
23rd Symposium on Algorithmic
Approaches for Transportation
Modelling, Optimization, and
Systems

ATMOS 2023, September 7–8, 2023,
Amsterdam, The Netherlands

Edited by

Daniele Frigioni
Philine Schiewe

OASIcs – Vo l . 115 – ATMOS 2023 www.dagstuh l .de/oas i c s

Editors

Daniele Frigioni
University of L’Aquila, Italy
daniele.frigioni@univaq.it

Philine Schiewe
Aalto University, Finland
philine.schiewe@aalto.fi

ACM Classification 2012
Theory of computation → Design and analysis of algorithms; Mathematics of computing → Discrete
mathematics; Mathematics of computing → Combinatorics; Mathematics of computing → Mathematical
optimization; Mathematics of computing → Graph theory; Applied computing → Transportation

ISBN 978-3-95977-302-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-302-7.

Publication date
September, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2023.0

ISBN 978-3-95977-302-7 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0002-2180-8813
mailto:daniele.frigioni@univaq.it
https://orcid.org/0000-0002-4223-3246
mailto:philine.schiewe@aalto.fi
https://www.dagstuhl.de/dagpub/978-3-95977-302-7
https://www.dagstuhl.de/dagpub/978-3-95977-302-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.ATMOS.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-302-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

ATMOS 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Daniele Frigioni and Philine Schiewe . 0:vii–0:viii

Committees
. 0:ix–0:x

Authors
. 0:xi–0:xii

Papers

Optimal Bicycle Routes with Few Signal Stops
Ekkehard Köhler, Markus Rogge, Robert Scheffler, and Martin Strehler 1:1–1:14

Using Light Spanning Graphs for Passenger Assignment in Public Transport
Irene Heinrich, Olli Herrala, Philine Schiewe, and Topias Terho 2:1–2:16

Convergence Properties of Newton’s Method for Globally Optimal Free Flight
Trajectory Optimization

Ralf Borndörfer, Fabian Danecker, and Martin Weiser . 3:1–3:6

Non-Pool-Based Line Planning on Graphs of Bounded Treewidth
Irene Heinrich, Philine Schiewe, and Constantin Seebach . 4:1–4:19

Integrating Line Planning for Construction Sites into Periodic Timetabling via
Track Choice

Berenike Masing, Niels Lindner, and Christian Liebchen . 5:1–5:15

A Symbolic Design Method for ETCS Hybrid Level 3 at Different Degrees of
Accuracy

Stefan Engels, Tom Peham, and Robert Wille . 6:1–6:17

Periodic Timetabling with Cyclic Order Constraints
Enrico Bortoletto, Niels Lindner, and Berenike Masing . 7:1–7:18

Fewer Trains for Better Timetables: The Price of Fixed Line Frequencies in the
Passenger-Oriented Timetabling Problem

Pedro José Correia Duarte, Marie Schmidt, Dennis Huisman, and
Lucas P. Veelenturf . 8:1–8:18

Recoverable Robust Periodic Timetabling
Vera Grafe and Anita Schöbel . 9:1–9:16

Submodularity Property for Facility Locations of Dynamic Flow Networks
Peerawit Suriya, Vorapong Suppakitpaisarn, Supanut Chaidee, and
Phapaengmueng Sukkasem . 10:1–10:13

Spillback Changes the Long-Term Behavior of Dynamic Equilibria in Fluid
Queuing Networks

Theresa Ziemke, Leon Sering, and Kai Nagel . 11:1–11:14
23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:vi Contents

A Faster Algorithm for Recognizing Directed Graphs Invulnerable to Braess’s
Paradox

Akira Matsubayashi and Yushi Saito . 12:1–12:19

Assignment Based Resource Constrained Path Generation for Railway Rolling
Stock Optimization

Boris Grimm, Ralf Borndörfer, and Julian Bushe . 13:1–13:15

Scheduling Electric Buses with Stochastic Driving Times
Philip de Bruin, Marjan van den Akker, Han Hoogeveen, and
Marcel van Kooten Niekerk . 14:1–14:19

Non-Linear Charge Functions for Electric Vehicle Scheduling with Dynamic
Recharge Rates

Fabian Löbel, Ralf Borndörfer, and Steffen Weider . 15:1–15:6

Subproblem Separation in Logic-Based Benders’ Decomposition for the Vehicle
Routing Problem with Local Congestion

Aigerim Saken and Stephen J. Maher . 16:1–16:12

Optimizing Fairness over Time with Homogeneous Workers
Bart van Rossum, Rui Chen, and Andrea Lodi . 17:1–17:6

Simple Policies for Capacitated Resupply Problems
Mette Wagenvoort, Martijn van Ee, Paul Bouman, and Kerry M. Malone 18:1–18:6

Preface

Running and optimizing constantly evolving transportation systems requires careful math-
ematical modelling and gives rise to new, complex, and large-scale optimization problems.
Tackling such problems requires, from a computational viewpoint, the definition of innovative,
scalable solution techniques and the continuous search for new ideas from mathematical
optimization, theoretical computer science, algorithmics, and operations research. Since the
2000s, the series of Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS) symposia represents a well established series of meetings that brings
together researchers and practitioners who are interested in all aspects of algorithmic meth-
ods and models for transportation optimization, providing a forum for the exchange and
dissemination of new ideas and techniques to handle all modes of transportation.

The 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimiz-
ation, and Systems (ATMOS 2023) has been held, as usual, as part of ALGO 2023, the major
annual European event for researchers, students and practitioners in algorithms, hosted by the
Centrum Wiskunde & Informatica (CWI) in Amsterdam, the Netherlands, on September 7-8,
2023. Topics of interest were all optimization problems, models and algorithmic techniques
related to transportation systems including, but not limited to, congestion modelling and re-
duction, crew and duty scheduling, demand forecasting, delay management, design of pricing
systems, electromobility, infrastructure planning, intelligent transportation systems, models
for user behaviour, line planning, mobile applications for transport, mobility-as-a-service,
multi-modal transport optimization, routing, platform assignment, route planning in road
and public transit networks, rostering, timetable generation, tourist tour planning, traffic
guidance, and vehicle scheduling. Of particular interest were papers applying and advancing
the following techniques: algorithmic game theory, algorithm engineering, approximation
algorithms, combinatorial optimization, graph and network algorithms, heuristics and me-
taheuristics, mathematical programming, methods for the integration of planning stages,
online algorithms, simulation tools, stochastic and robust optimization.

We received in total thirty six submissions from all over the world, twenty six of them
being regular submissions, the other ten being short submissions. All manuscripts were
reviewed by at least three PC members, and evaluated on originality, technical quality, and
relevance to the topics of the symposium. Based on the reviews, the program committee
selected eighteen submissions (fourteen regular papers, and four short papers) to be presented
at the symposium, which are collected in this volume in the same order they are presented
at the symposium. Together, they quite remarkably demonstrate the wide applicability
of algorithmic optimization to transportation problems. In addition, Christos Zaroliagis
(University of Patras and Computer Technology Institute, Patras, Greece) kindly agreed
to complement the program with an invited talk titled “Time-Dependent Route Planning:
Theory & Practice” that was presented as a keynote talk of ALGO 2023.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS 2023, all the authors who submitted
papers, the members of the Program Committee and the additional reviewers for their
valuable work in selecting the papers appearing in this volume, Christos Zaroliagis for
accepting our invitation to present an invited talk, as well as Solon Pissis (Chair of the
ALGO 2023 Organizing Committee) and his team at CWI for hosting the symposium as

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:viii Preface

part of ALGO 2023. We also acknowledge the use of the EasyChair system for the great
help in managing the submission and review processes, and Schloss Dagstuhl for publishing
the proceedings of ATMOS 2023 in its OASIcs series.

Finally, we are pleased to announce that, based on the program committee’s reviews and
decisions, authors Akira Matsubayashi and Yushi Saito have been awarded this year’s “Best
Paper Award of ATMOS 2023” with their paper titled “A Faster Algorithm for Recognizing
Directed Graphs Invulnerable to Braess’s Paradox”.

August 2023

Daniele Frigioni and Philine Schiewe

Committees

Program committee chairs

Daniele Frigioni, University of L’Aquila, Italy
Philine Schiewe, Aalto University, Finland

Program committee members

Valentina Cacchiani, University of Bologna, Italy
David Coudert, INRIA and Université Coté d’Azur, France
Gianlorenzo D’Angelo, Gran Sasso Science Institute, Italy
Twan Dollevoet, Erasmus University Rotterdam, the Netherlands
Stefan Funke, Universität Stuttgart, Germany
Marc Goerigk, University of Passau, Germany
Dennis Huisman, Erasmus University Rotterdam and Netherlands Railways, the
Netherlands
Giuseppe F. Italiano, Luiss Guido Carli University of Rome, Italy
Spyros Kontogiannis, University of Patras, Greece
Jesper Larsen, DTU Copenhagen, Denmark
Christian Liebchen, TH Wildau, Germany
Rolf van Lieshout, Eindhoven University of Technology, the Netherlands
Niels Lindner, Freie Universität Berlin, Germany
Henning Meyerhenke, Humboldt-Universität zu Berlin, Germany
Matthias Müller-Hannemann, MLU Halle-Wittenberg, Germany
Sabine Storandt, University of Konstanz, Germany

Steering committee

Alberto Marchetti-Spaccamela, Sapienza University of Rome, Italy
Marie Schmidt, Universität Würzburg, Germany
Anita Schöbel, RPTU Kaiserslautern and Fraunhofer ITWM, Germany
Christos Zaroliagis, University of Patras and Computer Technology Institute, Patras,
Greece (Chair)

Organizing committee

Estéban Gabory, CWI
Nada Mitrovic, CWI
Solon Pissis, CWI & Computer Science, Vrije Universiteit (Chair)
Leen Stougie, CWI & Operations Analytics, SBE, Vrije Universiteit
Michelle Sweering, CWI
Wiktor Zuba, CWI

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:x Committees

List of subreviewers

Thomas Breugem
Serafino Cicerone
Mattia D’Emidio
Pirmin Fontaine
Vera Grafe
Manas Jyoti Kashyop
Stefano Leucci
Ivano Salvo

List of Authors

Ralf Borndörfer (3, 13, 15)
Zuse Institute Berlin, Germany; Free University
of Berlin, Germany

Enrico Bortoletto (7)
Zuse Institute Berlin, Germany

Paul Bouman (18)
Econometric Institute, Erasmus University
Rotterdam, The Netherlands

Julian Bushe (13)
Zuse Institute Berlin, Germany

Supanut Chaidee (10)
Department of Mathematics, Faculty of Science,
Chiang Mai University, Thailand

Rui Chen (17)
Cornell Tech, New York City, NY, USA

Pedro José Correia Duarte (8)
Econometric Institute, Erasmus Center for
Optimization in Public Transport (ECOPT),
Erasmus University Rotterdam, The
Netherlands

Fabian Danecker (3)
Zuse Institute Berlin, Germany

Philip de Bruin (14)
Department of Information and Computing
Sciences, Utrecht University, The Netherlands

Stefan Engels (6)
Chair for Design Automation, Technical
University of Munich, Germany

Vera Grafe (9)
RPTU Kaiserslautern-Landau, Kaiserslautern,
Germany

Boris Grimm (13)
Freie Universtät Berlin, Germany; Zuse Institute
Berlin, Germany

Irene Heinrich (2, 4)
Department of Mathematics, TU Darmstadt,
Germany

Olli Herrala (2)
Systems Analysis Laboratory, Aalto University,
Espoo, Finland

Han Hoogeveen (14)
Department of Information and Computing
Sciences, Utrecht University, The Netherlands

Dennis Huisman (8)
Econometric Institute, Erasmus Center for
Optimization in Public Transport (ECOPT),
Erasmus University Rotterdam, The
Netherlands; Process quality and Innovation,
Netherlands Railways, Utrecht, The Netherlands

Ekkehard Köhler (1)
Institute of Mathematics, Brandenburg
University of Technology, Cottbus, Germany

Christian Liebchen (5)
Technical University of Applied Sciences Wildau,
Germany

Niels Lindner (5, 7)
Freie Universität Berlin, Germany

Andrea Lodi (17)
Cornell Tech, New York City, NY, USA

Fabian Löbel (15)
Zuse Institute Berlin, Germany

Stephen J. Maher (16)
Quantagonia GmbH, Bad Homburg, Germany

Kerry M. Malone (18)
Military Operations, TNO, The Hague, The
Netherlands

Berenike Masing (5, 7)
Zuse Institute Berlin, Germany

Akira Matsubayashi (12)
Division of Electrical Engineering and Computer
Science, Kanazawa University, Japan

Kai Nagel (11)
Transport Systems Planning and Transport
Telematics, Technische Universität Berlin,
Germany

Tom Peham (6)
Chair for Design Automation, Technical
University of Munich, Germany

Markus Rogge (1)
Institute of Mathematics, Brandenburg
University of Technology, Cottbus, Germany

Yushi Saito (12)
Division of Electrical Engineering and Computer
Science, Kanazawa University, Japan

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7223-9174
https://doi.org/10.4230/OASIcs.ATMOS.2023.3
https://doi.org/10.4230/OASIcs.ATMOS.2023.13
https://doi.org/10.4230/OASIcs.ATMOS.2023.15
https://orcid.org/0000-0002-2869-6498
https://doi.org/10.4230/OASIcs.ATMOS.2023.7
https://orcid.org/0000-0003-4893-4083
https://doi.org/10.4230/OASIcs.ATMOS.2023.18
https://doi.org/10.4230/OASIcs.ATMOS.2023.13
https://orcid.org/0000-0002-2314-1397
https://doi.org/10.4230/OASIcs.ATMOS.2023.10
https://doi.org/10.4230/OASIcs.ATMOS.2023.17
https://orcid.org/0000-0002-0171-6719
https://doi.org/10.4230/OASIcs.ATMOS.2023.8
https://orcid.org/0000-0002-8953-808X
https://doi.org/10.4230/OASIcs.ATMOS.2023.3
https://orcid.org/0000-0002-1981-0527
https://doi.org/10.4230/OASIcs.ATMOS.2023.14
https://orcid.org/0000-0002-0844-586X
https://doi.org/10.4230/OASIcs.ATMOS.2023.6
https://orcid.org/0009-0006-2026-0178
https://doi.org/10.4230/OASIcs.ATMOS.2023.9
https://doi.org/10.4230/OASIcs.ATMOS.2023.13
https://orcid.org/0000-0001-9191-1712
https://doi.org/10.4230/OASIcs.ATMOS.2023.2
https://doi.org/10.4230/OASIcs.ATMOS.2023.4
https://orcid.org/0000-0003-4819-2534
https://doi.org/10.4230/OASIcs.ATMOS.2023.2
https://orcid.org/0000-0001-8544-8848
https://doi.org/10.4230/OASIcs.ATMOS.2023.14
https://orcid.org/0000-0001-9114-658X
https://doi.org/10.4230/OASIcs.ATMOS.2023.8
https://doi.org/10.4230/OASIcs.ATMOS.2023.1
https://orcid.org/0000-0002-4311-2024
https://doi.org/10.4230/OASIcs.ATMOS.2023.5
https://orcid.org/0000-0002-8337-4387
https://doi.org/10.4230/OASIcs.ATMOS.2023.5
https://doi.org/10.4230/OASIcs.ATMOS.2023.7
https://doi.org/10.4230/OASIcs.ATMOS.2023.17
https://orcid.org/0000-0001-5433-184X
https://doi.org/10.4230/OASIcs.ATMOS.2023.15
https://orcid.org/0000-0003-3773-6882
https://doi.org/10.4230/OASIcs.ATMOS.2023.16
https://orcid.org/0000-0003-1694-8966
https://doi.org/10.4230/OASIcs.ATMOS.2023.18
https://orcid.org/0000-0001-7201-2412
https://doi.org/10.4230/OASIcs.ATMOS.2023.5
https://doi.org/10.4230/OASIcs.ATMOS.2023.7
https://orcid.org/0000-0002-7861-4876
https://doi.org/10.4230/OASIcs.ATMOS.2023.12
https://orcid.org/0000-0003-2775-6898
https://doi.org/10.4230/OASIcs.ATMOS.2023.11
https://orcid.org/0000-0003-3434-7881
https://doi.org/10.4230/OASIcs.ATMOS.2023.6
https://doi.org/10.4230/OASIcs.ATMOS.2023.1
https://doi.org/10.4230/OASIcs.ATMOS.2023.12
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xii Authors

Aigerim Saken (16)
Department of Mathematics, University of
Exeter, United Kingdom

Robert Scheffler (1)
Institute of Mathematics, Brandenburg
University of Technology, Cottbus, Germany

Philine Schiewe (2, 4)
Systems Analysis Laboratory, Aalto University,
Espoo, Finland

Marie Schmidt (8)
Institute of Computer Science, Faculty of
Mathematics and Computer Science, Universität
Würzburg, Germany

Anita Schöbel (9)
RPTU Kaiserslautern-Landau, Kaiserslautern,
Germany; Fraunhofer-Institute for Industrial
Mathematics ITWM, Kaiserslautern, Germany

Constantin Seebach (4)
RPTU Kaiserslautern-Landau, Kaiserslautern,
Germany

Leon Sering (11)
Institute for Operations Research, ETH Zürich,
Switzerland

Martin Strehler (1)
Department of Mathematics, Westsächsische
Hochschule Zwickau, Germany

Phapaengmueng Sukkasem (10)
Department of Mathematics, Faculty of Science,
Chiang Mai University, Thailand

Vorapong Suppakitpaisarn (10)
Graduate School of Information Science and
Technology, The University of Tokyo, Japan

Peerawit Suriya (10)
Department of Mathematics, Faculty of Science,
Chiang Mai University, Thailand

Topias Terho (2)
Systems Analysis Laboratory, Aalto University,
Espoo, Finland

Marjan van den Akker (14)
Department of Information and Computing
Sciences, Utrecht University, The Netherlands

Martijn van Ee (18)
Faculty of Military Sciences, Netherlands
Defence Academy, Den Helder, The Netherlands

Marcel van Kooten Niekerk (14)
Department of Information and Computing
Sciences, Utrecht University, The Netherlands;
Qbuzz BV, The Netherlands

Bart van Rossum (17)
Econometric Institute, Erasmus University
Rotterdam, The Netherlands

Lucas P. Veelenturf (8)
Department of Technology and Operations
Management, Rotterdam School of Management,
Erasmus University, Rotterdam, The
Netherlands

Mette Wagenvoort (18)
Econometric Institute, Erasmus University
Rotterdam, The Netherlands

Steffen Weider (15)
LBW Optimization GmbH, Berlin, Germany

Martin Weiser (3)
Zuse Institute Berlin, Germany

Robert Wille (6)
Chair for Design Automation, Technical
University of Munich, Germany; Software
Competence Center Hagenberg GmbH (SCCH),
Austria

Theresa Ziemke (11)
Combinatorial Optimization and Graph
Algorithms, Technische Universität Berlin,
Germany; Transport Systems Planning and
Transport Telematics, Technische Universität
Berlin, Germany

https://orcid.org/0000-0003-0032-2782
https://doi.org/10.4230/OASIcs.ATMOS.2023.16
https://orcid.org/0000-0001-6007-4202
https://doi.org/10.4230/OASIcs.ATMOS.2023.1
https://orcid.org/0000-0002-4223-3246
https://doi.org/10.4230/OASIcs.ATMOS.2023.2
https://doi.org/10.4230/OASIcs.ATMOS.2023.4
https://orcid.org/0000-0001-9563-9955
https://doi.org/10.4230/OASIcs.ATMOS.2023.8
https://orcid.org/0000-0002-9306-5529
https://doi.org/10.4230/OASIcs.ATMOS.2023.9
https://orcid.org/0000-0001-6242-0279
https://doi.org/10.4230/OASIcs.ATMOS.2023.4
https://orcid.org/0000-0003-2953-1115
https://doi.org/10.4230/OASIcs.ATMOS.2023.11
https://orcid.org/0000-0003-4241-6584
https://doi.org/10.4230/OASIcs.ATMOS.2023.1
https://doi.org/10.4230/OASIcs.ATMOS.2023.10
https://orcid.org/0000-0002-7020-395X
https://doi.org/10.4230/OASIcs.ATMOS.2023.10
https://doi.org/10.4230/OASIcs.ATMOS.2023.10
https://orcid.org/0009-0001-0256-143X
https://doi.org/10.4230/OASIcs.ATMOS.2023.2
https://orcid.org/0000-0002-7114-0655
https://doi.org/10.4230/OASIcs.ATMOS.2023.14
https://orcid.org/0000-0002-7724-8990
https://doi.org/10.4230/OASIcs.ATMOS.2023.18
https://doi.org/10.4230/OASIcs.ATMOS.2023.14
https://doi.org/10.4230/OASIcs.ATMOS.2023.17
https://orcid.org/0000-0001-6648-3015
https://doi.org/10.4230/OASIcs.ATMOS.2023.8
https://orcid.org/0000-0001-6928-4978
https://doi.org/10.4230/OASIcs.ATMOS.2023.18
https://doi.org/10.4230/OASIcs.ATMOS.2023.15
https://orcid.org/0000-0002-1071-0044
https://doi.org/10.4230/OASIcs.ATMOS.2023.3
https://orcid.org/0000-0002-4993-7860
https://doi.org/10.4230/OASIcs.ATMOS.2023.6
https://orcid.org/0000-0001-8812-9041
https://doi.org/10.4230/OASIcs.ATMOS.2023.11

Optimal Bicycle Routes with Few Signal Stops
Ekkehard Köhler #

Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany

Markus Rogge
Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany

Robert Scheffler #

Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany

Martin Strehler #

Department of Mathematics, Westsächsische Hochschule Zwickau, Germany

Abstract
With the increasing popularity of cycling as a mode of transportation, there is a growing need for
efficient routing algorithms that consider the specific requirements of cyclists. This paper studies the
optimization of bicycle routes while minimizing the number of stops at traffic signals. In particular,
we consider three different types of stopping strategies and three types of routes, namely paths,
trails, and walks. We present hardness results as well as a pseudo-polynomial algorithm for the
problem of computing an optimal route with respect to a pre-defined stop bound.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Paths and connectivity problems; Applied computing → Transportation

Keywords and phrases Constrained shortest path, traffic signals, bicycle routes

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.1

1 Motivation

Cities around the world are increasingly recognizing the importance of promoting sustainable
and efficient transportation options, including bicycle traffic. Cycling has been shown to
have numerous health and ecological benefits, including reducing air pollution, increasing
physical activity, and reducing greenhouse gas emissions. Consequently, there has been a
growing interest in exploring alternative approaches to optimize bicycle traffic in cities and
many factors such as traffic volume, road surface quality, and the availability of bike lanes
can help making cycling a more efficient and enjoyable mode of transportation.

Research has shown that the travel time and the length of the route are not the only
factors that influence the route choice of cyclists. Other factors such as the number of
stops are also crucial in determining the attractiveness of a given route. Often, cyclists
prefer routes with fewer stops and more opportunities for continuous movement [15], because
frequent stops and starts can be physically demanding, reduce overall speed, and increase
the likelihood of accidents.

To reduce the number of stops for cyclists, there are two main options. The first option is
to optimize traffic signals to create a more efficient flow of bicycle traffic. The second option
is to offer cyclist-dependent routes that are specifically designed to match the speed of the
cyclists and which, using information about the signal coordination, arrive at green traffic
lights most of the time.

Implementing the first of these two options can be very challenging compared to optimizing
traffic lights for cars. Motorized vehicles generally operate within a narrow speed range and
tend to form platoons, which can be exploited in signal coordination [8, 9] and is used in signal
control systems, such as TRANSYT [12] or SCOOT [6]. In contrast, cyclists’ speeds can vary

© Ekkehard Köhler, Markus Rogge, Robert Scheffler, and Martin Strehler;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 1; pp. 1:1–1:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ekkehard.koehler@b-tu.de
mailto:robert.scheffler@b-tu.de
https://orcid.org/0000-0001-6007-4202
mailto:martin.strehler@fh-zwickau.de
https://orcid.org/0000-0003-4241-6584
https://doi.org/10.4230/OASIcs.ATMOS.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Optimal Bicycle Routes with Few Signal Stops

by a factor of three or more and cyclists are much less likely to form platoons [18]. Especially
when optimizing coordination for both bicycles and cars simultaneously, this causes similar
difficulties as, for example, the integration of public transit priority into coordination [14].

In contrast, offering a route optimized for cyclists, along with real-time traffic updates and
available through a smartphone application, can significantly enhance the cycling experience
and encourage more people to consider cycling as a mode of transportation. Consequently,
here we will study the underlying algorithmic problems of finding routes with few stops.

Related Literature. The problem of finding shortest routes with few stops has similarities
to dynamic shortest paths with time-dependent travel times, to shortest paths with time
windows, as well as to constrained shortest paths.

Time-dependent travel times are often used in traffic literature to model the influence of
slow-moving traffic and congestion. In particular, the first in-first out property (FIFO) must
be taken into account. FIFO means that later entry into an edge also means later arrival at
the end of an edge, so overtaking is not possible.

If FIFO holds, a shortest path can be found with Dijkstra-like approaches [3]. In non-
FIFO settings, Orda and Rom [10] observed that there may not even exist a finite solution,
i.e., a route with finitely many links, if waiting at vertices is not allowed. Recently, Zeitz [19]
elaborated these results by showing that this problem is strongly NP-hard even for piecewise
linear delay functions represented by a sequence of breakpoints with integer coordinates.
However, waiting in this context always means voluntary waiting to profit from a better
transit time in the future, whereas mandatory waiting, e.g, at red signals, is directly included
in the travel time function.

A generalized version with separate delay and cost functions including costs for waiting
was investigated by Orda and Rom [11]. The authors show that a suitable choice of these
functions leads to the situation that no finite optimal solution exists, but they also discuss
various conditions that guarantee the existence of finite solutions.

Traffic signals induce a special kind of delay, where FIFO usually holds. Consequently,
in a network with periodic traffic signals, shortest paths with respect to travel time can be
found in polynomial time as was shown by Ahuja et al. [1]. In the same paper, the authors
also consider minimum cost paths, in particular, they use penalties to give more weight to
waiting. Here, the problem of finding a minimum cost path becomes NP-hard in general.

Another application of routing with periodic time windows was investigated by Kleff et
al. [7]. These authors compute the set of Pareto-optimal solutions for the route planning
problem with temporary driving bans, like driving bans on trucks on Sundays, and rated
parking areas, i.e., different locations cause different costs for waiting.

In our approach, we are going to count stops separately, that is, stops can be seen as a
bounded resource. Such constrained shortest paths are weakly NP-complete in general, see,
e.g., [5]. However, we use a rather special resource consumption function here which only
applies during periodic time intervals. We will see that this may cause the optimal route
to contain cycles. Similar effects can be observed in energy-efficient routing with variable
resource constraints [17].

Our Contribution. In this paper, we study the routing with periodic time windows induced
by traffic signals for different route types (namely paths, walks, and trails), different cyclist
types with respect to waiting behavior, and for bounded or unlimited number of stops,
respectively. In Section 2, we present the notation and basic properties. Complexity results
are discussed in Section 3 and algorithmic results are presented in Section 4. Note that some
results of this paper are based on the Master’s thesis of Markus Rogge [13].

E. Köhler, M. Rogge, R. Scheffler, and M. Strehler 1:3

2 Basic Model and Properties

In this section, we will fix the notation, introduce the model, and show some of its basic
properties.

2.1 Basic Model
We start with an underlying graph with vertex set V and edge set E that is supposed to
represent our road network. Without loss of generality, we use directed edges here, since every
bidirectional road can be modeled by a forward and a backward arc. Each edge also has an
integral transit time which is given by the function τ : E → N0. Furthermore, for a realistic
modeling of practical instances, we use expanded intersections. That is, an intersection is not
only represented by a single vertex, but there are vertices for each entry and exit, as well as
arcs for each permissible turning direction. A “standard” intersection is shown in Figure 1.

Figure 1 Standard approach of handling different turning directions at a single intersection with
separate arcs. Here, two roads are crossing each other. Thus, there are four entry points and four
exit points at the intersection. If, for example, left turning is not allowed, then the corresponding
arcs can be deleted.

Some edges E′ ⊆ E of our road network are equipped with traffic signals. Usually, these
should be interior edges of the expanded intersections (see Figure 1). To keep it simple, we
assume that all traffic signals follow a periodic switching regime with a common cycle time
and that all signals have exactly one green phase and one red phase per cycle1. Taking all
these parts together, this yields a signalized network.

▶ Definition 1. A signalized network N = (V, E, E′, T, τ, γ, λ) consists of
a vertex set V ,
a set of directed edges E,
a subset E′ ⊆ E of edges with signals,
a common cycle time T ∈ N = {1, 2, 3, . . . },
a transit time function τ : E → N0 = {0, 1, 2, . . . },
a function γ : E′ → {0, . . . , T − 1} describing the start time of a green phase, and
a function λ : E′ → {1, . . . , T − 1} describing the length of the green phase.

1 More sophisticated settings can also be modelled with these assumptions. If there is no common cycle
time, then one could consider the least common multiple of all cycle times. Several green phases within
one cycle can be modelled via parallel arcs where every of those arcs represents one of the green phases.

ATMOS 2023

1:4 Optimal Bicycle Routes with Few Signal Stops

When moving through the network, a red traffic light on edge e ∈ E′ keeps us from
entering this edge. To determine whether a signal is red or green at a given point in time,
we define the function green : E′ × N0 → {0, 1} that returns 1 if and only if the traffic light
of the given edge is green at the given time step. More precisely, green is defined as follows:

green(e, t) =
{

1, if kT + γ(e) ≤ t < kT + γ(e) + λ(e) for some k ∈ N0

0, otherwise

Note that the function green is periodic in the argument t with period length T .
Now, we are looking for a route for a cyclist starting at an origin vertex s ∈ V , ending

in a destination vertex d ∈ V . In general, we would like to allow to visit vertices or edges
more than once. Therefore, we distinguish walks, trails, and paths. A walk is an ordered
list P = (v0, e1, v1, . . . , ek, vk) of vertices and edges such that for any i ∈ {1, . . . , k} edge
ei = (vi−1, vi). A trail is a walk where every edge is present at most once. A path is a trail
where every vertex is present at most once.

In difference to the “normal” shortest path problem, in our setting it is possible to wait
at certain vertices. Therefore, we need the following extension of the definitions of walks,
trails, and paths. A timed walk (trail, path) P = (P, π) consists of a walk (trail, path)
P = (v0, e1, . . . , ek, vk) and a time function π that assigns to every edge ei of P an entering
time from N0 such that the following conditions hold:

for every edge ei it holds that π(ei) ≥ π(ei−1) + τ(ei−1) and
for every edge ei ∈ E′ it holds that green(ei, π(ei)) = 1.

The first condition ensures that an edge is not entered before the previous edge has been
traversed. Nevertheless, waiting is possible here. The second condition ensures that the
cyclists only enter signalized edges if the traffic signal is green. Note that edges can appear
more than once in P if P is not a trail. Every appearance of an edge is treated separately
and is assigned its own π-value.

We always start at time t = 0. The arrival time α(P) of a timed walk (trail, path)
P = (P, π) is the time when the cyclist arrives at the last vertex of P , i.e., if ek is the last
edge of P , then α(P) = π(ek) + τ(ek).

We are especially interested in the number of stops on our timed path P . A stop on edge
ei of P occurs if either i = 1 and π(ei) > 0 or i > 1 and π(ei) > π(ei−1) + τ(ei−1). This in
particular means that we count waiting on the first edge as a stop no matter whether there is
a red light or not. We define σ(P) as the number of stops of the timed walk (trail, path) P .

Moreover, we consider three different types of cyclists:
Impatient cyclists do not stop at green signals. When waiting at a red signal, they start
as soon as the signal turns green.
Predictive cyclists also do not stop at green signals, but they are allowed to wait at a
green light if they arrived there during the red phase.
Relaxed cyclists are allowed to stop wherever they want. In particular, they are allowed
to stop at green signals and on edges E \ E′.

Figure 2 visualizes the differences of the three cyclist types. Note that in reality most
cyclists will behave like the impatient cyclists. However, we will show later (Lemma 5) that
predictive cyclists have an advantage over impatient cyclists in certain situations. On the
other hand, relaxed cyclists will not perform better than predictive cyclists.

We will study two different routing problems in this paper.

E. Köhler, M. Rogge, R. Scheffler, and M. Strehler 1:5

s v1 v2 v3 v4 v5 d

t

Figure 2 Time-space diagram of the three cyclist types impatient (dashed), predictive (solid),
and relaxed (dotted). The impatient cyclist has to endure three stops. The predictive cyclist waits
extra time at the first stop at the fourth traffic signal on edge (v3, v4) so that the destination can be
reached without another stop. The relaxed cyclist is already waiting at a green traffic signal.

▶ Problem 1 (Quickest path (trail, walk)).
Input: A signalized network N = (V, E, E′, T, τ, γ, λ), source s ∈ V , destination d ∈ V .
Task: Compute a timed path (trail, walk) P starting in s and ending in d such that the

arrival time α(P) is minimal.

▶ Problem 2 (Quickest path (trail, walk) with few stops).
Input: A signalized network N = (V, E, E′, T, τ, γ, λ), source s ∈ V , destination d ∈ V , stop

bound K ∈ N0.
Task: Compute a timed path (trail, walk) P starting in s and ending in d with σ(P) ≤ K

such that the arrival time α(P) is minimal.

For both problems, we have to consider three types of routes and three types of cyclists,
which initially results in 18 different problems that have to be studied.

2.2 Basic Properties
We continue this section with discussing some basic properties of the model. First, we present
an example to justify the consideration of trails and walks.

▶ Example 2. Consider the network in Figure 3. All edges have transit time τ ≡ 1. There
is a single traffic signal at edge e′ = (v, d). For a suitable choice of parameters, it can be
advantageous to travel through the cycle and to use e = (u, v) more than once. If, e.g.,
T = 20, γ(e′) = 10, and λ(e′) = 5, then the s-d-path P using the cycle three times (that is, e

is traversed four times) yields an arrival time α(P) = 12 at vertex d. This is the optimal
solution for K = 0. Yet, it is possible to arrive at d at time 11, but this implies a stop
somewhere in the network.

The classic shortest path problem fulfills subpath optimality, i.e., every subpath of an
optimal s-d-path ending in some intermediate vertex v is also an optimal s-v-path. This
crucial property is exploited by many shortest path algorithms such as Dijkstra’s algorithm.
We can use Example 2 to show that this property does not hold in our setting.

ATMOS 2023

1:6 Optimal Bicycle Routes with Few Signal Stops

s u v

w

d

Figure 3 Simple network with τ ≡ 1 for all edges and a single traffic signal on edge e′ = (v, d).
Vertex v can be reached at time t = 2, but if the signal is not green at this time, it can be
advantageous to use the cycle and, thus, edge e = (u, v) again to avoid stopping.

▶ Observation 3. There is no guaranteed subpath optimality for quickest paths (walks,
trails) with few stops. In particular, it can be advantageous to arrive later at a particular
intermediate vertex.

Proof. We again consider the network in Figure 3 and we add an edge e′′ from s to v with
τ(e′′) = 10. Although, v can be reached at time t = 2 via u, this always implies a stop or a
cycle in the route. Thus, using e′′ and arriving at v no sooner than t = 10 is the optimal
path without stopping. ◀

The previous observation implies that we have to deal with a much richer combinatorial
variety if we want to solve the problem algorithmically. However, taking a closer look at the
above mentioned 18 subproblems, we observe that some of these cases coincide.

▶ Observation 4. The time function π of a timed path (trail, walk) for the impatient cyclists
is completely determined by its edges. Contrary, every timed path (trail, walk) is feasible for
the relaxed cyclists.

The following result shows that we can always adjust a given route such that it is feasible
for predictive cyclists without increasing the number of stops or the arrival time and without
changing the used edges.

▶ Lemma 5. Let N = (V, E, E′, T, τ, γ, λ) be a signalized network and s, d ∈ V . For any
timed s-d-path (trail, walk) P = (P, π) there is a timed s-d-path (trail, walk) P ′ = (P, π′)
with α(P ′) ≤ α(P) and σ(P ′) ≤ σ(P) that is feasible for the predictive cyclist.

Proof. We construct the path P ′ using the same edges as in P , i.e., we only adjust the time
function π′ of P ′. Due to Observation 4, P is feasible for the relaxed cyclists, but there may
be stops that are not allowed for the predictive cyclists.

Let ei be the first edge where P stops, but predictive cyclists are not allowed to stop
at ei. We change the time function π′ as follows. P ′ continues directly, i.e., if i > 1, then
π′(ei) = π′(ei−1) + τ(ei−1) and if i = 1, then π′(ei) = 0. This also implies that up to this
point P ′ has fewer stops than P since the stop at ei was removed. Also at subsequent green
and non-signalized edges, P ′ does not stop according to the rule for the predictive cyclists.
Only when P ′ arrives at a red signal at edge ej , P ′ uses this stop to wait for P, that is,
π′(ej) = π(ej). This adds one more stop to P ′, but still P ′ has at most as many stops as P .
Figure 2 shows this construction for a single stop in a time-space diagram where the path P ′

of the predictive cyclist is visualized by the solid line and the path P of the relaxed cyclist is
visualized by the dotted line.

We continue with this procedure for all further occurrences of stops of P ′ that are invalid
for the predictive cyclists. In this way, P ′ arrives at the destination d not later than P and
has at most as many stops as P. ◀

E. Köhler, M. Rogge, R. Scheffler, and M. Strehler 1:7

As a consequence we can refrain from considering the relaxed cyclists separately, as for
each route of the relaxed cyclists there is a route of the predictive cyclists with equal or
better arrival time and number of stops.

▶ Lemma 6. If there is no bound on the number of stops, then the set of quickest trails/walks
for a given s-d-pair always contains a timed s-d-path that is feasible for the impatient cyclists.

Proof. We only need to discuss this claim for the impatient cyclists, since routes for the
impatient cyclists are also optimal for the predictive/relaxed cyclists if the number of stops
does not matter, as it follows directly from the definition, that the predictive and the relaxed
cyclists never overtake the impatient cyclists on the same route.

Suppose an optimal timed route P = (P, π) contains a vertex at least twice, for example
vi, vj ∈ P with vi = vj and i < j. This means there is a cycle within the route. We can
delete this cycle from the route, i.e., delete all vertices from vi+1 to vj and the corresponding
edges. To again obtain a proper timed route for the impatient cyclist, we have to adjust
the entering time of (vi, vj+1) and all subsequent edges in π. We simply choose the earliest
possible feasible time. Note that due to the optimality of the original route, there is a vertex
vk, k > j, from which the time function no longer needs to be adjusted.

Repeating this procedure iteratively for all cycles yields a feasible path for the impatient
cyclists that has the same arrival time as P. ◀

This result also implies that we can bound the maximal number of stops of a quickest
walk.

▶ Proposition 7. In a signalized network with n = |V | edges, there exists a quickest path
(trail, walk) with at most n − 1 stops.

Proof. By Lemma 6, there is a quickest path from s to d that is feasible for the impatient
cyclists and, thus, also for the predictive and the relaxed cyclists. This path contains at most
n vertices and, hence, n − 1 edges. Therefore, it also has at most n − 1 stops. ◀

In consequence, the problem of the quickest path (trail, walk) with few stops is only
interesting for K < n.

3 Hardness Results

In this section we will prove that Problem 2 is NP-hard for path, trail and walk and any type
of cyclists. To this end, we consider the following problem.

▶ Problem 3 (x-y-Hamiltonian Path).
Input: A directed graph G = (V, E), two vertices x, y ∈ V

Task: Decide whether there is a Hamiltonian path in G, i.e., a path containing all vertices
of V , that starts in x and ends in y.

This problem is NP-complete [4]. We now prove that the Quickest Path and the Quickest
Trail Problem with few stops are strongly NP-hard, i.e., there is no pseudo-polynomial
algorithm unless P = NP.

▶ Theorem 8. The Quickest Path Problem with few stops and the Quickest Trail Problem
with few stops (Problem 2) are strongly NP-hard for all three types of cyclists and every fixed
number of stops K ≥ 0.

ATMOS 2023

1:8 Optimal Bicycle Routes with Few Signal Stops

x y z0 z1 zK−1 zK

G τ = 1

γ = n − 1

τ = 1

γ = n + 1

τ = 1

γ = n + 2K − 1

· · ·

Figure 4 The construction of the proof of Theorem 8.

Proof. We start with the Quickest Path Problem. We reduce the x-y-Hamiltonian Path
Problem to that problem. Let G = (Ṽ , Ẽ) and x, y ∈ Ṽ be an instance of the x-y-Hamiltonian
Path Problem. Let n = |Ṽ | and let K ≥ 0 be an arbitrary fixed stop bound. We define
the signalized network N = (V, E, E′, T, τ, γ, λ) as follows (see Figure 4 for an illustration).
The vertex set V is equal to Ṽ ∪ {z0, . . . , zK}. The set of edges with signals E′ is equal to
{(y, z0)} ∪ {(zi, zi+1) | 0 ≤ i ≤ K − 1}. The edge set E is equal to Ẽ ∪ E′. The cycle time
T is set to n + 2K. For all edges e ∈ E we set τ(e) = 1. We set the starting time of the
green phase γ((y, z0)) = n − 1 and the green length to λ((y, z0)) = 1. Furthermore, we set
γ((zi, zi+1)) = n + 2i + 1 and λ((zi, zi+1)) = 1 for all i ∈ {0, . . . , K − 1}.

We claim that there is a timed path P starting in x and ending in zK with no more
than K stops and an arrival time less than or equal to n + 2K if and only if there is an
Hamiltonian path from x to y in G.

First assume that we have a Hamiltonian path from x to y in G. Following this path in
N , the cyclists arrive at y without any stop at time step n − 1. Since γ((y, z0)) = n − 1,
they can enter edge (y, z0) without any stop and arrive at z0 at time step n. Since the green
phase of the edge (z0, z1) starts at time step n + 1, the cyclists have to stop at z0 and arrive
at z1 at time step n + 2. Repeating this for all i, we see that the cyclists always arrive at zi

at time step n + 2i and have to wait one time step for green. Thus, finally the cyclists arrive
at zK at time step n + 2K having stopped exactly K times.

Now assume that there is a timed path P = (P, π) in N starting in x and ending in zK

with no more than K stops and an arrival time less than or equal to n + 2K. This path
has to enter the edge (y, z0) at time step n − 1 at the latest since otherwise the next green
phase will start only in the next time frame at time step 2n + 2K − 1. Note that before time
step n − 1, the edge (y, z0) is not green. Hence, the entering time π((y, z0)) is exactly n − 1.
Using the same arguments as above, we see that the cyclists have to stop at every vertex zi

with 0 ≤ i < K. Hence, the cyclists do not stop at any vertex before z0. This implies that
the subpath of P between x and y must contain n − 1 edges and, thus, this subpath forms a
Hamiltonian path of G between x and y.

We now reduce the Quickest Path Problem with few stops to the Quickest Trail Problem
with few stops. To this end, we replace every vertex v in the network N by two vertices vin

and vout. All incoming edges of v in N now ends in vin and all outgoing edges start now
in vout. Furthermore, we add the edge (vin, vout) with transit time 0. We call the resulting
network N ′. It is easy to observe that there is a one-to-one mapping from the timed paths in
the original network to timed paths in N ′ with the same arrival time and the same number
of stops. Furthermore, every trail in N ′ is a path. Therefore, solving the Quickest Trail
Problem with few stops on N ′ solves the Quickest Path Problem with few stops on N .2

2 Note that one can also prove the hardness of the Quickest Trail Problem if one forbids edges with transit
time 0. The idea is to prove that the x-y-Hamiltonian Path Problem stays NP-hard even if the input is
a directed graph that was created by replacing every vertex v by two vertices vin and vout as described
above.

E. Köhler, M. Rogge, R. Scheffler, and M. Strehler 1:9

v0 v1 v2 vn−1 vn z0 z1 zK−1 zK

τ = a1

τ = 0

τ = a2

τ = 0

· · ·

· · ·
· · ·

τ = an

τ = 0

τ = 1

γ = S

τ = 1

γ = S + 2

· · ·

τ = 1

γ = S + 2K − 2

Figure 5 The construction of the proof of Theorem 9.

Note that in both proofs the size of the used integers is polynomial in n (since K is a
fixed constant). Therefore, any pseudo-polynomial algorithm for the Quickest Path (Trail)
Problem would be polynomial in n on the constructed instances and, thus, both problems
are strongly NP-hard. ◀

The idea of the proof of Theorem 8 does not work for walks since one cannot prevent
that cycles are used to achieve the correct arrival time at the first traffic light. Nevertheless,
we can show that the Quickest Walk Problem with few steps is NP-hard using the following
well-known NP-hard problem.

▶ Problem 4 (Partition).
Input: A set A = {a1, . . . , an} ⊊ N.
Task: Decide whether there is a subset A′ ⊆ A such that

∑
ai∈A′ ai = 1

2
∑

ai∈A ai.

Note that the Partition problem is known to be weakly NP-hard, i.e., there is a pseudo-
polynomial algorithm for that problem [4].

▶ Theorem 9. The Quickest Walk Problem with few stops is NP-hard for all three types of
cyclists and every fixed number of stops K ≥ 0.

Proof. We reduce the Partition problem to our problem. Let A = {a1, . . . , an} ⊊ N be a
an instance of the Partition problem. Let S = 1

2
∑

i ai. Let K ≥ 0 be an arbitrary stop
bound. We define the signalized network N = (V, E, E′, T, τ, γ, λ) as follows (see Figure 5
for an illustration). Let V = {v0, . . . , vn, z0, . . . , zK}. For all i ∈ {1, . . . , n}, we have two
edges e1

i and e2
i in E from vi−1 to vi where τ(e1

i) = ai and τ(e2
i) = 0. Furthermore, for all

i ∈ {1, . . . , K}, we have an edge ez
i = (zi−1, zi) in E and E′ with τ(ez

i) = 1, γ(ez
i) = S + 2i

and λ(ez
i) = 1. Similar, we have an edge (vn, z0) with τ((vn, z0)) = 1, γ((vn, z0)) = S and

λ((vn, z0)) = 1. We choose T to be S + 2K. Note that every walk in N is a path since the
network is acyclic.

We claim that there is a subset A′ ⊆ A such that
∑

ai∈A′ ai = S if and only if there is a
timed path from v0 to zK with arrival time at most S + 2K − 1 and at most K stops. First
assume that there is a subset A′ ⊆ A such that

∑
ai∈A′ ai = S. We choose the following

path P from v0 to zK . If ai ∈ A′, then we choose the edge e1
i , else we choose the edge e2

i .
Furthermore, we choose all the edges ez

i with 1 ≤ i ≤ K. We can choose the time function
π of the path in such a way that the cyclists arrive at vn at time step S without any stop
because

∑
ai∈A′ ai = S. Since the edge (vn, z0) is green at this time step, the cyclists can

enter it and arrive at z1 at time step S + 1. Here, the cyclists have to wait one time step for
green. Repeating this argument, the cyclists arrive at zi at time step S + 2i − 1 and have to
wait there for one time step. Overall, the cyclists arrive at zK at time step S + 2K − 1 with
K stops.

