ak

v · Y k
v

=
∑

k∈OD

dk

T

∑
v∈V k

T∑
d=1

[γw

2 (2d − 1) · xk
v,d + xk

v,d · Y k
v

]

=
∑

k∈OD

dk

T

∑
v∈V k

T∑
d=1

[γw

2 (2d − 1) · xk
v,d + Rk

v,d

]

C.3 Linearisation of the Minimum Perceived Travel Time
The variable Y k

v represents, for an OD-pair k, the minimum perceived travel time of a
passenger who arrived at the station between the starting event v ∈ V k and the starting
event preceding v. Constraints (12k) model Y k

v using a minimum that we must linearise. To
that end, we define the binary variable zk

v,v′,r such that

zk
v,v′,r =

{
1 if passengers wait from event v to v′ to use the route r,
0 otherwise,

∀k ∈ OD, ∀v, v′ ∈ V k, ∀r ∈ Rk : σ(r) = v′. (17)

Note that v and v′ can be the same event, and r refers to all possible routes starting with
event v′. Given zk

v,v′,r, Constraints (12k) can now be rewritten for every k ∈ OD and for
every v ∈ V k as the set of constraints

Y k
v ≤ Yr + γw∆v,v′ ∀v′ ∈ V k, ∀r ∈ Rk : σ(r) = v′, (18a)

Y k
v ≥ Yr + γw∆v,v′ − Mk

v × (1 − zk
v,v′,r) ∀v′ ∈ V k, ∀r ∈ Rk : σ(r) = v′, (18b)∑

v′∈V k

∑
r∈Rk:σ(r)=v′

zk
v,v′,r = 1. (18c)

Constraints (18a) and (18b) provide respectively an upper- and lower-bound for Y k
v . The

big-M value Mk
v is a value large enough to ensure that the lower-bound of Y k

v is always
the minimum perceived passenger travel time at event v. Finally, Constraints (18c) ensure
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that only one route is selected for passengers arriving between the starting event v and its
predecessor.

Again, for computational stability, Mk
v has to be a small as possible, but large enough to

make Constraints (18b) redundant if zk
v,v′,r = 0. We can take

Mk
v = γwT + max

r∈Rk
{Y r} − max

r∈Rk
{Y r} (19)

where Y r and Y r denote respectively the highest and lowest possible value for variable Yr.

D Empirical Experiment Parameters

D.1 Event Activity Network Parameters

Table 5 Activity Constraint Bounds of Instance 1.

Activity constraint bounds
Headway: [8,52] Transfer: [5,64] Dwell: [2,3]

Drive S1-S3: [16,18] S2-S3: [11,13] S3-S4: [21,24]
S4-S5: [10,11] S4-S6: [15,17]

Table 6 Activity Constraint Bounds of Instance 2. *If a line goes through a transit station but
does not stop at the station, the dwell activity constraint bounds are [0,0].

Activity constraint bounds
Headway: [5,55] Transfer: [5,64] Dwell*: [2,3]

Drive S1-S2(ℓ1): [21,24] S2-S3(ℓ1): [21,24]
S1-S2(ℓ2): [16,18] S2-S3(ℓ2): [16,18]

Table 7 Activity Constraint Bounds of Instance 3. *If a line goes through a transit station but
does not stop at the station, the dwell activity constraint bounds are [0,0].

Activity constraint bounds
Headway: [5,55] Transfer: [5,64] Dwell: [2,3]

Drive S1-S2: [10,11] S2-S3: [11,13] S3-S4: [2,3]
S4-S5: [5,6] S3-S6: [20,22] S3-S7 [31,35]
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D.2 Origin-Destination Matrices
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(e) OD(1) for Instance 3.
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(f) OD(0.1) for Instance 3.
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(g) OD(10) for Instance 3.

Figure 5 OD-Matrices used for experiments.
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