Now assume that there is a timed path P = (P, π) from v0 to zK with arrival time at
most S + 2K − 1 and at most K stops. As described above, it follows directly from the
construction that this path has to stop at edge (zi, zi+1) for all i ∈ {0, . . . , K −1}. Hence, the
path does not stop neither at an edge between vertices vi and vi+1 nor at the edge (vn, z0).
This implies that the path arrives at vn at time step S. We define the set A′ as follows:
A′ := {ai | e1

i ∈ P}. By the observation before, it must hold that
∑

ai∈A′ ai = S. ◀

ATMOS 2023

1:10 Optimal Bicycle Routes with Few Signal Stops

Chen and Yang [2] presented an algorithm for which they claim that, given a signalized
network, it finds a quickest path with a given maximal number of stops K in time O(Kn3),
where n is the number of vertices in the network. The authors do not specify what they
mean with the term “path”. Nevertheless, as we have seen in Theorem 8, all three options
for routes (path, walk, trail) are NP-hard. This either implies that P = NP or, more likely,
there is a flaw in the algorithm of Chen and Yang. In fact, we will show in the next section,
where Chen and Yang’s algorithm fails. Furthermore, we present an alternative approach
that has pseudo-polynomial running time and computes the quickest walk with few stops.

4 Algorithmic Results

Ahuja et al. [1] showed that signalized networks are FIFO graphs, i.e., arriving earlier at a
particular vertex can never result in arriving later at one of the following vertices. Using a
result by Dreyfus [3] from the 1960s, they showed that this result implies a polynomial-time
algorithm for quickest paths in signalized networks, i.e., Problem 1.

As mentioned in the last section, Chen and Yang [2] presented an algorithm that, as
they claim, solves Problem 2. This algorithm uses a labeling approach similar to Dijkstra’s
algorithm for shortest paths. While Dijkstra’s algorithm holds at most one label for every
vertex (the label with the current best arrival time at that vertex), Chen and Yang’s algorithm
holds for every vertex v and for every number k of stops the walk from s to v with at most
k stops and the best arrival time of all s-v-walks found so far. Thus, if a path arrives at a
vertex v and then via a cycle arrives at v again, then the arrival time and the number of
stops are not better than at the first arrival at v. This implies that this algorithm will never
use cycles. However, as we have seen in Example 2, it can be necessary to use cycles to stay
within a given stop bound. Furthermore, even if we forbid cycles, i.e., we restrict to paths,
Chen and Yang’s algorithm fails to find the quickest path with a given number of stops. This
is due to the fact that subpath optimality does not hold in this setting as we have seen in
Observation 3. It is easy to see that Chen and Yang’s algorithm already fails to solve the
example given in the proof of that observation.

To overcome this problem, we present an alternative approach that not only takes these
non-FIFO behaviour and possible cycles into account but also distinguishes between the
different types of cyclists that we have introduced in Section 2. Due to Lemma 5, we do not
need to consider the relaxed cyclists.

We will use the following terminology. The absolute time refers to the time the cyclist
has used so far in total. The relative time is the time step in the set {0, . . . , T − 1} that
describes the time step with respect to the cycle time T .

▶ Algorithm 1. The algorithm consists of three phases.

Phase 1: Initialization. For every vertex v and every time step θ ∈ {0, . . . , T −1}, we create
an array Mθ

v with K + 1 entries. The entry Mθ
v [k] contains a label (t, k, v) with (absolute)

arrival time t at v which has relative time θ and exactly k stops. We initialize every entry
Mθ

v [k] with the label (∞, k, v) except for the entry M0
s [0] which is assigned the label (0, 0, s).

Furthermore, we create a priority queue Q and insert the label (0, 0, s) into Q. In Q the
labels are ordered lexicographically.

Phase 2: Label Propagation. As long as Q is not empty, we extract the lexicographically
smallest label (t, k, v) from Q, i.e., for all other labels (t′, k′, v′) ∈ Q it holds that either
t < t′ or t = t′ and k ≤ k′. Now we iterate through the outgoing edges of v. Let e = (v, w)
be such an edge.

E. Köhler, M. Rogge, R. Scheffler, and M. Strehler 1:11

1. If e has no traffic light, i.e., e /∈ E′, then we create the label (t + τ(e), k, w).
2. If e ∈ E′ and green(e, t) = 1, then we also create the label (t + τ(e), k, w).
3. If e ∈ E′ and green(e, t) = 0, then we consider two cases:

a. If we have an impatient cyclist: Let θ ∈ {1, . . . , T − 1} be the smallest number such
that green(e, t + θ) = 1; we create the label (t + θ + τ(e), k + 1, w).

b. If we have a predictive cyclist: For each θ ∈ {1, . . . , T − 1} with green(e, t + θ) = 1,
we create the label (t + θ + τ(e), k + 1, w).

For each created label L′ = (t′, k′, v′), we check whether it dominates another label. In
particular, we check whether at vertex v′, relative time θ′ ≡ t′ mod T and stop count k′ the
label at entry Mθ′

v′ [k′] has a worse (absolute) arrival time. If this is the case, then this label
will be replaced by L′ both in Mθ′

v′ and in Q.

Phase 3: Final Output. If we only want to solve Problem 2, then we can stop our algorithm
as soon as the lexicographically smallest label in Q is at vertex d. We then return the
absolute arrival time and the stop count of that label.

However, our algorithm is able to solve a more general problem. By running the algorithm
until Q is empty we can give for each vertex v and each number of stops k the quickest walk
(of impatient or predictive cyclists, respectively) from s to v with exactly k stops. This can
be determined by running through every relative time step θ ∈ {0, . . . , T − 1} and search
for the smallest absolute arrival time in the entries Mθ

v [k]. We store these times in an array
Ω ∈ N|V |×(K+1).

Note that in Phase 2 we could also dominate labels where both the arrival time and the
stop count is larger than in the constructed labels. However, we have refrained from doing
so as we also want to compute the quickest routes with an exact number of stops given. Also
note that although for a bounded number of stops the relaxed cyclists have no better arrival
time than the predictive cyclists (see Lemma 5), for a fixed number of stops the relaxed
cyclists might have a better arrival time as they can use a walk with less stops and better
arrival time and stop somewhere unnecessarily. Similarly, the relaxed cyclists can achieve
stop numbers that are infeasible for the predictive cyclists.

▶ Theorem 10. Given a signalized network N = (V, E, E′, T, τ, γ, λ), Algorithm 1 finds an
array Ω ∈ N|V |×(K+1) with the following property: If there is a timed s-v-walk in N with
exactly k stops for the impatient or predictive cyclist, then Ω[v, k] contains the arrival time
of the quickest of those walks for the respective cyclist.

Proof. Firstly, let us shortly recall how a simple proof of Dijkstra’s algorithm works. Let S

be the set of vertices that were already processed by Dijkstra’s algorithm, then one shows
that the following two invariants hold during the algorithm:
1. for every vertex v ∈ S, the label of v is the length of a shortest path from s to v.
2. for every vertex v /∈ S, the label of v is the length of a shortest path from s to v that

only uses vertices of S as inner vertices.

As our algorithm processes a vertex several times, we have to adapt the proof. Instead of
considering only vertices as elements of S, we consider tuples (θ, k, v) where θ ∈ {0, . . . , T −1},
k ∈ {0, . . . , K} and v ∈ V . We say that a timed walk P = (P, π) uses a tuple (θ, k, v) as
timed waypoint if there is an edge ei = (w, v) ∈ P with π(ei) = t and θ ≡ (t + τ(ei)) mod T

such that P has used exactly k stops when arriving at v at time step t + τ(ei). Such a timed
waypoint corresponds to the entry Mθ

v [k] in Algorithm 1.

ATMOS 2023

1:12 Optimal Bicycle Routes with Few Signal Stops

Whenever the algorithm extracts a label (t, k, v) from Q, we add the tuple (t mod T, k, v)
to S. We claim that the following two invariants hold during the algorithm.

1. For every tuple (θ, k, v) ∈ S let Mθ
v [k] = (t, k, v). Then t is the minimal arrival time of a

timed s-v-walk in N that arrives at v at relative time step θ with exactly k stops.
2. For every tuple (θ, k, v) /∈ S let Mθ

v [k] = (t, k, v). Then t is the minimal arrival time of a
timed s-v-walk in N that arrives at v at relative time step θ with exactly k stops and
only uses tuples of S as inner timed waypoint.

At the beginning, S is empty and both invariants trivially hold true. Now assume that
both invariants hold and we add the new tuple A = (θ, k, v) to S. To show that the first
invariant still holds true, it is sufficient to show that the invariant holds for the tuple A. Let
t be the first entry of the label in Mθ

v [k]. Assume there is a timed s-v-walk P that arrives at
v before time step t. As the second invariant was true for A before A was added to S, P has
to use some timed waypoint that is not in S. Let (θ′, k′, v′) be the first timed waypoint on
P that is not in S. There is a label (t′, k′, v′) in Q with t′ mod T ≡ θ′. Due to the second
invariant, t′ is exactly the arrival time of path P at v′. The way the algorithm extracts the
next label from Q, t′ ≥ t holds. This contradicts the choice of P.

It remains the show that the second invariant holds after adding A = (θ, k, v) to S. If the
minimal arrival time for walks using only elements of S as timed waypoints has decreased for
some B = (θ′, k′, v′) /∈ S to the value t′, then the new best timed s-v′-walk P ′ has to use the
timed waypoint A as the second last waypoint. As was shown above, the arrival time in Mθ

v [k]
is optimal. In Phase 2 of Algorithm 1 we have propagated this arrival time to the neighbors
of v in an optimal manner, in particular to the vertex v′. Therefore, Mθ′

v′ [k′] = t′. ◀

Finally, we discuss the running time of the algorithm.

▶ Proposition 11. For a given signalized network N = (V, E, E′, T, τ, γ, λ), Algorithm 1
needs running time O(|V |2 · T 2 · K) where K is the bound on the maximal number of stops.

Proof. There are O(|V | · T) arrays Mθ
v with O(K) entries each. Thus, these arrays have

O(|V | · T · K) many entries in total. Every of those entries is extracted from the queue Q at
most once. Using a heap, this extraction can be done in time O(log(|V | · T · K)) ⊆ O(|V | · T)
as K can be bounded by |V |, due to Proposition 7. After the extraction, we have to create at
most |V | · T new labels3 in Phase 2 of the algorithm and have to update their arrival times.
This can be done in constant time per label, i.e., the total time for every extracted label is
O(|V | · T). This leads to the given running time bound. ◀

5 Conclusion

In this paper we have shown how we can use algorithmic ideas to avoid unwanted stops in
bicycle routes. As we have seen, using cycles in routes and waiting at lights that are already
green can be advantageous to avoid stops. Adding a constraint on the number of stops makes
the route finding problem more difficult: The problem of finding the optimal route is then
weakly NP-hard and we have presented a corresponding pseudo-polynomial algorithm. This
new algorithm corrects a flaw in the approach of Chen and Yang [2].

3 In real-world instances, this bound can be significantly improved since road networks usually have small
vertex degrees.

E. Köhler, M. Rogge, R. Scheffler, and M. Strehler 1:13

Our results lead to a variety of new questions. In order to use our approach to design
practically usable routings for cyclists one should take into account further aspects. Right
now, the avoidance of stops may cause long detours. A better objective may be to look for
a route that is at most, e.g., 10 % longer than the shortest path and has as few stops as
possible. Instead of stopping, one may also consider slowing down or accelerating for a short
period of time, that is, one could try to develop a model with variable speeds. Furthermore,
we only have used fixed-time traffic signals so far, but also adaptive signals are commonly
used in practice. However, this would add some uncertainty to the problem which can be
addressed with the integration of techniques similar to those used in, e.g., [16] to find reliable
shortest routes.

References
1 Ravindra K. Ahuja, James B. Orlin, Stefano Pallottino, and Maria Grazia Scutellà. Mini-

mum time and minimum cost-path problems in street networks with periodic traffic lights.
Transportation Science, 36(3):326–336, 2002. doi:10.1287/trsc.36.3.326.7827.

2 Yen-Liang Chen and Hsu-Hao Yang. Minimization of travel time and weighted number of
stops in a traffic-light network. European Journal of Operational Research, 144(3):565–580,
2003. doi:10.1016/S0377-2217(02)00148-0.

3 Stuart E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,
17(3):395–412, 1969. doi:10.1287/opre.17.3.395.

4 Michael R. Garey and David S. Johnson. Computers and Intractability. W. H. Freeman, 29th
edition, 2002.

5 Refael Hassin. Approximation schemes for the restricted shortest path problem. Mathematics
of Operations research, 17(1):36–42, 1992. doi:10.1287/moor.17.1.36.

6 P. B. Hunt, D. I. Robertson, R. D. Bretherton, and R. I. Winton. SCOOT – A traffic responsive
method of coordinating signals. Technical Report Report No. LR 1014, Transport and Road
Research Lab, Crowthorne, Berkshire, UK, 1981.

7 Alexander Kleff, Frank Schulz, Jakob Wagenblatt, and Tim Zeitz. Efficient Route Planning
with Temporary Driving Bans, Road Closures, and Rated Parking Areas. In Simone Faro
and Domenico Cantone, editors, 18th International Symposium on Experimental Algorithms
(SEA 2020), volume 160 of LIPIcs, pages 17:1–17:13, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SEA.2020.17.

8 Ekkehard Köhler and Martin Strehler. Traffic signal optimization: Combining static and
dynamic models. Transportation Science, 53(1):21–41, 2019. doi:10.1287/trsc.2017.0760.

9 Ekkehard Köhler, Rolf Möhring, Klaus Nökel, and Gregor Wünsch. Optimization of signalized
traffic networks. In Mathematics – Key Technology for the Future, pages 179–188. Springer,
2008. doi:10.1007/978-3-540-77203-3_13.

10 Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990. doi:10.1145/79147.
214078.

11 Ariel Orda and Raphael Rom. Minimum weight paths in time-dependent networks. Networks,
21(3):295–319, 1991. doi:10.1002/net.3230210304.

12 Dennis I. Robertson. TRANSYT: A traffic network study tool. Technical Report Report No.
LR 253, Transport and Road Research Lab, Crowthorne, Berkshire, UK, 1969.

13 Markus Rogge. Berechnung kürzester Wege unter Berücksichtigung periodischer Ampelschal-
tungen für FahrradfahrerInnen. Master’s thesis, Brandenburg University of Technology,
Cottbus, Germany, 2021. In German.

14 Robert Scheffler and Martin Strehler. Optimizing traffic signal settings for public transport
priority. In Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th Workshop on Algorith-
mic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017),

ATMOS 2023

https://doi.org/10.1287/trsc.36.3.326.7827
https://doi.org/10.1016/S0377-2217(02)00148-0
https://doi.org/10.1287/opre.17.3.395
https://doi.org/10.1287/moor.17.1.36
https://doi.org/10.4230/LIPIcs.SEA.2020.17
https://doi.org/10.1287/trsc.2017.0760
https://doi.org/10.1007/978-3-540-77203-3_13
https://doi.org/10.1145/79147.214078
https://doi.org/10.1145/79147.214078
https://doi.org/10.1002/net.3230210304

1:14 Optimal Bicycle Routes with Few Signal Stops

volume 59 of OASIcs, pages 9:1–9:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2017.9.

15 Ipek N. Sener, Naveen Eluru, and Chandra R. Bhat. An analysis of bicycle route choice pref-
erences in Texas, US. Transportation, 36:511–539, 2009. doi:10.1007/s11116-009-9201-4.

16 Liang Shen, Hu Shao, Ting Wu, Emily Zhu Fainman, and William H.K. Lam. Finding the
reliable shortest path with correlated link travel times in signalized traffic networks under
uncertainty. Transportation Research Part E: Logistics and Transportation Review, 144:102159,
2020. doi:10.1016/j.tre.2020.102159.

17 Martin Strehler, Sören Merting, and Christian Schwan. Energy-efficient shortest routes for
electric and hybrid vehicles. Transportation Research Part B: Methodological, 103:111–135,
2017. doi:10.1016/j.trb.2017.03.007.

18 Dean B. Taylor and Hani S. Mahmassani. Coordinating traffic signals for bicycle progression.
Transportation Research Record, 1705(1):85–92, 2000. doi:10.3141/1705-13.

19 Tim Zeitz. NP-hardness of shortest path problems in networks with non-FIFO time-dependent
travel times. Information Processing Letters, 179:106287, 2023. doi:10.1016/j.ipl.2022.
106287.

https://doi.org/10.4230/OASIcs.ATMOS.2017.9
https://doi.org/10.1007/s11116-009-9201-4
https://doi.org/10.1016/j.tre.2020.102159
https://doi.org/10.1016/j.trb.2017.03.007
https://doi.org/10.3141/1705-13
https://doi.org/10.1016/j.ipl.2022.106287
https://doi.org/10.1016/j.ipl.2022.106287

Using Light Spanning Graphs for Passenger
Assignment in Public Transport
Irene Heinrich #

Department of Mathematics, TU Darmstadt, Germany

Olli Herrala #

Systems Analysis Laboratory, Aalto University, Espoo, Finland

Philine Schiewe #

Systems Analysis Laboratory, Aalto University, Espoo, Finland

Topias Terho #

Systems Analysis Laboratory, Aalto University, Espoo, Finland

Abstract
In a public transport network a passenger’s preferred route from a point x to another point y is
usually the shortest path from x to y. However, it is simply impossible to provide all the shortest
paths of a network via public transport. Hence, it is a natural question how a lighter sub-network
should be designed in order to satisfy both the operator as well as the passengers.

We provide a detailed analysis of the interplay of the following three quality measures of lighter
public transport networks:

building cost: the sum of the costs of all edges remaining in the lighter network,
routing costs: the sum of all shortest paths costs weighted by the demands,
fairness: compared to the original network, for each two points the shortest path in the new
network should cost at most a given multiple of the shortest path in the original network.

We study the problem by generalizing the concepts of optimum communication spanning trees
(Hu, 1974) and optimum requirement graphs (Wu, Chao, and Tang, 2002) to generalized optimum
requirement graphs (GORGs), which are graphs achieving the social optimum amongst all subgraphs
satisfying a given upper bound on the building cost. We prove that the corresponding decision
problem is NP-complete, even on orb-webs, a variant of grids which serves as an important model
of cities with a center. For the case that the given network is a parametric city (cf. Fielbaum et.
al., 2017) with a heavy vertex we provide a polynomial-time algorithm solving the GORG-problem.
Concerning the fairness-aspect, we prove that light spanners are a strong concept for public transport
optimization.

We underpin our theoretical considerations with integer programming-based experiments that
allow us to compare the fairness-approach with the routing cost-approach as well as passenger
assignment approaches from the literature.

2012 ACM Subject Classification Applied computing → Transportation; Mathematics of computing
→ Discrete optimization; Theory of computation → Problems, reductions and completeness; Theory
of computation → Discrete optimization; Theory of computation → Design and analysis of algorithms

Keywords and phrases passenger assignment, line planning, public transport, discrete optimization,
complexity, algorithm design

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.2

Funding Irene Heinrich: The research leading to these results has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (EngageS: grant agreement No. 820148).
Olli Herrala and Topias Terho: The research leading to these results has received funding from
the Academy of Finland project Decision Programming: A Stochastic Optimization Framework for
Multi-Stage Decision Problems (funding decision number 332180).

Acknowledgements This work was developed during a guest stay of the first author at the Aalto
University in Espoo, Finland.

© Irene Heinrich, Olli Herrala, Philine Schiewe, and Topias Terho;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 2; pp. 2:1–2:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heinrich@mathematik.tu-darmstadt.de
https://orcid.org/0000-0001-9191-1712
mailto:olli.herrala@aalto.fi
https://orcid.org/0000-0003-4819-2534
mailto:philine.schiewe@aalto.fi
https://orcid.org/0000-0002-4223-3246
mailto:topias.terho@aalto.fi
https://orcid.org/0009-0001-0256-143X
https://doi.org/10.4230/OASIcs.ATMOS.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Using Light Spanning Graphs for Passenger Assignment in Public Transport

1 Introduction

In the light of climate change and the resulting aim to reduce greenhouse gas emissions,
mobility has to be considered from a sustainability standpoint. A public transport system that
is both cost-efficient and attractive to passengers can contribute to reducing the environmental
impact of mobility by bundling demand efficiently. To achieve such a system, both objectives
have to be considered throughout the planning process. From a passengers’ perspective,
individual door-to-door service for each passenger represents the best possible solution.
However, such solutions are undesirable as they would result in very high operational costs
and provide little benefit in comparison with individual transport. Thus, passenger routes
have to be bundled to achieve the desired effect of reduced environmental impact.

In this paper, we consider the passenger assignment problem to bundle demand. This
problem is one of the first stages in a traditional sequential planning process [6]. Passenger
assignment can be part of usually heuristic approaches for transit route network design
problems [14] but it is also considered on its own. In [10] the authors compare heuristic
approaches from [19] and [10] to an integrated approach and analyzes the impact on the line
planning costs and average travel time. Note that assigning routes to passengers can lead to
large detours for some passengers and unrealistic assumptions on passenger behavior. We put
special emphasis on the case that the considered networks are orb-webs or parametric-city
networks (see Figure 1 for examples).

Our contribution. We provide a detailed analysis of two approaches for designing sub-
networks of bounded building cost (the total cost of all edges remaining in the subnetwork).
Our focus is on the following two measures of passenger-satisfaction
(A) Fairness: for each two network points the shortest path costs in the lighter network

should be at most a given fixed multiple of the shortest path costs in the original
network.

(B) Total routing cost: the sum of all shortest paths weighted by the demands should be
minimal among all networks of a given maximal network size.

We analyze the optimization problems resulting from combining an upper-bounded
building cost with (A) or (B), respectively.

For upper-bounded building costs in combination with (A) we show that the concept
of light spanners from structural graph theory exactly mirrors our fairness-measure. As an
interesting observation we obtain that fair sub-networks in orb-webs with a heavy center
contain a star whose center vertex matches with the web-center. This nicely confirms common
practice in public transport planning, where oftentimes cities with a center offer a star-shaped
public transport network.

Concerning the combination of bounded building costs with (B) we prove that this
problem is NP-hard, even if it is restricted to orb-webs. Moreover, we develop new exact
algorithms for the problem on parametric city instances (see also Figure 1).

We complete our analysis with practical experiments. To this end, we provide IP
formulations for both problems. Based on the integer programs, we analyze the influence
of optimal solutions to the two problems on the quality of line plans and compare them to
passenger assignment methods from the literature. Further, we run practical experiments
on orb-web instances with a relaxed heavy center vertex in order to confirm also from the
practical perspective that star-shaped solutions are often optimal or contained in an optimal
public transport network for cities with one heavily demanded center.

I. Heinrich, O. Herrala, P. Schiewe, and T. Terho 2:3

(a) A parametric city network with eleven spokes. (b) An orb-web on five spokes and four rings.

Figure 1 Examples for public transport networks considered in this paper.

Further related work. An optimum communication spanning tree, as introduced in [18],
is minimizing the total routing cost amongst all spanning trees of a given network. Based
on [18] various results on optimum communication spanning trees were developed, including
integer programming techniques, approximation algorithms, and exact algorithms for certain
subclasses, cf. [8, 26, 23, 28]. The problem of finding a forest of minimum building cost which
connects given vertex subsets is known as the Steiner forest problem, cf. [12, 15, 3].

2 Preliminaries

In this section, we introduce relevant notation and discuss quality measures for light spanning
graphs. Additionally, we connect the problem of finding light spanning graphs to passenger
assignment and line planning in public transport.

Sets. For an natural number k, we set [k] = {1, 2, . . . , k}. For a set A and a natural number
k, we denote the set of all k-element subsets of A by

(
A
k

)
.

Graphs. A weighted graph is a tuple (G, c) where G is a graph and c : E(G) → R≥0 is a
function mapping each edge e ∈ E(G) to its weight or cost ce := c(e). For u, v ∈ V (G), we
denote the set of simple u-v paths by Pu,v. A subgraph H of G is spanning if V (H) = V (G).
We denote the length of a shortest u-v-path in G with respect to c by dG(u, v) and the length
of a shortest u-v-path in H with respect to c|E(H) is denoted by dH(u, v).

Orb-webs and Euclidean costs. An orb-web (cf. [7]) is a graph obtained from a cylindric
grid by contracting the vertices of one of the border cycles to one vertex. More precisely,
let r and s be positive integers. The (r × s) orb-web Wr,s is a graph on the vertex set
{z} ∪ {vi,j : i ∈ [r], j ∈ [s]} which decomposes into the cycles Ri := vi,1vi,2 . . . vi,svi,1, one for
each i ∈ [r], and the paths Sj := zv1,jv2,j . . . vr,j , one for each j ∈ [s]. We call Ri a ring of
Wr,s and Sj is a spoke of Wr,s for i ∈ [r] and j ∈ [s], respectively. The vertex z is the center
of Wr,s. An edge of Wr,s either belongs to a ring or to a spoke. We then call it a ring-edge
or a spoke-edge, respectively.

We say that Wr,s is equipped wit a Euclidean cost function c whenever c can be obtained
as follows: Embedd Wr,s into the plane such that for every i ∈ [r] the vertices of Ri are
of Euclidean distance i to the center vertex z and the Euclidean distance of two adjacent
vertices on Ri is uniform on Ri. For every edge e of Wr,s we set c(e) to be the Euclidean
distance of the two endvertices of e.

ATMOS 2023

2:4 Using Light Spanning Graphs for Passenger Assignment in Public Transport

Our public transport model. We assume that we are given
a weighted graph (G, c) called public transport network (PTN), where the vertices of G

represent traffic junctions (e.g. bus or tram stops) and the edges represent connections
joining the junctions (e.g. streets or potential tracks) and cuv represents the costs of
traveling from u to v,
demand data a{u,v} ∈ R≥0 for {u, v} ∈

(
V (G)

2
)
, which represents the number of passengers

who want to travel between u and v per time unit. We often abbreviate a{u,v} to au,v.
In particular, au,v = av,u.

Quality measures for light spanning graphs. While any connected spanning subgraph H

of G can be used for designing a transportation supply, the choice of H has a large influence
on the quality of the system, both from the operator’s and the passengers’ side. Ideally,
the operator is able to keep the costs low by selecting a light spanning subgraph, while the
travel times of the passengers do not grow too much compared to using the full graph G.
We consider three measures for the quality of H:

the building cost c(H) :=
∑

e∈E(H) c(e) of H, which represents the operator’s point of
view,
the routing cost r(H) :=

∑
{u,v}∈(V (G)

2) au,vdH(u, v) of H, which represent the social
optimum from the passengers’ point of view. Finally,
the maximum detour factor d(H) := max{u,v}∈(V (G)

2)
dH (u,v)
dG(u,v) of H, which represents the

fairness aspect from the passengers’ point of view.

From light spanning graphs to passenger assignments. For a public transport network
(G, c) and demands au,v, {u, v} ∈

(
V (G)

2
)
, a passenger assignment distributes the demand to

feasible paths. Thus, it assigns for each two distinct vertices u, v a weight wP ≥ 0 to each
u-v path P ∈ Pu,v such that

∑
P ∈Pu,v

wP = au,v. We evaluate the quality of a passenger
assignment by considering the average detour factor∑

{u,v}∈(V (G)
2)

∑
P ∈Pu,v

wP c(P)∑
{u,v}∈(V (G)

2) dG(u, v) .

In this paper we consider four variants of passenger assignments:
Shortest paths in spanning graphs (SPS): Given a spanning graph H of G, set wP = au,v

for a shortest u-v path P in H.
Shortest paths (SP): Set wP = au,v for a shortest u-v path P in G.
REWARD: Iterative procedure from [19]: In each iteration k, passengers are routed on

shortest paths in G according to weights ck. Weights ck+1 are adapted to be lower on
edges that are used by more passengers. After a fixed number of N iterations, edges
that do not appear in a shortest path according to cN are deleted to result in a spanning
graph H ′. Set wP = au,v for a shortest u-v path in H ′ for original weights c.

REDUCTION: Iterative procedure from [10] where w is assigned according to shortest paths
in G and weights ck. ck is adapted in each iteration such that edges with spare capacity
are rewarded, i.e., ck is reduced on these edges.

Note that for SPS, the average detour factor is r(H)
r(G) , i.e., a normalization of the routing cost,

and for SP, it is r(G)
r(G) = 1.

I. Heinrich, O. Herrala, P. Schiewe, and T. Terho 2:5

Evaluating passenger assignments by line planning. Line planning is a crucial step in
public transport planning, where operating frequencies of lines are determined [25]. A line is
a simple path in a public transport network that is operated by a vehicle end-to-end.

For a given vehicle capacity K, we can easily compute lower frequency constraints
fmin : E(G) → N>0 used in many line planning approaches [25, 4] as

fmin(e) =
⌈∑

{u,v}∈(V (G)
2)

∑
P ∈Pu,v : e∈E(P) wP

K

⌉
.

Given a line pool L, i.e., a set of lines, the cost model of line planning [25] ismin
∑
ℓ∈L

costℓfℓ :
∑

ℓ∈L : e∈E(ℓ)

fℓ ≥ fmin(e), e ∈ E(G); fℓ ∈ N≥0, ℓ ∈ L

where costℓ represents the cost of operating line ℓ once per planning period. In our experi-
ments, we set costℓ = cfix + α|E(ℓ)| + βc(ℓ), with cfix ∈ R≥0 representing the fixed cost for
operating a line and α, β ∈ R≥0, see [13]. As the lower frequency constraints correspond to a
passenger assignment, they guarantee that routing passengers with the average detour factor
is possible. We evaluate a line plan by its cost, i.e.,

∑
ℓ∈L costℓfℓ.

Outline. To construct light graphs with regard to these objectives, we consider two concepts
from the literature. In Section 3, we consider light (1 + ε) spanners. Here, we are looking for
a subgraph H of minimal building costs such that maximum detour factor is not exceeding
(1 + ε). In Section 4, we consider a different perspective by computing generalized optimum
requirement graphs for which we introduce two IP formulations in Section 5. Thus, we
minimize the routing cost imposing an upper bound on the building cost. We evaluate both
concepts experimentally in Section 6. The paper is concluded in Section 7.

3 Spanners

We first give the basic terminology for spanners and translate it to our public transport
setting. Let (G, c) be a weighted graph and let H be a spanning subgraph of G. If
dH(u, v) ≤ (1 + ε)dG(u, v) for all u, v ∈ V (G), then H is a (1 + ε)-spanner of G. In this case,
we say that H has stretch at most (1 + ε) and lightness at most c(H)

cMST
, where cMST is the

weight of a minimum spanning tree of (G, c). Observe that the stretch directly corresponds
to the maximum detour factor d(H) and the lightness to the building costs c(H).

Note that it is already NP-complete to decide whether a given graph has a 2-spanner [5, 22].
This directly yields the following statement:

▶ Theorem 1. Given a public transport network, a bound K on the building cost, and a
bound B′ on the maximum detour factor it is NP-complete to decide whether there exists a
sub-network of building cost at most K and maximum detour factor at most B′.

At first glance, it seems to be a direct consequence of Theorem 1 that spanners are simply
useless in any practical context. However, the following concept of greedy spanners (cf. [1])
gives some cause for hope. The greedy (1 + ε)-spanner of a weighted graph (G, c) is defined
to be the output of Algorithm 1.

Observe that the algorithm GreedySpanner is a straight-forward generalization of
Kruskal’s algorithm for finding minimum weight spanning forests. As Kruskal’s algorithm
also GreedySpanner runs in time O(m log n) where m and n denote the size and the order

ATMOS 2023

2:6 Using Light Spanning Graphs for Passenger Assignment in Public Transport

Algorithm 1 GreedySpanner((G, c), ε).

1 let e1, . . . , em be an ordering of E(G) such that c(e1) ≤ c(e2) ≤ · · · ≤ c(em)
2 let H be the edgeless graph on V (G)
3 for i = 1, . . . , m do
4 if dH(ui, vi) > (1 + ε)w(ei), where ei = uivi, then
5 add ei to the edges of H

6 return H

of the input graph, respectively. Moreover, the greedy (1 + ε)-spanner of (G, c) is indeed a
(1 + ε)-spanner, see also [2, 1]. The following statement makes the consideration of spanners
as a concept for public transport networks of low building cost even more attractive since
planarity (or, even more general, a low genus) is a realistic assumption in the public transport
context.

▶ Theorem 2 (Baligács et. al. [2]). For every graph G of genus g and ε > 0, the greedy
(1 + ε)-spanner of G has lightness at most (1 + 2

ε)
(

1 + 2g
1+ε

)
.

Note that orb-webs are planar, that is, of genus 0. We close this section with an observation
on star-shaped subgraphs of greedy spanners in orb-webs.

▶ Corollary 3. For every ε > 0 and every two positive integers r and s there exists a greedy
(1 + ε)spanner H of (Wr,s, 1E) which contains all spoke-edges of Wr,s and H has lightness
at most 1 + 2

ε .

Proof. Since all edges are of the same weight, we can choose an ordering of the edges
such that the spoke-edges are of lesser order than the ring-edges of the orb-web. It follows
immediately that the GreedySpanner algorithm on the orb-web with this chosen ordering
returns a subgraph containing all the spoke-edges. Since orb-webs are planar graphs we
obtain the lightness as an immediate consequence of Theorem 2. ◀

▶ Corollary 4. Let ε > 0 and r, s ∈ N≥1 with s ≤ 6. If Wr,s is equipped with an Euclidean
costs c, then there exists a greedy (1+ε)-spanner H of (Wr,s, c) which contains all spoke-edges
of Wr,s and H has lightness at most 1 + 2

ε .

Proof. Since s ≤ 6 and by the definition of the Euclidean costs we obtain c(es) = 1 ≤ c(er)
for every spoke-edge es and every ring-edge er. In particular, we can proceed exactly as in
the proof of Corollary 3. ◀

4 Generalized optimum requirement graphs

Given a weighted graph (G, c), a non-negative set of demands
{

au,v : {u, v} ∈
(

V (G)
2

)}
, and

a bound K ∈ R≥0 the generalized optimum requirement graph problem (GORG) is to find a
spanning subgraph of G which minimizes the routing cost amongst all spanning subgraphs
of G with building costs at most K.

In the literature, often either the demand is assumed to be uniform (optimum distance
graph problem) or the edge-costs are assumed to be uniform (optimum requirement graph
problem), cf. [18, 27]. Here, we consider the general problem (GORG) where both the demand
and the cost can take on arbitrary non-negative values. This problem is shown to be NP-hard
for general graphs in [20]. In the following, we refine this result by showing that the problem
is even NP-hard when it is restricted orb-webs.

I. Heinrich, O. Herrala, P. Schiewe, and T. Terho 2:7

▶ Theorem 5. The problem (GORG) is NP-hard, even for orb-webs.

Proof. We show that the decision version of (GORG) is NP-complete by reducing the
NP-complete decision version of the Knapsack problem (cf. [21, 11]) to the decision version
of (GORG). Note that for a given subgraph H, varifying whether the routing and building
costs are below given thresholds can be done in polynimal time by computing shortest paths.
Thus, the decision version of (GORG) is in NP.

Consider an instance of the Knapsack problem, i.e., n items with weight wi ∈ N and
value vi ∈ N, i ∈ [n], maximal weight W ′ and minimal value V ′.

We construct an instance of (GORG) as follows: Let W1,2n be an orb-web with one
ring and 2n spokes and K = 2

∑
i∈[n] wi + W ′. For i ∈ [n], we set c(e) = wi for

e ∈ {zv1,2i−1, zv1,2i, v1,2i−1v1,2i} . The costs for the remaining ring-edges are set to K + 1.
We define the demand a as follows: For k ∈ [2n], az,v1,i

= M with M = 3
∑

i∈[n] vi, for
i ∈ [n], av1,2i−1,v1,2i

= vi

wi
and au,v = 0 otherwise. For B = 4M

∑
i∈[n] wi + 4

∑
i∈[n] vi − 2V ,

we show that there is a feasible solution of (GORG) with routing cost at most B if and only if
there is a feasible solution of the Knapsack problem, i.e., a subset S ⊂ [n] with

∑
i∈S wi ≥ W

and
∑

i∈S vi ≤ V .
First, consider a feasible solution S of the Knapsack problem. Construct a spanner H of

W1,2n by adding all spoke-edges as well as ring-edges v1,2i−1v1,2i for i ∈ S. It is easy to see
that the building costs of H satisfy

c(H) = 2
∑
i∈[n]

wi +
∑
i∈S

wi ≤ 2
∑
i∈[n]

wi + W = K.

Additionally, the routing costs can be computed as

r(H) = 4M
∑
i∈I

wi + 2
∑
i∈S

vi

wi
wi + 2

∑
i/∈S

vi

wi
2wi = 4M

∑
i∈I

wi + 4
∑
i∈[n]

vi − 2
∑
i∈S

vi ≤ B.

Thus, H is a feasible solution of the decision version of (GORG). Second, consider a
feasible solution H of (GORG). Note that due to the cost definition, only spoke-edges and
ring-edges in {v1,2i−1v1,2i} can be in E(H). Additionally, all spoke-edges are in E(H) as
otherwise the routing costs would exceed

4M
∑
i∈[n]

wi + 2M · min
i∈[n]

wi ≥ 4M
∑
i∈[n]

wi + 6
∑
i∈[n]

vi > B.

Let S ⊂ [n] be the set of indices such that v1,2i−1v1,2i ∈ E(H). Then the building cost satisfy

c(H) = 2
∑
i∈[n]

wi +
∑
i∈S

wi ≤ K = 2
∑
i∈[n]

wi + W

such that
∑

i∈S wi ≤ W . The shortest u-w-path is uv for u = z, v ̸= z and u = v1,2i−1, v =
v1,2i with i ∈ S. However, for u = v1,2i−1, v = v1,2i with i /∈ S, the shortest route is uzv.
Thus, the routing costs are

r(H) = 4M
∑
i∈I

wi + 2
∑
i∈S

vi

wi
wi + 2

∑
i/∈S

vi

wi
2wi = 4M

∑
i∈I

wi + 4
∑
i∈[n]

vi − 2
∑
i∈S

vi

≤ B = 4M
∑
i∈[n]

wi + 4
∑
i∈[n]

vi − 2V

such that
∑

i∈S vi ≥ V and S is feasible for the Knapsack problem. ◀

ATMOS 2023

2:8 Using Light Spanning Graphs for Passenger Assignment in Public Transport

▶ Observation 6. Let (G, c) be weighted graph and A :=
{

auv : {u, v} ∈
(

V
2
)}

be a set of de-
mands on G. If there exists a vertex v ∈ V (G) with auv = 0 for all u ∈ V (G)\{v}, then every
optimal solution of (GORG) on (G−v, c|V (G)\{v}) with demands

{
au,v : {u, v} ∈

(
V (G)\{v}

2
)}

is also optimal for (GORG) on the original instance.
Hence, we assume from now on that for every vertex u of a considered (GORG) instance

there exists at least one other vertex v with strictly positive demand between u and v.

4.1 Parametric cities

In this subsection, we consider parametric city networks which are introduced in [9] as an
abstract representation of real city networks. A graph is a parametric city of order s, denoted
by PCs if it can be obtained from an orb-web W1,s with just one ring by adding s new
vertices and joining each of the new vertices to exactly one of the ring-vertices of W1,s, see
Figure 1 for an example.

It is natural to assume that the demand towards the center vertex of a parametric city is
high. In this context, we generalize the heavy-vertex condition introduced in [27] and, we
prove that (GORG) can be solved in polynomial time on a parametric city with a heavy
vertex.

The following lemma enables us to reduce (GORG) on parametric cities to (GORG) on
orb-webs with precisely one ring.

▶ Lemma 7. Let (G, c) be weighted graph and A := {auv : {u, v} ∈
(

V
2
)
} be a set of demands

on G. If w is a degree-1 vertex in G and w′ denotes the neighbor of w, then an optimal
solution for (GORG) on (G, c) with demands A can be obtained from an optimal solution for
(GORG) on G − w with demands

a′
u,v =

{
au,v if w′ /∈ {u, v},

sau,w′ + au,w otherwise.

Adding the edge w′w to an optimal solution of the smaller instance yields an optimal solution
for the original instance.

Proof. Since w is a degree-1 vertex we have that for every u ∈ V (G)\{w} every shortest u-w-
path in an optimal solution for (GORG) on G is of the form v1v2 . . . vk−2w′w. In particular,
it can be obtained simply by extending a v1 . . . w′-path in G − w by w. In particular, we
obtain that an optimal solution in G can be projected to a feasible solution of G − w with
the adapted demands. If there was a solution of G − w with the adapted demands with a
strictly better objective value than the projected solution, then this would yield to a better
solution for G, a contradiction. We obtain a 1:1-correspondence of the optimal solutions
for (G, c) with demands A and (G − w, c|V \{w}) with the adapted demands. This settles the
claim. ◀

Let G be a graph and let A := {auv : {u, v} ∈
(

V
2
)
} be a set of demands on G. A vertex h

is heavy in G if au,h ≥ au,v for each two distinct vertices u and v of G. Along the same lines
as the heavy-vertex proof on complete graphs in [27] we obtain the following statement.

▶ Theorem 8. Let s ∈ N≥1. If the center of W1,s is heavy, then (GORG) can be solved in
time O(n2) on this instance.

I. Heinrich, O. Herrala, P. Schiewe, and T. Terho 2:9

4.2 Symmetric generalized optimum requirement graphs
Let us consider an interesting special case of (GORG) on orb-webs where the solution H has
to be rotationally symmetric. In this case, all connected solutions have a special structure.
To ensure connectivity, all spoke-edge are in E(H). Additionally, for each cycle Ri either
all edges are in E(H) or none of them are. Thus, the problem reduces to choosing the best
subset of rings within the given budget. For unit weights, we thus have to choose p rings such
that the routing costs are minimized. Note that for all demand where origin and destination
are on the same spoke the shortest path in H is the same as the shortest path in G. Thus,
we only have to consider demand where origin and destination are on separate spokes.

Given a demand structure with positive demand only between neighbors on the same ring,
the problem is equivalent to a p-median problem on a line and can be solved in O(pr + rs).
Note that p ≤ r, i.e., the runtime is polynomial in O(r2 + rs).

▶ Theorem 9. Consider an orb-web Wr,s with c ≡ 1 and au,v = 0 if u and v are not
neighbors on the same ring. Then, a symmetric solution to (GORG) with at most p rings
can be found in O(pr + rs).

Proof. Consider a solution H of (GORG) where rings Ri, i ∈ S ⊂ [r], are in E(H) with
|S| < p. For avk,l,vk,l′ with l′ = l + 1 or l′ = s, l = 1, we can compute the routing costs as

dH(vk,l, vk,l′) = min

 2k︸︷︷︸
c(vk,lzvk,l′)

, min

 2|k − i| + 1︸ ︷︷ ︸
c(vk,l...vi,lvi,l′ ...vk,l′)

: i ∈ S

= min {2|k − 0.5| + 1, min {2|k − i| + 1: i ∈ S}}
= min {2|k − i| : i ∈ S ∪ {0.5}} + 1.

For ease of notation, we identify avk,1,vk,s
with avk,s,vk,s+1 . The routing costs of H are

r(H) =
r∑

k=1

s∑
l=1

avk,l,vk,l+1dH(vk,l, vk,l+1)

=
r∑

k=1

s∑
l=1

avk,l,vk,l+1 + 2
r∑

k=1
min {|k − i| : i ∈ S ∪ {0.5}} ·

s∑
l=1

avk,l,vk,l+1 .

Thus, finding S with minimal routing costs is equivalent to solving a p-median problem on
the line where 0.5 is fixed as a facility. Following the proof of Lemma 1 and Section 2 in [17],
this problem can be solved in O(pr). The weights can be computed in O(rs). ◀

▶ Remark. The solution remains optimal if there is additional positive demand avk,l,vk′,l′

between arbitrary nodes, and there is at least one ring Rm, k ≤ m ≤ k′ in E(H). In this case,
dH(vk,l, vk′,l+1) = dG(vk,l, vk′,l+1) as a shortest path in G either contains only spoke-edges
or spoke-edges and ring-edges for a ring Rm with k ≤ m ≤ k′.

5 IP formulation for (GORG)

In this section we present two integer programming formulations for (GORG). In both
formulations we use binary variables xe, e ∈ E(G), to indication whether edge e is in
E(H). For convenience, we abbreviate V := V (G) and E := V (G) in the IP formulations.
Additionally, we introduce an ordering < on the finite set V (G) to avoid computing both the
shortest path from u to v and from v to u.

ATMOS 2023

2:10 Using Light Spanning Graphs for Passenger Assignment in Public Transport

One-to-one IP formulation. For Model (1), we model the shortest paths for each pair of
nodes s < t ∈ V (G) separately as an s-t flow using binary variables yst

uv, yst
vu, uv ∈ E(G).

Note that we implicitly transform G to a directed graph to model the flow. A capacity
constraint bounds the building costs and coupling constraints between x- and y-variables to
ensure that only edges from H can be used.

min
∑

s<t∈V

∑
uv∈E

au,vc(uv)(yst
uv + yst

vu)

s.t.
∑
e∈E

c(e)xe ≤ K∑
w∈V : wu∈E

(yst
wu + yst

uw)

−
∑

w∈V : uw∈E

(yst
uw + yst

wu) =

−1, if u = s

1, if u = t

0, otherwise
s < t ∈ V, u ∈ V

yst
uv ≤ xuv s < t ∈ V, uv ∈ E

yst
vu ≤ xuv s < t ∈ V, uv ∈ E

xe ∈ {0, 1} e ∈ E

yst
uv, yst

vu ∈ {0, 1} s < t ∈ V, uv ∈ E

(1)

Note that the binary flow variables yst
uv, yst

vu, uv ∈ E(G), can be relaxed to continuous
variables.

One-to-many IP formulation. For Model (2), we replace the one-to-one flow formulation
with a single-source-multiple-target flow formulation using variables ys

uv, ys
vu, s ∈ V (G),

uv ∈ E(G). This reduces both the number of variables and the number of constraints
significantly.

min
∑
s∈V

∑
uv∈E

c(uv)(ys
uv + ys

vu)

s.t.
∑
e∈E

c(e)xe ≤ K∑
w∈V : wu∈E

(ys
wu + ys

uw)

−
∑

w∈V : uw∈E

(ys
uw + ys

wu) =

−

∑
t>s as,t, if u = s

as,u, if u > s

0, otherwise
s ∈ V, u ∈ V

ys
uv ≤ xuv s < t ∈ V, uv ∈ E

ys
vu ≤ xuv s < t ∈ V, uv ∈ E

xe ∈ {0, 1} e ∈ E

ys
uv, ys

vu ∈ {0, 1} s ∈ V, uv ∈ E

(2)

I. Heinrich, O. Herrala, P. Schiewe, and T. Terho 2:11

Adding valid inequalities. To improve the linear programming relaxation of an integer
program, it is possible to add valid inequalities or cuts to the IP formulation. These cut off
some of the LP feasible region without eliminating any of the integer feasible solutions, thus
making the LP relaxation closer to the convex hull of the IP feasible set.

We present two sets of valid inequalities for the IP formulations (1) and (2) for the case
that the demand requires a connected graph. The first set consists of general inequalities for
graphs, and the second set exploits the properties of orb-webs. The general inequalities are∑

uv∈E

xuv ≥ |V | − 1 (3)∑
s∈V : us∈E

xus +
∑

s∈V : sv∈E

xsv ≥ 1 s ∈ V. (4)

Inequality (3) rules out solutions where the number of edges in E(H) is not enough for
connectivity while inequality (4) ensures local connectivity. The orb-web-specific inequalities
are ∑

j∈[s]: zv1,j∈E

xzv1,j
≥ 1 (5)

∑
j∈[s]: vi,jvi+1,j∈E

xvi,jvi+1,j
≥ 1 i ∈ [r − 1] (6)

xzv1,1 = 1. (7)

Inequalities (6) and (5) ensure connectivity between adjacent rings or the center z and
the first ring, respectively. For rotationally symmetric orb-webs and the demand as described
in Section 4.2, (7) fixes the spoke edge which connects the center to the first ring.

6 Experimental evaluation

We experimentally evaluate the performance of light spanning graphs for passenger assignment
by comparing light spanners, (GORG) and passenger assignment methods from the literature.
The implementations are done on a Intel(R) Core(TM) i5-1145G7 @ 2.60GHz machine with
32 GB RAM using Gurobi 10.01 [16] within the LinTim software framework [24].

Data. For the evaluation, we generate (r × s) orb-webs Wr,s for varying values of (r, s).
We assume the costs to be either unit costs c ≡ 1 or to represent the Euclidean cost function
defined in Section 2. We generate the demand au,v, u, v ∈ V (G) as

au,v =
⌈

M(dr
1

ru,v + 1 + ds
1

su,v + 1)
⌉

where su,v is the number of spoke-edges on the shortest path from u to v according to
Euclidean weights and ru,v is the number of ring-edges on this path. We set M = 10 here
and vary (dr, ds) in {(1, 0), (1, 1), (0, 1)}. For the (5 × 5) orb-web, the demand is represented
in Figure 2. Note that in case (dr = 1, ds = 0), the demand is highest between nodes which
are on the same spoke and in case (dr = 0, ds = 1) the demand is highest on nodes which are
on the same ring. For (dr = 1, ds = 1), we get a more balanced distribution of the demand.

ATMOS 2023

2:12 Using Light Spanning Graphs for Passenger Assignment in Public Transport

(a) (dr = 1, ds = 0). (b) (dr = 1, ds = 1). (c) (dr = 0, ds = 1).

Figure 2 Demand for a (5 × 5) orb-web. Edges uv represent demand from u to v where the
shading corresponds to the amount of demand au,v. The darker the shading is, the higher is the
demand.

Evaluation of formulation and cuts. We first analyze the runtime of the IP formulations
(1) and (2) for (GORG) and the influence of the valid inequalities introduced in Section 5,
see Figure 3. The demand is computed using (dr = 1, ds = 1) and the size of the graphs is
varied in {(4,4), (4,8), (8, 4), (5,5), (5,8), (8,5), (5,10), (10,5), (8,8), (8, 10), (10, 8), (10,10)}.
The building cost bound K is derived from the building cost of lightest 1.5-spanner.

25 50 75 100 125 150 175 200
number of edges

0

20

40

60

80

ru
nt

im
e

[s]

IP (1), no cuts
IP (1), orb-web cuts
IP (1), general cuts
IP (1), all cuts

IP (2), no cuts
IP (2), orb-web cuts
IP (2), general cuts
IP (2), all cuts

(a) Unit costs.

25 50 75 100 125 150 175 200
number of edges

0

50

100

150

200

250

300

ru
nt

im
e

[s]

IP (1), no cuts
IP (1), orb-web cuts
IP (1), general cuts
IP (1), all cuts

IP (2), no cuts
IP (2), orb-web cuts
IP (2), general cuts
IP (2), all cuts

(b) Euclidean costs.

Figure 3 Evaluating the runtime of both formulations (1) and (2) for (GORG) with and without
the two sets of valid inequalities. The demand is computed according to (dr = 1, ds = 1). The
different graph sizes are aggregated by the number of edges |E(G)|.

Figure 3 shows that IP formulation (2) significantly outperforms IP formulation (1).
Additionally, adding valid inequalities as described in Section 5 reduces the runtime. Here,
the influence of the general cuts is higher than the influence of the orb-web specific cuts and the
combination of both cuts yields even lower runtimes. For Euclidean costs, the improvement
by using cuts is higher than for unit costs. Note that for demand (dr = 1, ds = 1), instances
with unit weights are considerably faster to solve than for Euclidean weights. However, the
runtime for unit weights is highly dependent on the demand and the bound K.

I. Heinrich, O. Herrala, P. Schiewe, and T. Terho 2:13

Analyzing the structure of (GORG) solutions. Next, we analyze the structure of the
solutions for (GORG) by considering the ratio of spoke and ring-edges in the optimal
solution H compared to the original orb-web G. Figure 4 shows this for the demand settings
(dr, ds) ∈ {(1, 0), (1, 1), (0, 1)} aggregated for orb-webs with varying size. Additionally, we
investigate how the solution changes for increasing building cost bound K. Figure 4b shows
that for the case of Euclidean costs, almost always all spoke-edges are in the optimal solution.
Thus, increasing the building cost bound K leads to adding more ring-edges. Only for
demand (dr = 0, ds = 1), i.e., where most demand is on the same ring, there are solution
where not all spokes edges are in E(H). Note that also for greedy (1 + ϵ)-spanners, all spoke
edges are in E(H), see Corollary 4.

For unit costs, we get a different pattern. Here, the solution structure depends more on
the demand. For (dr = 1, ds = 0), i.e., when most demand is directed towards the center,
the ratio of spoke-edges in the optimal solutions is highest. On the contrary, it is lowest for
(dr = 0, ds = 1), where instead there are more ring-edges in E(H).

(1, 0) (1, 1) (0, 1)
demand

0.00

0.25

0.50

0.75

1.00

ra
tio

ed
ge

s
us

ed

spoke-edges
ring-edges

1.00
1.25

1.50
1.75

(a) Unit costs.

(1, 0) (1, 1) (0, 1)
demand

0.00

0.25

0.50

0.75

1.00
ra

tio
ed

ge
s

us
ed

spoke-edges
ring-edges

1.00
1.25

1.50
1.75

(b) Euclidean costs.

Figure 4 Ratio of spoke and ring-edges in an optimal solution H of (GORG) compared to original
orb-web G. The results are aggregated over orb-webs of varying sizes but split up according to the
demand settings (dr, ds). For each demand scenario, four different bounds are used, i.e., K = αcstar

where α ∈ {1, 1.25, 1.5, 1.75} and cstar is the weight of all spoke-edges.

The trade-off between routing costs, detour factor and building costs. In Figure 5, we
consider the trade-off between the routing costs and the maximum detour factor for spanners,
(GORG) and the passenger assignment model introduced in Section 2 for Euclidean costs.
Note that the routing costs are normalized by the routing costs in the original graph G as
we are considering orb-webs of different sizes. For each solution, the color represents the
building costs of the solution, normalized by the building costs of a minimum spanning tree.
As expected, allowing for higher building costs results in solutions dominating ones with
lower building costs. The solutions computed by REWARD and REDUCTION have very low
building costs but a high maximum detour factor and often also a high average detour factor,
i.e., high routing costs. Routing passengers on shortest paths in G, i.e., using SP leads to a
maximal and average detour factor of 1, but the building costs are high due to using all edges
in the graph. Both spanners and (GORG) result in solutions which represent a reasonable
trade-off between the solutions found by SP and REWARD and REDUCTION. Note that
the points for spanners and (GORG) coincide, i.e., for Euclidean costs, spanners are a good
approximation for (GORG). This fits to the results of Corollary 4 and the observations on
Figure 4 as for both spanners and (GORG), all or almost all spoke edges are in an optimal
solution.

ATMOS 2023

2:14 Using Light Spanning Graphs for Passenger Assignment in Public Transport

1.00 1.05 1.10 1.15 1.20

average detour factor

1.0

1.1

1.2

1.3

1.4

m
a
x
d
et
o
u
r
fa
ct
o
r

spanner

(GORG)

SP

REWARD

REDUCTION

1.00

1.05

1.10

1.15

1.20

1.25

1.30

c(
H
)/
c M

S
T

Figure 5 Trade-off between average detour factor, i.e., a normalization of the routing costs, and
the maximum detour factor. For each solution, the color represents the building costs of the solution,
normalized by the building costs of a minimum spanning tree. We are using orb-webs Wr,s with
Euclidean costs and r, s ∈ {5, 8} and demand computed by (dr, ds) ∈ {(1, 0), (1, 1), (0, 1)}.

Evaluation with line planning. Lastly, we evaluate the performance of light spanners
according to the line planning objectives, average detour factor and line cost. Figure 6 shows
this evaluation for a (8 × 8) orb-web with euclidean weights. We compute a 1.25-spanner, a
solution for (GORG) for a building cost bound derived from the building cost of the spanner
as well as passenger assignments using SP, REWARD and REDUCTION, see Section 2.
For the resulting passenger assignment, we compute a line pool using the algorithm from
[13] and a line plan according to the cost model [25]. While SP by definition always results
in the lowest average detour factor and comparatively high line cost, the performance of
the other approaches depends on the demand structure. Spanners and (GORG) always
result in considerably lower average detour factor than REWARD and REDUCTION and for
(dr, ds) ∈ {(1, 1), (0, 1)} they even dominate those solution, i.e., they also result in lower line
cost. For demand (dr, ds) = (1, 0), REWARD results in slightly lower line cost. We conclude
that using light spanning graphs for passenger assignment is a promising approach to find
line plans that are satisfactory both from an operator’s and a passengers’ point of view.

4000 4500 5000 5500
line cost

1.000

1.025

1.050

1.075

1.100

av
er

ag
e

de
to

ur
fa

ct
or

spanner
(GORG)
SP

REWARD
REDUCTION

(a) Demand (dr = 1, ds = 0).

9500 10000 10500
line cost

1.00

1.02

1.04

av
er

ag
e

de
to

ur
fa

ct
or

spanner
(GORG)
SP

REWARD
REDUCTION

(b) Demand (dr = 1, ds = 1).

7000 7500 8000 8500
line cost

1.00

1.01

1.02

1.03

1.04

av
er

ag
e

de
to

ur
fa

ct
or

spanner
(GORG)
SP

REWARD
REDUCTION

(c) Demand (dr = 0, ds = 1).

Figure 6 Evaluating the line cost and the average detour factor for solutions with ϵ = 0.25 and
resulting building cost bound. We use (8 × 8) orb-webs with Euclidean costs.

I. Heinrich, O. Herrala, P. Schiewe, and T. Terho 2:15

7 Conclusion and further research

In this paper, we apply the concept of light (1 + ϵ)-spanners and a generalization of optimum
requirement graphs to passenger assignment in public transport planning. Therefore, we
especially consider orb-webs and parametric city instances which represent a large class of
real city networks with a high-demand center. Note that the concept of light (1 + ϵ)-spanners
exactly mirrors the fairness measure in routing, which guarantees that the maximal detour
factor over all passengers is bounded. Generalized optimum requirement graphs on the
other hand represent a social optimum, where the total routing costs are minimized. Our
experiments show that using light spanning graphs for passenger assignment can be beneficial
for finding line plans that are attractive both from an operator’s and a passengers’ perspective.

While both considered problems are NP-hard in general, we identify polynomially solvable
cases for greedy spanners and symmetric optimum requirement graphs on orb-webs. In
future work, we aim to analyze the price of symmetry, i.e., how much optimal non-symmetric
solutions differ from symmetric ones. Due to the reduced solution space, we expect that
finding symmetric solutions is considerably easier in practice. Another interesting aspect
is to improve the solution approaches, especially the IP-based approaches for generalized
optimum requirement graphs. Here, it might be beneficial to consider Benders’ decomposition
approaches as well as a path-based reformulation which can be solved by column generation.

While the concept of light spanners is very well researched, there is little literature on
generalized optimum requirement graphs. Only the case of finding trees with minimal routing
costs is well understood. Thus, it is a natural extension to consider the theoretical properties
of generalized optimum requirement graphs in future work. Especially in the context of
public transport planning, moving from trees to general light spanning graphs is an important
step towards applicability.

References

1 Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse span-
ners of weighted graphs. Discret. Comput. Geom., 9:81–100, 1993. doi:10.1007/BF02189308.

2 Júlia Baligács, Yann Disser, Irene Heinrich, and Pascal Schweitzer. Exploration of graphs with
excluded minors. European Symposium on Algorithms, 2023.

3 Hans L. Bodlaender, Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey,
Daniel Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity framework for
forbidden subgraphs IV: the Steiner forest problem. CoRR, abs/2305.01613, 2023. doi:
10.48550/arXiv.2305.01613.

4 Michael Bussieck. Optimal lines in public rail transport. PhD thesis, Technische Universität
Braunschweig, 1998.

5 Leizhen Cai. NP-completeness of minimum spanner problems. Discret. Appl. Math., 48(2):187–
194, 1994. doi:10.1016/0166-218X(94)90073-6.

6 Guy Desaulniers and Mark D. Hickman. Public transit. Handbooks in operations research and
management science, 14:69–127, 2007. doi:10.1016/S0927-0507(06)14002-5.

7 John Ellis and Robert Warren. Lower bounds on the pathwidth of some grid-like graphs.
Discrete Applied Mathematics, 156(5):545–555, 2008. doi:10.1016/j.dam.2007.02.006.

8 Ehab S. Elmallah and Charles J. Colbourn. Optimum communication spanning trees in
series-parallel networks. SIAM J. Comput., 14(4):915–925, 1985. doi:10.1137/0214064.

9 Andrés Fielbaum, Sergio Jara-Diaz, and Antonio Gschwender. A parametric description
of cities for the normative analysis of transport systems. Networks and Spatial Economics,
17:343–365, 2017.

ATMOS 2023

https://doi.org/10.1007/BF02189308
https://doi.org/10.48550/arXiv.2305.01613
https://doi.org/10.48550/arXiv.2305.01613
https://doi.org/10.1016/0166-218X(94)90073-6
https://doi.org/10.1016/S0927-0507(06)14002-5
https://doi.org/10.1016/j.dam.2007.02.006
https://doi.org/10.1137/0214064

2:16 Using Light Spanning Graphs for Passenger Assignment in Public Transport

10 Markus Friedrich, Maximilian Hartl, Alexander Schiewe, and Anita Schöbel. Integrating
passengers’ assignment in cost-optimal line planning. In 17th workshop on algorithmic ap-
proaches for transportation modelling, optimization, and systems (ATMOS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

11 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

12 Elisabeth Gassner. The steiner forest problem revisited. J. Discrete Algorithms, 8(2):154–163,
2010. doi:10.1016/j.jda.2009.05.002.

13 Philine Gattermann, Jonas Harbering, and Anita Schöbel. Line pool generation. Public
Transport, 9:7–32, 2017.

14 Valérie Guihaire and Jin-Kao Hao. Transit network design and scheduling: A global review.
Transportation Research Part A: Policy and Practice, 42(10):1251–1273, 2008. doi:10.1016/
j.tra.2008.03.011.

15 Anupam Gupta and Amit Kumar. Greedy algorithms for steiner forest. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 871–878.
ACM, 2015. doi:10.1145/2746539.2746590.

16 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

17 Refael Hassin and Arie Tamir. Improved complexity bounds for location problems on the real
line. Operations Research Letters, 10(7):395–402, 1991.

18 T. C. Hu. Optimum communication spanning trees. SIAM J. Comput., 3(3):188–195, 1974.
doi:10.1137/0203015.

19 Rolf Hüttmann. Planungsmodell zur Entwicklung von Nahverkehrsnetzen liniengebundener
Verkehrsmittel. PhD thesis, Technische Universität Hannover, 1978. URL: https://orlis.
difu.de/handle/difu/482691.

20 David S. Johnson, Jan Karel Lenstra, and A. H. G. Rinnooy Kan. The complexity of the
network design problem. Networks, 8(4):279–285, 1978. doi:10.1002/net.3230080402.

21 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

22 David Peleg and Alejandro A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116, 1989.
doi:10.1002/jgt.3190130114.

23 Santiago Valdés Ravelo and Carlos Eduardo Ferreira. A PTAS for the metric case of the
optimum weighted source-destination communication spanning tree problem. Theor. Comput.
Sci., 771:9–22, 2019. doi:10.1016/j.tcs.2018.11.008.

24 Alexander Schiewe, Sebastian Albert, Philine Schiewe, Anita Schöbel, Felix Spühler, and
Moritz Stinzendörfer. Documentation for lintim 2022.08, 2022.

25 Anita Schöbel. Line planning in public transportation: models and methods. OR spectrum,
34(3):491–510, 2012. doi:10.1007/s00291-011-0251-6.

26 Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. Approximation algorithms for some
optimum communication spanning tree problems. Discret. Appl. Math., 102(3):245–266, 2000.
doi:10.1016/S0166-218X(99)00212-7.

27 Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. Light graphs with small routing cost.
Networks, 39:130–138, 2002. doi:10.1002/net.10019.

28 Carlos Armando Zetina, Iván A. Contreras, Elena Fernández, and Carlos Luna-Mota. Solving
the optimum communication spanning tree problem. Eur. J. Oper. Res., 273(1):108–117, 2019.
doi:10.1016/j.ejor.2018.07.055.

https://doi.org/10.1016/j.jda.2009.05.002
https://doi.org/10.1016/j.tra.2008.03.011
https://doi.org/10.1016/j.tra.2008.03.011
https://doi.org/10.1145/2746539.2746590
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1137/0203015
https://orlis.difu.de/handle/difu/482691
https://orlis.difu.de/handle/difu/482691
https://doi.org/10.1002/net.3230080402
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1016/j.tcs.2018.11.008
https://doi.org/10.1007/s00291-011-0251-6
https://doi.org/10.1016/S0166-218X(99)00212-7
https://doi.org/10.1002/net.10019
https://doi.org/10.1016/j.ejor.2018.07.055

Convergence Properties of Newton’s Method for
Globally Optimal Free Flight Trajectory
Optimization
Ralf Borndörfer #

Zuse Institute Berlin, Germany
Free University of Berlin, Germany

Fabian Danecker1 #

Zuse Institute Berlin, Germany

Martin Weiser #

Zuse Institute Berlin, Germany

Abstract
The algorithmic efficiency of Newton-based methods for Free Flight Trajectory Optimization is
heavily influenced by the size of the domain of convergence. We provide numerical evidence that the
convergence radius is much larger in practice than what the theoretical worst case bounds suggest.
The algorithm can be further improved by a convergence-enhancing domain decomposition.

2012 ACM Subject Classification Mathematics of computing → Continuous functions; Mathematics
of computing → Continuous optimization; Mathematics of computing → Discretization; Mathematics
of computing → Discrete optimization; Mathematics of computing → Network optimization; Math-
ematics of computing → Graph algorithms; Mathematics of computing → Nonconvex optimization;
Mathematics of computing → Ordinary differential equations

Keywords and phrases shortest path, flight planning, free flight, optimal control, global optimization,
Newton’s method

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.3

Category Short Paper

Funding This research was funded by the DFG Research Center of Excellence MATH+ – Berlin
Mathematics Research Center, Project TrU-4.

1 Introduction

Today, aircraft are required to take routes in the airway network, a 3D graph over the surface
of the earth. Such routes are longer and less fuel efficient than unconstrained routes. Air
traffic associations in many places, in particular, in Europe and in the US, are therefore
investigating options to introduce Free Flight aviation regimes that allows such routes, in an
attempt to reduce congestion, travel times, and fuel consumption. By giving pilots more
freedom to choose their routes, taking into account factors such as weather conditions, wind
patterns, and individual aircraft performance, Free Flight can improve overall efficiency and
operational flexibility. For a more comprehensive and detailed discussion of the problem and
an overview of solution approaches, we kindly direct the reader to our previous publications
[1, 2, 3, 4] and the references therein.

In [1, 2], we introduced an algorithm that combines Discrete and Continuous Optimization
techniques to obtain a globally optimal trajectory under Free Flight conditions. The approach
involves constructing a discrete approximation of the problem in the form of a sufficiently dense

1 corresponding author
© Ralf Borndörfer, Fabian Danecker, and Martin Weiser;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 3; pp. 3:1–3:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:borndoerfer@zib.de
https://orcid.org/0000-0001-7223-9174
mailto:danecker@zib.de
https://orcid.org/0000-0002-8953-808X
mailto:weiser@zib.de
https://orcid.org/0000-0002-1071-0044
https://doi.org/10.4230/OASIcs.ATMOS.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 Convergence Properties of Newton’s Method for Free Flight Trajectory Optimization

graph, which implicitly generates a pool of potential candidate paths. These paths (i) can be
efficiently explored using state-of-the-art shortest path algorithms, and (ii) provide suitable
initial solutions for a locally convergent continuous optimization approach. Specifically, we
proposed the application of Newton’s method to the first-order necessary conditions, an
algorithm that is known as Newton-KKT method or Sequential Quadratic Programming
(SQP) [4].

The efficiency of this hybrid method hinges on the graph density that is required to
guarantee that a discrete candidate path lies within the domain of convergence of the
continuous optimizer. The size of the domain of convergence depends on the wind conditions,
and directly impacts the computational efficiency of the algorithm: A smaller convergence
radius requires a denser graph and thus more discrete candidate paths that need to be
considered.

In this article we provide numerical evidence that the convergence radius exceeds the
theoretical lower bound. This finding greatly enhances the robustness, the speed, and the
practical applicability of the proposed approach beyond the theoretical guarantees that
are currently known. Furthermore, our investigation confirms that the norm that was
introduced in our previous papers to quantify the size of the domain of convergence is an
appropriate choice. It effectively captures the characteristics of the domain and provides
meaningful insights into its extent. We finally propose a nonlinear domain decomposition-
inspired algorithmic modification to increase the convergence radius and enhance optimization
performance.

2 The Free Flight Trajectory Optimization Problem

The vertical component of a flight trajectory is primarily governed by aircraft-specific
performance data and the corresponding reduction in weight due to fuel burn, allowing
for a relatively precise determination beforehand. In contrast, the horizontal component is
predominantly influenced by external factors, with wind conditions being a crucial factor.
As a result, a common approach involves optimizing each component separately (e.g., [6]).
In this paper, we concentrate on the optimization of the horizontal trajectory.

Neglecting any traffic flight restrictions, we consider flight paths in the Sobolev-Space

X = {ξ ∈ W 1,∞((0, 1),R2) | ξ(0) = xO, ξ(1) = xD}. (1)

connecting origin xO and destination xD. A short calculation reveals that an aircraft
travelling along such a path ξ with constant airspeed v through a three times continuously
differentiable wind field w ∈ C3(R2,R2) of bounded magnitude ∥w∥L∞ < v reaches the
destination after a flight duration

T (ξ) =
∫ 1

0
f

(
ξ(τ), ξτ (τ)

)
dτ, (2)

where ξτ denotes the time derivative of ξ and

f(ξ, ξτ) := tτ = −ξT
τ w +

√
(ξT

τ w)2 + (v2 − wT w)(ξT
τ ξτ)

v2 − wT w
, (3)

see [1, 2, 3, 4].
Among these paths ξ, we need to find one with minimal flight duration T (ξ), since that

is essentially proportional to fuel consumption [7]. This classic of optimal control is known
as Zermelo’s navigation problem [8].

R. Borndörfer, F. Danecker, and M. Weiser 3:3

Since the flight duration T as defined in (2) is based on a time reparametrization from
actual flight time t ∈ [0, T] to pseudo-time τ ∈ (0, 1) according to the actual flight trajectory
x(t) = ξ(τ(t)) such that ∥xt(t) − w(x(t))∥ = v, the actual parametrization of ξ in terms of
pseudo-time τ is irrelevant for the value of T and we can restrict the optimization to finding
the representative with constant ground speed ∥ξτ (τ)∥. Hence, we will subsequently consider
the constrained minimization problem

min
ξ∈X, L∈R

T (ξ), s.t. ∥ξτ (τ)∥2 = L2 for a.a. τ ∈ (0, 1). (4)

If the constraint is satisfied, L can be interpreted as the path length.

3 Numerical Results

In the following we explore three key aspects of Free Flight Optimization numerically: the
gap between the empirical convergence radius and its theoretical lower bound, the suitability
of the norm used in previous works for assessing convergence accurately, and an algorithmic
approach for increasing the convergence radius.

These points will be studied on a benchmark example of crossing a wind field consisting
of 15 regularly aligned disjoint vortices from xO = (0, 0) to xD = (1, 0) at an airspeed of
v = 1, see Figure 1 a). The wind speed attains its maximum at the center of a vortex with
∥w∥L∞ ≤ 1

2 v and decreases monotonically to 0 towards the boundary. A formal definition is
given in [1].

Traversing a vortex, there are two locally optimal options; using the tailwind on one
side or avoiding the headwind with a detour on the other side (cf. [1], example b)). Hence,
there may be roughly O(2n) locally optimal routes in a wind field with n vortices, posing a
challenging problem for global optimization; moreover, a wind field setting of this complexity
will rarely if ever be encountered in practice.

3.1 Size of the Convergence Radius
It has been shown in [4] that there is a positive convergence radius RC such that the
Newton-KKT method initialized with ξ converges to a minimizer ξ⋆⋆ if

∥ξ − ξ⋆⋆∥L∞(0,1)︸ ︷︷ ︸
distance err.

+ ∥(ξ − ξ⋆⋆)τ ∥L∞(0,1)︸ ︷︷ ︸
angular err.

+|L − L⋆⋆| + ∥λ − λ⋆⋆∥L∞(0,1) ≤ RC . (5)

Since the constraint in (4) is only weakly active, the Lagrangian Multiplier can directly be
initialized with λ = λ⋆⋆ = 0 (see [4]). Moreover, L can reasonably be initialized with the
path length of the candidate route. Hence we concentrate on the first two terms which we
will refer to as distance and angular error. Note that higher order derivatives (e.g., curvature)
do not affect the overall travel time (2). In the following we examine a two-dimensional affine
subspace of the trajectory space that allows us to separate the individual impact of these
error terms (see discussion in Section 3.2);

M := ξ⋆⋆ + R∆ξhf + R∆ξlf , (6)

which is anchored at the global optimum ξ⋆⋆ and spanned by a low- and a high-frequent
deviation, both of the form

∆ξf (τ) = n(τ) sin(kf πτ), f ∈ {hf, lf} (7)

ATMOS 2023

3:4 Convergence Properties of Newton’s Method for Free Flight Trajectory Optimization

a)

1.0 0.5 0.0 0.5 1.0
High Freq.±|| hf||W1,

0.2

0.0

0.2

Lo
w

Fr
eq

.
±|

|
lf ||

W
1,

0.20.2 0.60.6 1.01.0
b)

0.5 0.0 0.5
Angular Error ±|| ||L

0.04
0.00
0.04

Di
st

. E
rr.

±|
|

|| L 0.20.2 0.60.6 1.01.0
c)

Figure 1 a) The extremes of the sampled part of the two-dimensional subspace are shown. Blue:
globally optimal route ξ⋆⋆, green: high-frequency deviation ξ⋆⋆ + ∆ξhf , red: low-frequency deviation
ξ⋆⋆ + ∆ξlf . b) Empirical domain of convergence. White: Newton’s method converged back to the
global optimum, gray: it did not. Dashed lines: constant combined norm ∥∆ξ∥W 1,∞ . For the
purpose of illustration the sign is chosen based on the direction of the respective deviation. c) Via
an affine transformation, each of the quadrants of b) is mapped into the space spanned by angular
and distance error.

with klf = 1, khf = 30 and n(τ) ∈ R2 denoting a unit vector perpendicular to the optimal
direction of flight ξ⋆⋆

τ (τ). The norm of such a deviation reads

∥∆ξf ∥W 1,∞(0,1) = ∥∆ξf ∥L∞(0,1) + ∥∆ξf
τ ∥L∞(0,1) = 1 + kf π

and consequently

∥∆ξ∥W 1,∞(0,1) = ∥ahf∆ξhf + alf∆ξlf∥W 1,∞(0,1) = |ahf |(1 + khfπ) + |alf |(1 + klfπ). (8)

From this subspace M candidates ξ are sampled around the global optimum and used as
starting points in order to solve the optimization problem (4) via the Newton-KKT method
as described in [4]. Figure 1 a) shows the global optimum in blue and the extremes of the
sampled region in red and green, solid and dotted, respectively. Figure 1 b) shows whether
the procedure converged back to the optimum (white) or not (gray) with the abscissa and
ordinate indicating the Sobolev-norm of the high- and low-frequency deviation, respectively.
The total Sobolev-distance (8) is indicated by dotted contour lines. It can be shown that
even under mild wind conditions, RC ≈ 10−8 holds. Our numerical experiments, however,
reveal that the domain of convergence is consistently larger than 10−1 – several orders of
magnitude larger than the theoretical guaranty.

R. Borndörfer, F. Danecker, and M. Weiser 3:5

3.2 Relevance of the Error Terms
With the same norm, a low-frequent deviation introduces mostly distance error, while a
deviation with high frequency results in significant angular error. This observation allows
transforming each quadrant of Figure 1 b) into the space of distance and angular error via

Distance error:

||∆ξ||L∞ = |alf | + |ahf | = 1
1 + klfπ

∥∆ξlf∥W 1,∞ + 1
1 + khfπ

∥∆ξhf∥W 1,∞ , (9a)

Angular error:

||∆ξτ ||L∞ = |alf | klfπ + |ahf | khfπ = klfπ

1 + klfπ
∥∆ξlf∥W 1,∞ + khfπ

1 + khfπ
∥∆ξhf∥W 1,∞ , (9b)

as shown in Figure 1 c). Note that both deviations contribute to angular and distance errors.
As a result, cones around the axes (depicted as light gray regions) cannot be represented
using deviations of the specified form.

Both error terms are significant. A viable route can have a large distance error if it is
far from the optimum (Figure 1 a), red paths), but it should exhibit parallel behavior for a
small angular error. On the other hand, if the candidate path zig-zags around the optimum,
it will have a substantial angular error (Figure 1 a), green paths), but it cannot deviate
significantly from the optimal path, leading to a lower distance error.

In terms of distance error, the extent of the domain of convergence is largely determined
by the wind field. At each vortex there are two locally optimal options; passing left or right.
At some point one will inevitably enter the convergence region of the next local optimum.

3.3 Algorithmic Improvement
Our approach focuses on candidate routes with a high angular error, as exemplified by the
red route in Figure 2. This is of importance for the discrete-continuous algorithm, since
graph-based shortest paths tend to zig-zag around an optimizer [3].

It is intuitively clear that on a local scale, an optimal trajectory is nearly straight. We
exploit this for reducing high-frequent errors by solving local trajectories on an overlapping
decomposition of the time domain, thus realizing a nonlinear alternating Schwarz method [5].

We select equidistant points along the initial route, such that the distance between
consecutive points is smaller than significant wind field structures. In the example, the
route was obtained by imposing a large, high-frequency deviation as before and divided into
11 segments, deliberately not a divisor of the frequency. This initial route lies outside the
convergence region (see Figure 2).

In the first step, we calculate the optimal routes on all subintervals (depicted in green).
Next, utilizing this refined segment, we repeat the process with shifted waypoints (depicted
in orange). A significant portion of the oscillation has been smoothed out, resulting in a
notable reduction of the angular error. Using this refined segment as a starting point for
optimizing the entire route leads us to the desired optimum (blue). Figure 3 reveals, that
this improvement enlarges the convergence region significantly.

4 Conclusion

The recently proposed Discrete-Continuous Hybrid Algorithm for Free Flight Trajectory
Optimization relies on the existence of a sufficiently large domain of convergence around a
global minimizer. In our study, we have presented compelling evidence that this condition is

ATMOS 2023

3:6 Convergence Properties of Newton’s Method for Free Flight Trajectory Optimization

Figure 2 The initial guess (red) is divided into segments, on which the trajectory is locally
optimized (green). This process is repeated, and the resulting trajectory (orange) is the initial
guess for the optimization of the entire route. Starting from the smoothed guess (orange), Newton’s
method converges to the global optimizer (blue), while from the initial guess (red) it does not.

4 2 0 2 4
High Freq. ±|| hf||W1,

0.25
0.00
0.25

Lo
w

Fr
eq

.
±|

|
lf ||

W
1,

1.01.0 3.03.0 5.05.0

Figure 3 The approach has led to a significant increase of the domain of convergence (cf. Fig. 1 b)).

satisfied even under highly challenging conditions and that the measure we have proposed
for assessing it is appropriate. Furthermore, we have introduced a domain decomposition
method to expand the convergence region, which is expected to significantly enhance the
practical performance of the hybrid approach.

References
1 R. Borndörfer, F. Danecker, and M. Weiser. A Discrete-Continuous Algorithm for Free Flight

Planning. Algorithms, 14(1):4, 2021. doi:10.3390/a14010004.
2 R. Borndörfer, F. Danecker, and M. Weiser. A Discrete-Continuous Algorithm for Globally

Optimal Free Flight Trajectory Optimization. In 22nd Symposium on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS 2022), 2022. doi:10.4230/
OASIcs.ATMOS.2022.2.

3 R. Borndörfer, F. Danecker, and M. Weiser. Error Bounds for Discrete-Continuous Free
Flight Trajectory Optimization. Journal of Optimization Theory and Applications, July 2023.
doi:10.1007/s10957-023-02264-7.

4 R. Borndörfer, F. Danecker, and M. Weiser. Newton’s Method for Global Free Flight Trajectory
Optimization. Oper. Res. Forum, 4(63), 2023. doi:10.1007/s43069-023-00238-z.

5 P. L. Lions. On the Schwarz Alternating Method. I. In 1st International Symposium on
Domain Decomposition Methods for Partial Differential Equations, pages 1–42. SIAM, 1988.

6 H. K. Ng, B. Sridhar, and S. Grabbe. Optimizing Aircraft Trajectories with Multiple Cruise
Altitudes in the Presence of Winds. Journal of Aerospace Information Systems, 11(1):35–47,
2014. doi:10.2514/1.I010084.

7 C. A. Wells, P. D. Williams, N. K. Nichols, D. Kalise, and I. Poll. Reducing Transatlantic
Flight Emissions by Fuel-Optimised Routing. Environmental Research Letters, 16(2):025002,
2021. doi:10.1088/1748-9326/abce82.

8 E. Zermelo. Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung.
ZAMM, 11(2):114–124, 1931. doi:10.1002/zamm.19310110205.

https://doi.org/10.3390/a14010004
https://doi.org/10.4230/OASIcs.ATMOS.2022.2
https://doi.org/10.4230/OASIcs.ATMOS.2022.2
https://doi.org/10.1007/s10957-023-02264-7
https://doi.org/10.1007/s43069-023-00238-z
https://doi.org/10.2514/1.I010084
https://doi.org/10.1088/1748-9326/abce82
https://doi.org/10.1002/zamm.19310110205

Non-Pool-Based Line Planning on Graphs of
Bounded Treewidth
Irene Heinrich #

TU Darmstadt, Germany

Philine Schiewe #

Aalto University, Espoo, Finland

Constantin Seebach #

RPTU Kaiserslautern-Landau, Kaiserslautern, Germany

Abstract
Line planning, i.e. choosing routes which are to be serviced by vehicles in order to satisfy network
demands, is an important aspect of public transport planning. While there exist heuristic procedures
for generating lines from scratch, most theoretical investigations consider the problem of choosing
lines only from a predefined line pool. We consider the line planning problem when all simple paths
can be used as lines and present an algorithm which is fixed-parameter tractable, i.e. it is efficient on
instances with small parameter. As a parameter we consider the treewidth of the public transport
network, along with its maximum degree as well as the maximum allowed frequency.

2012 ACM Subject Classification Applied computing → Transportation; Theory of computation
→ Fixed parameter tractability; Mathematics of computing → Integer programming; Theory of
computation → Discrete optimization

Keywords and phrases line planning, public transport, treewidth, integer programming, fixed
parameter tractability

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.4

Supplementary Material Software (Source Code): https://github.com/urinstinkt/lptw

Funding Irene Heinrich: The research leading to these results has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (EngageS: grant agreement No. 820148).

Acknowledgements This work was partially developed during a guest stay of the first author at the
Aalto University in Espoo, Finland.

1 Introduction

Motivation. Automating public transport planning is a challenging task and traditional
approaches split it into multiple stages, as seen in [13] and Figure 1. Lines form a foundational
building block for all following planning stages. In this context, lines are (simple) paths in
the public transport network that have to be covered by vehicles end-to-end. Which lines are
chosen highly impacts the subsequent planning steps like timetabling and vehicle scheduling.
On the one hand, lines influence the routes and transfers that passengers take, determining
the network quality from the passenger’s perspective, and on the other hand, they determine
the majority of the operating costs.

Line planning refers to selecting a subset of lines and their frequencies, called line concept,
from a given set of lines, the line pool. While there is ample literature on line planning for a
given fixed line pool, see [20], the construction of line pools is often neglected.

Instead of designing a line concept from a given line pool, we consider the set of all simple
paths as candidates. This greatly extends the solution space and has a high potential to give
better results. Thus our approach integrates line pool generation and line planning phases

© Irene Heinrich, Philine Schiewe, and Constantin Seebach;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 4; pp. 4:1–4:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heinrich@mathematik.tu-darmstadt.de
https://orcid.org/0000-0001-9191-1712
mailto:p.schiewe@mathematik.uni-kl.de
https://orcid.org/0000-0002-4223-3246
mailto:seebach@cs.uni-kl.de
https://orcid.org/0000-0001-6242-0279
https://doi.org/10.4230/OASIcs.ATMOS.2023.4
https://github.com/urinstinkt/lptw
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

passenger
assignment

line pool
generation line planning timetabling . . .

passenger
assignment (LPAL) timetabling . . .

Figure 1 Common sequential approach for public transport planning, adapted from [13] (top).
We consider the integration of line pool generation and line planning into a single step (bottom).

into one single problem which we call line planning on all paths (LPAL). This integrated
problem is not yet thoroughly researched, and although its hardness has been investigated
recently [15], not much is known about how to solve it efficiently in practice, if that is even
possible, and how much it improves over previous methods.

Throughout the research literature on line planning, different objective functions have
been considered. From the passengers’ perspective, one wants to maximize the number of
direct travelers [7] or to minimize the travel time [21, 6]. Here, it is especially difficult to
model passenger behavior realistically, see [12, 19]. In this paper we focus on minimizing the
operating costs of a line concept as originally introduced in [8], where assigning passenger
routes in a previous step guarantees that passengers can travel on favorable routes, see e.g. [7].
Our cost model includes path-dependent and -independent costs, where the former can be
used to model costs for the distance covered on a line and the latter can represent costs
of maintaining a vehicle. All costs are frequency-dependent, meaning they scale with the
number of vehicles operated per line. We do not model frequency-independent costs, since it
was shown [15] that doing so makes (LPAL) NP-hard even on the most simple graph classes.

It was shown previously in [15] that (LPAL) is NP-hard and cannot even be approximated
to a reasonable degree in polynomial time, assuming P ̸= NP . This is supported by the fact
that all but the most elementary families of graphs exhibit an exponential number of possible
simple paths in terms of the graph order. In fact it is unknown whether (LPAL) is even
contained in NP since the line concept could be any subset of an exponentially sized line
pool – simply writing it down may not be possible in polynomial time. Given these hardness
results, the question arises whether it is at all feasible to solve (LPAL) in practice.

This motivated us to investigate the parameterized complexity of (LPAL). We consider
the problem’s complexity not only depending on the input size, but also depending on some
extra parameter. A parameterized problem is called fixed parameter tractable (FPT) if we
can solve it in time f(k)nO(1), where k is the parameter, n is the input size, and f is an
arbitrary function. Obtaining such a result furthers our theoretical understanding of the
problem, discerning what exactly makes instances hard to solve. Crucially, an FPT-algorithm
can also be useful in practice, if the evaluated instances can be expected to have a small
parameter.

In particular, we consider the graph parameter treewidth, which was introduced by
Robertson and Seymour [18] and has become an indispensable graph invariant for studying
algorithmic problems which are intractable in their general form. At its core, treewidth
captures the notion of how close a graph is to being a tree. One could say that graphs of
bounded treewidth are “thickened trees”. Trees have a simple and hierarchical structure,
making them easier to analyze and work with compared to more complex graphs. Treewidth
generalizes this concept by allowing cycles and measuring the extent to which a graph deviates
from a tree-like structure.

Numerous problems are linear-time solvable on graphs for which the treewidth is restric-
ted [1, 2]. This is the case, for example for Maximum independent set, Chromatic number
and Hamiltonian circuit. The latter is especially relevant, since the problem of finding a

I. Heinrich, P. Schiewe, and C. Seebach 4:3

Hamiltonian path is used to obtain various hardness results for line planning [15]. In fact,
Courcelle [9] showed in his seminal work that every graph property definable in monadic
second-order logic can be decided in linear time on graphs of bounded treewidth. Furthermore
Integer linear programming (ILP), which is ubiquitous in discrete optimization, becomes
tractable when the constraint interaction graph has bounded treewidth and the variables
have a bounded domain [10].

From a practical view-point, treewidth is a very natural parameter to consider in the
context of transportation planning. For example, networks modeling cities that developed
along an arterial road or near a river can be intuitively understood as being like “trees, but
thicker”, i.e. having comparatively small treewidth. More abstract examples are grids and
ring graphs (concentric rings connected by spokes). It turns out that when the number of
spokes is fixed, the resulting networks have bounded treewidth, no matter how many rings
we add. Similarly, when we consider grids where one of the dimensions is fixed and the other
one arbitrary, we have bounded treewidth [4]. Many street networks contain such graphs as
substructures (striking examples are New York or Paris).

compute nice
tree decomposition T ILP construction solve ILP (exploiting

tree decomposition)

iteratively build
line concept

T ILP instructions

T

stage 1 stage 2 stage 3

Figure 2 Overview of our line planning algorithm. In the preprocessing stage, a tree decom-
position T of the input graph is computed, which is used in all stages of the algorithm. First we
construct an ILP (stage 1). Then this ILP is solved, exploiting the given tree-like structure (stage 2).
The solution is fed into our assembly algorithm (stage 3) which finally constructs an optimal line
concept.

When a predefined line pool is given, line planning can be solved using integer linear
programming (ILP) in a straight forward way. A variable is introduced for every line in the
line pool, representing the frequency of this particular line. Feasibility and costs of the line
concept are then easily modeled. It remains to solve the resulting integer program. This
remaining task, however, is practical only for small line pools, since no efficient algorithmic
solutions are known. When solving (LPAL), all possible simple paths must be considered as
line candidates. Indeed, since the number of possible paths of a graph grows exponentially
in the number of vertices, using this straight forward approach would result in an integer
program with an exponential number of variables, hence we can expect a doubly exponential
running-time in the worst case.

Contribution. In this paper we develop an algorithm solving (LPAL) on graphs G = (V,E)
of maximum degree ∆ with treewidth k and vehicle frequencies bounded by M in time
O(g1(k,M∆)|V | + g2(k)|V |2) for some functions g1 and g2. In other words, we show (LPAL)
is FPT when parameterized by treewidth combined with maximum degree and maximum
frequency. Our algorithm can be broken down into multiple stages, as shown in Figure 2.
First we need to compute a tree decomposition of the input graph. Using it we construct
an ILP having a number of variables which is linear in the number of vertices (stage 1).
We prove that if our input graphs additionally have bounded degree and edge frequencies,
this ILP can be solved in polynomial time (stage 2). The optimal solution provides the
instructions for building an optimal line concept. Finally we give an algorithm that carries
out these instructions in polynomial time (stage 3), hence solving (LPAL).

ATMOS 2023

4:4 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

We evaluated the practicality of our algorithm by measuring its running time on a set of
algorithmically generated instances. Additionally we compare the resulting line concepts to
those obtained by a heuristic line pool generation approach [11]. Here our algorithm manages
to reduce the costs by 36% on average.

2 Preliminaries

Graph Theory. Let G = (V,E) be a graph and V ′ ⊆ V . The subgraph of G induced by V ′

is G[V ′] := (V ′, {e ∈ E : e ⊆ V ′}). Let V be a set of vertices. The complete graph on V

is K(V) := (V, {{u, v} : u, v ∈ V with u ̸= v}). Let G1 = (V1, E1) and G2 = (V2, E2) be
graphs. Their union is G1 ∪G2 := (V1 ∪ V2, E1 ∪ E2).

Line Planning. A line planning instance is a tuple (G, cfix, c, f
min, fmax), where

G = (V,E) is a graph representing a public transport network,
cfix ∈ R≥0 represents frequency-dependent fixed costs,
c : E → R≥0, e 7→ ce is a map representing the edge-dependent costs, and
fmin and fmax are integer frequency restrictions on E, e 7→ fmin

e (respectively e 7→ fmax
e)

such that fmin
e ≤ fmax

e for all edges e ∈ E. Note that the lower frequency restrictions fmin
e

allow for passengers traveling on favorable routes while the upper frequency restrictions
fmax

e represent safety constraints.

Paths and lines. Let G = (V,E) be a graph. We denote the set of all paths which are
subgraphs of G by P(G). We define P̂(G) := P(K(V)), which includes also paths using
edges absent in G. Any sequence v1, . . . , vk of k ≥ 2 vertices defines a path p ∈ P̂(G). To
shorten notation we will simply write p = v1, . . . , vk, slightly abusing the = sign. Note that
the reverse sequence vk, . . . , v1 defines exactly the same path, hence in our notation we treat
the sequences v1, . . . , vk and vk, . . . , v1 as equal. Let p ∈ P̂(G) be defined by v1, . . . , vk, and
W ⊆ V . The sub-sequence of v1, . . . , vk which contains only vertices contained in W defines
the path p|W .

A line concept (L, f) is a set of paths L ⊆ P(G), also called lines, with a frequency vector
f = (fℓ)ℓ∈L ∈ NL, i.e. fℓ is the frequency of line ℓ.

Let U be a set. A multiset over the universe U is a vector m ∈ NU . We can add multisets
together just like vectors. Define suppm := {x ∈ U : m(x) > 0} and |m| :=

∑
x∈U m(x). To

represent a line concept (L, f) we really just need the multiset f ∈ NP(G), since L = supp f .
At each edge e ∈ E, the lines sum up to a total frequency

F (L,f)
e =

∑
ℓ∈L : e∈E(ℓ)

fℓ,

where E(ℓ) denotes the edge set of ℓ. A line concept is feasible if for each edge e ∈ E the
frequency restrictions are satisfied, i.e. fmin

e ≤ F
(L,f)
e ≤ fmax

e .
The cost of a path p ∈ P(G) is cost(p) := cfix +

∑
e∈E(P) ce. We define cost((L, f)) :=∑

ℓ∈L fℓ ·cost(ℓ). An equivalent representation is cost((L, f)) =
∑

e∈E F
(L,f)
e ce+cfix ·

∑
ℓ∈L fℓ.

With this notation, we can formally define the line planning on all lines problem.

▶ Definition 1. Given a line planning instance, the line planning on all lines problem (LPAL)
is to find a feasible line concept with minimal costs.

I. Heinrich, P. Schiewe, and C. Seebach 4:5

Tree decompositions. A tree decomposition of a graph G is a tuple (T,B) where T is a tree
and B = {Bt : t ∈ V (T)} is a family of subsets of V (G), one for each vertex of T such that

(i)
⋃

t∈V (T) Bt = V (G),
(ii) for every edge uv ∈ E(G) there exists a t ∈ V (T) with {u, v} ⊆ Bt, and
(iii) every triple t1, t2, t3 of vertices in V (T) satisfies: if t2 is on the unique t1-t3-path in T ,

then Bt1 ∩Bt3 ⊆ Bt2 .
The width of a tree decomposition (T, {Bt : t ∈ V (T)}) is maxt∈V (T) |Bt| − 1. The minimum
width over all tree decompositions of a graph G is the treewidth of G.

Let G be a graph of treewidth k. A tree decomposition (T, {Bt : t ∈ V (t)}) of G is nice if
its width is k and T can be rooted at a vertex r such that

every vertex of T has at most two children,
if a vertex t ∈ T has two children t1 and t2, then Bt1 = Bt2 = Bt (t is a join node),
if a vertex t ∈ T has exactly one child t′, then either Bt ⊊ Bt′ and |Bt| = |Bt′ | − 1 (t is a
forget node) or Bt′ ⊊ Bt and |Bt| = |Bt′ | + 1 (t is an introduce node),
if t is a leaf of T , then |Bt| = 1 (t is a leaf node), and
|V (T)| ∈ O(k|V |).

Kloks [16] proved that every graph G has a nice tree decomposition. Nice tree decompositions
are a useful tool that simplify the derivation of algorithms which are parametrized in the
treewidth of the input graph.

3 Line planning is FPT

Assume we are given an instance I = (G, cfix, c, f
min, fmax) of (LPAL) where G has

treewidth k and maximum degree ∆, together with a nice tree decomposition (T,B) of G of
width k. Let r be the root of T . Without loss of generality, we can assume Br = ∅ (this can
be achieved by adding up to k + 1 additional forget nodes). We want to work along the tree
decomposition, from the bottom up, hence the following definitions are useful: For t ∈ V (T)
we set

Gt := G

 ⋃
t′∈V (T) : t′ is a

descendant of t in T

Bt′

 and G+
t := Gt ∪K(Bt).

Note that G+
t may contain edges that are not present in the original graph G. These virtual

edges are only used temporarily by our algorithm, as an intermediate step in constructing
lines. We found that when we want to build up a line concept by using a sequence of local
modifications, the virtual edges are a crucial ingredient. At the tree decomposition’s root,
no virtual edges are present and it holds: G = Gr = G+

r .
Our (LPAL)-algorithm consists of three stages (see Figure 2):

1. construct an ILP,
2. solve that ILP,
3. iteratively construct a line concept, guided by the ILP solution.
We first present the procedure of stage 3, as it motivates the ILP construction. This stage
can be understood on its own, with the caveat of some values being “to be determined”.

3.1 Path operations and path patterns
Our algorithm constructs an optimal solution by starting with an empty line concept and
iteratively applying the four following path operations. They change the line concept only
locally, hence they are especially suited for graphs of bounded treewidth. In the following we
view line concepts as multisets of simple paths.

ATMOS 2023

4:6 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

Initialization. We add a single-edge path containing exactly two vertices from V (G) to a
line concept. This edge does not necessarily exist in G.

Extension. Let p = u1u2 . . . uk ∈ P̂(G) and v ∈ V (G)\V (p). We say that p′ := vu1u2 . . . uk

is the extension of p at u1 with v. This relation is denoted by p (u1,vu1)−−−−−→ p′.

Subdivision. For p = u1u2 . . . uk ∈ P̂(G) and v ∈ V (G) \ V (p) we say that p′ :=
u1 . . . uivui+1 . . . uk is the subdivision of p at uiui+1 with v. This relation is denoted by
p

(uiui+1,uivui+1)−−−−−−−−−−−→ p′.

Join. Let V1, V2 ⊆ V such that B := V1 ∩ V2 ≠ ∅. Let p ∈ P̂(G), and define p1 := p|V1 and
p2 := p|V2 . We say p is the join of p1 and p2 at B. This relation is denoted by (p1, p2) B−→ p.

Path patterns. We now define a formal notion that allows us to focus on the local behavior
of path operations on a subset of vertices B, discarding non-local information.

Let G be a graph and B ⊆ V (G) a vertex subset of G. For a path p ∈ P̂(G) we set πB(p)
to be the sequence obtained in the following way: Replace every occurrence of vertices u /∈ B

in p by □. Then replace any runs of multiple □-symbols by a single □. Every output of πB

which is not the singleton □ is a path pattern on B. The set of all path patterns on B is
denoted by Pat(B), that is Pat(B) = πB(P̂(G)) \ {□}. Observe that every path pattern
contains at least two symbols, no two □’s are consecutive, and every vertex of B appears at
most once. Further, the length of a path pattern is at most 2|B| + 1 (the bound is tight if
and only if every symbol of B appears exactly once and every second symbol is a □). We
can obtain every pattern of Pat(B) by choosing a permutation of a subset of B and for each
two consecutive elements of the permutation choosing whether they should be separated by
a □. Hence

|Pat(B)| =
|B|∑

m=1
m! · 2m+1 ≤ (|B|)! · 2|B|+2.

Path operations can be extended to also work on path patterns. Then πB has useful
properties in relation to path operations. Let p, p′, p1, p2 ∈ P̂(G) and u, v, w ∈ B. It holds:

p
(u,wu)−−−−→ p′ if and only if πB(p) (u,wu)−−−−→ πB(p′),

p
(uv,uwv)−−−−−−→ p′ if and only if πB(p) (uv,uwv)−−−−−−→ πB(p′),

(p1, p2) B−→ p′ if and only if (πB(p1), πB(p2)) B−→ πB(p′).
Let p ∈ P̂(G) and B′ ⊆ B. Then πB′(p) = πB′(πB(p)).

3.2 Assembly algorithm
Algorithm 1, when called on node t of the tree decomposition, computes a line concept for the
graph G+

t . We have split the sub-procedures of Algorithm 1 into Algorithm 2, Algorithm 3
and Algorithm 4. The algorithm needs to be supplied with the tree decomposition (T,B)
and some integers ituv, et

p,p′ , st
p,p′ and jt

p1,p2
for each node t ∈ T . These integers control how

many path operations are applied, and the meaning of their subscripts will become apparent
from reading Algorithm 1. We call them instruction variables; in Subsection 3.3 we discuss
how to determine their values.

▶ Theorem 2. There are functions g1, g2 : N → N such that Algorithm 1 produces a line
concept L with | supp L| ∈ O(ng1(k)) and runs in time O(n2g2(k)), where n := |V (G)|.

I. Heinrich, P. Schiewe, and C. Seebach 4:7

Algorithm 1 Line concept assembly algorithm.

1: function assemble(t)
2: if t is a leaf then
3: return {} ▷ empty line concept
4: else if t is a forget node then
5: t′ = unique child of t
6: return assemble(t′)
7: else if t is an introduce node then
8: t′ = unique child of t
9: w′ = the vertex introduced by t

10: return assemble_introduce(t, t′, w)
11: else if t is a join node then
12: t1, t2 = children of t
13: return assemble_join(t, t1, t2)
14: end if
15: end function

The proof of Theorem 2 can be found in Appendix A.

Algorithm 2 Line concept assembly sub-procedure: introduce.

1: function assemble_introduce(t, t′, w)
2: L = assemble(t′)
3: for v ∈ Bt′ do
4: L += (wv, itwv)
5: end for
6: for p, p′ ∈ Pat(Bt) and u ∈ Bt′ with p

(u,wu)−−−−→ p′ do
7: L′ = subtract(L, p, et

p,p′)
8: L += extend(L′, u, w)
9: end for

10: for p, p′ ∈ Pat(Bt) and u, v ∈ Bt′ with p
(uv,uwv)−−−−−−→ p′ do

11: L′ = subtract(L, p, st
p,p′)

12: L += subdivide(L′, uv, w)
13: end for
14: return L

15: end function

3.3 ILP construction
In the following we construct an integer linear program P(LPAL)(I, (T,B)) from the (LPAL)
instance I and the tree decomposition (T,B). By solving it, we can determine the instruction
variable values which lead to an optimal feasible line concept. The ILP constraints must
ensure that each path operation the assembly algorithm wants to apply is possible, and that
the final line concept is feasible. The ILP objective corresponds to the cost of the resulting
line concept, hence minimizing it leads to an optimal solution to (LPAL).

For each node t ∈ T we construct a set of constraints, depending on the node type (leaf,
introduce, forget, join) of t, which become a part of the whole ILP. The constraint variables
are shared between neighboring nodes.

ATMOS 2023

4:8 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

Algorithm 3 Line concept assembly sub-procedure: join.

1: function assemble_join(t, t1, t2)
2: L = {}
3: L1 = assemble(t1)
4: L2 = assemble(t2)
5: for p1, p2, p

′ ∈ Pat(Bt) with (p1, p2) Bt−−→ p′ do
6: L′

1 = subtract(L1, p1, j
t
p1,p2

)
7: L′

2 = subtract(L2, p2, j
t
p1,p2

)
8: L += join(L′

1, L
′
2, Bt)

9: end for
10: return L+ L1 + L2
11: end function

Algorithm 4 Line concept subtraction.

1: function subtract(L, p, c)
2: L′ = {}
3: while c > 0 do
4: (path, count) = L.find(p)
5: if count > c then
6: L -= (path, c)
7: L′ += (copy(path), c)
8: c = 0
9: else

10: L.erase(path)
11: L′ += (path, count)
12: c -= count
13: end if
14: end while
15: return L′

16: end function

We have 6 different flavors of variables associated with each node t, describing what
happens at t during the line concept construction process:

ituv: How many copies of the path uv are initialized?
et

p,p′ : How often do we extend a path of pattern p into a path of pattern p′?
st

p,p′ : How often do we subdivide a path of pattern p into a path of pattern p′?
jt

p1,p2
: How often do we join a path of pattern p1 with a path of pattern p2?

ct
p: How many paths of pattern p do we have, after the construction finishes node t?
f t

e: What is the frequency of the resulting line concept on edge e?
The ct

p- and f t
e-variables simply track the current construction state, hence we call them

state variables. They are firmly constrained using the following equality constraints:

Leaves. Here Algorithm 1 returns an empty line concept, thus

for p ∈ Pat(Bt): cℓ
p = 0

I. Heinrich, P. Schiewe, and C. Seebach 4:9

Join nodes. Algorithm 1 effectively sums up the children’s line concepts, but joins some of
the lines, depending on the jt

p1,p2
-variables. Each individual join removes two lines and adds

a new one:

for each p ∈ Pat(Bt): ct
p = ct1

p + ct2
p +

∑
(p1,p2)

Bt−−→p

jt
p1,p2

−
∑

(p,p2)
Bt−−→p′

jt
p,p2

−
∑

(p1,p)
Bt−−→p′

jt
p1,p

Forget nodes. Let w be the forgotten vertex. No changes are made to the child’s line
concept, but we project the lines onto a smaller set of path patterns.

for p ∈ Pat(Bt): ct
p =

∑
p′∈Pat(Bt′)
πBt (p′)=p

ct′

p′

Additionally we track the frequencies of each forgotten edge e ∈ E− := {{w, u} : u ∈ Bt}.

for e ∈ E−: f t
e =

∑
p′∈Pat(Bt′)

e on p′

ct′

p′

Since the forgotten vertex cannot appear again further up in the tree decomposition, these
frequencies will remain fixed from this point forward, i.e. f t

e is also the final line concept’s
frequency of e. It is possible that E− ⊈ E(G), but the final line concept cannot be allowed
to use edges outside of E(G), hence we demand

for e ∈ E− \ E(G): f t
e = 0

For actual edges of G we use the following constraint to ensure feasibility of the final line
concept:

for e ∈ E− ∩ E(G): fmin
e ≤ f t

e ≤ fmax
e

Introduce nodes. Let w be the introduced vertex. Algorithm 1 continues with the child’s
line concept, adds and transforms some of the lines. The newly added lines consist of a single
edge; they can be produced only by the introduction operation, hence

for p = wv ∈ Pat(Bt) with v ∈ Bt′ : ct
p = itwv

For other path patterns p ∈ Pat(Bt) that contain w, we have three cases: Firstly, if w is
at the end of p and is next to another vertex u ∈ Bt, then lines having the pattern p are
precisely the ones that result from the extension operation:

for p (u,wu)−−−−→ p′: ct
p′ = et

p,p′

Secondly, if w has two neighboring vertices u, v ∈ Bt in p, then lines having the pattern p

are precisely the ones that result from the subdivision operation:

for p (uv,uwv)−−−−−−→ p′: ct
p′ = st

p,p′

Thirdly, if w is next to a □ in p, then no line having the pattern p can be created by
Algorithm 1:

for p ∈ Pat(Bt) containing w next to □: ct
p = 0

ATMOS 2023

4:10 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

The case of p ∈ Pat(Bt) not containing w remains, i.e. p ∈ Pat(Bt′). Here we find the lines of
child’s line concept, but we have to subtract lines that were transformed using the extension
or subdivision operations:

for p ∈ Pat(Bt′): ct
p = ct′

p −
∑

p
(u,wu)−−−−→p′

et
p,p′ −

∑
p

(uv,uwv)−−−−−−→p′

st
p,p′

Now our variables can track the results of Algorithm 1 at each node, but under the
assumption that all operations prescribed by the instruction variables actually succeed. We
do not want to assume, but guarantee this, hence we need more constraints.

Operation applicability constraints. Firstly each instruction variable must be non-negative.
For introduce nodes we have:

for each p, p′ ∈ Pat(Bt) and u ∈ Bt′ with p
(u,wu)−−−−→ p′: et

p,p′ ≥ 0

for each p, p′ ∈ Pat(Bt) and {u, v} ⊆ Bt′ with p
(uv,uwv)−−−−−−→ p′: st

p,p′ ≥ 0
for each v ∈ Bt′ : itwv ≥ 0

And for join nodes:

for each p1, p2, p
′ ∈ Pat(Bt) with (p1, p2) Bt−−→ p′: jt

p1,p2
≥ 0

Then we need to ensure that our operations do not subtract more lines than available. For
introduce nodes this can be expressed as

for p ∈ Pat(Bt′): ct′

p ≥
∑

p
(u,wu)−−−−→p′

et
p,p′ +

∑
p

(uv,uwv)−−−−−−→p′

st
p,p′ ,

or equivalently: ct
p ≥ 0.

The join operation subtracts a line from each child line concept, hence we need two constraints
for each p ∈ Pat(Bt):

ct1
p ≥

∑
(p,p2)

Bt−−→p′

jt
p,p2

ct2
p ≥

∑
(p1,p)

Bt−−→p′

jt
p1,p

This concludes the ILP constraints. Now we will define the linear objective of our ILP.

Objective. The final line concept’s cost can be determined by counting the effective number
of lines and the frequencies at each edge. The f t

e-variables already keep track of the edge
frequencies. For each e ∈ E(G) we have a unique forget node t where e is forgotten. In our
objective, f t

e gets the weight of ce.
The number of lines can be counted by counting the number of path operations. The

introduce operation increases the number of lines, whereas a join reduces the number of
lines. Subdivision and extension operations make no change. Hence in our objective all
itwv-variables get a weight of cfix and all jt

p1,p2
-variables get a weight of −cfix.

All other variables have a weight of 0. We arrive at the following linear objective:∑
t∈T, e∈E

t is a forget node
t forgets e

ce · f t
e +

∑
t∈T

t is an introduce node
wv∈Pat(Bt)

cfix · itwv −
∑
t∈T

t is a join node

(p1,p2)
Bt−−→p

cfix · jt
p1,p2

I. Heinrich, P. Schiewe, and C. Seebach 4:11

▶ Theorem 3. Feeding the solution of P(LPAL)(I, (T,B)) into Algorithm 1 yields an optimal
solution to I.

Proof. The statement follows from the following two claims (i.e. we produce a feasible
solution to I that is at least as good as an optimal one):
1. Let x be a solution to P(LPAL)(I, (T,B)) of cost c. Then Algorithm 1, when supplied

with x, produces a feasible line concept of cost c.
2. There exists a function ψ such that for any feasible line concept L of cost c it holds: ψ(L)

is a feasible solution to P(LPAL)(I, (T,B)) of cost c.
Claim 1 follows directly from the construction of P(LPAL)(I, (T,B)), where we already argued
the correctness of each constraint.

Claim 2 is proved in Appendix B. ◀

3.4 Solving the ILP
We will now show that the dynamic programming approach of [10, Theorem 6] can be applied
to solve our ILP, proving that (LPAL) is FPT when parameterized by treewidth, fmax and ∆.
Let M be an upper bound for fmax, i.e. for all e ∈ E we have fmax

e ≤ M .
First note that the total number of variables and constraints of the ILP can be bounded

by O
(

|T | maxt′∈T |Pat(Bt′)|2
)

= O
(

|V |k
(
(k + 1)! · 2k+3)2

)
.

Now we have to consider the incidence graph HI of our ILP and provide an upper bound
for its treewidth. The vertices of HI are composed of the variables as well as the constraints
of the ILP. A variable v is adjacent to a constraint a in the graph if and only if v occurs in
a. The given nice tree decomposition (T,B) can be transformed into a tree decomposition
(T,BI) of HI by defining the bag B′

t associated with t ∈ T , informally, as follows:

B′
t := {constraints of t} ∪ {variables of t} ∪ {variables of all children of t}.

It is possible to bound

|B′
t| ∈ O

(
max
t′∈T

|Pat(Bt′)|2
)

= O
((

(k + 1)! · 2k+3)2)
,

hence the treewidth of HI can be bounded by a function in the treewidth of G.
We also need to bound the absolute value of every variable for any feasible assignment.

All variables are non-negative, i.e. we only need to provide upper bounds. The variables
f t

e ≤ fmax
e are already taken care of. We observe that for any feasible assignment, for all

t ∈ T and p ∈ Pat(Bt) it must hold: ct
p ≤ ∆ · fmax

e . This is because any path pattern
p ∈ Pat(Bt) must contain at least one vertex v of G, and any path fitting p must walk over
some edge incident to v. The total maximum frequency of these edges cannot exceed ∆ ·fmax

e .
It follows that the jt

p1,p2
-variables also have to respect this bound. The remaining variables

irreversibly increase some ct
p, hence they are bounded by ∆ ·M as well. Therefore we define

our bound Γ := ∆M and can apply [10, Theorem 6] to obtain an algorithm solving the ILP
in time O(g(k,M∆)|V |) for some function g.

▶ Corollary 4. On any graph G = (V,E) of maximum degree ∆ with treewidth k and
fmax ≤ M , the problem (LPAL) can be solved in time O(g1(k,M∆)|V | +g2(k)|V |2) for some
functions g1 and g2.

Proof. We use Bodlaender’s algorithm [3] to compute a tree decomposition of width k for G
in linear time (assuming k is fixed). We convert it into a nice tree decomposition [16]. Then
we apply our algorithms. Combining Theorem 3 with Theorem 2 and the running time for
solving the ILP, the claim follows. ◀

ATMOS 2023

4:12 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

We hypothesize that there is an algorithm solving P(LPAL)(I, (T,B)) in a time that is not
dependent on M∆, which would imply that (LPAL) is FPT parameterized only by treewidth.

4 Experiments

We experimentally evaluated our algorithm on a set of algorithmically generated instances,
measuring its running time and comparing the results against a heuristic based approach. Our
implementation, including code to reproduce the experiments, is provided as supplementary
material. In the ILP solving stage (stage 2) we used the state-of-the-art solver Gurobi [14].

Instance generation. The underlying graphs of our test instances are what we call ring
graphs. For any r ≥ 1 and s ≥ 2, a ring graph is constructed by joining r rings, having s
vertices each, using s spokes that meet in a central vertex. Formally we define G := (V,E)
with V := {(0, 0)} ∪ {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ s} and

E :={{(i, j), (i+ 1, j)} : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s}
∪{{(i, j), (i, j + 1)} : 1 ≤ i ≤ r, 1 ≤ j ≤ s− 1}
∪{{(i, s), (i, 1)} : 1 ≤ i ≤ r} ∪ {{(0, 0), (1, j)} : 1 ≤ j ≤ s}.

We evaluated our algorithm on ring graphs for various choices of r and s.
For each test instance we defined cfix := 50 and for all edges e ∈ E we set ce := 5 and

fmax
e := 20.

We simulated the following simplified passenger behavior to obtain values for fmin:
Between each pair of vertices u and v we generate 50 passengers that want to travel between
them. Each passenger wants to move on a shortest path between u and v. Hence we choose
a random shortest path and count for each edge e ∈ E, how many passengers want to travel
over it. This generates a passenger count de for each edge e ∈ E. Then we define the vehicle
capacity C := (|V | − 1)2 and finally fmin

e := ⌈de/C⌉.

Heuristic algorithm. We compare the results of our algorithm, which chooses an optimal
line concept from the set of all paths, against an algorithm which chooses an optimal line
concept from a given line pool. The line pool is generated using the algorithm from [11].
Then the optimal line concept (restricted to this line pool) is determined by solving an
integer program, where each line ℓ from the pool has its own frequency variable fℓ.

Results. We evaluated 27 test instances, with r ranging between 2 and 9, and s ranging
between 3 and 6. The maximal treewidth of the considered instances was 5. For each instance
we obtained costo, which is the cost of an optimal line concept resulting from our method,
and costh, the cost of the line concept computed by the heuristic. We computed the average
of the improvement ratio costo/costh, which is approximately 0.64. Thus our algorithm
managed to reduce the costs by 36% on average.

We measured the running time of our algorithm, each of the three stages separately. It
was run on a personal computer with an Intel Core i7-4790K CPU. The time taken by stage
3 was at most 1 second on all instances. The ILP construction (stage 1) took at most 24.1
seconds on instances with treewidth 5. The ILP solving (stage 2) took at most 97 seconds
on instances with treewidth 5.

I. Heinrich, P. Schiewe, and C. Seebach 4:13

5 Conclusion and outlook

Line planning on all lines (LPAL) means allowing all simple paths as possible lines in a public
transport supply. This large search space yields more options and, hence, better solutions for
optimal public transport planning. After the mostly discouraging hardness results of [15], we
now provided a fixed-parameter tractable algorithm that could be used to solve this problem
in practice. This marks just the beginning of the parameterized study of (LPAL), since many
questions remain open:

When our algorithm is combined with algorithms for the later stages of public transport
planning and applied to real-world datasets, how much does the quality of the results
improve?
Can the ILP we constructed be solved by an FPT-algorithm that is not parameterized
by the degree nor fmax?
Can the runtime dependence on the treewidth k be reduced to a single-exponential of the
form O(ak) for some constant a?

Applying our approach to other formulations of line planning would also be interesting.
For example, circular lines instead of paths could be considered, as in [17]. Another example
would be replacing the fixed frequency bounds with a flow formulation that models passenger
behavior [5].

References
1 Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard problems restric-

ted to partial k-trees. Discret. Appl. Math., 23(1):11–24, 1989. doi:10.1016/0166-218X(89)
90031-0.

2 Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–21, 1993.
URL: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417.

3 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

4 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

5 Ralf Borndörfer, Martin Grötschel, and Marc E. Pfetsch. A column-generation approach to
line planning in public transport. Transp. Sci., 41(1):123–132, 2007. doi:10.1287/trsc.1060.
0161.

6 Simon Bull, Jesper Larsen, Richard Martin Lusby, and Natalia J. Rezanova. Optimising the
travel time of a line plan. 4OR, 17(3):225–259, 2019. doi:10.1007/s10288-018-0391-5.

7 Michael R. Bussieck, Peter Kreuzer, and Uwe T. Zimmermann. Optimal lines for rail-
way systems. European Journal of Operational Research, 96(1):54–63, 1997. doi:10.1016/
0377-2217(95)00367-3.

8 M. T. Claessens, Nico M. van Dijk, and Peter J. Zwaneveld. Cost optimal allocation of rail
passenger lines. Eur. J. Oper. Res., 110(3):474–489, 1998. doi:10.1016/S0377-2217(97)
00271-3.

9 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

10 Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan. Going beyond primal treewidth for
(M)ILP. In Satinder Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA,
pages 815–821. AAAI Press, 2017. URL: http://aaai.org/ocs/index.php/AAAI/AAAI17/
paper/view/14272.

11 Philine Gattermann, Jonas Harbering, and Anita Schöbel. Line pool generation. Public
Transp., 9(1-2):7–32, 2017. doi:10.1007/s12469-016-0127-x.

ATMOS 2023

https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1016/0166-218X(89)90031-0
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1287/trsc.1060.0161
https://doi.org/10.1287/trsc.1060.0161
https://doi.org/10.1007/s10288-018-0391-5
https://doi.org/10.1016/0377-2217(95)00367-3
https://doi.org/10.1016/0377-2217(95)00367-3
https://doi.org/10.1016/S0377-2217(97)00271-3
https://doi.org/10.1016/S0377-2217(97)00271-3
https://doi.org/10.1016/0890-5401(90)90043-H
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14272
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14272
https://doi.org/10.1007/s12469-016-0127-x

4:14 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

12 Marc Goerigk and Marie Schmidt. Line planning with user-optimal route choice. Eur. J. Oper.
Res., 259(2):424–436, 2017. doi:10.1016/j.ejor.2016.10.034.

13 Valérie Guihaire and Jin-Kao Hao. Transit network design and scheduling: A global review.
Transportation Research Part A: Policy and Practice, 42(10):1251–1273, 2008. doi:10.1016/
j.tra.2008.03.011.

14 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

15 Irene Heinrich, Philine Schiewe, and Constantin Seebach. Algorithms and hardness for non-
pool-based line planning. In Mattia D’Emidio and Niels Lindner, editors, 22nd Symposium on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS
2022, September 8-9, 2022, Potsdam, Germany, volume 106 of OASIcs, pages 8:1–8:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/OASIcs.ATMOS.2022.8.

16 Ton Kloks. Treewidth: computations and approximations, volume 842 of Lecture Notes in
Computer Science. Springer-Verlag Berlin Heidelberg, 1994. doi:10.1007/BFb0045375.

17 Berenike Masing, Niels Lindner, and Ralf Borndörfer. The price of symmetric line plans in
the parametric city, 2022. arXiv:2201.09756.

18 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

19 Alexander Schiewe, Philine Schiewe, and Marie Schmidt. The line planning routing game.
Eur. J. Oper. Res., 274(2):560–573, 2019. doi:10.1016/j.ejor.2018.10.023.

20 Anita Schöbel. Line planning in public transportation: models and methods. OR Spectr.,
34(3):491–510, 2012. doi:10.1007/s00291-011-0251-6.

21 Anita Schöbel and Susanne Scholl. Line planning with minimal traveling time. In Leo G. Kroon
and Rolf H. Möhring, editors, 5th Workshop on Algorithmic Methods and Models for Optimiz-
ation of Railways, ATMOS 2005, September 14, 2005, Palma de Mallorca, Spain, volume 2 of
OASIcs. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2005. URL: http://drops.dagstuhl.de/opus/volltexte/2006/660.

A Assembly algorithm analysis

Proof of Theorem 2. When Algorithm 1 is run on a nice tree decomposition of width k,
at each node t we have |Bt| ≤ k + 1. In this analysis we treat k as a constant. Hence all
considered path patterns have at most k + 1 vertices and for each node t we can compute
some encoding χt : Pat(Bt) → N in constant time. A line concept L is implemented as a
dictionary, where for any p ∈ Pat(Bt) we can look up exactly the sub-multiset of paths ℓ ∈ L

having πBt
(ℓ) = p. These multisets are implemented as lists of tuples, each tuple consisting

of a path and a number. Paths are implemented as linked lists of vertices.
The functions extend and subdivide can each be implemented to run in O(| suppL′|),

where L′ is the input multiset of paths, by having pointers to the relevant vertices and
using linked list insertion. Similarly the function join can be implemented to run in
O((| suppL1| + | suppL2|)), where L1 and L2 are the input multisets, by changing around a
constant number of pointers for each input path.

By treating k as a constant, the total number of nodes in the tree decomposition is in
O(n). We will argue that at each node, the non-recursive part of assemble only adds a
constant number of new lines to the line concept and requires O(n) time. From this the
claim follows.

It is crucial to first understand the line concept subtraction. When a line is removed
completely from the line concept, we can simply detach the linked list representing the line,
which takes constant time. When a line is removed partially, we have to copy the linked list,
but this happens at most once per subtraction. Hence the running time of the subtraction

https://doi.org/10.1016/j.ejor.2016.10.034
https://doi.org/10.1016/j.tra.2008.03.011
https://doi.org/10.1016/j.tra.2008.03.011
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.4230/OASIcs.ATMOS.2022.8
https://doi.org/10.1007/BFb0045375
https://arxiv.org/abs/2201.09756
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/j.ejor.2018.10.023
https://doi.org/10.1007/s00291-011-0251-6
http://drops.dagstuhl.de/opus/volltexte/2006/660

I. Heinrich, P. Schiewe, and C. Seebach 4:15

is in O(| suppL′| + n), where L′ is the subtracted multiset. Introduce nodes as well as join
nodes make a constant number of subtractions. Since in total no more than the whole of L
(respectively L1 and L2) can be subtracted, the total time taken by subtractions at one node
is in O(n).

Let t be a forget node. Here no new lines are added, and in the code it looks like nothing
at all is happening, but this is deceiving: Since Bt is different from Bt′ , the encodings χt

and χt′ are also different – hence the dictionary data structure needs to be rebuilt entirely.
This can be achieved in time in O(| suppL|), which by induction is O(n).

Let t be an introduce node. The introduction operation adds at most a constant number
of new lines. Extension and Subdivision both work by first subtracting a multiset L′ of lines,
transforming it into a multiset L′′, then adding L′′ back. We implement the subtraction
such that all lines except one, i.e. | suppL′| − 1 lines are removed completely from L. The
transformation does not change the number of lines, i.e. | suppL′′| = | suppL′|, thus a single
iteration increases | suppL| by at most 1. Only a constant number of iterations take place,
hence the desired upper bounds follow.

The same arguments show that join nodes only add a constant number of lines, taking
linear time to do so. The line concept sums can be computed efficiently by concatenating a
constant number of linked lists. ◀

B Correctness of the ILP

Proof of Theorem 3, claim 2. Let L = (L, f) be a feasible line concept with cost b.

Definition and feasibility of ψ

We define ψ by giving an assignment to every variable of the ILP. At the same time we show
that this assignment is feasible.

For any t ∈ T we use the shorthand Vt := V (Gt).
Then ψ assigns for each t ∈ T and p ∈ Pat(Bt):

ct
p :=

∑
ℓ∈L

πBt (ℓ|Vt)=p

f(ℓ).

Let t be a leaf node. Then |Vt| = 1, hence for all ℓ ∈ L the filtered path ℓ|Vt
contains at

most one vertex. Since path patterns need to have a length of at least two, for all p ∈ Pat(Bt)
we have ∅ = {ℓ ∈ L : πBt

(ℓ|Vt
) = p} and hence ct

p = 0.

Let t be a forget node which forgets v ∈ Bt′ \Bt. Then ψ assigns the f t
e variables in the

way which is required by the equality constraints:

for each e ∈ E−: f t
e :=

∑
p′∈Pat(Bt′)

e on p′

ct′

p′

Consider any ℓ ∈ L which visits v. Since t is forgetting v, all neighbors of v in G must have
been introduced already, i.e. are contained in Vt′ . Hence any edge e ∈ E− occurs on ℓ if and
only if it occurs on ℓ|Vt′ , if and only if it occurs on πBt′ (ℓ|Vt′). Using this we see that f t

e is
the frequency exhibited by L:

for each e ∈ E−: f t
e =

∑
p′∈Pat(Bt′)

e on p′

∑
ℓ∈L

πB
t′ (ℓ|V

t′)=p′

f(ℓ)

ATMOS 2023

4:16 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

=
∑
ℓ∈L

e on πB
t′ (ℓ|V

t′)

f(ℓ)

=
∑
ℓ∈L

e on ℓ

f(ℓ) = F (L,f)
e .

Since L is a feasible line concept, it follows that the constraints on the f t
e-variables are

satisfied. There is one more set of constraints to verify, for each p ∈ Pat(Bt):∑
p′∈Pat(Bt′)
πBt (p′)=p

ct′

p′ =
∑

p′∈Pat(Bt′)
πBt (p′)=p

∑
ℓ∈L

πB
t′ (ℓ|V

t′)=p′

f(ℓ)

=
∑
ℓ∈L

πBt (πB
t′ (ℓ|V

t′))=p

f(ℓ)

=
∑
ℓ∈L

πBt (ℓ|Vt)=p

f(ℓ) = ct
p,

using the facts Bt ⊆ Bt′ and Vt = Vt′ .

Now let t ∈ T be an introduce node which introduces w ∈ Bt \ Bt′ . Then ψ assigns
the instruction variables in the way which is required by the equality constraints. This
immediately fulfills the non-negativity constraint. Since T is a tree decomposition, no
neighbor of w can yet be forgotten, i.e. each neighbor is currently in the bag or coming later,
hence contained in the set Bt ∪ (V \ Vt). Thus for all ℓ ∈ L it holds: If w occurs on πBt

(ℓ|Vt
),

then it is not adjacent to □. Thus for all p ∈ Pat(Bt) containing w adjacent to □ it holds:

ct
p =

∑
ℓ∈L

πBt (ℓ|Vt)=p

f(ℓ) = 0,

as is required. Let p ∈ Pat(Bt′) and consider some ℓ ∈ L with πBt′ (ℓ|Vt′) = p. If w does
not occur on ℓ, then πBt

(ℓ|Vt
) = p. Otherwise ℓ|Vt

can be created from ℓ|Vt′ by applying an
extension or subdivision operation. Therefore we have:

ct′

p =
∑
ℓ∈L

πB
t′ (ℓ|V

t′)=p

f(ℓ)

=
∑
ℓ∈L

πBt (ℓ|Vt)=p

f(ℓ) +
∑

p
(u,wu)−−−−→p′

∑
ℓ∈L

πBt (ℓ|Vt)=p′

f(ℓ) +
∑

p
(uv,uwv)−−−−−−→p′

∑
ℓ∈L

πBt (ℓ|Vt)=p′

f(ℓ)

= ct
p +

∑
p

(u,wu)−−−−→p′

ct
p′ +

∑
p

(uv,uwv)−−−−−−→p′

ct
p′ ,

which was the last set of constraints to check for this type of node.

Finally let t ∈ T be a join node with children t1 and t2. It holds: Bt = Bt1 = Bt2 . For
each p1 ∈ Pat(Bt1), p2 ∈ Pat(Bt2) with (p1, p2) Bt−−→ p the function ψ assigns the following
non-negative value:

jt
p1,p2

:=
∑
ℓ∈L

πBt (ℓ|Vt1
)=p1

πBt (ℓ|Vt2
)=p2

f(ℓ).

I. Heinrich, P. Schiewe, and C. Seebach 4:17

We first check the operation applicability constraints. Let p1 ∈ Pat(Bt). We have∑
p2,p′∈Pat(Bt)

(p1,p2)
Bt−−→p′

jt
p1,p2

=
∑

p2,p′∈Pat(Bt)

(p1,p2)
Bt−−→p′

∑
ℓ∈L

πBt (ℓ|Vt1
)=p1

πBt (ℓ|Vt2
)=p2

f(ℓ)

=
∑
ℓ∈L

πBt (ℓ|Vt1
)=p1

∑
p′∈Pat(Bt)

(p1,πBt (ℓ|Vt2
))

Bt−−→p′

f(ℓ)

≤
∑
ℓ∈L

πBt (ℓ|Vt1
)=p1

f(ℓ) = ct1
p1
,

where we use the fact that when p1 and p2 are given, there exists at most one p′ with
(p1, p2) Bt−−→ p′. Symmetrically we can verify for each p2 ∈ Pat(Bt):∑

p1,p′∈Pat(Bt)

(p1,p2)
Bt−−→p′

jt
p1,p ≤ ct2

p2
.

Define L◦ := {ℓ ∈ L : (πBt(ℓ|Vt1
), πBt(ℓ|Vt2

)) Bt−−→ πBt(ℓ|Vt)}, i.e. the subset of lines which
could possibly result from a join operation at t. We claim that the following holds for all
ℓ ∈ L \ L◦ and p ∈ Pat(Bt):

πBt
(ℓ|Vt

) = p ⇐⇒ πBt
(ℓ|Vt1

) = p ⊕ πBt
(ℓ|Vt2

) = p,

where ⊕ denotes exclusive or. Let p ∈ Pat(Bt). It holds:

ct
p − ct1

p − ct2
p

=
∑
ℓ∈L

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑
ℓ∈L

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑
ℓ∈L

πBt
(ℓ|Vt2

)=p

f(ℓ)

=
∑
ℓ∈L◦

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt2

)=p

f(ℓ)

+
∑

ℓ∈L\L◦

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑

ℓ∈L\L◦

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑

ℓ∈L\L◦

πBt
(ℓ|Vt2

)=p

f(ℓ)

=
∑
ℓ∈L◦

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt2

)=p

f(ℓ).

We also obtain:∑
(p1,p2)

Bt−−→p

jt
p1,p2 −

∑
(p,p2)

Bt−−→p′

jt
p,p2 −

∑
(p1,p)

Bt−−→p′

jt
p1,p

=
∑

(p1,p2)
Bt−−→p

∑
ℓ∈L

πBt
(ℓ|Vt

)=p

πBt
(ℓ|Vt1

)=p1

πBt
(ℓ|Vt2

)=p2

f(ℓ) −
∑

(p,p2)
Bt−−→p′

∑
ℓ∈L

πBt
(ℓ|Vt

)=p′

πBt
(ℓ|Vt1

)=p

πBt
(ℓ|Vt2

)=p2

f(ℓ) −
∑

(p1,p)
Bt−−→p′

∑
ℓ∈L

πBt
(ℓ|Vt

)=p′

πBt
(ℓ|Vt1

)=p1

πBt
(ℓ|Vt2

)=p

f(ℓ)

ATMOS 2023

4:18 Non-Pool-Based Line Planning on Graphs of Bounded Treewidth

=
∑
ℓ∈L◦

πBt
(ℓ|Vt

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt1

)=p

f(ℓ) −
∑
ℓ∈L◦

πBt
(ℓ|Vt2

)=p

f(ℓ).

Hence

ct
p − ct1

p − ct2
p =

∑
(p1,p2)

Bt−−→p

jt
p1,p2 −

∑
(p,p2)

Bt−−→p′

jt
p,p2 −

∑
(p1,p)

Bt−−→p′

jt
p1,p,

meaning that the constraints for this node are satisfied.

Cost equivalence of ψ

Now we want to show that the cost of this assignment ψ is equal to the cost of (L, f). It
holds:

cost((L, f)) = cfix
∑
ℓ∈L

f(ℓ) +
∑
ℓ∈L

∑
e∈E(ℓ)

cef(ℓ).

Each e ∈ E occurs exactly once in the set of forgotten edges E− for some forget node t. As
argued before, we have

f t
e =

∑
ℓ∈L

e on ℓ

f(ℓ),

and since cost(f t
e) = ce, these variables account for the second term of cost((L, f)).

For each t ∈ T we define θt to be the total cost caused by all i- and j-variables which
belong to t or descendants of t. We claim that, under the defined assignment of ψ, it holds:

θt = cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ),

which we will prove by induction:
For leaf nodes t we clearly have

θt = 0 = cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ).

Let t be a forget node with child t′. It holds that Vt = Vt′ and θt = θt′ since here no
costs for i- or j-variables are added. The equality follows.

Let t be an introduce node that introduces w, with child t′. It holds:∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ) =
∑
ℓ∈L

w on ℓ
|ℓ|Vt |=2

f(ℓ) +
∑
ℓ∈L

w on ℓ
|ℓ|Vt |>2

f(ℓ) +
∑
ℓ∈L

w not on ℓ
|ℓ|Vt |≥2

f(ℓ)

=
∑

ℓ∈L, v∈Bt′
πBt (ℓ|Vt)=wv

f(ℓ) +
∑
ℓ∈L

w on ℓ
|ℓ|V

t′ |>1

f(ℓ) +
∑
ℓ∈L

w not on ℓ
|ℓ|V

t′ |≥2

f(ℓ)

=
∑

ℓ∈L, v∈Bt′
πBt (ℓ|Vt)=wv

f(ℓ) +
∑
ℓ∈L

|ℓ|V
t′ |≥2

f(ℓ).

I. Heinrich, P. Schiewe, and C. Seebach 4:19

Therefore:

θt = θt′
+ cfix

∑
v∈Bt′

ct
wv = θt′

+ cfix
∑

ℓ∈L, v∈Bt′
πBt (ℓ|Vt)=wv

f(ℓ)

= θt′
+ cfix

∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ) − cfix
∑
ℓ∈L

|ℓ|V
t′ |≥2

f(ℓ) = cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ).

Let t be a join node with children t1 and t2. Let ℓ ∈ L◦. Then |ℓ|Vt
| ≥ 2,

∣∣ℓ|Vt1

∣∣ ≥ 2 and∣∣ℓ|Vt2

∣∣ ≥ 2. Consider on the other hand ℓ ∈ L \ L◦. If |ℓ|Vt
| ≥ 2 holds, then either

∣∣ℓ|Vt1

∣∣ ≥ 2
or

∣∣ℓ|Vt2

∣∣ ≥ 2, but not both. It follows:

θt = θt1 + θt2 − cfix
∑

(p1,p2)
Bt−−→p

jt
p1,p2

= cfix
∑
ℓ∈L∣∣ℓ|Vt1

∣∣≥2

f(ℓ) + cfix
∑
ℓ∈L∣∣ℓ|Vt2

∣∣≥2

f(ℓ) − cfix
∑

(p1,p2)
Bt−−→p

∑
ℓ∈L

πBt
(ℓ|Vt

)=p

πBt
(ℓ|Vt1

)=p1

πBt
(ℓ|Vt2

)=p2

f(ℓ)

= cfix
∑
ℓ∈L∣∣ℓ|Vt1

∣∣≥2

f(ℓ) + cfix
∑
ℓ∈L∣∣ℓ|Vt2

∣∣≥2

f(ℓ) − cfix
∑
ℓ∈L◦

f(ℓ)

= cfix
∑
ℓ∈L◦∣∣ℓ|Vt1

∣∣≥2

f(ℓ) + cfix
∑
ℓ∈L◦∣∣ℓ|Vt2

∣∣≥2

f(ℓ) + cfix
∑

ℓ∈L\L◦∣∣ℓ|Vt1

∣∣≥2

f(ℓ) + cfix
∑

ℓ∈L\L◦∣∣ℓ|Vt2

∣∣≥2

f(ℓ) − cfix
∑
ℓ∈L◦

f(ℓ)

= 2cfix
∑
ℓ∈L◦

f(ℓ) + cfix
∑

ℓ∈L\L◦

|ℓ|Vt |≥2

f(ℓ) − cfix
∑
ℓ∈L◦

f(ℓ)

= cfix
∑
ℓ∈L◦

f(ℓ) + cfix
∑

ℓ∈L\L◦

|ℓ|Vt |≥2

f(ℓ)

= cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ).

This concludes the proof that for all t ∈ T :

θt = cfix
∑
ℓ∈L

|ℓ|Vt |≥2

f(ℓ).

For the root r of T we have Vr = V , hence:

θr = cfix
∑
ℓ∈L

|ℓ|≥2

f(ℓ) = cfix
∑
ℓ∈L

f(ℓ),

so the first term of cost((L, f)) is correctly accounted for as well. ◀

ATMOS 2023

Integrating Line Planning for Construction Sites
into Periodic Timetabling via Track Choice
Berenike Masing1 #

Zuse Institute Berlin, Germany

Niels Lindner #

Freie Universität Berlin, Germany

Christian Liebchen #

Technical University of Applied Sciences Wildau, Germany

Abstract
We consider maintenance sites for urban rail systems, where unavailable tracks typically require
changes to the regular timetable, and often even to the line plan. In this paper, we present an
integrated mixed-integer linear optimization model to compute an optimal line plan that makes best
use of the available tracks, together with a periodic timetable, including its detailed routing on the
tracks within the stations. The key component is a flexible, turn-sensitive event-activity network
that allows to integrate line planning and train routing using a track choice extension of the Periodic
Event Scheduling Problem (PESP). Major goals are to maintain as much of the regular service
as possible, and to keep the necessary changes rather local. Moreover, we present computational
results on real construction site scenarios on the S-Bahn Berlin network. We demonstrate that this
integrated problem is indeed solvable on practically relevant instances.

2012 ACM Subject Classification Applied computing Ñ Transportation; Mathematics of computing
Ñ Combinatorial optimization

Keywords and phrases Periodic Timetabling, Line Planning, Track Choice, Mixed-Integer Program-
ming, Construction Sites, Railway Rescheduling

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.5

Acknowledgements We would like to thank DB Netz AG for providing us with data and sharing
their experience and insights.

1 Introduction

1.1 Motivation
In particular in agglomerations, metro and local fast train systems are among the transport-
ation systems with the highest capacity, and commonly considered very environmentally
friendly. Keeping them in a safe and efficient state requires continuous maintenance measures,
some involving construction sites. Track blockages are a likely consequence, and often risk to
restrain capacity such that not the complete service of the annual timetable can be operated.
In the combination of numerous such construction sites and valid periods of few weeks or
even only days, the resulting efforts of the planning divisions are particularly challenging.

In [12], an optimization model has been proposed, which covers parts of this planning
task. Since the infrastructure which remains available for the operation typically will face a
very high load, efficient planning of track occupation becomes key. Based on this motivation,
track choice has been integrated into the basic model of periodic timetabling in [23], and
it has been extended in [12] to deal with conflicts that arise for non-negligible turning or
waiting times inside stations, as they are natural in construction site scenarios.

1 corresponding author
© Berenike Masing, Niels Lindner, and Christian Liebchen;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 5; pp. 5:1–5:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:masing@zib.de
https://orcid.org/0000-0001-7201-2412
mailto:lindner@zib.de
https://orcid.org/0000-0002-8337-4387
mailto:liebchen@th-wildau.de
https://orcid.org/0000-0002-4311-2024
https://doi.org/10.4230/OASIcs.ATMOS.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Track Choice PESP with Integrated Line Planning

Yet, in [12], the line plan had been assumed to be already given on a macroscopic station
level as part of the input. But this way, major decisions have already been taken, and even an
implicit qualified guessing of a possible timetable, including routings within stations, might
have been considered. In other words, in particular for construction sites, a separation of
line planning and timetabling might be too restrictive. This is why in the present paper, we
broaden the scope even further: We enrich that model to also make decisions of line planning.
We restrict ourselves only to parts of the network in such a way, that the model remains
solvable but is of relevant size for an infrastructure manager.

The paper is structured as follows: We review briefly literature on line planning, periodic
timetabling and their integration in Section 1.2. Section 2 is the theoretical core. Starting
with a description of the input in Section 2.1, we construct our main modeling ingredient,
the extended turn-sensitive event-activity network in Section 2.2. We discuss operational
requirements in Section 2.3. This leads to the definiton of our central problem, the Integrated
Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice, which
we formulate as a mixed-integer program in Section 2.4. Finally, we extend the problem
and its MIP model to the construction site context. Section 3 is devoted to an experimental
application of our model to real-world scenarios on the S-Bahn Berlin network. After
describing these instances in Section 3.1, we present computational results in Section 3.2,
and conclude the paper in Section 3.3.

1.2 Literature Overview

The standard mathematical model for periodic timetable optimization is the Periodic Event
Scheduling Problem (PESP) introduced in [21]. The literature on PESP is numerous, we
refer to the monographs [8, 14, 10, 15] and to recent algorithmic advances [6, 1, 13, 11, 2].
Several extensions of PESP for the application of railway timetabling have been singled out.
These include, e.g., flexible event timings [3], robustness [5], flexible routings via track choice
[23], rescheduling for construction sites [22], and recently, [12].

Line planning is a planning step that usually directly precedes timetabling. We refer
to [20, 18] for an overview. The integration of line planning and periodic timetabling is an
ongoing research topic and is a showcase of the eigenmodel approach [19, 16]. An integrated
model that produces one component of the event-activity network per line in a line pool is
presented in [17]. An iterative approach using satisfiability methods is described in [4].

Our contribution consists of a highly integrated model that unifies periodic timetabling,
line planning and also parts of vehicle scheduling by exploiting track choice. As our primary
goal is to apply the model to construction sites, we do not work with an arbitrary line pool,
but rather work with certain sets of alternatives per regular line. We describe our model in
detail in the subsequent section.

2 A Model for Integrated Line Planning and Periodic Timetabling
with Track Choice

Before addressing the specific problem of construction sites, let us discuss how to integrate
track choice, but also line planning into a general periodic timetabling context. We will
first outline which preliminary assumptions we make, how to model this with the help of an
extended turn-sensitive event-activity network and present a basic model for integrated line
planning with periodic timetabling LPTT.

B. Masing, N. Lindner, and C. Liebchen 5:3

2.1 Input Description
We will use Vp¨q to refer to the node set and Ap¨q for the set of arcs both in the context of
graphs, as well as paths.

The station-link graph S is a digraph set on a macroscopic level, where VpSq represent
stations and an arc a “ pv, wq P ApSq indicates that there are tracks that link stations v and
w with tracks, such that a train can drive from v to w without a change in direction.

Let I denote the set of infrastructure points, which encompasses the pocket tracks and
platforms in the transportation network, i.e., places which may be occupied by a train for
turning or waiting operations, while the vehicle itself remains idle. For correct planning, we
need to capture direction information, namely from which direction a train enters a platform
or pocket track, and in which it departs. The physical counterparts correspond to track
segments, each with two ends, which we label by ` and ´, respectively.

▶ Definition 1 (Infrastructure graph I). The infrastructure graph I is a digraph with VpIq “ I.
Two infrastructure points v and w are connected by a track-link pv, wq P ApIq if a train can
drive from v directly to w without going over other infrastructure points. To each track-link
pv, wq we assign a direction label ϕpv, wq “ pzv, zwq, where zv, zw P t`,´u correspond to the
labeled ends of the physical tracks when driving from v to w. We denote by ϕpv, wqout “ zv

and ϕpv, wqin “ zw the out- and in-labels for ϕpv, wq “ pzv, zwq, respectively.

The direction labels of the arcs on I can be used to formally describe direction changes:

▶ Definition 2 (Direction Change). Let p be a path in the infrastructure graph I. We say
that p contains a direction change if there is a consecutive pair of edges pu, vq, pv, wq P Appq

where the in-label of pu, vq is equal to the out-label pv, wq, i.e., if ϕpu, vqin “ ϕpv, wqout.

Moreover, each infrastructure point v P VpIq belongs to a unique station in S.
Our planning will be based on a set of planned trips T :

▶ Definition 3 (Planned Trips T). A planned trip τ P T is a directed, possibly closed, path in
S such that a train can travel along its station sequence without a change in direction. More
precisely, there must exist a train path without direction change in I such that its projection
to S corresponds to τ .

Let Rpτq Ď ApIq be the set of reachable track-links of planned trip τ P T : An arc pv, wq

is in Rpτq if there is a path p on I with pv, wq P Appq, which does not change direction and
whose projection onto S is τ .

Intuitively, the planned trips encode the maximal station-sequence that can be covered
by a vehicle. We will plan routings such that possibly only subsections of the planned trips
are covered.

▶ Example 4. Consider the schematic infrastructure depicted in Figure 2, where the black
rectangles show platforms, lines correspond to tracks and black triangles are switches. A
possible ` and ´ labeling of the track segments is displayed by the green markers. The
corresponding station-link graph S arising from Figure 2 can be found in Figure 1. It
also shows two planned trips τ0 and τ1, marked in purple and pink, respectively. The
infrastructure graph arising from Figure 2 with its track-links and corresponding direction
labels can be found in Figure 3.

In practice, there might be restrictions on which planned trips are allowed to be linked
with each other: E.g., some parts of the network might have to be operated by a certain
train type. We therefore assume that there is some information about which planned trips

ATMOS 2023

5:4 Track Choice PESP with Integrated Line Planning

may be coupled – i.e. trips that can be operated in sequence by the same train unit – given
as the set of allowed couplings between planned trips C Ď T ˆ T . If pτ0, τ1q P C then a train
is allowed to serve τ1 after τ0.

Lastly, we define f : ApSq Ñ N as the intended arc frequency – fvw indicates the frequency
with which the station-link pv, wq P ApSq should preferably be served.

2.2 Extended Turn-Sensitive event-activity Network

Station 1 Station 2 Station 3
τ0

τ1

Figure 1 Station-link graph S with two planned trips as indicated by the purple and pink paths.

Station 1 Station 2 Station 3

P1

P2

P3

P4

S5

P5´

´ ´

´ ´

´

`

` `

` `

`

Figure 2 A schematic plan of the infrastructure with labeled ends at infrastructure points.

P1

P2

P3

P4

S5

P5` ´
`

´
` ´

`

´ `
´

`
´

`

´

` ´

Figure 3 A corresponding infrastructure graph I with direction labeled arcs. For example,
ϕpP1, P3q “ p`,´q, while ϕpP3, P1q “ p´,`q.

´

´

`

`

`

`

´

´

´ `

`´

`´

´ `

´

´

´

´

Figure 4 An excerpt of an extended turn-sensitive event-activity network of the two planned
trips τ0 and τ1 for an allowed coupling pτ0, τ1q. Nodes are marked by their direction label, those
with purple border are events from τ0, while those in pink correspond to τ1. Departure and arrival
events are filled in white and gray, respectively. Arcs in black correspond to driving, blue to waiting
and orange to turning activities.

An instance of the Periodic Event Scheduling Problem (PESP) is based on an event-
activity network N . Typically, events represent departures or arrivals of trips, and activities
model relations between events, e.g., driving, waiting or turning of vehicles, or passenger
activities such as transfers [9]. In our setting, we will consider the following network:

B. Masing, N. Lindner, and C. Liebchen 5:5

▶ Definition 5 (Extended Turn-Sensitive Event-Activity Network (adapted from [12])). Given
a set of planned trips T and a set of allowed couplings C, we construct the extended turn-
sensitive event-activity network N as the digraph generated by the following arc set ApN q:

For each planned trip τ P T , we add a
driving activity ppτ, v, dep, zvq, pτ, w, arr, zwqq for each reachable track-link pv, wq P

Rpτq where ϕpv, wq “ pzv, zwq,
waiting activity ppτ, v, arr, zq, pτ, v, dep, z1qq if there are two reachable track-links
pu, vq, pv, wq P Rpτq such that z “ ϕpu, vqin ‰ ϕpv, wqout “ z1,

For each allowed coupling pτ, τ 1q P C we add an activity from pτ, v, arr, ϕpu, vqinq to
pτ 1, v, dep, ϕpv, wqoutq for all reachable track-links pu, vq P Rpτq and pv, wq P Rpτ 1q. The
activity is a turning activity if ϕpu, vqin “ ϕpv, wqout and a waiting activity otherwise.

The set of arcs ApN q consequently consists of activities which can be performed by trains. We
call the nodes VpN q of the thus constructed digraph events and distinguish between arrival
and departure events, based on their label dep and arr, respectively.

▶ Example 6. A section of an extended turn-sensitive event-activity network based on the
infrastructure graph I from Example 4 is depicted in Figure 4. It is obtained from the
planned trips τ0 and τ1 and the allowed coupling pτ0, τ1q.

The presented event-activity network is the natural extension of the turn-sensitive event-
activity network introduced by Masing, Lindner and Liebchen [12]: Instead of allowing
turning activities only at terminal stations and thus fixing the entire course of the line in
advance, we add them at any intermediate station, so that we allow short-turning of lines in
the sense of the previous paper. The main difference is in the setup of the event-activity
network based on the planned trips and allowed couplings. They are responsible for the line
planning aspect, as then (partial) trips can be flexibly linked together such that lines can be
extended, shortened and rerouted. Moreover, we will see that this construction permits also
multiple vehicle circulations along the same planned trips. As in [12], any simple path in N
corresponds to an activity sequence which can be performed by a train, meaning that our
model covers aspects of vehicle scheduling as well:

▶ Definition 7 (Vehicle Circulation and Vehicle Schedule). A vehicle circulation is a simple
directed cycle in the extended turn-sensitive event-activity network N . A vehicle schedule Q

is a collection of vehicle circulations that are pairwise vertex-disjoint.
We will use the notation VpQq :“

Ť

qPQ Vpqq and ApQq :“
Ť

qPQ Apqq. Denote by
σpiq P VpSq the station that is associated to the event i P VpN q. The arc frequency of Q on
ps, tq P ApSq is defined as fQ

st :“ |tpi, jq P ApQq : σpiq “ s, σpjq “ tu|, i.e., the number of
driving activities from station s to t in Q.

The intuition behind this definition is straight forward: Any vehicle circulation in a vehicle
schedule corresponds to a sequence of activities a vehicle performs and thus induces its closed
path through the infrastructure graph I. Since we want to assign each event in VpN q to at
most one circulation, we require them to be pairwise vertex-disjoint.

In the model, which we are about to we present in Section 2.4, we will use N as a basis
and the goal will be to find the most compatible vehicle schedule Q as to cover as much of
the intended arc frequencies fa as possible while respecting certain operational requirements.
Where the corresponding turns are performed, and thus, how many of the stations of the
planned trips are covered, remains part of the optimization process.

ATMOS 2023

5:6 Track Choice PESP with Integrated Line Planning

2.3 Operational Duration Requirements
From an operational point of view, there are certain requirements for a timetable: First of
all, there are minimum and maximum durations for activities. For instance, a turnaround
should always take at least some minutes for the driver to comfortably move from one end of
the train to the other; in a busy station, the dwell time should be at least a minute, in order
for the expected passenger load to have enough time to board and alight, etc. Let ℓa and
ua be the lower and upper bounds for each arc a P ApN q corresponding to such minimum
and maximum duration requirements of the activity. We will assume that 0 ď ℓa ă T and
0 ď ua ´ ℓa ă T .

▶ Definition 8 (Periodic Timetable). Let T P N be the period time and N a turn-sensitive
event-activity network with associated activity bounds ℓ, u. A periodic timetable π̂ of a vehicle
schedule Q on N is an assignment of timestamps π̂ : VpQq Ñ r0, T r such that

@pi, jq P ApQq : ℓij ď ℓij ` pπ̂j ´ π̂i ´ ℓijq mod T ď uij . (1)

Observe that if a vehicle schedule has already been fixed, then Definition 8 boils down
the standard definition of a periodic timetable on an event-activity network in the context of
the Periodic Event Scheduling Problem (PESP) [21].

Apart from duration requirements on the activities, there are certain security requirements
which need to be fulfilled. Obviously, two trains may not be scheduled to be at the same
track at the same time. Moreover, buffer times are needed for a safe operation, e.g., at least
one minute must pass between the departure of a train the and arrival of a subsequent train.
Let h, ε ě 0 be such security times, where h denotes the minimum time needed between two
arrivals of different trains at the same infrastructure point, while ε describes the minimum
time needed between the departure of a train and the arrival of the next.

In the context of PESP, such security requirements are usually modelled by adding arcs,
called headway activities with corresponding lower and upper bounds (see, e.g., [9, 10]). For
our purposes, it will be helpful to consider headway arcs separately from the event-activity
network N :

▶ Definition 9 (Headway Network H). Let Astat
v Ď ApN q be the set of waiting and turning

activities at infrastructure point v P VpIq and let

P “
ď

vPVpIq

tppi1, j1q, pi2, j2qq P Astat
v ˆ Astat

v | pi1, j1q ‰ pi2, j2qu.

We define the headway network H as the graph induced by the arc set

ApHq :“ tpi1, i2q | ppi1, j1q, pi2, j2qq P Pu Y tpj1, i2q | ppi1, j1q, pi2, j2qq P Pu.

A visualization of the headway network H is given in Figure 5.
We consider a periodic timetable to be pε, hq-conflict-free if two vehicles using the same

infrastructure point for waiting or turning do not occupy it at the same time and fulfill the
security requirements with respect to ε and h. We refer to [12] for a more precise definition,
as well as a in-depth discussion on modeling possibilities.

Our aim is to answer the question of how much of the intended arc frequency can be
achieved by an operable vehicle schedule. Thus, we chose a fairly simple objective, focusing
on the line-planning aspect, where we minimize the aggregated frequency gap:

▶ Problem Formulation 1. For a set of planned trips T and allowed couplings C, let N
be its derived extended turn-sensitive event-activity network by Definition 5. Suppose that
activity bounds ℓ, u : ApN q Ñ N, a period time T P N, as well as security and buffer times

B. Masing, N. Lindner, and C. Liebchen 5:7

h, ε ě 0 be given. Let further f be the intended arc frequency. The goal of the Integrated
Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice is to
find a vehicle schedule Q and an pε, hq-conflict-free periodic timetable π̂ for Q such that the
aggregated frequency gap

ÿ

aPApSq

maxp0, fa ´ fQ
a q

is minimized.

Observe that the term maxp0, fa ´ fQ
a q measures the difference of an undersupply of

frequency from a vehicle schedule along a station-link a P ApSq, but does neither punish nor
favor an oversupply of service.

2.4 Integrated Line Planning with Timetabling Model (LPTT)
We have set the stage to introduce our mixed-integer linear optimization model LPTT for
the Integrated Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track
Choice as defined in Problem Formulation 1. One can regard it as the natural extension of the
model introduced in [12] tweaked to include line-planning decisions: As in [12], the key idea
behind it is to introduce binary variables hij as decision variables, indicating whether an arc
pi, jq P ApN q is chosen, and to apply modified PESP constraints on the entire network. The
bounds on arcs, which are not part of a chosen train routing, are then relaxed via the big-M
method. The novel aspects of the model now are, firstly, that we use an extended version of
the turn-sensitive event-activity network, which encodes turnarounds at any station and thus
allows for more flexibility. Secondly, we introduce frequency gap variables ca, a P ApSq, which
capture the difference between the service provided by the chosen routing and the intended
arc frequency fa. The frequency gap variables will be responsible for the line planning aspect
of the model.

▶ Model 1 (LPTTN ,f).

min λlp

¨

˝

ÿ

aPApSq

ca

˛

‚ ` λturn

¨

˝

ÿ

ijPAturnpN q

hij

˛

‚ (2)

s.t. yij ` ℓijhij “ πj ´ πi ` T pij pi, jq P ApN q (3)
yij ď uij ´ ℓij ` pT´1´uij`ℓijqp1´hijq pi, jq P ApN q (4)

ÿ

jPδ`piq

hij “
ÿ

jPδ´piq

hji i P VpN q (5)

ÿ

jPδ`piq

hij ď 1 i P VpN q (6)

ca `
ÿ

pi,jqPApN q:
pσpiq,σpjqq“a

hij ě fa a P ApSq (7)

πi2 ´ πi1 ` T pi1i2 ď pT ´ hqp3 ´ hi1j1 ´ hi2j2q ppi1, j1q, pi2, j2qq P P (8)
πi2 ´ πi1 ` T pi1i2 ě hphi1j1 ` hi2j2 ´ 1q ppi1, j1q, pi2, j2qq P P (9)
πj2 ´ πi1 ` T pi1j2 ď pT ´ εqp3 ´ hi1j1 ´ hi2j2q ppi1, j1q, pi2, j2qq P P (10)
πj2 ´ πi1 ` T pi1j2 ě εphi1j1 ` hi2j2 ´ 1q ppi1, j1q, pi2, j2qq P P (11)

pi1j1 ` pj1i2 ´ pi1i2 ď 2p2 ´ hi1j1 ´ hi2j2q ppi1, j1q, pi2, j2qq P P (12)
pi1j1 ` pj1i2 ´ pi1i2 ě ´p2 ´ hi1j1 ´ hi2j2q (13)

ATMOS 2023

5:8 Track Choice PESP with Integrated Line Planning

yij ě 0 pi, jq P ApN q (14)
ca ě 0 a P ApSq (15)

pij P t0, 1, 2u pi, jq P ApN q (16)
pij P t0, 1u pi, jq P ApHq (17)
hij P t0, 1u pi, jq P ApN q (18)

0 ď πi ď T ´ 1 i P VpN q (19)

Much as in the classical PESP model [21, 8], we introduce yij ě 0 as the periodic slack
and pij P t0, 1, 2u as the periodic offset on each arc pi, jq P ApN q. Note that we can restrict
pij to be in t0, 1u for all arcs pi, jq whose upper bound is at most T , this includes all arcs
pi, jq P ApHq (cf. Figure 5). We assign timestamps to each event and describe them by πi for
i P VpN q, such that (3) models the periodicity constraints with an added bound activation
for each activity pi, jq P ApN q:

In (4) the periodic slack is bounded by uij ´ ℓij if the arc pi, jq is part of a chosen vehicle
circulation – i.e., if hij “ 1. In this case, (4) in combination with (3) describe the periodicity
requirements of periodic timetables (1). If hij “ 0, the bound is relaxed by big-M constraints
to T ´1. This, together with the bound activation term ℓijhij in (3) ensures that there exists
a valid yij for any choice of πi, πj P r0, T ´ 1s if pi, jq is not part of a chosen circulation.

As opposed to the path-based approach in [12], we model our routing with flow conservation
constraints (5) and ensure that each event is part of at most one vehicle circulation (6). The
line-planning aspect is covered by (7), where ca ě 0 measures the gap between how often
the vehicle schedules covers an arc a P ApSq in comparison to the intended arc frequency
fa. The constraints (8)-(13) ensure a pε, hq-conflict-free timetable, meaning that for each
pair of activities sharing the same infrastructure ppi1, j1q, pi2, j2qq P P their periodic intervals
(including security and headway times) are disjoint – again, for details we refer to [12].

The objective function deserves a little discussion. Technically, to address Problem
Formulation 1, the first term in the objective would be sufficient, as it describes exactly
the aggregated frequency gap scaled by λlp ą 0. For practical applications however, other
additional terms describing circulation, travel or transfer times, or taking into consideration
regularity or robustness, could – and should – be added. As a minimal extension, we propose
to consider the set of turning activities AturnpN q and to add a term that penalizes the number
of turning activities in the chosen vehicle schedule, scaled by the parameter λturn ą 0. For
our purposes, λturn should be significantly smaller than λlp, as then the focus is on the line
planning aspect, but the second term then serves as a tie-breaker and ensures that long lines
are favored over multiple short ones.

Note that we allow an oversupply of service on an arc a P ApSq: While there is no direct
benefit of such with respect to the objective value, since ca ě 0, an oversupply might lead to
a higher coverage and thus lower frequency gap on a different arc.

A vehicle schedule Q can be derived from the decision variables, such that ApQq :“
tpi, jq P ApN q : hij “ 1u. We can then obtain the periodic timetable π̂ : VpQq Ñ r0, T r of
said schedule by setting π̂i “ πi for i P VpQq.

A feature of the presented model is that feasibility is no issue: The trivial solution with
ca “ fa for all a P ApSq with all other variables set to zero – corresponding to not providing
any train service – is always feasible. The trivial solution is thus the one with the maximal
aggregated frequency gap. While this obviously is not the intended outcome, one could use
the model in running-time-sensitive situations: A solver could be disrupted at any point, and
would provide a conflict-free timetable, which – maybe not at full capacity – could be put
into operation.

B. Masing, N. Lindner, and C. Liebchen 5:9

2.5 Application to Construction Sites

Observe that the flexibility of the model LPTT, and thus the impact of the line-planning
aspect, is highly dependent on the event-activity network N and thus on our choice of
planned trips T as well as the allowed couplings C. Clearly, the more planned trips and
allowed couplings we base our model on, the more choices we get for meaningful line planning
– however at the cost of the network size: When using the approach for line planning on
a large scale, e.g., to plan the transportation network of a whole city, the corresponding
event-activity network is likely to explode in size. It is also not well suited for this purpose,
as it considers only the minimal operational requirements, but does not take into account
relevant aspects in the context of long-term planning, such as robustness, regularity or
passenger comfort, etc. For construction sites it is, however, well suited: Construction sites
lead to some part of the infrastructure becoming unavailable. This has an impact not only
on the construction site itself, but also on the surrounding area: Trains need to be rerouted,
neighboring stations need to be used to make additional turnarounds, which can lead to
capacity problems, such that some trains might need to be cancelled. If key elements of the
infrastructure are under construction, large portions of the entire network may be affected by
it. In any case, a planner has to adjust the timetable, but also make line planning decisions.
As construction sites are (usually) only for short periods of time, the mentioned goals of
long-term line planning become only secondary, while providing as much service as possible
in the affected area becomes the priority.

Moreover, an important planning goal is to adhere to the regular timetable as much as
possible, and regions far from the problematic area should remain unaffected. As such, we
adjust the basic model LPTT for the purposes of construction sites:

Let T R and CR be the smallest set of planned trips and allowed couplings, respectively,
such that the regular vehicle schedule R is a vehicle schedule with a corresponding periodic
timetable π : VpRq Ñ r0, T r encoding the long-term regular service provided on a fully
operational infrastructure network I. Furthermore, let T be a choice set of planned trips
and C a set of allowed couplings C with T R Ď T and CR Ď C. Then R is a vehicle schedule
and π is a periodic timetable with respect to the turn-sensitive event-activity network N
induced by T and C.

Further, we define four subgraphs of N :
the blocked network N X contains all activities, which cannot be performed due to the
construction work,
the planning network N P contains all potential activities, which can be operated and
where re-scheduling from the regular timetable is allowed,
the fixed network N F contains a selection of activities which are also part of the regular
vehicle schedule.
the construction network N C as the graph induced by the arc set ApN F q Y ApN P q.

We assume that ApN Xq, ApN P q and ApN F q are pairwise disjoint.
We now can formally formulate the construction-site rescheduling problem:

▶ Problem Formulation 2. Consider an instance of the Integrated Line Planning and Turn-
Sensitive Periodic Timetabling Problem with Track Choice on an extended turn-sensitive
event-activity network N . Let further R be the regular vehicle schedule on the fully operational
infrastructure network I with the regular periodic timetable π. Moreover, let N P be a planning,
N F be a fixed, and N C their corresponding construction network. The goal is to find a
vehicle schedule Q and a pε, hq-conflict-free periodic timetable π̂ for Q on N C such that the

ATMOS 2023

5:10 Track Choice PESP with Integrated Line Planning

aggregated frequency gap
ÿ

aPApSq

maxp0, fR
a ´ fQ

a q

is minimized.

To address this construction-site rescheduling problem, we propose to simply use LPTT
restricted to the construction network N C and impose the regular timetable on the fixed
graph N F . The intended arc frequency can then be set to the arc frequency of the regular
vehicle schedule fR:

▶ Model 2 (LPTTC).

LPTTN C ,fR

subject to the additional constraint πi “ πi @i P VpN F q (20)

A solution to LPTTC will then induce an operable vehicle schedule with periodic timetable
π̂ via the decision variables hij as discussed in Section 2.4. Since we restrict LPTT to the
construction network N C , the vehicle schedule does not use any activities affected by the
construction site. The constraints (20) ensure that we adhere to the regular timetable.
Observe however, that we do not enforce that activities in the fixed graph N F have to be
used. This can lead to a vehicle schedule which does not use activities in the fixed graph,
which translates to a cancellation of a train. While this might seem like an oversight at
first glance, we have made this decision for two reasons: Most importantly, LPTTC remains
always feasible, such that any sub-optimal solution can still be put into operation. Lines
completely unaffected by the construction site could be scheduled immediately. In contrast, if
we were to enforce service on the fixed graph, feasibility can become an issue – one might not
be able to find any vehicle schedule at all and would have to include more in the planning area
for another attempt. How much and which parts of N should be included in N P however,
would not be clear. This leads us to the second reason: A resulting vehicle schedule omitting
some of the fixed activities implies that this part of the network is particularly hard to link
to or at too high costs for the planning area. In any case, such a result could then give an
indication of how to adjust the planning network N P for better results.

3 Computational Experiments

While LPTTC can in theory solve the construction-site rescheduling problem, there are
multiple issues that come into play when solving the model: Both line planning and periodic
timetabling are computationally hard. Moreover, the event-activity network can become
very large, and we have multiple integer values associated to every arc. To demonstrate that
LPTTC can be used in practice nevertheless, we implemented the model and tested it on 8
real construction sites on the S-Bahn network in Berlin, based on infrastructure data and
timetabling parameters provided by DB Netz AG.

3.1 Construction Site Instances
We selected 8 construction sites of the years 2021-2023, where train service was disrupted.
The Berlin network is operated periodically in 20 minute intervals, but planned with a
resolution of 0.1 min. We consequently chose as period time T “ 200.

B. Masing, N. Lindner, and C. Liebchen 5:11

We based our planned trips T and allowed couplings C on both the regular annual
timetable and on the original construction schedule O as was put into practice during
the construction period: Let T O and CO be the smallest set of planned trips and allowed
couplings such that O is a vehicle schedule. Then T contains all trips in T O in addition
to all paths of T R which induce (at least some) activities in the planning network. The
allowed couplings are then selected as C :“ tpτ, τ 1q P T ˆ T | pτ, τ 1q P CO or pτ, τ 1q P CRu. A
schematic overview over the areas in the station-link graph affected by the planning and
blocked networks can be found in Figure 6 in Appendix A . Some key properties, which give
an indication of the problem size can be found in Table 1.

Table 1 Size metrics of the 8 construction site scenarios.

Scenario |VpN C
q| |ApN C

q| |T | |C| |ApHq|

BBER-BBU 192 196 6 6 36
BGAS-BKW 523 602 12 14 556
BBUP 766 1014 12 12 2967
BBOS-BWIN-BTG 1317 1602 28 50 1798
BBKS-BWT 1323 2538 18 66 9396
BOSB 1518 2580 22 38 14472
BSW 1896 3130 32 64 12369
BGB-BWES 2539 4631 36 76 13794

Note that we use the annual timetable and the original construction schedule O just as a
source for the creation of T and C. For the model itself however, it is not necessary to have
an initial feasible solution at hand.

For each scenario we ran two tests, namely once without and once with an initial solution.
We will refer to them by cold start and warm start. The initial solution was obtained from
the original construction timetable.

As scalarization parameters for LPTT, we chose λlp “ 100 and λturn “ 1, thus ensuring
that no line gets shortened in favor of reducing a turn. Operating times are set as provided
by DB Netz AG. On a technical note, we assume that driving times are fixed, i.e., ℓa “ ua

if a P ApN Cq, such that the adjustment of the timetable is shifted solely to turning and
waiting activities. This has the consequence that safety constraints on most driving activities
can be omitted, as they are implied by the stationary headway constraints given by the set
P. A notable exception are driving activities on single-track section, where conflicts can be
resolved by standard headway activities.

We implemented the model and ran each instance with a wall time limit of one hour each,
on an Intel i7-9700K CPU with the Gurobi Optimizer version 10.0.2 [7].

3.2 Results
An overview over our test results can be found in Table 2 in Appendix A, where we show the
final objective value and the duality gaps for each of the instances. We also indicate how
long it took to find the optimal solution – if at all. For a better comparison, we include the
objective of the initial solution corresponding to the original construction schedule (O), the
value of the natural LP relaxation (LP) as well as the objective of the trivial solution. The
latter captures the cost of not providing any service, i.e., the value of the maximal frequency
gap. We make the following observations:

First of all, the model is of use for realistic scenarios: Let us first focus on the cold
started instances. After the run of one hour, each objective value is far from the maximal
aggregated frequency gap as is provided by the trivial solution: The worst instance,

ATMOS 2023

5:12 Track Choice PESP with Integrated Line Planning

namely BOSB, has a cost of only approximately 23% of the trivial solution. On average
the objectives reach approximately 10% of the maximal aggregated frequency gap. We
conclude that our model can, in fact, provide operable solutions within reasonable time.
Secondly and unsurprisingly, finding qualitative solutions is difficult: While we were able
to solve five of the scenarios to optimality with the initial solution provided, this was the
case only for three of the cold started instances. The difficulty of finding good solutions
is particularly obvious in the larger instances, e.g., BOSB and BGB-BWES: The cold
started versions provided solutions not only significantly worse than the warm started
ones, but also in comparison to the original timetable.
However, when provided with a good starting solution, the model becomes fairly effective:
We were able to find an improvement to the original construction timetable for all
instances. The only exception was BBER-BBU, where the initial solution was already
optimal. This suggests that the solver greatly benefits from a good input solution. An
investigation of possible heuristic approaches seems promising for the future.
A fourth observation is that while the size of the network gives an indication of the
difficulty of the problem, it is not solely responsible: E.g., the instance BBUP is one of
our smallest instances, but the optimality gap is close to 100%. In this instance, one
platform of a highly frequented station is blocked with little turnaround possibilities,
such that all trains passing through that station must use a single platform. This means
that the station can still be served, as well as all neighboring stations, but at a lower
frequency coverage. This leads us to the next observation:
The LP-relaxation is of little use for dual bounds: Relaxing all integer variables to
continuous variables essentially disables any duration and security requirements, resulting
in fractional flows instead of vehicle circulations, such that – e.g., in the BBUP scenario –
every frequency gap variable can be set to zero.
Lastly, proving optimality is an issue: Even though we were able to find a certificate
of optimality for five of the instances, this was only the case when we found a solution
with the same objective as the LP-relaxation. For the non-optimal instances, the gap
remains very large. In fact, for all instances the dual bounds remained at the value of the
LP-relaxation.

3.3 Conclusions
We conclude that our model can be used to approach the construction-site rescheduling
problem for practical purposes. For all real-world instances, we could provide a non-trivial
operable schedule and timetable. Moreover, we were able to improve upon all of the original
construction-site timetables in the sense that we were able to provide more service – with the
exception of one, which was optimal in the first place. Our experiments reveal a few issues
of the model: The most glaring one is the quality of the dual bounds in order to prove the
optimality of a timetable. For the future, further investigation is required on how to obtain
better quality bounds.

Maybe more promising is the search for heuristics in this context: Clearly, the goal of the
model is to provide transportation planners with operable vehicle schedules and timetables.
It somewhat defeats the purpose if the planner has to provide a qualitative starting solution
to obtain a better one. However, our results from the warm started instances suggest that
performance could be improved by giving the solver more guidance by heuristic approaches.

References
1 Ralf Borndörfer, Niels Lindner, and Sarah Roth. A concurrent approach to the peri-

odic event scheduling problem. Journal of Rail Transport Planning & Management, 15:100175,
2020. Best Papers of RailNorrköping 2019. doi:10.1016/j.jrtpm.2019.100175.

https://doi.org/10.1016/j.jrtpm.2019.100175

B. Masing, N. Lindner, and C. Liebchen 5:13

2 Enrico Bortoletto, Niels Lindner, and Berenike Masing. Tropical Neighbourhood Search: A New
Heuristic for Periodic Timetabling. In DROPS-IDN/17107. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/OASIcs.ATMOS.2022.3.

3 Gabrio Caimi, Martin Fuchsberger, Marco Laumanns, and Kaspar Schüpbach. Periodic railway
timetabling with event flexibility. Networks, 57(1):3–18, 2011. doi:10.1002/net.20379.

4 Florian Fuchs, Alessio Trivella, and Francesco Corman. Enhancing the interaction of railway
timetabling and line planning with infrastructure awareness. Transportation Research Part C:
Emerging Technologies, 142:103805, September 2022. doi:10.1016/j.trc.2022.103805.

5 Marc Goerigk. Exact and heuristic approaches to the robust periodic event scheduling problem.
Public Transport, 7(1):101–119, March 2015. doi:10.1007/s12469-014-0100-5.

6 Marc Goerigk and Christian Liebchen. An Improved Algorithm for the Periodic Timetabling
Problem. In Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th Workshop on Al-
gorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017), volume 59 of OpenAccess Series in Informatics (OASIcs), pages 12:1–12:14, Dag-
stuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISSN: 2190-6807.
doi:10.4230/OASIcs.ATMOS.2017.12.

7 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL: https://www.
gurobi.com.

8 Christian Liebchen. Periodic timetable optimization in public transport. PhD thesis, Disserta-
tion.de, Berlin, 2006.

9 Christian Liebchen and Rolf H. Möhring. The modeling power of the periodic event scheduling
problem: Railway timetables — and beyond. In Frank Geraets, Leo Kroon, Anita Schoebel,
Dorothea Wagner, and Christos D. Zaroliagis, editors, Algorithmic Methods for Railway
Optimization, pages 3–40, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

10 Thomas Lindner. Train Scheduling in Public Rail Transport. PhD thesis, Technische Uni-
versität Braunschweig, June 2000. URL: https://publikationsserver.tu-braunschweig.
de/receive/dbbs_mods_00001135.

11 Berenike Masing, Niels Lindner, and Patricia Ebert. Forward and Line-Based Cycle Bases
for Periodic Timetabling. Operations Research Forum, 4(3):53, June 2023. doi:10.1007/
s43069-023-00229-0.

12 Berenike Masing, Niels Lindner, and Christian Liebchen. Periodic Timetabling with Integrated
Track Choice for Railway Construction Sites, 2022. URL: https://opus4.kobv.de/opus4-zib/
frontdoor/index/index/docId/8862.

13 Gonçalo P. Matos, Luís M. Albino, Ricardo L. Saldanha, and Ernesto M. Morgado. Solving
periodic timetabling problems with SAT and machine learning. Public Transport, 13(3):625–648,
October 2021. doi:10.1007/s12469-020-00244-y.

14 Karl Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Habilitation
thesis, Universität Hildesheim, 1998.

15 Leon Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus Universiteit
Rotterdam, January 2003.

16 Julius Pätzold, Alexander Schiewe, Philine Schiewe, and Anita Schöbel. Look-Ahead Ap-
proaches for Integrated Planning in Public Transportation. In Gianlorenzo D’Angelo and Twan
Dollevoet, editors, 17th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2017), volume 59 of OpenAccess Series in Informatics
(OASIcs), pages 17:1–17:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. ISSN: 2190-6807. doi:10.4230/OASIcs.ATMOS.2017.17.

17 Philine Schiewe. Integrated Optimization in Public Transport Planning, volume 160 of Springer
Optimization and Its Applications. Springer International Publishing, Cham, 2020. doi:
10.1007/978-3-030-46270-3.

18 Anita Schöbel. Line planning in public transportation: models and methods. OR Spectrum,
34(3):491–510, July 2012. doi:10.1007/s00291-011-0251-6.

ATMOS 2023

https://doi.org/10.4230/OASIcs.ATMOS.2022.3
https://doi.org/10.1002/net.20379
https://doi.org/10.1016/j.trc.2022.103805
https://doi.org/10.1007/s12469-014-0100-5
https://doi.org/10.4230/OASIcs.ATMOS.2017.12
https://www.gurobi.com
https://www.gurobi.com
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00001135
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00001135
https://doi.org/10.1007/s43069-023-00229-0
https://doi.org/10.1007/s43069-023-00229-0
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/8862
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/8862
https://doi.org/10.1007/s12469-020-00244-y
https://doi.org/10.4230/OASIcs.ATMOS.2017.17
https://doi.org/10.1007/978-3-030-46270-3
https://doi.org/10.1007/978-3-030-46270-3
https://doi.org/10.1007/s00291-011-0251-6

5:14 Track Choice PESP with Integrated Line Planning

19 Anita Schöbel. An eigenmodel for iterative line planning, timetabling and vehicle scheduling
in public transportation. Transportation Research Part C: Emerging Technologies, 74:348–365,
January 2017. doi:10.1016/j.trc.2016.11.018.

20 Anita Schöbel and Susanne Scholl. Line Planning with Minimal Traveling Time. In Leo G.
Kroon and Rolf H. Möhring, editors, 5th Workshop on Algorithmic Methods and Models
for Optimization of Railways (ATMOS’05), volume 2 of OpenAccess Series in Informatics
(OASIcs), Dagstuhl, Germany, 2006. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISSN:
2190-6807. doi:10.4230/OASIcs.ATMOS.2005.660.

21 Paolo Serafini and Walter Ukovich. A Mathematical Model for Periodic Scheduling Problems.
SIAM Journal on Discrete Mathematics, 2(4):550–581, November 1989. doi:10.1137/0402049.

22 Sander Van Aken, Nikola Bešinović, and Rob M. P. Goverde. Designing alternative railway
timetables under infrastructure maintenance possessions. Transportation Research Part B:
Methodological, 98:224–238, April 2017. doi:10.1016/j.trb.2016.12.019.

23 Raimond Wüst, Stephan Bütikofer, Severin Ess, Claudio Gomez, Albert Steiner, Marco
Laumanns, and Jacint Szabo. Improvement of maintenance timetable stability based on
iteratively assigning event flexibility in FPESP. In Anders Peterson, Martin Joborn, and
Markus Bohlin, editors, RailNorrköping 2019, Linköping Electronic Conference Proceedings
; 69, pages 1160–1177, Linköping, September 2019. Linköping University Electronic Press.
doi:10.21256/zhaw-18282.

A Appendix

i1 j1

i2 j2

rℓi1j1 , ui1j1s

rℓi2j2 , ui2j2s

rh, T ´ hsrh, T ´ hs

rε, T ´ εs

rε, T ´ εs

Figure 5 Excerpt of the headway network H with lower and upper bounds (orange and red arcs)
induced by the activity-pair sharing the same infrastructure point ppi1, j1q, pi2, j2qq P P (in gray).

Table 2 Overview over the solutions: obj corresponds to the objective value, gap to the optimality
gap in percent, and time denotes the time to the optimal solution in seconds if found. For reference,
we include the objective value of the initial solution (O), the natural LP-relaxation (LP), as well as
the trivial solution (trivial).

cold start warm start O LP trivial
scenario obj gap time obj gap time obj obj obj
BBER-BBU 806 0.00 0.0 806 0.00 0.0 806 806 9800
BGAS-BKW 1210 0.00 0.2 1210 0.00 0.1 1410 1210 22000
BBUP 3514 99.89 x 3010 99.87 x 4808 4 29000
BBOS-BWIN-BTG 3224 0.00 22.2 3224 0.00 6.7 4034 3224 58000
BBKS-BWT 5426 70.11 x 1622 0.00 2349.3 2220 1622 40000
BOSB 10424 99.79 x 22 0.00 3100.9 822 22 43800
BSW 1660 12.29 x 1660 12.29 x 5448 1456 61000
BGB-BWES 12640 68.06 x 6442 37.34 x 8846 4036 77000

https://doi.org/10.1016/j.trc.2016.11.018
https://doi.org/10.4230/OASIcs.ATMOS.2005.660
https://doi.org/10.1137/0402049
https://doi.org/10.1016/j.trb.2016.12.019
https://doi.org/10.21256/zhaw-18282

B. Masing, N. Lindner, and C. Liebchen 5:15

BBER-BBU BGAS-BKW

BBUP BBOS-BWIN-BTG

BBKS-BWT BOSB

BSW BGB

Figure 6 Overview over the 8 construction scenarios: Red corresponds to blocked areas (orange
if partially blocked), and blue corresponds to the planning area.

ATMOS 2023

A Symbolic Design Method for ETCS Hybrid
Level 3 at Different Degrees of Accuracy
Stefan Engels1 #

Chair for Design Automation, Technical University of Munich, Germany

Tom Peham #

Chair for Design Automation, Technical University of Munich, Germany

Robert Wille # Ñ

Chair for Design Automation, Technical University of Munich, Germany
Software Competence Center Hagenberg GmbH (SCCH), Austria

Abstract
The European Train Control System (Hybrid) Level 3 (ETCS Hybrid Level 3) allows for introducing
Virtual Subsections (VSS) into existing railway infrastructures. These VSS work similarly to blocks
in conventional block signaling but do not require installation or maintenance of trackside train
detection. This added flexibility can be used to adapt a given railway network’s (virtual) layout
to the changing demands of new schedules. Automated methods are needed to properly use this
flexibility and design such layouts on demand and avoid time-intensive manual labor. Recently,
approaches inspired by design automation of electronic hardware have been proposed to address
this need. But those methods – which are particularly well suited for inherently discrete problems
in electronic design automation – have struggled with modeling continuous properties like train
positions, time, and acceleration. This work proposes a Mixed Integer Linear Programming (MILP)
formulation that, for the first time, can accurately model design problems for ETCS Hybrid Level 3
by including essential, continuous constraints, e.g., for train dynamics or braking curves. The
formulation is designed to be flexible and extendable, allowing the user to include/exclude certain
constraints or simplify the model as needed. By this, the user can decide whether he/she wants to
quickly generate a less accurate solution or a more accurate one at the expense of higher runtimes –
basically allowing him/her to trade-off accuracy and efficiency. A case study showcases the potential
of the proposed approach and sketches examples to analyze which trade-offs are worthwhile and
which simplifications can be safely made. The resulting tool and the benchmarks considered in this
work are publicly available at https://github.com/cda-tum/mtct (as part of the Munich Train
Control Toolkit, MTCT).

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases ETCS, MILP, design automation, block signaling, virtual subsection

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.6

Supplementary Material Software (Source Code): https://github.com/cda-tum/mtct
archived at swh:1:dir:df97b4f2a6638ce93578147ee5d9220a63973f00

1 Introduction

Although railway transportation has a long history, it also plays a vital role in the future of
sustainable transportation. Unlike cars, trains cannot be operated on sight, and signaling
systems are essential to prevent collisions. For this, many national train control systems
have been implemented – about 40 in Europe alone [13].

1 Corresponding author

© Stefan Engels, Tom Peham, and Robert Wille;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 6; pp. 6:1–6:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.engels@tum.de
https://orcid.org/0000-0002-0844-586X
mailto:tom.peham@tum.de
https://orcid.org/0000-0003-3434-7881
mailto:robert.wille@tum.de
https://www.cda.cit.tum.de/team/wille/
https://orcid.org/0000-0002-4993-7860
https://github.com/cda-tum/mtct
https://doi.org/10.4230/OASIcs.ATMOS.2023.6
https://github.com/cda-tum/mtct
https://archive.softwareheritage.org/swh:1:dir:df97b4f2a6638ce93578147ee5d9220a63973f00;origin=https://github.com/cda-tum/mtct;visit=swh:1:snp:a5364050a0ecc369f69ce00a976147e46534dc14;anchor=swh:1:rev:27a665deb1e02991e44c0fcd83dbf7a98d02d425
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 A Symbolic Design Method for ETCS Hybrid Level 3

Due to the resulting compatibility issues, especially in times of increasing cross-border
traffic, it was decided to harmonize these safety systems across Europe, namely in the
European Train Control System (ETCS) [30]. Similar standardized systems exist in China
(Chinese Train Control System, CTCS), North America (Positive Train Control, PTC), and
even for metro lines (Communication Based Train Control, CBTC) [25, 29].

In addition to harmonization, these systems also aim at increasing throughput and, by
this, increase demand for the entire train infrastructure. In fact, if building new tracks is not
feasible, the increasing demand for rail transportation has to be tackled another way. To this
end, new levels of train control systems have constantly been defined to allow for shorter train
following times while maintaining the high safety requirements imposed [27]. ETCS Hybrid
Level 3 (ETCS HL3), for instance, defines Virtual Subsections (VSS) that introduce new
blocks into an existing layout without requiring new hardware. In addition to positioning
being determined via Trackside Train Detection (TTD) systems such as axle counters, the
occupation of VSS is communicated live via a radio control center. This, in turn, allows
for a much more fine-grained design of the train control system since the overhead does not
limit the number of blocks for maintenance and installation of TTDs, and the block layout
can be changed on demand as it is only virtual. In principle, such virtual layouts also allow
for shorter headways and can, therefore, be used to increase the throughput of an existing
network.

This potential gives rise to several new design tasks for ETCS HL3 systems, namely veri-
fication of HL3 layouts, placement of VSS, and optimization of train schedules using VSS [11].
Previous methods for designing ETCS L2 layouts did not have to consider dynamic block place-
ment and are, therefore, aimed at more general performance indicators [14, 5, 18, 9, 23, 31].
Similarly, while train routing [15] and allocation [6, 3, 21, 4, 22] have been considered, these
approaches are tailored for fixed layouts. There is also work on routing under ETCS Level 3,
which uses so-called moving blocks and does not require any VSS.

Design tasks within ETCS HL3 have already been tackled using symbolic reasoning [32]
and guided state-space search [26]. While these approaches seem promising for these tasks,
they all make simplifying assumptions and do not model train movement – in particular
acceleration and braking curves – accurately. This is partly due to the fundamental limitations
of the methods used, as they are ill-fitted to model continuous properties directly.

Mixed Integer Linear Programming (MILP) is an alternative symbolic method that allows
for modeling discrete values as well as continuous variables and is, therefore, a promising
approach for solving design problems for ETCS HL3 accurately. MILP has already been used
previously for routing within ETCS Level 3 with full moving blocks [28, 19], but no MILP
approach exists that can automatically design ETCS HL3 layouts. This work introduces
a comprehensive framework for solving ETCS HL3 design tasks using a symbolic MILP
formulation that enables a designer of ETCS HL3 networks to model problems with varying
degrees of accuracy. For the first time, this framework allows for accurate modeling of
continuous properties for ETCS HL3 design tasks. Furthermore, since the expressiveness of
MILP also subsumes previous formulations, the proposed MILP formulation can be simplified
or extended with further constraints to model ETCS HL3 design tasks with varying degrees
of accuracy.

It is to be expected that more detailed models are harder to solve and, thus, lead to longer
solving times. The flexibility of the proposed framework allows for evaluating how model
accuracy influences runtimes for solving instances of ETCS HL3 design tasks. Therefore, the
impact of using more or less detailed models is evaluated on a range of benchmarks, including
real-world examples, e.g., designing an ETCS HL3 layout for the S-Bahn Stammstrecke in
Munich. The framework and the benchmarks are publicly available within the Munich Train
Control Toolkit (MTCT) at https://github.com/cda-tum/mtct.

https://github.com/cda-tum/mtct

S. Engels, T. Peham, and R. Wille 6:3

The remainder of this paper is structured as follows: Sec. 2 reviews the relevant background
on block-signaling within ETCS and the design problem considered in this work. Sec. 3 then
proposes the MILP formulation, starting with a minimal required encoding and successively
introducing constraints that allow for more accurate models. The evaluation of the trade-off
between runtime efficiency and model accuracy is discussed in Sec. 4. Finally Sec. 5 concludes
this paper.

2 Block Signaling in ETCS HL3

ETCS HL3 builds upon principles of classic block signaling. This section provides the
necessary background on block signaling within ETCS and what constraints exist on VSS
placement.

2.1 Background

ETCS Level 1 (ETCS L1) separates a railway network in blocks. Trackside Train Detec-
tion (TTD), e.g., Axle Counters (AC), at the boundaries is used to determine if a train is
present within a certain block. Hence they are also known as TTD sections. Conventional
signals are used to show if the upcoming block is occupied or not. At distinct points, the
signal state is transmitted to the train through Eurobalises (EB). A train always has to be
able to come to a complete stop before the point to which it has received moving authority
to, which is ensured by braking curves [12].

In ETCS Level 2 (ETCS L2), trains communicate with the control system via the wireless
system GSM-R. Balises are no longer used to transmit variable information, but fixed position
data is employed instead. Still, TTDs are used to detect the status of blocks. Move authority
is continuously transmitted to the trains.

With the introduction of ETCS Level 3 (ETCS L3) the main principles change for the
first time since the 19th century. The train itself reports the exact position and its integrity
to the control system. TTDs are no longer needed to safely declare track segments as free.
In theory, this allows movement in a so-called moving block, i.e., trains are cleared to drive
all the way to the previous train (minus some safety buffer) without the necessity of any
fixed blocks or correspondingly needed TTD systems.

Since the main principle of block signaling is not part of L3, it poses difficulties when
implemented in practice [2]. Because of this, ETCS Hybrid Level 3 (ETCS HL3) has been
specified in [10] to overcome this issue, yet providing the advantages of Level 3 systems.
Again the trains transmit their location and integrity to the control system, and TTDs are
not necessary to clear sections. Hence, existing TTD sections can be divided into Virtual
Subsections (VSS) without adding additional hardware. The principles of L2 remain the
same, with the only exception that these new VSS are used instead of the old sections, which,
again, allows shorter train following times than on low-level systems.

▶ Example 1. Consider two trains following one another on a straight section of track as
shown in Fig. 1 for different ETCS Levels.

Fig. 1a shows how block-signaling works in ETCS Level 1. While the train on the right
has already cleared TTD2, the following train has not yet received permission to enter TTD2
because the block was still occupied when the train last passed a balise. As soon as it hits
the next balise (this time transmitting a green signal), the authority is updated so that the
following train can enter TTD2.

ATMOS 2023

6:4 A Symbolic Design Method for ETCS Hybrid Level 3

E
B

E
B

E
B

E
B

AC AC AC

TTD1 TTD2 TTD3

(a) ETCS Level 1.

↑ ↑↑ E
B

E
B

E
B

E
B TTD1 TTD2 TTD3

AC AC ACO
H

O
H

(b) ETCS Level 2.
E
B

E
B

E
B

E
B

O
Hd

O
Hd

(c) ETCS Level 3.

↑ ↑ ↑ ↑↑ E
B

E
B

E
B

E
B SS11 SS12 SS21 SS22 TTD3

AC AC ACO
Hd

O
Hd

(d) ETCS Hybrid Level 3.

Figure 1 Schematic drawings of various ETCS levels.

This problem does not exist in ETCS Level 2 as the following train receives permission
to enter TTD2 immediately after the train on the right has left that block in Fig. 1b.

In Fig. 1c, the flexibility of ETCS Level 3 (using moving block) is shown. The train on
the left can follow the leading train as close as possible, only needing to keep the respective
braking distance.

Fig. 1d shows a compromise between Fig. 1b and Fig. 1c by separating TTD2 into two
virtual subsections. This allows the train on the left to follow more closely without requiring
the installation of additional hardware.

2.2 Placing Virtual Subsections under ETCS HL3
In this work, we focus on the promising ETCS HL3, which allows for separating TTD sections
into virtual subsections (VSS). Some TTD sections might not be separable into VSS, e.g.,
because of turnouts (where close section borders would not comply with flank protection) or
constraints imposed by railway crossings or section breaks in overhead lines [17]; on others
only a minimal VSS length is specified.

Since VSS do not require new trackside hardware, they can, in theory, be changed without
changing the trackside hardware on a virtual level. Hence, adapting the block layout for a
new schedule might, for the first time, be reasonable. Because of this, it is of great interest
to consider precise timetables and block layouts jointly in the planning process.

Various design tasks arise within the abovementioned context (see also [32, 26, 11]). Since
adding VSS to preexisting railway networks can increase their capacity, it is of interest to
efficiently determine where to place them, also with respect to a new timetable, which might
not be realizable on a given TTD layout. One wants to find a VSS layout under which
the previously infeasible timetable can be accomplished. Or, one might want to tweak the
timetable to reduce the travel time or headway to a minimum using a predefined number of
VSS. Finally, one can also consider a mixed mode of passenger and freight services. In that
case, a predefined schedule should be fulfilled while maximizing freight train throughput.

S. Engels, T. Peham, and R. Wille 6:5

Exemplary, in this case study, we focus on generating layouts to realize predefined
schedules. We are given (part) of a railway network under consideration together with a
(macroscopic) timetable for various trains. This includes times when trains enter and leave
the network and scheduled stops in between. The number of VSS sections that can be
implemented in operation is limited by the efficiency of the used components. Hence, it
is desirable to keep the number of VSS low. If the control system in operation can safely
manage more sections, the remaining ones might be used to improve robustness. Overall this
leads to the design task considered in this work: Given a railway network with TTD sections,
a list of trains, and their respective (macroscopic) timetables, separate the TTD sections
into a minimal number of VSS to make the timetable feasible and determine a respective
(microscopic) routing/refinement.

3 Symbolic Formulation

In the literature, various models have been introduced which, in combination with corre-
sponding reasoning engines or solvers, can be used to solve the design task described in
Sec. 2.2 [32, 26]. In this work, we propose a method that allows for a trade-off between
the accuracy and efficiency of such formulations. We start with a base formulation that
contains only the most relevant details on an equivalent level to previous work (Sec. 3.1).
Afterward, we describe how more realistic, continuous details like train dynamics (Sec. 3.2)
and braking curves enforced by the train control system (Sec. 3.3) can be added to the base
formulation. Finally, we consider how fixing the train routes a priori simplifies the described
model (Sec. 3.4).

We keep the corresponding descriptions at a high level yet precise enough to allow
for a discussion in the following sections. In particular, we omit constraints irrelevant
to understanding the central ideas or whose logical form is easier to grasp the relevant
concepts. They can easily be transformed into linear constraints using standard techniques
(e.g., big-M). Readers interested in a more detailed treatment are referred to our open-
source implementation available at https://github.com/cda-tum/rail, which includes
some minor (yet efficient) additions to strengthen the relaxation.

3.1 Base Model
To state a MILP model, we first discretize the time horizon into intervals of a predefined
length, say ∆t. Train positions are then modeled over intervals instead of single time points.
Assume that vt and vt+∆t are the velocities of a train at the interval boundaries of [t, t + ∆t]
and that the speed of the train within the interval can be determined by linearly interpolating
between the initial and final velocity. Then, the traveled distance can be easily approximated
as vt+vt+∆t

2 ·∆t. In particular, during a given time interval, a train occupies not only the
track corresponding to its length but also the track section it travels over. The intersection
of occupied track sections at two adjacent intervals [t −∆t, t] and [t, t + ∆t] leads to the
exact position at time point t.

▶ Example 2. Consider Fig. 2a with a 50m-long train moving forward in time steps of 15
seconds. At t = 0s the train stopped and is now accelerating to 10m/s at t = 15s and 20m/s
at t = 30s. By assuming that the velocity can be linearly interpolated (e.g., v7.5s = 5m/s),
the train moves 75m within [0s, 15s] and 225m within [15s, 30s]. Hence, it occupies a total of
50m + 75m = 125m in the first interval and 50m + 225m = 275m in the latter. The overlap
of the two occupations has a length of 50m, i.e., the same length as the train.

In the following paragraphs, we describe how this basic idea is implemented in the MILP
model.

ATMOS 2023

https://github.com/cda-tum/rail

6:6 A Symbolic Design Method for ETCS Hybrid Level 3

t=0 t=15 t=30

tr-len

50m

dist. traveled

75m

dist. traveled

225m

occupied

125m

tr in [0,15]

over-
lap
50m

tr in [15,30]

occupied

275m

(a) Train’s occupation.

e1

100m

e2

200m

e3

200m

100m 50m

λe1
=0

µe1=0

λe2
=100 λe3

=0

µe2=200 µe3=50

(b) Train’s position.

Figure 2 Modeling of continuous positions depending on routing choice.

Variables describing train positions. To model the abovementioned, we add the following
variables to the model:

vtr
t ∈ [0, vtr

max]: is the current speed of train tr (with maximal speed vtr
max) at time t.

xtr
t,e ∈ {0, 1}: indicates if train tr occupies edge e anytime within [t, t + ∆t].

A train does usually not occupy an entire edge but might only be present on parts of it.
Thus, train positions cannot be modeled precisely using only binary (discrete) variables 2. In
a MILP setting, continuous variables can also be added. By doing so, we model the exact
train position on an edge using variables for both the front and rear of the train:

µtr
t,e ∈ [0, len(e)]: front of tr on e measured from edge’s start in interval [t, t + ∆t].

λtr
t,e ∈ [0, len(e)]: rear of tr on e measured from edge’s start in interval [t, t + ∆t].

The binary variables xtr
t,e indicate that a train is present on edge e. These can be inferred

from µtr
t,e and λtr

t,e. If they are both equal to 0, the train is not present on the respective
edge; otherwise, it is.

▶ Example 3. Consider the simple network shown in Fig. 2b with a 150m-long train located
on edges e2 and e3. Both these edges are 200m long, but the train only occupies 100m and
50m, respectively. In this case, λe2 = 100m and µe2 = 200m denote that the train occupies
the second half of e2. Similarly, λe3 = 0m and µe3 = 50m. Because the train is not present
anywhere on e1, we have λe1 = µe1 = 0m. This implies that xe2 = xe3 = 1, i.e. the train
occupies edge e2 and e3. On the other hand, xe1 = 0, i.e., the train does not occupy e1.

Occupation and overlap. The length of the track section a train occupies during one
timestep can be obtained by summing over the (µe − λe)-differences over every edge e the
train occupies. The overlap length is obtained by taking the difference of these lengths for
two adjacent time steps (given that the train is present on the edge). Symbolically, these
constraints are encoded in the MILP formulation as follows:

∑
e∈E

(
µtr

t,e − λtr
t,e

)
= len(tr) +

vtr
t + vtr

t+∆t

2 ·∆t ∀t, tr (1)∑
e∈E

xtr
t+∆t,e

(
µtr

t,e − λtr
t+∆t,e

)
= len(tr) ∀t, tr . (2)

2 This is already a departure point from previous symbolic approaches that encoded positions as binary
variables indicating whether a train occupies an edge.

S. Engels, T. Peham, and R. Wille 6:7

�

(a) Vertex degree too large

�

(b) Train not connected

Ë

(c) Valid train position

Figure 3 Ensuring trains position is valid.

Train integrity. The formulation above does not guarantee valid train positions without
further constraints. For example, the situations depicted in Fig. 3a and Fig. 3b would be
technically correct, as the length constraints are not violated.

Let G = (V, E) be the graph representing a railway network, and for any vertex v ∈ V ,
let δ(v) denote the set of incident edges of v. Then the situation depicted in Fig. 3a can be
avoided by imposing∑

e∈δ(v)

xtr
t,e ≤ 2 ∀v ∈ V, (3)

i.e., train tr can occupy at most two adjacent edges to any vertex during any given time t.
The situation in Fig. 3b can be avoided by utilizing the following observation: for any

cycle-free subgraph G′ = (V ′, E′) of a railway network, being connected is equivalent to
|E′| = |V ′| − 1. Since the edges a train occupies during one timestep form a subgraph of G,
we can encode this constraint on the cardinalities of E′ and V ′ as follows:

∑
e∈E

xtr
t,e =

∑
v∈V

 ∨
e∈δ(v)

xtr
t,e

− 1 ∀t, tr , (4)

for all trains tr , times t. Assuming all cycles within the railway network are sufficiently large
(i.e., longer than the train’s length plus maximal possible braking distance), the subgraph
induced by the edges the train occupies in one timestep is cycle-free by design.

Note that more constraints are required to ensure realistic modeling of train movements
(e.g., trains can only move in the direction of the engine). For brevity’s sake, we omit these
here.

Speed limit. While every train’s maximal speed is directly included in the variable bounds,
there might be a more restrictive speed limit on some railway tracks. Hence the following
logical constraints need to be imposed:

xtr
t,e = 1⇒ vtr

t ≤ ve
max and vtr

t+∆t ≤ ve
max ∀t, e, tr . (5)

Timetable. Trains are affiliated with a train schedule. In our setting, a schedule essentially
defines if a train needs to stop at stations (i.e., a subset of edges of the railway network) at
certain times. This includes the possibility to include multiple parallel tracks (corresponding
to different platforms). Assume that tr has to stop in station Str

i ⊂ E during the time
interval [ttr

i , t
tr
i]. Obviously, this means that the train must have a speed of 0m/s during that

time interval which is encoded by the constraint

vtr
t = 0 ∀t ∈ [ttr

i , t
tr
i]. (6)

ATMOS 2023

6:8 A Symbolic Design Method for ETCS Hybrid Level 3

tr1 tr2 tr3
// //

−→
b

tr1
t,e;1

←−
b

tr2
t,e;1

−→
b

tr2
t,e;2

←−
b

tr3
t,e;2

bpose;1

bpose;2

Figure 4 Including VSS constraints in the model.

Moreover, the train must be fully positioned within the station and cannot occupy any track
outside the station, hence, we have

xtr
t,e = 0 ∀t ∈ [ttr

i , t
tr
i], e ∈ E − Str

i and
∑

e∈Str
i

xtr
t,e ≥ 1 ∀t ∈ [ttr

i , t
tr
i]. (7)

VSS condition. Finally, we model constraints imposed by an ETCS HL3 control system.
In previous work, VSS boundaries were solely modeled by binary variables on vertices. In
this paper, we model VSS boundaries as continuous variables instead. Assume that we allow
Ie VSS boundaries to be set on an edge e, introduce variables bpos

e;i ∈ [0, len(e)] for 0 ≤ i < Ie

denoting the positions of the respective VSS boundaries or 0 if they are not used. Hence, we
can already formulate the objective of generating VSS layouts (using some small ε > 0, e.g.,
the minimal VSS block length) on a logic level as

min
∑
e∈E

∑
i∈Ie

[bpos
e;i ≥ ε] ([·] denotes the Iverson bracket). (8)

Now, assume that n trains are present on one edge e at time t. Then they have to be
separated by n− 1 VSS boundaries. Put differently, there must be n− 1 VSS boundaries
that separate some trains’ front from some other trains’ rear. Let this be indicated by binary
variables

−→
b tr

t,e;i and
←−
b tr

t,e;i respectively, then
−→
b tr

t,e;i = 1⇒ µt
t,e ≤ bpos

e;i and
←−
b tr

t,e;i = 1⇒ λt
t,e ≥ bpos

e;i ∀t, tr , e, i. (9)

Finally, it has to be ensured that the correct number of
−→
b tr

e;i and
←−
b tr

e;i is 1, so that n − 1
VSS boundaries are chosen.

▶ Example 4. Consider Fig. 4 with three trains on an edge. The trains are separated by
two VSS boundaries, whose positions on the edge are given by the continuous variables bpos

e;1

and bpos
e;2 . The first VSS boundary separates tr1’s front from tr2’s rear (

−→
b tr1

t,e;1 =
←−
b tr2

t,e;1 = 1).
Similarly, the second VSS boundary separates tr2 from tr3 (

−→
b tr2

t,e;2 =
←−
b tr3

t,e;2 = 1). All other
binary indicators are 0 in this case.

The formulation described here allows for modeling the problem of VSS layout generation
in comparable accuracy as previous work [32, 26]. However, in the following sections, we
show how MILP can be used for modeling additional aspects that are infeasible or hard to
encode in previous formulations due to their discrete nature.

3.2 Train Dynamics
In the base MILP model, train movements are not constrained by realistic dynamics like
acceleration and deceleration. For a more realistic model, we also need to encode these
properties. In fact, given maximal accelerations atr and decelerations dtr , these dynamics
can be added to the base MILP model with few constraints:

vtr
t+∆t ≤ vtr

t + ∆t · atr ∀t, tr and vtr
t+∆t ≥ vtr

t −∆t · dtr ∀t, tr . (10)

S. Engels, T. Peham, and R. Wille 6:9

3.3 Braking Curves
As described in Sec. 2, train control systems (such as ETCS) ensure that the complete track
section a train needs to come to a full stop is not occupied by any other train using braking
curves. The base model has no restrictions on safety distances between trains.

In time interval [t, t + ∆t], the final velocity is given by vtr
t+∆t and the braking distance

of tr can be approximated using

brakelentr
t = 1

2 · dtr
·
(
vtr

t+∆t

)2 ∀t, tr . (11)

This is not linear (in the variable vtr
t+∆t to be precise), which poses problems with the

inclusion in MILPs. Since it is an equality constraint, the resulting feasible region is not
even convex. However, some solvers can even solve these constraints within a mixed integer
program to optimality by using spatial branching [1, 24]. The approximation is then included
locally in the respective branched subproblems. Hence, it is possible to model the braking
distance directly.

Alternatively, one can add Eq. (11) as a piecewise linear approximation globally to
the problem formulation itself. Under the hood, this will add binary variables and linear
constraints. In particular, the integer model remains linear and can be solved with any
MILP-solver.

In either case, we add the braking distance to the length of the track section a train
occupies by slightly adapting Eq. (1) and (2):∑

e∈E

(
µtr

t,e − λtr
t,e

)
= len(tr) +

vtr
t + vtr

t+∆t

2 ·∆t + brakelentr
t+∆t ∀t, tr . (12)∑

e∈E

xtr
t+∆t,e

(
µtr

t,e − λtr
t+∆t,e

)
= len(tr) + brakelentr

t ∀t, tr .. (13)

In some sense, we let the train length dynamically change throughout time depending
on the speed. Since the train lengths attribute to the occupied track sections, no further
constraints need to be added, as the base model already restricts these.

3.4 Fixed Routes
When designing a train schedule, a train’s route (i.e., the exact tracks it uses) is sometimes
already known a priori. If not, it might be possible to fix routes separately before placing
VSS sections. In this case, the model significantly simplifies. If a train’s route is known
a priori, it is not necessary to model the exact location on every edge but can rather be
modeled by single integer variables:

µtr
t ∈ [0, len(route)]: front of the train in interval [t, t + ∆t]

λtr
t ∈ [0, len(route)]: rear of the train in interval [t, t + ∆t]

Since the position of the edges within a route is known, the corresponding indicator variables
follow quickly. Variables corresponding to the exact position on every edge can even be
removed entirely.

Additionally, Eq. (1) and (2) simplify to

µtr
t − λtr

t = len(tr) +
vtr

t + vtr
t+∆t

2 ·∆t ∀t, tr (14)

µtr
t − λtr

t+∆t = len(tr) ∀t, tr . (15)

Braking curves can be included analog to Eq. (12) and (13).

ATMOS 2023

6:10 A Symbolic Design Method for ETCS Hybrid Level 3

λ = 100m

µ = 200m

Route

Figure 5 Modeling continuous train position on fixed routes.

▶ Example 5. Consider the network in Fig. 5 with a 100m-long train. While the train
could potentially choose different routes, in theory, it is fixed to take the top track. Hence,
λ = 100m and µ = 200m uniquely define the train’s position measured from the route’s
starting point.

4 Case Study

The symbolic formulation in its different modeling details presented in the previous section
has been implemented in C++ and made publicly available as open-source implementation
at https://github.com/cda-tum/rail. By that, a tool got available which allows the user
to include/exclude certain constraints and, by that, decide whether he/she wants to quickly
generate a less accurate solution or a more accurate solution at the expense of higher runtimes.
This section now summarizes the results of a case study showcasing the potential of such an
approach. To this end, we first outline the setup of the case study. Afterward, we summarize
as well as discuss the correspondingly obtained results.

4.1 Setup
The basis of the case study was provided by the tool mentioned above (again, available
at https://github.com/cda-tum/rail) based on the symbolic formulations presented in
Sec. 3. This tool’s initialization requires defining a temporal discretization, i.e., a value for
the time interval length ∆t. Choosing the correct value of ∆t compromises computational
time and accuracy. Within the national railway company of Germany, Deutsche Bahn AG
(DB), ∆t is usually chosen to be 15 seconds (cf. [22]). While optimizing ∆t when using the
presented model is potentially interesting, this is out of the scope of this paper. Hence, we
follow DB’s default and run all experiments with a temporal resolution of ∆t = 15s.

As a computing device, we utilized an AMD Ryzen Threadripper PRO 5955WX system
using a 4.0-4.5 GHz CPU (16 cores) and 128GB RAM running on Ubuntu 20.04. We use the
C++ API of Gurobi version 10.0.1 [16] to solve the considered instances. A 1h hard timeout
for solving each instance has been set.

We considered a range of sample train networks as benchmarks, including typical (simple)
test cases (such as single tracks or stations) and real-world examples. More precisely:

Single track considers only one line on which trains have to slow down towards the end.
To enable the possibility of multiple trains following each other VSS have to be placed.
We also consider a variant with a scheduled stop (i.e., station) in between.
Highspeed track is a variant of the example above but considering a larger distance and
faster trains. We consider variants with 2 and 5 trains following each other, respectively.
Simple 2-track station is a basic station with two tracks that trains can approach from
different directions.

https://github.com/cda-tum/rail
https://github.com/cda-tum/rail

S. Engels, T. Peham, and R. Wille 6:11

Simple network consists of trains that have to trespass a single track in opposite directions.
For this, there is a bypass in the middle where trains do not have a scheduled stop.
Overtake models the situation of faster trains overtaking slower trains at a bypass.
Stammstrecke is a real-world inspired instance. For this, we model the Munich S-Bahn
Stammstrecke between Pasing and Munich East using publicly available data on tracks [7],
timetable [8], and technical data of the trains (DB BR 423) [20]. We reduced the train
following times slightly to enforce the necessity of VSS.

Figures of the respective track plans and more details on the used timetables are pro-
vided in Appendix A. Furthermore, all benchmarks are available through the open-source
implementation at https://github.com/cda-tum/rail.

For each benchmark, the design task reviewed in Sec. 2.2 has been solved using three
different degrees of detail: The base model (Sec. 3.1), this model extended by considering
train dynamics (Sec. 3.2), and this model further extended by considering braking curves
directly without approximation (Sec. 3.3). Additionally, we considered two cases, one in
which the routes had to be determined by the tool and another in which the routes had been
fixed beforehand (Sec. 3.4).

The number of placed VSS (#VSS) is optimized for every benchmark instance. To assess
the model’s efficiency, we measured the runtime (t, in CPU seconds) for creating and solving
each instance. Since the solver guarantees that the optimum number of VSS will be found
(within the bounds of the model’s detail), another criterion is needed to assess model accuracy.
The model, including train dynamics and braking curves, is the most detailed and, thus,
is, by definition, the most accurate. The less detailed models can generate solutions that,
while valid within the level of detail of the formulation, cannot be mapped to reality directly.
Specifically, taking the routes and VSS placements generated by less detailed models and
checking them with the highest detail, it is often revealed that the routes cannot be run on
the computed layout precisely as they were computed because block signaling constraints
might be violated. When this safety constraint is violated, a train must halt and wait before
getting the move authority. This leads to a delay (Delay) between the given schedule and the
schedule that is possible on the computed layout in reality. We use this delay as a criterion
to assess model accuracy in the following. By definition, the model including train dynamics
and braking curves does not incur a delay (i.e., it is the most accurate of the considered
model and serves as ground truth).

4.2 Results
The results of the conducted case study are summarized in Tab. 1. Tab. 1a provides results
for instances in which the routes have not been fixed and, hence, have to be determined by
the design method. Tab. 1b provide results for instances in which the routes have been fixed.
The first columns denote the considered benchmarks as described above, while the following
columns provide the number of VSS as well as the delay of the obtained solution and the
runtime for each of the considered settings.

From the results, several interesting conclusions can be drawn. First, and most obviously,
fixing the routes has a severe impact on the efficiency of the solution (comparing Tab. 1a and
Tab. 1b). Fixing them beforehand reduces the search space substantially and, hence, yields
substantially better runtimes. In the case of Simple Network it even allows one to complete
the design task within the given time limit. At the same time, this sometimes is achieved
at the expense of quality (as seen by the fact that some results obtained while considering
fixed routes have a worse delay). This can easily be explained by the fact that having routes
not fixed allows for a higher degree of freedom to find better solutions (causing the higher

ATMOS 2023

https://github.com/cda-tum/rail

6:12 A Symbolic Design Method for ETCS Hybrid Level 3

Table 1 Experimental results.

(a) With routing included.

Base Model + Train Dynamics + Braking Curves
t [s] #VSS Delay [s] t [s] #VSS Delay [s] t [s] #VSS

Single Track Without Station 53.8 7 30 53.5 8 30 290 9
With Station 33.6 3 75 27.0 4 30 237 4

Highspeed Track 2 Trains 16.0 10 45 14.6 10 30 126 18
5 Trains 443 10 60 604 10 30 1757 18

Simple 2-Track Station 6.5 1 15 9.2 1 0 8.5 1

Simple Network >1h n/a n/a >1h n/a n/a >1h n/a

Overtake 12.4 8 45 15.8 8 45 14.0 14

Stammstrecke
4 Trains 6.3 0 30 5.5 6 15 11.0 6
8 Trains 17.8 0 60 15.0 14 30 68.1 14
16 Trains 77.5 0 90 55.7 15 45 83.4 15

(b) With fixed routes.

Base Model + Train Dynamics + Braking Curves
t [s] #VSS Delay [s] t [s] #VSS Delay [s] t [s] #VSS

Single Track Without Station 42.0 7 45 62.5 8 30 138 9
With Station 15.7 3 60 15.7 4 45 38.3 4

Highspeed Track 2 Trains 19.0 10 45 16.0 10 30 83.8 18
5 Trains 536 10 45 504 10 30 1610 18

Simple 2-Track Station 0.7 1 15 0.7 1 0 1.6 1

Simple Network 64.6 5 60 41.0 5 60 1433 6

Overtake 1.4 8 45 1.5 8 45 2.7 14

Stammstrecke
4 Trains 1.2 0 45 1.1 6 15 1.3 6
8 Trains 2.9 0 60 2.7 14 30 3.6 14
16 Trains 7.7 0 105 6.9 15 45 13.7 15

runtime but may yield slightly better results). However, since the best possible routes are
always rather apparent in the considered benchmark, this effect only marginally affects the
quality of the results.

Besides that, the symbolic formulation’s level of detail obviously affects the accuracy
of the results and the efficiency of the solving process. Here, one would expect that the
base model (i.e., the most simplistic/abstract) model has the lowest accuracy but the best
efficiency, while it is vice versa for the more detailed formulations. While this is generally
true, interesting insights can be unveiled when checking out the numbers in detail. In fact,
additionally considering train dynamics in the base model hardly degrades the efficiency
(i.e., runtime) of the solving process (it even gets better sometimes). At the same time, the
solution accuracy either improves or remains equivalent. Hence, when choosing between the
base model and the base model plus train dynamics, the latter is the better option as it
provides almost the same accuracy while being more efficient. This behavior can be explained
by the fact that including train dynamics reduces the number of feasible train movements –
and, thus, the search space – without adding too much complexity.

More complex is the trade-off when additionally considering braking curves. This sub-
stantially affects the efficiency and leads to increased runtimes which are factors (sometimes
even magnitudes) higher than for the other models. At the same time, this provides the best
accuracy of all models considered in this work. This clearly shows the potential offered by

S. Engels, T. Peham, and R. Wille 6:13

the proposed approach: The user can decide whether he/she wants a quick but less accurate
solution; or whether he/she is willing to “invest” larger computation times to get more
accurate solutions. The tool presented in this work allows the end user to do both.

5 Conclusions & Outlook

In this work, we considered symbolic formulations for automatically determining ETCS HL3
layouts. While previous work relied on discrete formulations, we explicitly proposed continu-
ous formulations that are, e.g., essential to model concepts such as train dynamics or braking
curves properly. To this end, we introduced a Mixed Integer Linear Programming (MILP)
formulation. The resulting approach is flexible and allows users to explicitly include/exclude
certain constraints or simplify the model as needed. By that, he/she can decide whether a
fast but less accurate solution or a slow but more accurate solution should be generated.

A case study showcased the corresponding trade-off between accuracy and efficiency.
While these confirmed some obvious expectations (the less precise the model, the more
efficient the solving process and vice versa), some rather counter-intuitive insights are also
unveiled. For example, additionally considering train dynamics makes the model more precise
but hardly degrades (and sometimes even improves) the efficiency (i.e., runtime) of the
solving process. In contrast, considering braking curves substantially affects the efficiency,
i.e., leads to increased runtimes which are factors (sometimes even magnitudes) higher than
for other models.

The proposed methods (whose implementations are also publicly available in open-source
at https://github.com/cda-tum/rail as part of the Munich Train Control Toolkit, MTCT)
allow the users to evaluate such trade-offs. Furthermore, the resulting methods/tool has
been implemented in a modular and flexible fashion – allowing for easy integration of further
aspects in the future, such as optimizing train schedules or maximizing the throughput of
additional freight trains. Those developments are left for future work. Overall, the presented
work provides a solid basis for the design of ETCS HL3 layouts at different degrees of
accuracy.

References
1 Tobias Achterberg and Eli Towle. Non-convex quadratic optimization, 2020. URL: https:

//www.gurobi.com/events/non-convex-quadratic-optimization/.
2 Maarten Bartholomeus, Laura Arenas, Roman Treydel, Francois Hausmann, Nobert Geduhn,

and Antoine Bossy. ERTMS Hybrid Level 3. SIGNAL + DRAHT (110) 1+2/2018, pages
15–22, 2018. URL: https://www.eurailpress.de/fileadmin/user_upload/SD_1_2-2018_
Bartholomaeus_ua.pdf.

3 Ralf Borndörfer and Thomas Schlechte. Solving railway track allocation problems. In
Operations Research Proceedings, pages 117–122. Springer Berlin Heidelberg, 2008. doi:
10.1007/978-3-540-77903-2_18.

4 Malachy Carey and Sinead Carville. Scheduling and platforming trains at busy complex
stations. Transportation Research Part A: Policy and Practice, 37(3):195–224, 2003. doi:
10.1016/S0965-8564(02)00012-5.

5 C.S. Chang and D. Du. Further improvement of optimisation method for mass transit signalling
block-layout design using differential evolution. IEE Proceedings - Electric Power Applications,
146(5):559, 1999. doi:10.1049/ip-epa:19990223.

6 Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A branch and bound algorithm for
scheduling trains in a railway network. European Journal of Operational Research, 183(2):643–
657, 2007. doi:10.1016/j.ejor.2006.10.034.

ATMOS 2023

https://github.com/cda-tum/rail
https://www.gurobi.com/events/non-convex-quadratic-optimization/
https://www.gurobi.com/events/non-convex-quadratic-optimization/
https://www.eurailpress.de/fileadmin/user_upload/SD_1_2-2018_Bartholomaeus_ua.pdf
https://www.eurailpress.de/fileadmin/user_upload/SD_1_2-2018_Bartholomaeus_ua.pdf
https://doi.org/10.1007/978-3-540-77903-2_18
https://doi.org/10.1007/978-3-540-77903-2_18
https://doi.org/10.1016/S0965-8564(02)00012-5
https://doi.org/10.1016/S0965-8564(02)00012-5
https://doi.org/10.1049/ip-epa:19990223
https://doi.org/10.1016/j.ejor.2006.10.034

6:14 A Symbolic Design Method for ETCS Hybrid Level 3

7 DB Netz AG. Infrastrukturregister, 2023. URL: https://geovdbn.deutschebahn.com/isr.
8 DB Regio AG. Fahrpläne S-Bahn München, 2023. URL: https://www.s-bahn-muenchen.de/

fahren/fahrplaene.
9 Stefan Dillmann and Reiner Hähnle. Automated planning of ETCS tracks. In Reliability,

Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification,
pages 79–90. Springer International Publishing, 2019. doi:10.1007/978-3-030-18744-6_5.

10 EEIG ERTMS Users Group. ERTMS/ETCS hybrid train detection. Technical Report
16E042, ERTMS, 2022. Version 1E. URL: https://ertms.be/wp-content/uploads/2023/
06/16E0421F_HTD.pdf.

11 Stefan Engels, Tom Peham, Judith Przigoda, Nils Przigoda, and Robert Wille. Design tasks
and their complexity for Hybrid Level 3 of the European Train Control System. CoRR, 2023.
doi:10.48550/arXiv.2308.02572.

12 European Union Agency for Railways. Introduction to ETCS braking curves. Technical Report
ERA_ERTMS_040026, European Union Agency for Railways, 2020. Version 1.5. URL: https:
//www.era.europa.eu/system/files/2022-11/IntroductiontoETCSbrakingcurves.pdf.

13 O. Gemine, A. Hougardy, and E. Lepailleur. ERTMS unit: Assignment of values to
ETCS variables. Technical Report ERA_ERTMS_040001, European Union Agency for
Railways, 2023. Version 1.33. URL: https://www.era.europa.eu/system/files/2023-02/
ETCSvariablesandvalues.pdf.

14 D.C. Gill and C.J. Goodman. Computer-based optimisation techniques for mass transit
railway signalling design. IEE Proceedings B Electric Power Applications, 139(3):261, 1992.
doi:10.1049/ip-b.1992.0031.

15 Jan-Willem Goossens, Stan van Hoesel, and Leo Kroon. On solving multi-type railway
line planning problems. European Journal of Operational Research, 168(2):403–424, 2006.
doi:10.1016/j.ejor.2004.04.036.

16 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

17 Lylly Hernández and Sascha Hardel. Section breaks and level crossings limit capacity increases
under ETCS Level 2. SIGNAL + DRAHT (115) 1+2 / 2023, pages 24–30, 2023.

18 B.R. Ke and N. Chen. Signalling blocklayout and strategy of train operation for saving energy
in mass rapid transit systems. IEE Proceedings - Electric Power Applications, 152(2):129,
2005. doi:10.1049/ip-epa:20045188.

19 Torsten Klug, Markus Reuther, and Thomas Schlechte. Does laziness pay off? - a lazy-
constraint approach to timetabling. In Mattia D’Emidio and Niels Lindner, editors, 22nd
Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2022), volume 106. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/OASIcs.ATMOS.2022.11.

20 Thomas Künzel. Triebwagen für den zukünftigen Nah- und Regionalverkehr in Deutsch-
land. PhD thesis, TU Berlin, 2019. URL: https://depositonce.tu-berlin.de/items/
76de5c51-6cad-4250-abd5-df7b35643409.

21 Richard M. Lusby, Jesper Larsen, Matthias Ehrgott, and David Ryan. Railway track
allocation: models and methods. OR Spectrum, 33(4):843–883, December 2009. doi:
10.1007/s00291-009-0189-0.

22 Richard M. Lusby, Jesper Larsen, Matthias Ehrgott, and David M. Ryan. A set packing
inspired method for real-time junction train routing. Computers & Operations Research,
40(3):713–724, 2013. doi:10.1016/j.cor.2011.12.004.

23 Bjørnar Luteberget. Automated Reasoning for Planning Railway Infrastructure. PhD thesis,
Univ. of Oslo, May 2019. URL: https://www.mn.uio.no/ifi/english/research/projects/
railcons/documents/luteberget-thesis-b5-2019-09-17.pdf.

24 Richard Oberdieck, Kostja Siefen, Jaromil Najman, and Ed Klotz. Tech talk - a practi-
cal tour through non-convex optimization, 2021. URL: https://www.gurobi.com/events/
tech-talk-a-practical-tour-through-non-convex-optimization/.

https://geovdbn.deutschebahn.com/isr
https://www.s-bahn-muenchen.de/fahren/fahrplaene
https://www.s-bahn-muenchen.de/fahren/fahrplaene
https://doi.org/10.1007/978-3-030-18744-6_5
https://ertms.be/wp-content/uploads/2023/06/16E0421F_HTD.pdf
https://ertms.be/wp-content/uploads/2023/06/16E0421F_HTD.pdf
https://doi.org/10.48550/arXiv.2308.02572
https://www.era.europa.eu/system/files/2022-11/Introduction to ETCS braking curves.pdf
https://www.era.europa.eu/system/files/2022-11/Introduction to ETCS braking curves.pdf
https://www.era.europa.eu/system/files/2023-02/ETCS variables and values.pdf
https://www.era.europa.eu/system/files/2023-02/ETCS variables and values.pdf
https://doi.org/10.1049/ip-b.1992.0031
https://doi.org/10.1016/j.ejor.2004.04.036
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1049/ip-epa:20045188
https://doi.org/10.4230/OASIcs.ATMOS.2022.11
https://depositonce.tu-berlin.de/items/76de5c51-6cad-4250-abd5-df7b35643409
https://depositonce.tu-berlin.de/items/76de5c51-6cad-4250-abd5-df7b35643409
https://doi.org/10.1007/s00291-009-0189-0
https://doi.org/10.1007/s00291-009-0189-0
https://doi.org/10.1016/j.cor.2011.12.004
https://www.mn.uio.no/ifi/english/research/projects/railcons/documents/luteberget-thesis-b5-2019-09-17.pdf
https://www.mn.uio.no/ifi/english/research/projects/railcons/documents/luteberget-thesis-b5-2019-09-17.pdf
https://www.gurobi.com/events/tech-talk-a-practical-tour-through-non-convex-optimization/
https://www.gurobi.com/events/tech-talk-a-practical-tour-through-non-convex-optimization/

S. Engels, T. Peham, and R. Wille 6:15

25 Jörn Pachl. Railway Signalling Principles: Edition 2.0. Universitätsbibliothek Braunschweig,
2021. doi:10.24355/dbbs.084-202110181429-0.

26 Tom Peham, Judith Przigoda, Nils Przigoda, and Robert Wille. Optimal railway routing
using virtual subsections. In Reliability, Safety, and Security of Railway Systems. Modelling,
Analysis, Verification, and Certification, pages 63–79. Springer International Publishing, 2022.
doi:10.1007/978-3-031-05814-1_5.

27 Vahid Ranjbar, Nils O.E. Olsson, and Hans Sipilä. Impact of signalling system on capacity –
comparing legacy ATC, ETCS Level 2 and ETCS Hybrid Level 3 systems. Journal of Rail
Transport Planning & Management, 23:100322, 2022. doi:10.1016/j.jrtpm.2022.100322.

28 Thomas Schlechte, Ralf Borndörfer, Jonas Denißen, Simon Heller, Torsten Klug, Michael
Küpper, Niels Lindner, Markus Reuther, Andreas Söhlke, and William Steadman. Timetable
optimization for a moving block system. Journal of Rail Transport Planning & Management,
22:100315, 2022. doi:10.1016/j.jrtpm.2022.100315.

29 Lars Schnieder. Communications-Based Train Control (CBTC). Springer Berlin Heidelberg,
March 2021. doi:10.1007/978-3-662-62876-8.

30 Lars Schnieder. European Train Control System (ETCS). Springer Berlin Heidelberg, 2021.
doi:10.1007/978-3-662-62878-2.

31 Valeria Vignali, Federico Cuppi, Claudio Lantieri, Nicola Dimola, Tomaso Galasso, and Luca
Rapagnà. A methodology for the design of sections block length on ETCS L2 railway networks.
Journal of Rail Transport Planning & Management, 13:100160, 2020. doi:10.1016/j.jrtpm.
2019.100160.

32 Robert Wille, Tom Peham, Judith Przigoda, and Nils Przigoda. Towards automatic design and
verification for Level 3 of the European Train Control System. In 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2021. doi:10.23919/date51398.
2021.9473935.

A Benchmarks

In the following we present the track layouts (all referenced figures can be found at the end
of the appendix) used for the case study together with brief descriptions on the timetable.
For detailed information on timetables, we refer to the sample instances provided through
our open-source implementation.

Single Track

Single Track Without Station is a single track that is 15km long with no TTD. Two trains
follow each other with a 1 minute headway.

The track layout of Single Track With Station is shown in Fig. 6. Three trains travel
from A to B with 90 seconds separation. The first two trains have a scheduled stop at S1.

Highspeed Track

Highspeed Track is a single track that is 50km long with no TTD. Two to five trains are
following each other with a 1 to 2 minute headway while slowing down towards the end.

Simple 2-Track Station

The track layout is given in Fig. 7. Two trains are moving from left two right, one (longer)
train from right to left. All three trains have a scheduled stop in S1 at more or less the same
time.

ATMOS 2023

https://doi.org/10.24355/dbbs.084-202110181429-0
https://doi.org/10.1007/978-3-031-05814-1_5
https://doi.org/10.1016/j.jrtpm.2022.100322
https://doi.org/10.1016/j.jrtpm.2022.100315
https://doi.org/10.1007/978-3-662-62876-8
https://doi.org/10.1007/978-3-662-62878-2
https://doi.org/10.1016/j.jrtpm.2019.100160
https://doi.org/10.1016/j.jrtpm.2019.100160
https://doi.org/10.23919/date51398.2021.9473935
https://doi.org/10.23919/date51398.2021.9473935

6:16 A Symbolic Design Method for ETCS Hybrid Level 3

Simple Network

The track layout is given in Fig. 8. Two slow trains move from left to right and right to left
respectively with two scheduled stops. Faster trains follow on the main line without stopping.

Overtake

The track layout is given in Fig. 9. Three trains enter at A and leave at B in the reverse
order, hence, have to overtake each other. Additionally, the first train has a scheduled stop
in S1.

Stammstrecke

We model the Munich S-Bahn Stammstrecke between Pasing and Munich East using publicly
available data on tracks [7]. The track layout is shown in Fig. 10. S-Bahn trains in Munich
are mainly of type DB BR 423 with technical data described in [20]. The timetable is inspired
by [8] and consists of trains entering at Pasing, Laim or Donnersbergerbrücke traveling to
Munich East and vice versa in the opposite direction. Depending on the instance, 2, 4, and 8
trains (per direction) were considered following each other approximately every 90 seconds.

S1

A B

3km 200m 3km

Figure 6 Tracks of Single Track With Station.

S1

L R

500m 500m 10m 300m 10m 500m

Figure 7 Tracks of Simple 2-track station.

Left Station Right Station

500m 10km 2km 10km 500m

L1

L2

L3

R1

R2

R3

Figure 8 Simple Network.

S. Engels, T. Peham, and R. Wille 6:17

S1

A B

4, 5km 725m 275m 4, 5km

Figure 9 Overtake.

Pasing

205m 3.1km

Laim

210m 0.9km

Hirschgarten

205m

1.1km

Donnersberger-
brücke

205m 0.6km

Hackerbrücke

207m

0.6km

Central

210m 0.3km

Karlsplatz

206m 0.5km

Marienplatz

205m 0.5km

Isartor

209m 0.7km

Rosenheimer
Platz

206m

0.9km 209m

East

Figure 10 Stammstrecke (Munich S-Bahn).

ATMOS 2023

Periodic Timetabling with Cyclic Order Constraints
Enrico Bortoletto #

Zuse Institute Berlin, Germany

Niels Lindner #

Freie Universität Berlin, Germany

Berenike Masing #

Zuse Institute Berlin, Germany

Abstract
Periodic timetabling for highly utilized railway networks is a demanding challenge. We formulate
an infrastructure-aware extension of the Periodic Event Scheduling Problem (PESP) by requiring
that not only events, but also activities using the same infrastructure must be separated by a
minimum headway time. This extended problem can be modeled as a mixed-integer program by
adding constraints on the sum of periodic tensions along certain cycles, so that it shares some
structural properties with standard PESP. We further refine this problem by fixing cyclic orders
at each infrastructure element. Although the computational complexity remains unchanged, the
mixed-integer programming model then becomes much smaller. Furthermore, we also discuss how
to find a minimal subset of infrastructure elements whose cyclic order already prescribes the order
for the remaining parts of the network, and how cyclic order information can be modeled in a
mixed-integer programming context. In practice, we evaluate the impact of cyclic orders on a
real-world instance on the S-Bahn Berlin network, which turns out to be computationally fruitful.

2012 ACM Subject Classification Applied computing → Transportation; Mathematics of computing
→ Permutations and combinations; Mathematics of computing → Combinatorial optimization

Keywords and phrases Periodic Timetabling, Railway Timetabling, Periodic Event Scheduling
Problem, Cyclic Orders, Mixed-Integer Programming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.7

Funding Enrico Bortoletto: Funded within the Research Campus MODAL, funded by the German
Federal Ministry of Education and Research (BMBF) (fund number 05M20ZBM).

Acknowledgements We thank DB Netz AG for providing real-world data and timetabling parameters
for the S-Bahn Berlin network.

1 Introduction

Any public transportation network revolves around its timetable. A timetable is not only
central for passengers to arrange their journeys, but also in the typical planning process of
public transport (see, e.g., [9]), the timetable serves as a base for cost-sensitive planning
steps such as vehicle and crew scheduling. It is therefore indispensable for the success of a
public transportation system to operate a carefully designed timetable.

Timetabling for railway networks is a particularly demanding task, since an operationally
feasible timetable must guarantee a high level of safety: Two trains must always be separated
by a sufficient spatial and temporal distance. In the classical railway safety logic, the railway
infrastructure is divided into block sections, and at any point in time, each block section can
be occupied by at most one train. In recent years, the demand for trains has been increasing,
and it is likely to grow further, given the major role that railway transport is supposed to
attain in the future. However, infrastructure capacities do not grow as fast. For example,
from 1995 to 2022, the number of freight trains in Germany has almost doubled, the number

© Enrico Bortoletto, Niels Lindner, and Berenike Masing;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 7; pp. 7:1–7:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bortoletto@zib.de
https://orcid.org/0000-0002-2869-6498
mailto:lindner@zib.de
https://orcid.org/0000-0002-8337-4387
mailto:masing@zib.de
https://orcid.org/0000-0001-7201-2412
https://doi.org/10.4230/OASIcs.ATMOS.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 Periodic Timetabling with Cyclic Order Constraints

of passenger trains has increased by roughly a third, whereas the size of the network shrank
by 12% [16]. This boosts the importance of modeling safety constraints with high precision
in order to not waste optimization potential.

There have been several successful approaches in mathematical optimization of railway
timetables [9], but these models are typically aperiodic. A large quantity of railway networks,
especially suburban networks, are however operated with a periodic timetable, where trips
repeat with a certain period time T . Mathematically, periodic timetable optimization can
be expressed in terms of the Periodic Event Scheduling Problem (PESP) [17]. There is a
decent amount of literature on periodic timetabling using PESP (e.g., [14, 12, 15, 6, 7]),
but the safety considerations typically remain on a very coarse level. For example, headway
activities can separate two events, e.g., two departures of two trains on the same track, by at
least a certain minimum headway time [7]. This approach is however only workable when
dwelling and turnaround times of trains are extremely small, or neglected entirely. In fact,
classical headway activities alone cannot resolve what is called the track occupation problem
in the recent paper [10]. For example, when a train occupies a track from minute 0 to 10 for
turnaround, a second train might arrive at the same track at minute 5 and leave at minute
15. All events are separated by at least 5 minutes of headway time, so that this timetable
would be feasible in the standard PESP model, although it is in fact operationally infeasible.
To our knowledge, there is only little literature where periodic timetabling is combined with
a proper infrastructure-derived modeling of safety constraints (e.g., [3]).

We try to close this gap by introducing Infrastructure-Aware PESP: In addition to a
PESP instance on an event-activity network G, we are given a set of infrastructure elements
that we can think of as block sections, and each activity in G is associated to at most one
such infrastructure element. We demand that any pair of distinct activities associated to the
same infrastructure element e must be separated by a minimum headway time he ≥ 0. We
then formulate a mixed-integer programming model for Infrastructure-Aware PESP using
constraints described in [10] that resolve the track occupation problem.

Not unexpectedly, solving Infrastructure-Aware PESP is challenging: PESP alone is
an NP-hard optimization problem [17], and even medium-sized instances have withstood
attempts to solve them to optimality. For example, none of the instances of the benchmark
library PESPlib [4] have been solved to optimality, even though a variety of algorithms is
available [14, 13, 5, 1, 2]. It is in the nature of safety constraints that they affect pairs of
events or activities, so that they contribute a major part of the problem size. However,
in highly utilized networks, we have the following intuition: Fixing the timetable on parts
that are operating close to capacity limits should have far-reaching consequences on the
less crowded parts of the network. We will however not fix a specific timetable, but rather
a cyclic order of activities associated to a common infrastructure element. For example,
the S-Bahn Berlin network has several block sections that are used by as much as 7 trains
within the period time of 20 minutes, while a minimum headway time of 2.5 minutes between
two succeeding trains is desired. In particular, fixing the order of the trains on that block
section leaves only little degrees of freedom for a timetable. Since we are considering periodic
timetables, we do not consider total orders, but cyclic orders, i.e., we consider the orders
(a0, a1, a2), (a1, a2, a0), (a2, a0, a1) of three activities a0, a1, a2 as equivalent, but different
to (a0, a2, a1). We then define Infrastructure-Aware Fixed-Cycle-Order PESP, where we
prescribe a specific local cyclic order of the activities on each infrastructure element. On
a realistic instance, it is probable that cyclic orders of close-by infrastructure elements are
related or even must necessarily be the same, so that we also investigate algorithmic methods
to capture the mutual compatibility of those local cyclic orders.

E. Bortoletto, N. Lindner, and B. Masing 7:3

As a practical use case for our theoretical machinery, we evaluate Infrastructure-Aware
PESP and the impact of orders on a real-world instance comprising the full S-Bahn Berlin
network. It turns out that fixing cyclic orders has significant positive impact on performance
in practice, although our additions maintain the computational complexity of PESP. We
furthermore evaluate various methods to enhance Infrastructure-Aware PESP by information
on local cyclic orders and their compatibility with each other.

In Section 2 we recall the basics of PESP. We introduce Infrastructure-Aware PESP and
investigate a few theoretical properties in Section 3.1. Cyclic orders enter the picture in
Section 3.2, and we describe how to work with them algorithmically in Section 3.3. Moving
forward, we dedicate Section 4.1 to detailing the practical characteristics of the S-Bahn Berlin
scenario that we use for testing. After analyzing cyclic orders on this instance in Section 4.2, we
finally present in Section 4.3 the results and interpretations of our computational experiments.
Section 5 ends the paper with our ideas for further research.

2 The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) [17] is the usual mathematical model for
optimizing periodic timetables in public transport. It has been discussed in numerous works,
and we here very briefly recapitulate its main contents and formulations. An instance of the
problem is given as a tuple (G, T, ℓ, u, w), comprising a directed graph G with |V (G)| = n

and |A(G)| = m, whose nodes are events and arcs are activities, a period time T ∈ N, vectors
ℓ ∈ RA(G) and u ∈ RA(G) of lower and upper bounds on the arcs, respectively, and an
arc-weight vector w ∈ RA(G)

≥0 .

▶ Definition 1 ([17]). Given an instance (G, T, ℓ, u, w) as above, the Periodic Event Schedul-
ing Problem (PESP) is to find a periodic timetable π ∈ RV (G) and a periodic tension
x ∈ RA(G) such that
a) πj − πi ≡ xa mod T for all a = (i, j) ∈ A(G),
b) ℓ ≤ x ≤ u,
c) w⊤x is minimum,
or to decide that no such π and x exist.

If π is a periodic timetable, then a corresponding periodic tension is given by setting
xa := [πj − πi − ℓa]T + ℓa for all a = (i, j) ∈ A(G), where [·]T denotes the modulo T operator
with values in [0, T). Conversely, a periodic timetable can be recovered from a periodic
tension by a graph traversal (see, e.g., [6, Theorem 9.8]).

We assume that ℓ and u are integral, so that by [14] the feasibility of a PESP instance
implies the existence of an integral optimal solution. Moreover, we require that G contains
no loops and that 0 ≤ ℓ ≤ T − 1 and 0 ≤ u − ℓ ≤ T − 1; this can always be achieved by
preprocessing [6].

In the context of railway timetabling, events typically model arrivals or departures of
trains at stations. Activities represent, e.g., driving between two adjacent stations, dwelling
or turning at a station, or passenger transfers. Moreover, headway activities can be used to
guarantee minimum distances between two events; we will discuss the modeling of safety
constraints in more detail in Section 3.1. The weights w often estimate the number of
passengers using a specific activity, so that w⊤x can be interpreted as the total travel time
of all passengers. Alternatively, the weights can be used to minimize the number of vehicles.
We refer to [7] for further modeling aspects of PESP.

ATMOS 2023

7:4 Periodic Timetabling with Cyclic Order Constraints

Several mixed-integer programming formulations for PESP are known [6]. We focus on
the cycle-based formulation, which relies on the cycles of an integral cycle basis B of G [8]:

Minimize
∑

a∈A(G)

waxa

s.t.
∑

a∈A(G)

γaxa = Tzγ γ ∈ B

ℓa ≤ xa ≤ ua a ∈ A(G)
zγ ∈ Z γ ∈ B

(1)

3 The Infrastructure-Aware Periodic Event Scheduling Problem

3.1 Infrastructure Awareness

Having railway timetabling in mind, we will be working with a special version of PESP
that is “infrastructure-aware”. Along with a PESP instance (G, T, ℓ, u, w) we also have an
infrastructure map η : A → E, where A ⊆ A(G), and E is a set of infrastructure elements.
For each e ∈ E, we define Ae := η−1(e), i.e., the set of arcs that share the same infrastructure
element e, and thus A =

⋃
e∈E Ae.

In railway terms, we think of the infrastructure elements as block sections, so that no
two trains can occupy the same block section at the same time. The set Ae consists of those
driving, dwelling or turnaround activities that share the common infrastructure element e.
Of course, G might contain, e.g., passenger-related activities such as transfers, that do not
need to be associated to an infrastructure element, and this is why A is only required to be a
subset of A(G). An exemplary railway infrastructure and event-activity network, illustrating
the sets E and Ae, is depicted in Figure 1.

Station 1 Station 2
1A

1B

2A

2B3

(a) A sample railway infrastructure. Station 1 and 2 have one platform with two tracks each, the section
between Station 1 and 2 is single-track. As set E of infrastructure elements, we consider five block sections
labeled with corresponding tracks: E = {1A, 1B, 2A, 2B, 3}.

▷ ▷

◁◁

▷ ▷

◁◁

▷ ▷

◁◁

▷ ▷

◁◁

▷ ▷

◁◁

▷

◁

1B

1A

3 2B

2A

(b) A mesoscopic event-activity network G for three lines operating on the infrastructure depicted in
Figure 1a. Yellow vertices are departure events, white vertices are arrival events, and the arrows indicate
the direction. Two lines pass through Station 1 and 2 in both directions, while a third line is turning on
track 2A. We associate distinct colors to the infrastructure elements e ∈ E, and the activities in the set
Ae are all colored with the color of e. For a periodic timetable to be operationally feasible, it is necessary
that activities of the same color do not overlap in time.

Figure 1 An interpretation of Infrastructure-Aware PESP in the context of railway timetabling.

E. Bortoletto, N. Lindner, and B. Masing 7:5

The goal is to find a solution to a given PESP instance such that two distinct activities
a1 = (i1, j1) and a2 = (i2, j2) mapping to same infrastructure element η(a1) = η(a2) = e are
never scheduled to temporally overlap, but instead are separated by a minimum headway
time he ≥ 0 in the following sense (see also Figure 2):

he

xa1

he

xa2

π(j1)

π(i1)

π(j2)

π(i2)

2

1
0

11

10

9

8

7
6

5

4

3

Figure 2 A visualization of two sched-
uled activities a1 = (i1, j1), a2 = (i2, j2) ∈
Ae for some e ∈ E on a clock, T = 12.
Definition 2 requires that the distance
[π(i2)−π(i1)]T must be at least xa1 (filled
blue sector) + he (dotted blue sector).

▷

i1
▷

j1

▷

i2

▷

j2

[ℓa1 , ua1]

[ℓa2 , ua2]

[0, T − 1] [he , T − he]
[0, T − 1]

[he, T − he]

Figure 3 The Q3 formulation for the pairs (a1, a2)
and (a2, a1), where a1 = (i1, j1), a2 = (i2, j2) ∈ Ae,
a1 ̸= a2, introduces two directed 3-cycles q(a1, a2)
(green) and q(a2, a1) (purple). The Q3 constraints state
that the periodic tension along each of these cycles sums
up to T . As shown in [10], the Q3 constraints are equi-
valent to the activity separation constraints (2).

▶ Definition 2. Let (G, T, ℓ, u, w) be a PESP instance, let η : A → E be an infrastructure
map, and let h ∈ RE

≥0. The Infrastructure-Aware PESP is to find a periodic timetable π with
a corresponding tension x that optimally solve PESP on (G, T, ℓ, u, w), subject to the activity
separation constraints

[πi2 − πi1]T ≥ xa1 + he (2)

for all e ∈ E and all a1 = (i1, j1), a2 = (i2, j2) ∈ Ae := η−1(e) with a1 ̸= a2, or to decide
that no such solution exists.

▶ Remark 3. To avoid the degeneracy that arises when xa1 = he = 0 in (2), we will from
now on work with a positivity assumption: We require that for each e ∈ E that he > 0 or
that ℓa > 0 holds for all a ∈ Ae.

In words, the constraints (2) state that the activity a2 cannot start before a1 has finished
and an additional time of he has passed. The constraints hence do not only separate events
as standard headway activities do, but they also separate activities, which is necessary, e.g.,
as soon as trains have comparatively long dwelling times on a track [10]. For reasons that
will become apparent later, we do not model the activity separation constraints (2) directly,
but we choose to use the equivalent “Q3” formulation introduced in [10]. To do so (see also
Figure 3), for any pair of distinct arcs a1 = (i1, j1) and a2 = (i2, j2) in the same set Ae we add
a headway arc aI = (j1, i2) with bounds [he, T − he], as well as a headway arc aII = (i2, i1)
with bounds [0, T − 1], thereby creating a directed 3-cycle q(a1, a2) on the arcs a1, aI, aII. All
such auxiliary arcs have weight 0. Let us denote as Gh the digraph of the original instance
augmented with all necessary headway arcs, and let Bh be an integral cycle basis of Gh.

ATMOS 2023

7:6 Periodic Timetabling with Cyclic Order Constraints

Then the following is a mixed-integer programming model for Infrastructure-Aware PESP:

Minimize
∑

a∈A(Gh)

waxa

s.t.
∑

a∈A(Gh)

γaxa = Tzγ γ ∈ Bh

ℓa ≤ xa ≤ ua a ∈ A(Gh)
zγ ∈ Z γ ∈ Bh

(Q3 constraints)
∑

a∈q(a1,a2)

xa = T e ∈ E, a1, a2 ∈ Ae, a1 ̸= a2

(3)

Note that we express the Q3 constraints in terms of periodic tensions rather than of
periodic offset variables as was done in [10].

▶ Remark 4. The number of Q3 constraints in (3) is
∑

e∈E |Ae|(|Ae| − 1). In particular,
standard PESP arises when |Ae| ≤ 1 for all e ∈ E. This also implies that Infrastructure-
Aware PESP is NP-complete, because it belongs to NP, and for any PESP instance, setting
E := A(G) and η(a) := a for all a ∈ A(G) yields an equivalent Infrastructure-Aware PESP
instance with |Ae| = 1 for all e ∈ E.

The following polyhedral property is inherited from PESP:

▶ Lemma 5. Consider a feasible instance for Infrastructure-Aware PESP. Then there is an
optimal solution (x, z) to (3) and a spanning forest F of Gh such that xa = ℓa or xa = ua

for all a ∈ A(F).

Proof. Let (x∗, z∗) be an optimal solution to (3). Then x∗ is also optimal for the linear
program that arises when fixing z to z∗. We can therefore assume that x∗ is a vertex of the
polytope

P := {x ∈ RA(Gh) | Γx = Tz∗, Qx = T, ℓ ≤ x ≤ u}, (4)

where Γ is the matrix with the vectors in Bh as rows, and Q is the matrix that has the
incidence vectors of all Q3 constraint cycles q(a1, a2) as rows. Since Bh is a cycle basis, Γ
spans the cycle space of Gh, so that the row span of Q is contained in the row span of Γ.
We therefore conclude that for the vertex x∗, the set of arcs a ∈ A(G) for which one of the
inequalities ℓa ≤ x∗

a or x∗
a ≥ ua is tight, must induce a maximal cycle-free subgraph of Gh,

i.e., a spanning forest. ◀

We quickly note that the Q3 constraints and the positivity assumption (Remark 3) have
implications on upper bounds.

▶ Lemma 6. Let (x, z) be a feasible solution to (3), and let π be a corresponding periodic
timetable. For all e ∈ E with |Ae| ≥ 2, we have 0 ≤ xa < T for all a = (i, j) ∈ Ae where
xa = [πj − πi]T .

Proof. Let e ∈ E and |Ae| ≥ 2, and let a1 = (i1, j1) ∈ Ae.
We first suppose he > 0. Then a1 is part of a Q3 constraint for a cycle q(a1, a2) using a

headway arc aI in (3), and hence 0 ≤ ℓa ≤ xa ≤ T − xaI ≤ T − he < T . Since [πj1 − πi1]T
and xa1 congruent modulo T and are both contained in [0, T), they must be equal.

Now suppose that he = 0 and ℓa1 > 0. Using (2), we find xa1 ≤ [πi2 − πi1]T < T , so that
again xa1 = [πj1 − πi1]T . ◀

With that, we can derive the following degree bounds.

E. Bortoletto, N. Lindner, and B. Masing 7:7

▶ Lemma 7. Let (G, T, ℓ, u, w, η, h) be a feasible instance for Infrastructure-Aware PESP,
let E′ ⊆ E be any subset of infrastructure elements, and define A′ :=

⋃
e∈E′ Ae.

a) If he > 0 for every e ∈ E′, then

∀i ∈ V (G) : degA′(i) ≤ |E′|, (5)

where degA′(i) is the total degree of v in the subgraph of G with arc set A′.
b) Instead, if he = 0 for every e ∈ E′ and ℓa > 0 for every a ∈ A′, then

∀i ∈ V (G) : max
{

δ+
A′(i), δ−

A′(i)
}

≤ |E′|, (6)

where δ+
A′(i) and δ−

A′(i) are, respectively, out-degree and in-degree of i in the subgraph of
G with arc set A′.

Proof.
a) Suppose he > 0 for some e ∈ E′, and that there is a node i such that two arcs that are

both in Ae are incident with i. If i is the tail of both arcs, then they are of the form
a1 = (i, j) and a2 = (i, k). Using he > 0, xa1 ≥ ℓa1 ≥ 0 and (2), we have

0 < xa1 + he ≤ [πi − πi]T = 0, (7)

which cannot be. If i instead is the head of both arcs, then they are of the form a1 = (j, i)
and a2 = (k, i), and by (2),

[πk − πj]T ≥ xa1 + he and [πj − πk]T ≥ xa2 + he. (8)

Without loss of generality, we can assume xa1 ≥ xa2 , and hence have k scheduled between
i and j, but then, using Lemma 6,

[πk − πj]T ≥ xji + he = [πi − πj]T + he = [πi − πk]T + [πk − πj]T + he > [πk − πj]T , (9)

which cannot be either. Finally, they could be of the form a1 = (j, i) and a2 = (i, k), and
again by (2) and noting that xa1 = [πi − πj]T due to Lemma 6,

xa1 = [πi − πj]T ≥ xa1 + he > xa1 (10)

which is also impossible. We conclude that if he > 0, then i can be incident with at most
one arc of Ae. Consequently, if he > 0 for every e ∈ E′, then i is incident with at most
|E′| arcs that are contained in A′.

b) Suppose instead that he = 0 for some e ∈ E′, as well as ℓa > 0 for every a ∈ A′. We
observe that the contradiction (7) is still valid due to xa1 ≥ ℓa1 > 0. Moreover, (9) holds
because [πi − πk]T = xa2 ≥ ℓa2 > 0 by Lemma 6. We therefore conclude that at most one
arc of Ae can enter i, and at most one arc of Ae can leave i. This implies b). ◀

These bounds have strong consequences on the structure and connectivity of G, if the
instance is to be feasible at all. We consider, for example, the case when A = A(G), and
|E| = 1.

▶ Theorem 8. Consider an instance of Infrastructure-Aware PESP with infrastructure map
η : A = A(G) → {e} such that G is weakly connected, |A(G)| ≥ 1. If the instance is feasible,
then exactly one of the following holds:
a) he > 0 and G consists of a single arc.
b) he = 0 and G is a directed path.
c) he = 0 and G is a simple directed cycle.

ATMOS 2023

7:8 Periodic Timetabling with Cyclic Order Constraints

Proof. This is immediate from Lemma 7. ◀

▶ Corollary 9. Infrastructure-Aware PESP is solvable in polynomial-time on instances with
|E| = 1 and A = |A(G)|.

Proof. If there is only a single infrastructure element e, and Ae = A(G), it is necessary for
any feasible solution (x, z) of (3) to satisfy

∑
a∈A(G) xa ≤ T in order to separate all arcs from

each other. By Theorem 8, each weakly connected component of G is a path or a cycle. For
each cycle γ, we then must have

∑
a∈γ xa = T , because periodic tensions along a cycle sum

up to an integer multiple of the period time, this multiple is at most T due to arc separation,
but it is also larger than 0 because of the positivity assumption. We deduce that G is either
a single cycle or a disjoint union of paths. In the latter case, solving Infrastructure-Aware
PESP is trivial: Either x∗ = ℓ is an optimal solution, or the instance is infeasible. In the
single cycle case, Infrastructure-Aware PESP is solved by the simple linear program

min{w⊤x | γ⊤x = T, ℓ ≤ x ≤ u}, (11)

observing that the condition γ⊤x = T is both necessary and sufficient to guarantee non-
overlapping of the activities along the cycle. ◀

3.2 Cyclic Orders
We have seen in Corollary 9 that directed cycles play a special role within Infrastructure-
Aware PESP: In the trivial case that |E| = 1 and that G is a directed cycle, we could boil
down the Q3 constraints to a single constraint, namely that the periodic tensions along the
cycle sum up to T . This is due to the fact that the directed cycle fixes a cyclic ordering of its
activities. Our aim is now to mimic this for an arbitrary number of infrastructure elements.
To this end, we will fix for each e ∈ E a cyclic order of the activities in Ae.

▶ Definition 10 ([11]). Let S be a finite set. Two total orders (a0, . . . , an−1) and (b0, . . . , bn−1)
on S are cyclically equivalent if there is an integer k such that for all i ∈ {0, . . . , n − 1} holds
ai = b[i+k]n

. A cyclic order on S is an equivalence class ∆ of total orders on S with respect
to cyclic equivalence.

We will denote both a total order and the cyclic order given by its equivalence class by
(a0, . . . , an−1), and apply this concept directly to PESP:

▶ Definition 11. Let (G, T, ℓ, u, w) be a PESP instance with periodic timetable π. Suppose
that ∆ = (a0, . . . , an−1) is a cyclic order of a subset S = {a0, . . . , an−1} ⊆ A(G), where
ak = (ik, jk) for all k ∈ {0, . . . , n − 1}. We say that π respects the cyclic order ∆ on S if
(πi0 , πj0 , πi1 , πj1 , . . . , πin

, πjn
) defines a cyclic order in the equivalence class of ≤.

We return to Infrastructure-Aware PESP. Since in any feasible solution, for each infra-
structure element e ∈ E, the activities do not overlap, any such solution gives rise to a cyclic
order on Ae.

▶ Theorem 12. Let (G, T, ℓ, u, w, η, h) be an Infrastructure-Aware PESP instance, let x be
a feasible solution to (3) with corresponding periodic timetable π. Let e ∈ E be an arbitrary
infrastructure element, and write Ae = {a0, . . . , an−1} with ak = (ik, jk) for k ∈ {0, . . . , n−1}.
a) The timetable π respects some cyclic order on Ae.
b) The timetable π respects ∆e = (a0, . . . , an−1) on Ae if and only if

∑
a∈Ae

xa +
n−1∑
k=0

[πi[k+1]n
− πjk

]T = T. (12)

E. Bortoletto, N. Lindner, and B. Masing 7:9

c) The following constraint implies that π respects ∆e and all Q3 constraints associated to e

in (3):∑
a∈Q(∆e)

xa = T (13)

where Q(∆e) is the directed cycle in Gh consisting of the arcs in Ae and the headway arcs
aI

ak,a[k+1]n
between jk and i[k+1]n

with bounds [he, T − he] that have been added for the
Q3 formulation in the cycle q(ak, a[k+1]n

), k ∈ {0, . . . , n − 1}.

Proof. a) Any pair of activities is separated by h in the sense of Definition 2.
b) If π respects ∆e, then there is a cyclic shift of (πi0 , πj0 , πi1 , πj1 , . . . , πin , πjn) which is a

total order with respect to ≤. This is equivalent to

[πj0 − πi0]T + [πi1 − πj0]T + · · · + [πjn−1 − πin−1]T + [πi0 − πjn−1]T = T, (14)

because the left-hand side is congruent to 0 modulo T , and [·]T can in fact be omitted
except at exactly one summand. Due to the positivity assumption, [πjk

− πik
]T = xak

for
all k, so that (12) is equivalent to (14).

c) We first note xaI
ak,a[k+1]n

= [πj[k+1]n
− πik

]T . Hence, if (13) holds, then (12) holds, and
thus π respects ∆e. Consider for k ̸= l a cycle q(ak, al) defining a Q3 constraint at e ∈ E.
Since (πik

, πjk
, πil

) is a subsequence of (πi0 , πj0 , πi1 , πj1 , . . . , πin
, πjn

), which is a cyclic
shift of a total order with respect to ≤,∑

a∈q(ak,al)

xa = [πjk
− πik

]T + [πil
− πjk

]T + [πik
− πil

]T = T. (15)

◀

We now define a version of Infrastructure-Aware PESP, where cyclic orders at each
infrastructure element are fixed.

▶ Definition 13. Let (G, T, ℓ, u, w, η, h) be an instance of Infrastructure-Aware PESP, and
let ∆e be a set of cyclic order on Ae for each e ∈ E. The Infrastructure-Aware Fixed-Cycle-
Order PESP is to find a solution to Infrastructure-Aware PESP that additionally respects
∆e on Ae for all e ∈ E, or to decide that no such solution exists.

The Infrastructure-Aware Fixed-Cycle-Order PESP has to be treated with caution,
because fixing cyclic orders beforehand will in general have severe impacts on feasibility and
optimization potential. However, there are practical situations, where such information is
known or can be propagated (see also Section 3.3).

Theorem 12 allows to formulate Infrastructure-Aware Fixed-Cycle-Order PESP as a mixed-
integer linear program: We can prescribe a specific cyclic order at each infrastructure element
e ∈ E by adding the constraints (13) to (3). A very elegant consequence of Theorem 12
is that the

∑
e∈E |Ae|(|Ae| − 1) Q3 constraints can then be discarded. Since then also the

headway arcs of the form aII used in the Q3 constraints lose their significance, they can be
deleted as well, so that the model size drops considerably. Figure 4 visualizes this effect.

▶ Remark 14. Several results carry over to the setting of fixed cyclic orders: Infrastructure-
Aware Fixed-Cycle-Order PESP is NP-complete with the same reasoning as in Remark 4. If
there is only one infrastructure element to which all arcs are associated, then Infrastructure-
Aware Fixed-Cycle-Order PESP is polynomial-time-solvable. Furthermore, the spanning
forest property Lemma 5 carries over to Infrastructure-Aware Fixed-Cycle-Order PESP.

ATMOS 2023

7:10 Periodic Timetabling with Cyclic Order Constraints

▷i3

▷j3

▷ i2▷j2

▷ i1

▷ j1

▷i0 ▷ j0

(a) When no cyclic order on Ae is fixed, then
the Q3 constraints state that the periodic tension
along each directed 3-cycle q(ak, al) for k ̸= l must
sum up to T .

▷i3

▷j3

▷ i2▷j2

▷ i1

▷ j1

▷i0 ▷ j0

(b) When a cyclic order ∆e on Ae is fixed, it
suffices to require that the periodic tension along
a single cycle, namely the directed Hamiltonian
cycle that is induced by ∆e, adds up to T . Here,
∆e = (a0, a1, a2, a3).

Figure 4 Arcs in the Q3 formulation for Infrastructure-Aware PESP vs. (13) for Infrastructure-
Aware Fixed-Cycle-Order PESP for Ae = {a0, a1, a2, a3}, ak = (ik, jk), k ∈ {0, 1, 2, 3}. Choosing a
cyclic order ∆e on Ae corresponds to choosing a directed Hamiltonian cycle Figure 4b in the digraph
Figure 4a built by the union of the cycles q(ak, al) for ak, al ∈ Ae, k ̸= l.

3.3 Propagating Cyclic Orders and Chronological Constraints
The Infrastructure-Aware Fixed-Cycle-Order PESP requires formally to fix a cyclic order
at each infrastructure element. This might be a tedious task not only due to the number
of infrastructure elements, but also since the cyclic orders need to be compatible between
“related” infrastructure elements. Such an information is often present in real-world scenarios,
and we suggest two strategies to exploit this computationally.

3.3.1 Identifying Maximal Infrastructure Elements
Let T denote a set of trips and let τ : A → T be a map whose restriction to each Ae is
injective, i.e., no two arcs in the set Ae for a given infrastructure element e can be associated
with the same trip. We call τ(Ae) the set of trips on e. We introduce a binary relation ⪯
on E by defining e ⪯ e′ if and only if τ(Ae) ⊆ τ(Ae′) and all trips on e must necessarily
appear in the same cyclic order on e′. That is, we want that ∆e is a subsequence of ∆e′ ,
when identifying arcs with their trips.

For example, if two branches of a railway network join, and there is no possibility of
overtaking, then the order ∆e′ of the arcs in Ae′ , i.e., of the trips τ(Ae′), on the first
common infrastructure element e′ is already fixing the order ∆e of the trips τ(Ae) on the
last infrastructure element e on each branch before joining.

The relation ⪯ is a preorder on E. To prescribe a cycle ordering at each e ∈ E, it is
hence enough to fix a cycle ordering at each maximal element of ⪯.

Algorithmically, we can construct a directed infrastructure graph H such that (e, e′) ∈
A(H) if and only if e ⪯ e′. We then contract directed cycles in H , so that H becomes acyclic
and ⪯ becomes a partial order. In practical terms, elements belonging to a directed cycle
are associated with the same set of trips, and those must appear in the same cyclic order.
The maximal elements of the partial order can then be identified with the sinks of H, i.e.,
the vertices with out-degree 0.

A real-world example of the resulting directed acyclic graph is given in Figure 5.

E. Bortoletto, N. Lindner, and B. Masing 7:11

3.3.2 Chronological Constraints
It might be beneficial not to fix cyclic orders everywhere, but only at some infrastructure
elements. Moreover, not all cyclic orders are equally good, for example, when regular patterns
of trains are desired. We are therefore seeking to add the enforcing and compatibility of
cyclic orders to the mixed-integer programming formulation of Infrastructure-Aware PESP.

To this end, at each e ∈ E, we introduce a binary variable σe
∆{0, 1} for each cyclic order

∆ on Ae, and enforce ∆ or not via the big-M constraints∑
a∈Q(∆)

xa ≤ Tσe
∆ + T |Ae|(1 − σe

∆) e ∈ E, ∆ cyclic order on Ae (16)

∑
a∈Q(∆)

xa ≥ Tσe
∆ + 2T (1 − σe

∆) e ∈ E, ∆ cyclic order on Ae (17)

∑
∆ cyclic order on Ae

σe
∆ = 1 e ∈ E (18)

which are derived from (13). If σe
∆ = 1, then (16) and (17) enforce ∆ on Ae. Otherwise, if the

order ∆ is not respected, then
∑

a∈Q(∆) xa ̸= T , and due to the positivity assumption and the
fact that

∑
a∈Q(∆) xa is an integral multiple of T , we must have

∑
a∈Q(∆) xa ≥ 2T . Note that

(17) is redundant for feasible integer solutions, but it strengthens the linear programming
relaxation. Note that the cycle Q(∆) is composed of |Ae| pairs (a, aI) of arcs that are part of
a q-cycle, so that xa + xaI ≤ T by virtue of the Q3 constraints (3). In particular, we always
have

∑
a∈Q(∆) xa ≤ T |Ae|.

The compatibility of orders among elements e ⪯ e′ can be modeled by

σe
∆ ≤

∑
∆′ cyclic order on Ae′
restricting to ∆ on Ae

σe′

∆′ e ∈ E, ∆ cyclic order on Ae (19)

∑
∆ cyclic order on Ae

induced by ∆′ on Ae′

σe
∆ ≤ σe′

∆′ e ∈ E, ∆′ cyclic order on Ae (20)

Note that using the sum in (19) and (20) is justified by (18).

4 Computational Results

4.1 Instances
We evaluate the use of cyclic orders in a case study of two detailed real-world instances
of Infrastructure-Aware PESP. Both instances comprise the full S-Bahn Berlin network, a
suburban commuter rail network consisting of 16 lines, which is operated periodically with a
period time of 20 minutes. Since the timetable is planned with a resolution of 0.1 minutes on
a mesoscopic scale and we want to stick to integral bounds, we therefore consider T = 200.
The (lower) bounds for driving, dwelling and turnaround activities are derived from the
2022 annual timetable. We further assume that driving activities are fixed, i.e., lower and
upper bound coincide. The infrastructure information and the minimum headway times he

are set according to the planning parameters at DB Netz AG, which is responsible for the
S-Bahn Berlin timetable. The network contains several stretches where 6 or 7 trains ride per
direction and 20 minutes, so that planning a conflict-free timetable is demanding. On the
other hand, fixing a cyclic order on an infrastructure element with high usage is expected to
largely limit the degree of freedom for timetabling the remaining parts of the network.

ATMOS 2023

7:12 Periodic Timetabling with Cyclic Order Constraints

Our first instance i1 does not consider transfer activities, because our data does not
contain any information about passenger flows. The arc weights are simple: They are 2 for
all arcs that are relevant for passengers, and 1 otherwise, e.g., for turnarounds. The rationale
is that feasibility is a major issue, but there is still an incentive to minimize dwelling and
turnaround times, with a priority on dwelling. Moreover, this approach is also suitable to
minimize the required number of vehicles.

To make the case study a little more meaningful, we created a second instance i2 with
an artificial passenger flow. For each station, we counted the number of public transport
trips, including subway, buses and trams, departing at that station within a typical peak
hour, and use that number as a demand per station. We then simulate 100,000 passengers
that pop up on a station, distributed according to the demand, and use the shortest route
according to the annual timetable to their destination, which is sampled with the help of a
gravity model. The second instance hence contains transfer activities, and the weights are
chosen according to the number of passengers using the activity in question.

Some characteristics of both instances are summarized in Table 1.

Table 1 Characteristics of our two instances.

Instance type # nodes # total arcs # headway arcs # transfer arcs
i1 (without transfers) 2412 8439 6027 0
i2 (with transfers) 2412 9405 6027 966

4.2 Maximal Infrastructure Elements
A consequence of fixing the driving activities is that in most cases, it will be superfluous
to add cyclic orders for driving activities, as they are implied by the ones for dwelling
inequalities. However, there are exceptions, e.g., single-track sections.

It turns out that ⪯ as defined in Section 3.3.1 has 22 maximal elements out of 192
infrastructure elements, so that fixing a cyclic order at only 22 infrastructure elements
suffices to prescribe a cyclic order at each infrastructure element. The poset induced by ⪯ is
visualized in Figure 5.

4.3 Experiments
All our experiments were conducted on an Intel i7-9700K CPU with 32 GB RAM, using
Gurobi 10. Preliminary runs used the standard MIP formulation of PESP presented in
[17], which proved to be unreasonably slower than the cycle formulation even at solving
trivial instances, and so all tests presented here use the cycle formulation, as in (1). A quite
influential choice when using the cycle formulation is that of which cycle basis to use, and in
this paper we used two options. For some tests, we used a strictly fundamental cycle basis
arising from a bfs-tree, which we will denote as Bbfs. For other tests, we instead used a
strictly fundamental cycle basis arising from a minimum span spanning tree, which we will
denote as Bspan.

First and foremost, we tested i1, modeled as seen in (3). Using Bspan, a primal solution
is found after 1 minute and 12 seconds, with a 17% gap, and the optimal solution is found
after 20 minutes and 26 seconds, when also proven optimality is achieved. The optimal value
is 3058. Instead, using Bbfs, no primal solution was found within 3 hours, with almost no
dual bound to speak of either. Nonetheless Bbfs proved to be quite good when many orders
are fixed.

E. Bortoletto, N. Lindner, and B. Masing 7:13

1
2 3

7
1

9
1
10

1
6

3

2
2

1
1
2
3
13

7

1
111

1
1

11 1
17

21

1

9

6

7
1

22
2 2

7

7

9
4

1

1
2

1

3

3

4
4

3
1 1

12
2

Figure 5 The directed acyclic graph induced by ⪯ for both instances has 22 sinks (green), which
identify the maximal infrastructure elements as in Section 3.3.1. The vertex labels indicate the
number of infrastructure elements that are equivalent w.r.t. ⪯. The five columns show from left to
right the infrastructure elements used by 3 to 7 trains within 20 minutes, we omitted the ones with
2 trains or less.

Next, we tested if and how much solving speed would improve by fixing order information.
To do so, we took the annual timetable of the S-Bahn and derived feasible cyclic orders
to impose onto the activities Ae per each stationary infrastructure e ∈ E. Note that the
objective value of the annual timetable is 5128 in i1, and 673759 in i2.

We then conducted tests with different levels of fixing and using both bases Bbfs and
Bspan. For the transfer-less instance, results of these tests can be seen in Table 2. The same
tests were conducted on i2, whose results can be found in Table 3. With the added transfers
the instance is particularly harder to solve. In fact, without fixing any orders, a primal
solution is found only after 51 minutes and 22 seconds, and at the mark of the hour the gap
to dual bound is 64.2%, with objective value 483716.

Note that the improvements in objective value for i1 and i2 compared to the annual
timetable have to be taken with a grain of salt: The minimum turnaround times in our
model are quite low and can only be achieved with a second driver, which is practically
feasible, but only in exceptional cases. Moreover, our gravity model might not reflect the
actual passenger distribution.

Finally, now only using the cycle basis Bspan and i1, in Table 4 we show various test
results that include the σ variables introduced in Section 3.3. The sets displayed in the “Test
configuration” column indicate a list of the sizes of Ae’s for which we added corresponding
σ variables to the model. For each such σ variable we always include equations as seen in
(16) and (18). Test configurations marked by the letter b, also include equations as seen in
(17), bounding below. Test configurations marked by the letter l, also include equations as
seen in (19) and (20), linking orders for compatibility. Finally, test configurations marked
by the letter r are ones were we enforced regularity on the σ’s there included, meaning any
σ∆ is there set to 0 if ∆ ≥ 4 and ∆ consecutively orders two activities of the same line.
This applies only when a line is operated with higher frequency than once per 20 minutes,
because in this case, it is not desirable that two trips of the same line are directly succeeding.
It is important to note that, except for enforced regularity, all σ-constraints are merely
descriptive of timetable behaviour, as they are all redundant with respect to the base model

ATMOS 2023

7:14 Periodic Timetabling with Cyclic Order Constraints

of Infrastructure-aware PESP. For that reason, it is entirely possible to use a continuous
relaxation of the σ variables instead of proper binary variables, since it is entirely unnecessary
to find perfectly integral values for all σ’s. All tests showed that this is always very beneficial,
and so all tests use continuous σ’s.

4.4 Interpretation of Results
As expected, fixing order information greatly improves solving time, as seen in Table 2,
although the cycle basis choice remains quite influential. In general it can be observed that
the more orders are fixed, the more Bbfs is faster than Bspan, and vice versa. The former
basis, by nature of the spanning tree from which it arises, is characterized by particularly
short cycles (average of ∼4 arcs per cycle). The latter, instead, also by nature of the spanning
tree from which it arises, is characterized by particularly long cycles (average of ∼93 arcs
per cycle). Generally, we do not know enough about the performance of cycle bases in
solving PESP, but preliminary tests, also using other cycle bases of intermediate average
cycle length, seemed to confirm this inverse relationship, namely “short” bases being better
with lots of order-fixing, and “long” bases being better in less constrained settings. Using a
more meaningful objective value, that of i2, also the tests shown in Table 3 confirm the same
pattern shown in the previous table. In fact, faster times in Table 2 are almost invariably
matching to smaller optimality gaps in Table 3.

It is worth to note that the optimal value of each test varies, as fixing orders at different
infrastructure elements constrains the problem differently. In that sense, it is then interesting
to observe and compare how much closer to the global optimum (3058) some test configurations
end up, sometimes with relatively little time increase, such as test [i ̸= 7].

As per Table 4, the main takeaway is that, indeed, including descriptive σ variables and
constraints is of significant aid to solving time, as long as the size of the model does not
excessively increase. This size increase is always driven by the presence of unreasonably
many σ variables for all possible cyclic orders of large Ae’s. In greater detail, we can say that
constraints of the form (17), marked by b in the tests, seem to only hinder the solver, whereas
it is harder to pass judgement on linking constraints, marked by l. Although detrimental
when infrastructure with larger Ae’s is involved, linking constraints seem to be of use when
applied to infrastructure with small Ae’s. This might be because of an amplification of the
issues already created by the increasing size of the model. Another reason for that could
be akin to what makes continuous σ’s perform better than binary σ’s, i.e., letting such
descriptive constraints be less precise may allow better agility. Finally, we note that enforced
regularity, marked by r, is powerful when infrastructure with larger Ae’s is involved, which
is of no surprise, since many cyclic orders of larger sets are irregular, and therefore many σ

constraints would then be greatly simplified by forcing the indicator variable to 0.

5 Future Work

Given the high variance in performance with respect to the choice of cycle basis, it is tempting
to investigate further bases, e.g., cycle bases that combine “long” cycles that correspond
to activities used by lines, and “short” cycles such as the q-cycles in the Q3 formulation.
Moreover, since the number of possible cyclic orders explodes in larger instances, it is natural
to think about dynamic generation of σ-variables. Finally, given that fixing a cycle order
boosts running times, we imagine that a heuristic, that optimizes first for a given cycle order
and then modifies that order by local k-opt moves and optimizes again, could be beneficial
to solve realistic and also larger Infrastructure-Aware PESP instances.

E. Bortoletto, N. Lindner, and B. Masing 7:15

References

1 R. Borndörfer, N. Lindner, and S. Roth. A concurrent approach to the periodic event scheduling
problem. Journal of Rail Transport Planning & Management, 15:100175, 2020. Best Papers of
RailNorrköping 2019. doi:10.1016/j.jrtpm.2019.100175.

2 E. Bortoletto, N. Lindner, and B. Masing. Tropical Neighbourhood Search: A New Heuristic for
Periodic Timetabling. In M. D’Emidio and N. Lindner, editors, 22nd Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022), volume
106 of Open Access Series in Informatics (OASIcs), pages 3:1–3:19, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2022.3.

3 F. Fuchs, A. Trivella, and F. Corman. Enhancing the interaction of railway timetabling
and line planning with infrastructure awareness. Transportation Research Part C: Emerging
Technologies, 142:103805, September 2022. doi:10.1016/j.trc.2022.103805.

4 M. Goerigk. PESPlib - A benchmark library for periodic event scheduling, 2012. URL:
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/.

5 P. Großmann, S. Hölldobler, N. Manthey, K. Nachtigall, J. Opitz, and P. Steinke. Solving
Periodic Event Scheduling Problems with SAT. In H. Jiang, W. Ding, M. Ali, and X. Wu,
editors, Advanced Research in Applied Artificial Intelligence, Lecture Notes in Computer
Science, pages 166–175, Berlin, Heidelberg, 2012. Springer. doi:10.1007/978-3-642-31087-4_
18.

6 C. Liebchen. Periodic timetable optimization in public transport. PhD thesis, Technische
Universität Berlin, Berlin, 2006.

7 C. Liebchen and R. H. Möhring. The Modeling Power of the Periodic Event Scheduling Problem:
Railway Timetables — and Beyond. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. D.
Zaroliagis, editors, Algorithmic Methods for Railway Optimization, Lecture Notes in Computer
Science, pages 3–40, Berlin, Heidelberg, 2007. Springer. doi:10.1007/978-3-540-74247-0_1.

8 C. Liebchen and L. Peeters. Integral cycle bases for cyclic timetabling. Discrete Optimization,
6(1):98–109, February 2009. doi:10.1016/j.disopt.2008.09.003.

9 R. M. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and
methods. OR Spectrum, 33(4):843–883, October 2011. doi:10.1007/s00291-009-0189-0.

10 B. Masing, N. Lindner, and C. Liebchen. Periodic Timetabling with Integrated Track Choice
for Railway Construction Sites. Technical Report 22-26, Zuse Institute Berlin, 2022. URL:
https://nbn-resolving.org/urn:nbn:de:0297-zib-88626.

11 N. Megiddo. Partial and complete cyclic orders. Bulletin of the American Mathematical
Society, 82(2):274–276, 1976.

12 K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Habilitation
Thesis, Universität Hildesheim, 1998.

13 K. Nachtigall and J. Opitz. Solving Periodic Timetable Optimisation Problems by Mod-
ulo Simplex Calculations. In M. Fischetti and P. Widmayer, editors, 8th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08),
volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.ATMOS.2008.1588.

14 M. A. Odijk. Construction of periodic timetables, part 1: A cutting plane algorithm. Technical
Report 94-61, TU Delft, 1994.

15 L. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus Universiteit Rotter-
dam, January 2003.

16 Allianz pro Schiene e. V. Das Schienennetz in Deutschland, 2023. Retrieved on 08/07/2023.
URL: https://www.allianz-pro-schiene.de/themen/infrastruktur/schienennetz/.

17 P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM
J. Discret. Math., 2:550–581, 1989.

ATMOS 2023

https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/10.4230/OASIcs.ATMOS.2022.3
https://doi.org/10.1016/j.trc.2022.103805
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
https://doi.org/10.1007/978-3-642-31087-4_18
https://doi.org/10.1007/978-3-642-31087-4_18
https://doi.org/10.1007/978-3-540-74247-0_1
https://doi.org/10.1016/j.disopt.2008.09.003
https://doi.org/10.1007/s00291-009-0189-0
https://nbn-resolving.org/urn:nbn:de:0297-zib-88626
https://doi.org/10.4230/OASIcs.ATMOS.2008.1588
https://www.allianz-pro-schiene.de/themen/infrastruktur/schienennetz/

7:16 Periodic Timetabling with Cyclic Order Constraints

A Appendix – Tables

Table 2 Fixed order test on i1, with cycle basis Bbfs in the white rows, and cycle basis Bspan in
the gray rows. The “Test configuration” column indicates a list of the sizes of Ae’s for which the
order was fixed. For example, in test [i ̸= 5] = {3, 4, 6, 7} we fixed the cyclic orders for each and
every e ∈ E with |Ae| ̸= 5, meaning all those of size in {3, 4, 6, 7}, and similarly for other rows. The
time limit of each test was 15 minutes.

Test configuration Time to primal (s) Time to optimal (s) Optimal value
[i ≥ 3] = {3, 4, 5, 6, 7} 1 12 3967
[i ≥ 3] = {3, 4, 5, 6, 7} 54 55 ”
[i ≥ 4] = {4, 5, 6, 7} 1 13 ”
[i ≥ 4] = {4, 5, 6, 7} 65 75 ”
[i ≥ 5] = {5, 6, 7} 11 66 3948
[i ≥ 5] = {5, 6, 7} 87 100 ”
[i ≥ 6] = {6, 7} 34 194 ”
[i ≥ 6] = {6, 7} 144 179 ”
[i ≥ 7] = {7} 218 840 3661
[i ≥ 7] = {7} 163 178 ”
[i ̸= 3] = [i ≥ 4] 1 13 3967
[i ̸= 3] = [i ≥ 4] 65 75 ”
[i ̸= 4] = {3, 5, 6, 7} 11 30 3951
[i ̸= 4] = {3, 5, 6, 7} 87 99 ”
[i ̸= 5] = {3, 4, 6, 7} 11 20 3967
[i ̸= 5] = {3, 4, 6, 7} 64 72 ”
[i ̸= 6] = {3, 4, 5, 7} 40 80 3855
[i ̸= 6] = {3, 4, 5, 7} 151 161 ”
[i ̸= 7] = {3, 4, 5, 6} 27 60 3351
[i ̸= 7] = {3, 4, 5, 6} 29 68 ”
[i ≤ 3] = {3} − − −
[i ≤ 3] = {3} 92 555 3058
[i ≤ 4] = {3, 4} − − −
[i ≤ 4] = {3, 4} 103 387 3175
[i ≤ 5] = {3, 4, 5} − − −
[i ≤ 5] = {3, 4, 5} 126 319 3191
[i ≤ 6] = [i ̸= 7] 27 60 3351
[i ≤ 6] = [i ̸= 7] 27 60 ”
[i ≤ 7] = [i ≥ 3] 1 12 3967
[i ≤ 7] = [i ≥ 3] 1 12 ”

E. Bortoletto, N. Lindner, and B. Masing 7:17

Table 3 Fixed order test on i2, with cycle basis Bbfs in the gray rows, and cycle basis Bspan in
the white rows. The time limit for each test was 15 minutes.

Test configuration Time to primal (s) Gap at 15’ mark Primal bound
[i ≥ 3] = {3, 4, 5, 6, 7} 61 5.99% 482429
[i ≥ 3] = {3, 4, 5, 6, 7} 139 35.4% ”
[i ≥ 4] = {4, 5, 6, 7} 70 6.50% ”
[i ≥ 4] = {4, 5, 6, 7} 156 36.5% ”
[i ≥ 5] = {5, 6, 7} 274 8.41% ”
[i ≥ 5] = {5, 6, 7} 136 37.6% ”
[i ≥ 6] = {6, 7} 124 9.67% ”
[i ≥ 6] = {6, 7} 394 38.7% ”
[i ≥ 7] = {7} 731 18.5% 482885
[i ≥ 7] = {7} 250 44.1% 482429
[i ̸= 3] = [i ≥ 4] 70 6.50% 482429
[i ̸= 3] = [i ≥ 4] 156 36.5% ”
[i ̸= 4] = {3, 5, 6, 7} 76 7.69% ”
[i ̸= 4] = {3, 5, 6, 7} 164 37.8% ”
[i ̸= 5] = {3, 4, 6, 7} 74 5.34% ”
[i ̸= 5] = {3, 4, 6, 7} 173 30.4% 484741
[i ̸= 6] = {3, 4, 5, 7} 341 9.33% 482429
[i ̸= 6] = {3, 4, 5, 7} 164 36.1% ”
[i ̸= 7] = {3, 4, 5, 6} 79 10.9% ”
[i ̸= 7] = {3, 4, 5, 6} 121 36.5% ”
[i ≤ 3] = {3} − − −
[i ≤ 3] = {3} − − −
[i ≤ 4] = {3, 4} − − −
[i ≤ 4] = {3, 4} 669 51.8% 484007
[i ≤ 5] = {3, 4, 5} − − −
[i ≤ 5] = {3, 4, 5} 133 40.3% 482429
[i ≤ 6] = [i ̸= 7] 79 10.9% ”
[i ≤ 6] = [i ̸= 7] 121 36.5% ”
[i ≤ 7] = [i ≥ 3] 61 5.99% ”
[i ≤ 7] = [i ≥ 3] 139 35.4% ”

ATMOS 2023

7:18 Periodic Timetabling with Cyclic Order Constraints

Table 4 Tests with σ-constraints on i1, in various configurations, using cycle basis Bspan. The
“Number of rows” column indicates the number of rows in the model after presolving. Time values
to optimality that improve on the baseline model of the first row are shown in bold. The time limit
for each test was 1 hour.

Test configuration Time to primal (s) Time to optimal (s) Number of rows
{} 72 1226 5745
{3} 68 275 5863
{4} 68 200 5964
{5} 76 642 6374
{6} 134 1693 12476
{7} 356 2673 17995
{3} + b 114 1006 5981
{4} + b 110 482 6168
{5} + b 144 501 6998
{6} + b 406 0.13% after 1h 19196
{7} + b 550 1674 30235
{4} + r 132 261 5951
{5} + r 60 608 6350
{6} + r 43 835 12476
{7} + r 149 1353 16746
{3, 4} 114 579 6082
{3, 5} 73 571 6492
{3, 6} 213 1742 12594
{3, 7} 167 1209 18112
{4, 5} 180 496 6593
{4, 6} 167 681 12695
{4, 7} 333 1597 18214
{5, 6} 99 630 13105
{5, 7} 200 625 18624
{6, 7} 240 1923 24726
{3, 4} + l 190 462 6088
{3, 5} + l 75 550 6492
{3, 6} + l 140 1447 12598
{3, 7} + l 295 1221 18118
{4, 5} + l 113 932 6605
{4, 6} + l 147 670 12725
{4, 7} + l 392 2025 18232
{5, 6} + l 121 732 13153
{5, 7} + l 220 1171 18648
{6, 7} + l 860 3212 25206
{3, 4, 5, 6, 7} 684 0.93% after 1h 25692
{3, 4, 5, 6, 7} + l 352 1.29% after 1h 26320
{3, 4, 5, 6, 7} + r 120 1138 24406
{3, 4, 5, 6, 7} + l + r 165 1967 24716
{3, 4, 5, 6, 7} + b 1354 1.65% after 1h 45598
{3, 4, 5, 6, 7} + l + b 3039 2.44% after 1h 46226
{3, 4, 5, 6, 7} + r + b − − 44313
{3, 4, 5, 6, 7} + l + r + b 3596 6.53% after 1h 44623

Fewer Trains for Better Timetables: The Price of
Fixed Line Frequencies in the Passenger-Oriented
Timetabling Problem
Pedro José Correia Duarte # Ñ

Econometric Institute, Erasmus Center for Optimization in Public Transport (ECOPT),
Erasmus University Rotterdam, The Netherlands

Marie Schmidt # Ñ

Institute of Computer Science, Faculty of Mathematics and Computer Science,
Universität Würzburg, Germany

Dennis Huisman
Econometric Institute, Erasmus Center for Optimization in Public Transport (ECOPT),
Erasmus University Rotterdam, The Netherlands
Process quality and Innovation, Netherlands Railways, Utrecht, The Netherlands

Lucas P. Veelenturf
Department of Technology and Operations Management, Rotterdam School of Management,
Erasmus University, Rotterdam, The Netherlands

Abstract
This paper introduces the Passenger-Oriented Timetabling problem with flexible frequencies (POT-
flex) in the context of railway planning problems. POT-flex aims at creating feasible railway
timetables minimising total perceived passenger travel time. The contribution of the POT-flex
lies in its relaxation of the generally adopted assumption that line frequencies should be a fixed
part of the input. Instead, we consider flexible line frequencies, encompassing a minimum and
maximum frequency per line, allowing the timetabling model to decide on optimal line frequencies to
obtain better solutions using fewer train services per line. We develop a mixed-integer programming
formulation for POT-flex based on the Passenger-Oriented Timetabling (POT) formulation of [13]
and compare the performance of the new formulation against the POT formulation on three instances.
We find that POT-flex allows to find feasible timetables in instances containing bottlenecks, and
show improvements of up to 2% on the largest instance tested. These improvements highlight the
cost that fixed line frequencies can have on timetabling.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases PESP, Passenger Oriented Timetabling, Perceived Travel Time

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.8

Funding This project is co-funded by Netherlands Railways (NS).

1 Introduction

Railway timetabling is part of a larger set of problems commonly referred to as railway
planning problems. Because railway planning problems are generally solved sequentially [6, 2],
the input of the timetabling problem relies on the output of previously solved problems. These
problems include decisions regarding the infrastructure of the network, and the definition of
a set of train lines and line frequencies. In this paper, we study the impact of line frequencies
in the generation of periodic timetables, i.e. timetables that recur at regular intervals with a
fixed time period. In particular, we evaluate the cost of fixed line frequencies on timetables
from a passenger perspective.

© Pedro José Correia Duarte, Marie Schmidt, Dennis Huisman, and Lucas P. Veelenturf;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 8; pp. 8:1–8:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:correiaduarte@ese.eur.nl
https://pedrojcd.github.io/
https://orcid.org/0000-0002-0171-6719
mailto:marie.schmidt@uni-wuerzburg.de
https://www.informatik.uni-wuerzburg.de/algo/team/schmidt-marie/
https://orcid.org/0000-0001-9563-9955
https://orcid.org/0000-0001-9114-658X
https://orcid.org/0000-0001-6648-3015
https://doi.org/10.4230/OASIcs.ATMOS.2023.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2 The Price of Fixed Line Frequencies in the Passenger-Oriented Timetabling Problem

Stations

:00 :10 :20 :30 :40 :50 :00

S1

S2

S3

17 mins

21 mins

(a) Timetable with 2 “fast” trains and 3 “slow” trains.

Stations

:00 :10 :20 :30 :40 :50 :00
17 mins

35 mins

S1

S2

S3

(b) Timetable with 3 “fast” trains and 3 “slow” trains.

Figure 1 Example that timetables with more trains can lead to worse perceived travel times.
The blue lines at each station represent the minimum headway time.

An inherent limitation of addressing railway planning problems sequentially is that
it often results in situations where solving one problem may give rise to sub-optimal or
infeasible solutions in subsequent problems [2]. In the case of periodic timetabling, the
line frequencies determined in earlier stages of the planning process can sometimes not be
realised simultaneously, meaning that no feasible timetable exists. Furthermore, even if a
timetable for the given frequencies is found, it may be sub-optimal with respect to perceived
passenger travel time, defined as a weighted sum of waiting time at the origin, in-train time,
and transfer time. While it is generally assumed that increased line frequencies lead to
improved timetables, this might not hold due to infrastructural constraints or mismatches
with passenger demand. In contrast, we argue that reduced frequencies may lead to lower
perceived travel times.

▶ Example 1. Because the use of fewer train services (hereandafter referred to as trains) per
line to obtain better timetables may appear counter-intuitive, let us examine the example
presented in Figure 1. We consider a network containing 3 stations S1, S2, and S3, where the
arrival of passengers at the stations is assumed to be uniformly distributed. Let us consider
two lines, ℓ1 and ℓ2, where ℓ1 is a fast line with stops {S1,S3} (whose trains are depicted
with straight lines in Figure 1) and ℓ2 is a slower line with stops {S1,S2,S3} (whose trains
are depicted with dashed lines in Figure 1). Both lines have a maximum frequency of 3 and
share the same tracks (no overtaking is allowed). In Figure 1a, we can see that a maximum
of 5 trains can be scheduled by alternating trains from lines ℓ1 and ℓ2 without violating
the headway constraints, i.e. the minimum time between two train arrivals ensuring safe
operation of the timetable, depicted with the blue lines. Due to the headway constraints, we
cannot add another train for ℓ1 if we want to keep the same alternating structure. Nonetheless,
a timetable containing 6 trains is feasible by arranging them as shown in Figure 1b. This
results in a larger maximum waiting time between two trains for passengers going from S1 to
S2 or from S2 to S3 (35 minutes instead of the 21 minutes in Figure 1a). Let the rate of
passenger arrival be 1 passenger per minute. Then, for passengers going from S1 to S2 or
from S2 to S3, the total waiting time is (22 × (22/2)) + (19 × (19)) + (19 × (19/2)) = 603 in
the first timetable and (36 × (36/2)) + (12 × (12/2)) + (12 × (12/2)) = 792 in the second

P. J. C. Duarte, M. Schmidt, D. Huisman, and L. P. Veelenturf 8:3

timetable. If the demand from stations S1 to S2 and S2 to S3 is large enough relative to the
demand from S1 to S3, a timetable containing fewer trains can lead to lower total perceived
passenger travel time.

Our research expands on the mathematical formulation developed by [13] for the Strategic
Passenger-Oriented Timetabling (SPOT) problem. Our contribution is threefold; First, we
introduce a variant of the timetabling problem to minimise perceived travel time discussed
in [13, 11] that allows to choose line frequencies flexibly. We call this new problem the
Passenger-Oriented Timetabling problem with flexible frequencies (POT-flex). Second, we
provide a MILP formulation for the POT-flex problem. Third, we provide insights on the
cost that the fixed line frequency assumption has on total perceived passenger travel time.
We implement and solve the POT and the POT-flex problems on three instances to highlight
the factors impacting optimal line frequency decisions.

The remainder of this paper is organised as follows. Section 2 provides an overview of the
related literature regarding periodic passenger-oriented timetabling models. Furthermore,
Section 3 provides a description of the POT-flex problem with flexible frequencies and Section
4 defines the Mixed Integer Linear Programming formulation of the flexible frequency model.
Finally, Section 5 provides insights on the improvements of our model over one with fixed
frequencies on three instances of interest, and in Section 6, a conclusion is drawn.

2 Passenger-Oriented Timetabling in the Literature

Many periodic timetabling models, including ours, use as a basis the Periodic Event Scheduling
Problem (PESP) as defined by [17]. PESP is used to find feasible periodic timetables and
is known to be NP-complete [17]. The addition of passenger routing aiming at creating
passenger-oriented timetables makes the problem even more complex. Some papers attempt
to tackle those issues and offer applicable methods minimising total passenger travel time
starting from the moment that passengers leave the origin [14, 18, 4].

In this paper, we consider the importance of both line frequency decisions and adaption
time, defined as time difference between the passenger desired departure time and the
scheduled departure, in the passenger-oriented timetabling problem. We primarily refer to
[15] for an extensive review on line planning and cite [16, 7, 10, 3] regarding the integration
of line planning and timetabling. Beyond integration of line planning and timetabling, some
papers also consider how to address infeasibilities stemming from the input in the timetabling
problem [12]. To the best of our knowledge, only a few papers consider adaption time as
part of their objective. We refer to [1, 20, 13, 11] where adaption time is included in the
timetabling objective and [5] where it is included in line planning.

As aforementioned, this paper expands on the Mixed Integer Linear Programming (MILP)
formulation of [13] for the Strategic Passenger-Oriented Timetabling (SPOT) problem. The
objective of SPOT is to create a timetable that minimises the total perceived passenger
travel time. In the SPOT problem, lines are assumed to have fixed frequencies and headway
constraints are not taken into account. In [11], the authors solve the Passenger-Oriented
Timetabling (POT) problem, an extension of the SPOT that considers headway constraints,
using an iterative heuristic. They define a starting solution by solving the SPOT problem,
then use a Lagrangian heuristic to generate feasible solutions with respect to the headway
constraints. The possibility to not schedule some train services is added in the Lagrangian
heuristic in order to find a feasible timetable.

Although the approach in [11] allows for reduction of line frequencies, it is only done to
find feasible solutions and not better solutions. In this paper, we research an extension of
the POT problem introducing the concept of flexible frequencies, such that a minimum and

ATMOS 2023

8:4 The Price of Fixed Line Frequencies in the Passenger-Oriented Timetabling Problem

maximum frequency per line is used as part of the input. Flexible frequencies allow the model
to find feasible solutions in instances where the maximum frequencies cannot be realised,
and better solutions in instances where the reduction of line frequencies is beneficial for the
passengers’ perceived travel time. We denote this new problem as the POT-flex problem.

3 Problem Definition

This section introduces and describes the concepts necessary in the definition of the problem
studied in this paper. The input of the POT-flex problem is defined in Section 3.1. Then,
we describe how to define the problem on a graph in Section 3.2. Finally, we describe the
perceived passenger travel time in Section 3.3.

3.1 Problem input and problem parameters
In order to solve the POT-flex problem, we consider the following input:
An Infrastructure Network: the infrastructure network contains the information about capa-

city of the stations, the different tracks that can be used by trains, the safety requirements
(defined as the minimum time difference allowed between trains using the same infra-
structure), and the minimum transfer time (the minimum amount of time required for
passenger transfer between two lines at a station).

A Line Set L: Each line ℓ ∈ L is defined by the sequence of stations that the train visits, the
subset Sℓ of stations where the train stops (altering the dwell time of trains at a station),
the type of rolling stock used (altering the maximum speed and therefore the minimum
travel time), and the minimum and maximum frequencies, respectively f

ℓ
and f ℓ. We

assume that lines have the same frequency in both directions. Furthermore, throughout
this paper, we define a train as two train services following the sequence of stops related
to a line ℓ (one train service per direction). Trains are not considered to be rolling stock.

An OD-matrix: For each pair k of two stations, the passenger demand dk to go from the
first station to the second station is given in the Origin-Destination (OD) matrix.

A Time Period T : the time period is the interval of time during which events, representing
the arrival or departure of a train at a station, are scheduled. Each event can be scheduled
at a discrete point in time t ∈ {0, . . . , T − 1}. Those events are then repeated every T

units of time.
Using the aforementioned input, the goal is to create a periodic timetable for the lines
defined in the line set, subject to the constraints defined by the infrastructure network, that
minimises the total perceived passenger travel time, using the OD-matrix as an estimation
of passenger demand. We define the problem on a directed graph called the event-activity
network [8].

3.2 Event-Activity Network
An event-activity network (EAN) is a directed graph G = (V, A) where V is the set of events
to be scheduled and A is the set of activities that link the events. Each event i ∈ V represents
the arrival or departure of a train at a station. Therefore, every event is defined by its station,
line, train index (denoting if it is first, second, etc... train of a line in the period), direction
(forward or backward), and whether it is an arrival or departure event. An activity (i, j) ∈ A

is a directed arc that represents the time difference between two events i and j such that
(i, j) ∈ A. The lower- and upper-bounds for the time duration that activities can take is
defined by activity constraints. In our model, we consider four different type of activities;

P. J. C. Duarte, M. Schmidt, D. Huisman, and L. P. Veelenturf 8:5

Forward

Backward

S1 S2 S3 S4 S5

S6 S7

S1 S2 S3 S4 S5

ℓ1 →

ℓ2 →

ℓ3 →

ℓ3 ←

ℓ2 ←

ℓ1 ←

[5,64]

[10,11] [2,3] [11,13] [2,3] [2,3] [2,3] [5,6]

[10,11] [0,0] [11,13] [2,3] [0,0] [2,3] [5,6]

[20,22]
[2,3]

[31,35]

[5,6][2,3][10,11] [2,3] [11,13] [2,3] [2,3]

[5,6][0,0][10,11] [0,0] [11,13] [2,3] [2,3]

[20,22]
[2,3]

[31,35]

[5,55] [5,55] [5,55] [5,55]

[5,55]

[5,55]

[5,55]

[5,55] [5,55] [5,55]

[5,55] [5,55] [5,55] [5,55]

[5,55]

[5,55]

[5,55]

[5,55] [5,55] [5,55]

Figure 2 Event Activity Network of Instance 2; The black straight arrows represent the drive
and dwell activities of a line, the dashed blue arrows represent the headway activities between trains,
and the red dashed-dotted arrows represent the transfer activities.

Drive activities represent the time spent by a train travelling from one station to another.
The lower-bound of a drive activity constraint is defined by the minimum travel time given
the distance and the maximum speed of the train between two stations. The upper-bound
is defined by the maximum allowed deviation from the minimum travel time.

Dwell activities represent the time spent by a train at a station. This time is used by
passengers to either enter or leave a train. We use dwell activity constraints to impose a
lower-bound to the time that a train spends at a station.

Transfer activities represent the time allocated for the transfer of a passenger from one train
to another. Transfer activity constraints provide a lower bound for transfer times such
that passengers have the time to go from one platform to another. A good timetable
aims at reducing the time of these transfer activities while enabling passengers to make
their transfers.

Safety/Headway activities represent infrastructure constraints that guarantee a safe opera-
tion. Safety activity constraints define the minimum time difference between the arrival
or departure of two trains using the same tracks. This minimum headway time ensures
that no collision is possible if all trains operate according to the timetable.

Activity constraints ensure the proper definition of a timetable from both an operational and
passenger-oriented perspective. All activity constraints are needed to ensure the successful
execution of the timetable from an operational perspective. Only the drive, dwell, and
transfer activities are needed to evaluate the quality of the timetable from a passenger
perspective. An example of EAN with its associated activity bounds is displayed in Figure 2.

3.3 Perceived Passenger Travel Time
Our objective is to minimise the perceived passenger travel time. In doing so, we consider
two elements:
1. The travel time of a passenger is defined as the sum of the drive, dwell, and transfer

activity lengths for the route taken by the passenger. However, those activities do not

ATMOS 2023

8:6 The Price of Fixed Line Frequencies in the Passenger-Oriented Timetabling Problem

weight equally in the eyes of the passenger. For instance, a route that contains a transfer
does not have the same appeal to passengers as a route of similar time duration without
a transfer.

2. For passengers, the amount of time spent waiting for the train at the origin station is
equally important, if not more so, compared to the actual travel time. The amount of
time between the arrival of the passenger at a station and the start of his travel route is
called the adaption time.

Both of those points are accounted for in the objective function through the addition of
penalties for in-route transfers and the addition of penalised adaption time. Our objective is
to minimise the sum of passengers’ perceived travel time. The perceived travel time of a
passenger is defined as

(γw · Wr + Yr) with Yr =
∑

∀a∈r:a∈A

[ya + γt1t(a)] (1)

where γw is the adaption time penalty factor, Wr is the adaption time of the passenger for
his route r, and Yr is the route’s length defined by the sum of its associated drive, dwell,
and transfer activity lengths ya, with a penalty of γt for transfer activities ensured by the
indicator function 1t(a) equal to 1 if a is a transfer activity.

Finally, for the purpose of our formulation, we make the following assumptions. The first
assumption is that the arrival of passengers at their origin station is uniformly distributed.
This ensures that the timetable is optimised for passengers arriving at any point in time
during the period. The second assumption is that passengers always take the route with the
lowest perceived travel time. Finally, we assume that train capacities are infinite such that
the rolling stock is not taken into account in the timetabling model.

4 Formulating the Passenger-Oriented Timetabling Problem as a
Mixed-Integer Linear Program

This section introduces our formulation for the POT-flex problem. This new formulation is
an extension of the POT formulation of [11] where the activity constraints and the objective
are modified to account for selection of the optimal line frequency. Section 4.1 describes the
addition of flexible frequencies in the activity constraints. Then, Section 4.2 introduces the
objective and the rest of the model. Finally, Section 4.3 describes the full formulation.

4.1 Flexible Line Frequencies in the PESP
The basis of the model is the Periodic Event Scheduling Problem (PESP) formulation as
defined by [17]. For simplicity, we use the notation [n] to represent a set {1, . . . , n}. Given
a set V of events, a set A ⊆ V × V of activities, intervals [lij , uij] for all (i, j) ∈ A, and a
period length T , the PESP is to find a feasible periodic schedule, that is, find event times
π : V → {0, . . . , T − 1} and corresponding activity lengths yi,j satisfying

yij = πj − πi + Tpij ∀(i, j) ∈ A (2a)
lij ≤ yij ≤ uij ∀(i, j) ∈ A (2b)

pij ∈ Z ∀(i, j) ∈ A (2c)
πi ∈ {0, . . . , T − 1} ∀i ∈ V (2d)

where lij and uij are respectively the lower and upper bounds of the time an activity (i, j) ∈ A

can take. An important feature of this model is that if uij −lij ≥ T −1, the activity constraint
no longer bounds the event times πi and πj .

P. J. C. Duarte, M. Schmidt, D. Huisman, and L. P. Veelenturf 8:7

In order to extend the model defined in (2a-2d) such that not all trains need to be
scheduled, we define the following notation; for a line ℓ ∈ L with minimum frequency f

ℓ
and

maximum frequency f ℓ, we assign to each train of the line in period T an index tr ∈ [f ℓ].
As aforementioned, trains here denote train services in both directions, such that if a train is
not scheduled for a line, it is not scheduled in both directions. We define the variable τℓ,tr

such that:

τℓ,tr =
{

1 if the train with index tr of line ℓ is scheduled
0 otherwise

We set τℓ,tr = 1 ∀ℓ ∈ L and ∀tr ∈ [f
ℓ
] to ensure that we run at least f

ℓ
trains of line ℓ.

Additionally, we define A[ℓ, tr] ⊆ A to be the set of activities related to the train tr of line ℓ

and V [ℓ, tr] ⊆ V the set of events related to the train tr of line ℓ. We will now focus on the
definition of the constraints for each type of activity.

The bounds of drive and dwell activities are defined as follows:

τℓ,trlij ≤ yij ≤ τℓ,truij ∀ℓ ∈ L, ∀tr ∈ [f ℓ], and ∀(i, j) ∈ A[ℓ, tr]. (3)

This allows us to define the constraints in two possible cases:
1. If τℓ,tr = 1, then this means that (3) is equal to (2b), and the train needs to be scheduled.
2. If τℓ,tr = 0, then train tr of line ℓ is not scheduled and therefore all drive activities of this

train will have length 0.

Now we consider the case of activities concerning two different trains (i.e. headway and
transfer constraints). Two trains are considered to be different if their train index tr and/or
lines ℓ are different. The goal is to make sure that the activity constraint is no longer binding
if one of the trains is not scheduled. Hence, we define for each ℓ, ℓ′ ∈ L, tr ∈ [f ℓ], and
tr′ ∈ [f ℓ′] such that (tr, ℓ) ̸= (tr′, ℓ′) the following constraints:

(τℓ,tr + τℓ′,tr′ − 1)lij ≤ yij ≤ uij + (2 − τℓ,tr − τℓ′,tr′)T
∀(i, j) ∈ A : i ∈ V [tr, ℓ], j ∈ V [tr′, ℓ′]. (4)

Then, we have the following possible cases for different values of τℓ,tr and τℓ′,tr′ :

Bounds τℓ,tr = 0 τℓ,tr = 1
τℓ′,tr′ = 0 [−lij , uij + 2T] [0, uij + T]
τℓ′,tr′ = 1 [0, uij + T] [lij , uij]

If one or both trains related to activity (i, j) are not scheduled in the timetable, then the
difference between the new lower- and upper-bound of the activity is greater than T . The
event times of scheduled trains are then no longer affected by transfer and headway activity
constraints related to non-scheduled trains. It can be noted that similar methods have been
applied by other authors to modify activity constraints but, to the best of our knowledge,
this has only been done to consider track choices in the PESP [19, 9].

4.2 Perceived Travel Time with Flexible Frequencies
The objective of the model is to minimise the total perceived passenger travel time. In this
section, we consider the formulation of the perceived passenger travel time given in the MILP
model of [13] and alter it to accurately model non-scheduled trains in the objective.

ATMOS 2023

8:8 The Price of Fixed Line Frequencies in the Passenger-Oriented Timetabling Problem

Let us consider Rk the set of routes available for OD-pair k. That is, any route r ∈ Rk

starts at a departure event at the origin station of OD-pair k and ends at an arrival event at
its destination station. The set Rk is determined in a pre-processing step such as to discard
excessively long routes. Then, given a timetable π, we compute for each OD-pair k and each
available route r ∈ Rk the travel time

Yr(π) =
∑

(i,j)∈r

[
yij + γt · 1t(i, j)

]
+

∑
(ℓ,tr)∈r

Mτ
k · (1 − τℓ,tr) (5)

where 1t(i, j) is an indicator function equal to 1 if an activity (i, j) is a transfer activity,
and Mτ

k is a large enough penalty value such that a passenger is never assigned a route r

using a train that is not scheduled in the timetable. We must now ensure that the route
with smallest perceived travel time is chosen by the passenger. Let σ(r) be the first event of
the route r ∈ Rk, and let V k be the set of first departure events for all routes considered for
an OD-pair k such that

V k =
⋃

r∈Rk

{σ(r)} (6)

We define Y k
v to be the perceived travel time for passengers of OD-pair k from event v ∈ V k

onwards. It is important to note two things regarding how the computation of Y k
v is modelled

in the MILP formulation:
1. v might be the starting event of multiple routes. Since multiple transfers can be possible,

only once the timetable is built can we determine which route has smallest perceived
length among the routes in Rk starting at event v.

2. There might exist another route with a different starting event v′ ̸= v minimising the
perceived travel time of the passenger arriving before v. In such a case, the passenger
might not want to start his route with event v, wait longer at the origin station, and take
the new route with starting event v′.

To account for these situations, Y k
v is defined by minimising the weighted sum of two

components. The first component of Y k
v , representing the (potential) additional adaption

time from event v, can be written as

γw · (∆v,v′), with ∆v,v′ = πv′ − πv + Tαv,v′ (7)

for each starting event v′ ∈ V k. In Equation (7), ∆v,v′ is the difference in time between
starting events v and v′, and αv,v′ is a binary variable used to model the modulo operator
ensuring that ∆v,v′ ∈ {0, . . . , T − 1}. The second component is the travel time of the route
r ∈ Rk with starting event σ(r) = v′. For each OD-pair k ∈ OD and event v ∈ V k we define
Y k

v as

Y k
v = min

v′∈V k,r∈Rk:σ(r)=v′
{∆v,v′ · γw + Yr} . (8)

The demand dk ∀k ∈ OD is assumed to be uniformly distributed over the period. Hence,
the number of passengers between an event v and its preceding event v with perceived travel
time Y k

v is equal to dk/T multiplied by the time difference between event v ∈ V k and the
latest preceding event v′ ∈ V k according to timetable π. Let this time difference be denoted
Lk

v , then, we have

Lk
v := min

v′∈V k\{v}
{∆v′,v}. (9)

P. J. C. Duarte, M. Schmidt, D. Huisman, and L. P. Veelenturf 8:9

Furthermore, the average adaption time of the passengers arriving during this time interval,
defined as W k

v , is equal to half the length of the time interval, that is,

W k
v = 1

2Lk
v . (10)

Using this notation, the objective function of the problem can be rewritten as∑
k∈OD

dk

T

∑
v∈V k

Lk
v · (γw · W k

v + Y k
v). (11)

4.3 Passenger-Oriented Timetabling Model with Flexible Frequencies
Using the constraints and objective defined in Sections 4.1 and 4.2, we can write the MILP
of the Passenger-Oriented Timetabling problem with flexible frequencies as

min
∑

k∈OD

dk

T

∑
v∈V k

Lk
v · (γw · W k

v + Y k
v) (12a)

s.t. yij = πj − πi + Tpij ∀(i, j) ∈ A (12b)
τℓ,trlij ≤ yij ≤ τℓ,truij ∀ℓ ∈ L, ∀tr ∈ [f ℓ], (12c)

and ∀(i, j) ∈ A[ℓ, tr],
yij ≥ (τℓ,tr + τℓ′,tr′ − 1)lij ∀(i, j) ∈ A : i ∈ V [tr, ℓ], (12d)

j ∈ V [tr′, ℓ′],
and (ℓ, tr) ̸= (ℓ′, tr′),

yij ≤ uij + (2 − τℓ,tr − τℓ′,tr′)T ∀(i, j) ∈ A : i ∈ V [tr, ℓ], (12e)
j ∈ V [tr′, ℓ′],

and (ℓ, tr) ̸= (ℓ′, tr′),
τℓ,tr = 1 ∀ℓ ∈ L, ∀tr ∈ [f

ℓ
], (12f)

Yr =
∑

(i,j)∈r

[
yij + γt · 1t(i, j)

]
∀k ∈ OD, ∀r ∈ Rk (12g)

+
∑

(ℓ,tr)∈r

Mτ
k · (1 − τℓ,tr)

∆v,v′ = πv′ − πv + Tαv,v′ ∀k ∈ OD, v ∈ V k, (12h)
v′ ∈ V k\{v}

Lk
v = min{T, min

v′∈V k\{v}
{∆v′,v}} ∀k ∈ OD, v ∈ V k, (12i)

αv,v′ = 1 − αv′,v ∀k ∈ OD, v ∈ V k, (12j)
v′ ∈ V k\{v}

Y k
v = min

v′∈V k,r∈Rk:σ(r)=v′
{∆v,v′ · γw + Yr} ∀k ∈ OD, v ∈ V k, (12k)

W k
v = 1

2Lk
v ∀k ∈ OD, v ∈ V k, (12l)

variable domains (12m)

The objective function (12a) represents the sum of perceived passenger travel time for all
OD-pairs. Constraints (12b) define the time duration of an activity (i, j) ∈ A. Constraints
(12c) define the lower- and upper-bounds on the duration of drive and dwell activities, and

ATMOS 2023

8:10 The Price of Fixed Line Frequencies in the Passenger-Oriented Timetabling Problem

Constraints (12d-12e) represent respectively the lower- and upper-bounds on the duration of
transfer and headway activities. Constraints (12f) ensure that the minimum train frequencies
are met. Constraints (12g) define the perceived duration of a route r. Constraints (12h)
measure the time difference between two starting events of an OD-pair k and Constraints
(12i) measure the time difference between an event v and its closest predecessor. Constraints
(12j) ensure that for each pair (v, v′) : v, v′ ∈ V k and v ̸= v′, either αv,v′ or αv′,v (but
not both) is equal to 1. Constraints (12k) measure the minimum perceived travel time
of a passenger who arrived at the station between event v and its predecessor. Finally,
Constraints (12l) measure the average waiting time of a passenger before an event v. The
variable domains (12m) are available in Appendix A.

Note that the Objective (12a) and Constraints (12i) and (12k) are not yet linear in
this formulation. Further detail about the linearisation of the constraints and objective is
available in Appendix C for the interested reader.

5 Experiments

The model defined in Section 4 is implemented in Java 13.0.3 and solved using CPLEX
22.1.0 for three instances. All experiments are run on the Dutch National Supercomputer
Snellius with 32 cores and 240 Gb of RAM per experiment. Each experiment is run until
optimality, or until the memory limit is exceeded. The solution of the POT formulation
(also implemented in Java 13.0.3 solved using CPLEX 22.1.0) from [11] using the maximum
frequency f ℓ as fixed frequency is used as a benchmark for solution quality. We consider for
each instance the time period to be T = 60 (minutes), the penalty values to be γt = 20 and
γw = 2, and double-track railway segments (i.e. no overtaking).

S1

S2

S3 S4

S5

S6

16

11

10

15

21

(a) Instance 1.

S1

S2

S3

21
16

21

16

(b) Instance 2.

S1 S2 S3 S4 S5

S6

S7

10 11
20

31

2 5

(c) Instance 3.

Figure 3 Test instances. Coloured squares next to stations are used to indicate when a line goes
thought the station but does not stop at the station (transit station). The straight (green) lines
represent line ℓ1, the dashed (purple) lines represent line ℓ2, the dotted (blue) lines represent line ℓ3,
and the dash-dotted (orange) lines represent line ℓ4.

5.1 Instances
The model is tested on three instances visualised in Figure 3. Each instance provides a
different insight regarding the price of fixed frequencies in the creation of timetables. The
complexity of both formulations only allows us to prove the optimality of the solutions of
Instance 2, thereby limiting the maximum size of instances that can be studied.

In Instance 1, we consider a network using a central connection (S3-S4) extensively, leading
to a bottleneck. For this instance, a fixed line frequency of 2 for all stations is infeasible for
POT formulation. In comparison, the POT-flex formulation with (f

ℓ
, f ℓ) = (1, 2) provides

insight into which lines can be increased to obtain a better feasible timetable.
In Instances 2 and 3, we consider, similar to the example in the introduction, a “slow” line

that stops at all stations and a “fast” line only stopping at the main stations. We call stations
where some lines go through but do not stop transit stations. These instances provide insights

P. J. C. Duarte, M. Schmidt, D. Huisman, and L. P. Veelenturf 8:11

in situations where there is a large time difference between the departure from the first
station and the arrival at the last station between two lines. These situations are common
in real life instances such as in the Dutch Railway Network. Further, Instance 3 contains
an additional line and additional stations to study the performance of the formulation for a
larger instance that also includes transfer decisions.

The OD-matrices used to simulate the demand in the instances are defined as follows.
We define OD(n) as the OD-matrix such that the demand dk of any OD-pair k where the
origin and the destination are main stations (i.e. not transit stations) is equal to n times the
demand dk′ where k′ is an OD-pair such that either the origin or the destination is a transit
station. This allows us to evaluate Instances 2 and 3 for varying demand from the transit
stations in comparison to the rest of the network. Instance 1 is tested with OD(1) (uniform
demand), and Instances 2 and 3 are tested with OD(0.1) (high demand at transit stations),
OD(1), and OD(10) (low demand at transit stations). For consistency, we keep the same
total number of passengers for each OD-matrix of each instance. The matrices are available
in Appendix D.2.

Table 1 Results of the experiments for Instance 1.

Objective Optimality Gap Optimal Frequencies
f

ℓ
f ℓ POT POT-flex POT POT-flex ℓ1 ℓ2 ℓ3 ℓ4

Instance 1 1 1 127,000 127,000 6.47% 6.53% 1 1 1 1
1 2 infeasible 107,964 - 16.1% 1 2 2 1

13
00

0
15

00
0

17
00

0

(Max) Frequency

To
ta

l P
er

ce
iv

ed
 T

ra
ve

l T
im

e

2 3 4 5

Fixed frequencies
Flexible Frequencies

OD(0.1)
OD(1)
OD(10)

(a) Results Instance 2.

12
00

00
14

00
00

16
00

00

(Max) Frequency

To
ta

l P
er

ce
iv

ed
 T

ra
ve

l T
im

e

2 3 4

Fixed frequencies
Flexible Frequencies

OD(0.1)
OD(1)
OD(10)

(b) Results Instance 3.

Figure 4 Objective values of the POT and POT-flex formulations for Instances 2 and 3.

5.2 Results
As aforementioned, only Instance 2 can be solved to optimality under the memory restrictions
using both formulations. We therefore provide the optimality gaps for the best found solutions
of Instances 1 and 3 respectively in Tables 1 and 3.

Table 1 summarises the solutions found for Instance 1. As the (maximum) frequency
increases to 2, the POT problem fails to find a feasible solution. In contrast, the POT-flex
model not only finds a feasible solution, but also selects the best combination of trains such
as to minimise the total perceived travel time. This highlights the feasibility repair advantage
of POT-flex over POT to find solutions minimising perceived passenger travel time.

ATMOS 2023

8:12 The Price of Fixed Line Frequencies in the Passenger-Oriented Timetabling Problem

Table 2 Line frequencies of the solution of the POT-flex problem and objective difference with
the solution of the POT problem with fixed frequency f ℓ for Instances 2 and 3.*The best found
solutions for Instance 3 are not proven by the solver to be optimal. Optimality gaps are presented in
Table 3.

OD(0.1) OD(1) OD(10)
f

ℓ
f ℓ ℓ1 ℓ2 ℓ3 ∆ Obj ℓ1 ℓ2 ℓ1 ∆ Obj ℓ1 ℓ2 ℓ3 ∆ Obj

Instance 2
1 3 3 3 - 0% 3 3 - 0% 3 3 - 0%
1 4 4 2 - 8.7% 4 3 - 3% 4 3 - 1.7%
1 5 5 1 - 26.3% 5 2 - 14.5% 5 3 - 9%

Instance 3* 1 3 3 3 3 0% 3 3 3 0% 3 3 3 0%
1 4 4 2 4 2% 4 3 4 1.3% 4 4 4 0%

Table 3 Optimality gaps of the best solutions of the POT and POT-flex for Instance 3.

OD(0.1) OD(1) OD(10)
f

ℓ
f ℓ POT POT-flex POT POT-flex POT POT-flex

Instance 3 1 3 4.15% 11.05% 3.78% 11.36% 4.60% 9.89%
1 4 5.88% 18.01% 6.34% 19.08% 3.98% 18.18%

Figure 4 shows the objective values of the POT and POT-flex formulations for Instance 2
and 3. Table 2 reports on the line frequencies selected in the optimal solution of POT-flex
and the improvements in % between the found solutions of POT-flex and POT with fixed
frequencies f ℓ. Note that the solutions found for Instance 3 are not proven to be optimal by
the solver, hence, Table 3 provide the optimality gaps for the solutions of Instance 3. This
is one of the primary limitations of the formulation, as due to its complexity, even small
instances can not be easily solved to optimality (or proven to be optimal by the solver).

The results show in Instances 2 and 3 that, as the number of trains to schedule increases,
the POT-flex formulation leads to equal or lower objectives than the POT formulation by not
scheduling certain trains. As the demand for transit stations increases, the importance of a
timetable that provides a lower perceived travel time for transit stations at the expense of a
lower frequency for another line becomes an apparent trade-off for the model and can lead to
significant improvements. In Instance 2, this can lead to up to a 26.3% improvement by not
scheduling 4 trains. While the large scale of this improvement is likely due to the small size
of Instance 2, we can observe similar improvements of smaller magnitude for Instance 3 by
reducing the frequency of ℓ2, leading to a 2% improvement in objective. Furthermore, these
improvements are made despite the larger optimality gap of the POT-flex solution, resulting
from larger feasibility region of the POT-flex problem. The fact that such improvements
are possible, even in small instances, shows the price that one may pay by assuming fixed
frequencies.

6 Conclusion

In this paper, we introduce and study the Passenger Oriented Timetabling Problem with
flexible frequencies (POT-flex). We develop a MILP formulation and provide insights on
the advantages of providing more freedom to the timetabling model through experiments
on three instances. The POT-flex formulation allowed to find solutions for instances where
the maximum frequencies could originally not be simultaneously realised, and showed up to
2% improvements in total perceived passenger time for the largest tested instance. These
improvements all came from the ability of the model to select the optimal line frequencies
with respect to the demand. These improvements represent the cost that fixed frequency can
have on timetabling.

P. J. C. Duarte, M. Schmidt, D. Huisman, and L. P. Veelenturf 8:13

References
1 Eva Barrena, David Canca, Leandro C Coelho, and Gilbert Laporte. Single-line rail rapid

transit timetabling under dynamic passenger demand. Transportation Research Part B:
Methodological, 70:134–150, 2014.

2 Michael R Bussieck, Thomas Winter, and Uwe T Zimmermann. Discrete optimization in
public rail transport. Mathematical programming, 79(1):415–444, 1997.

3 Florian Fuchs, Alessio Trivella, and Francesco Corman. Enhancing the interaction of railway
timetabling and line planning with infrastructure awareness. Transportation Research Part C:
Emerging Technologies, 142:103805, 2022.

4 Johann Hartleb and Marie Schmidt. Railway timetabling with integrated passenger distribution.
European Journal of Operational Research, 298(3):953–966, 2022.

5 Johann Hartleb, Marie Schmidt, Dennis Huisman, and Markus Friedrich. Modeling and solving
line planning with integrated mode choice. Available at SSRN 3849985, 2021.

6 Dennis Huisman, Leo G Kroon, Ramon M Lentink, and Michiel JCM Vromans. Operations
research in passenger railway transportation. Statistica Neerlandica, 59(4):467–497, 2005.

7 Mor Kaspi and Tal Raviv. Service-oriented line planning and timetabling for passenger trains.
Transportation Science, 47(3):295–311, 2013.

8 Christian Liebchen and Rolf H Möhring. The modeling power of the periodic event scheduling
problem: railway timetables—and beyond. In Algorithmic methods for railway optimization,
pages 3–40. Springer, 2007.

9 Berenike Masing, Niels Lindner, and Christian Liebchen. Periodic timetabling with integrated
track choice for railway construction sites. Technical report, Zuse Institute Berlin, 2022.

10 Mathias Michaelis and Anita Schöbel. Integrating line planning, timetabling, and vehicle
scheduling: a customer-oriented heuristic. Public Transport, 1(3):211–232, 2009.

11 Gert-Jaap Polinder, Valentina Cacchiani, Marie Schmidt, and Dennis Huisman. An iterative
heuristic for passenger-centric train timetabling with integrated adaption times. Computers &
Operations Research, page 105740, 2022.

12 Gert-Jaap Polinder, Leo Kroon, Karen Aardal, Marie Schmidt, and Marco Molinaro. Resolving
infeasibilities in railway timetabling instances. Available at SSRN 3106739, 2018.

13 Gert-Jaap Polinder, Marie Schmidt, and Dennis Huisman. Timetabling for strategic passenger
railway planning. Transportation Research Part B: Methodological, 146:111–135, 2021.

14 Philine Schiewe and Anita Schöbel. Periodic timetabling with integrated routing: Toward
applicable approaches. Transportation Science, 54(6):1714–1731, 2020.

15 Anita Schöbel. Line planning in public transportation: models and methods. OR spectrum,
34(3):491–510, 2012.

16 Anita Schöbel. An eigenmodel for iterative line planning, timetabling and vehicle scheduling
in public transportation. Transportation Research Part C: Emerging Technologies, 74:348–365,
2017.

17 Paolo Serafini and Walter Ukovich. A mathematical model for periodic scheduling problems.
SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989.

18 Michael Siebert and Marc Goerigk. An experimental comparison of periodic timetabling
models. Computers & Operations Research, 40(10):2251–2259, 2013.

19 Raimond Wüst, Stephan Bütikofer, Severin Ess, Claudio Gomez, Albert Steiner, Marco
Laumanns, and Jacint Szabo. Periodic timetabling with ‘track choice’-pesp based on given line
concepts and mesoscopic infrastructure. In Operations Research Proceedings 2018: Selected
Papers of the Annual International Conference of the German Operations Research Society
(GOR), Brussels, Belgium, September 12-14, 2018, pages 571–578. Springer, 2019.

20 Yuting Zhu, Baohua Mao, Yun Bai, and Shaokuan Chen. A bi-level model for single-line rail
timetable design with consideration of demand and capacity. Transportation Research Part C:
Emerging Technologies, 85:211–233, 2017.

ATMOS 2023

8:14 The Price of Fixed Line Frequencies in the Passenger-Oriented Timetabling Problem

A Notation

Table 4 Notation of the sets, variables, and constants used throughout the paper.

Sets
Notation Description

OD Set of all Origin-Destination pairs
L Set of lines in the network

Rk Set of routes serving an OD-pair k

V Set of events
V k Set of starting event of routes serving an OD-pair k

V [ℓ, tr] Set of events related to train tr in line ℓ

A Set of Activities
A[ℓ, tr] Set of activities related to train tr in line ℓ

Constants
Notation Description

T Cycle Period
dk Number of passengers per cycle period T for an OD-pair k

γt Penalty value for a transfer activity in a route
γw Penalty factor for the waiting time until the next route chosen
Mτ

k Big-M penalty value for a route containing a train that is not scheduled
Variables

Notation Description Domain
πi time at which event i ∈ V happens {0, . . . , T − 1}
yij duration of activity (i, j) ∈ A Z≥0

pij
modulo parameter used for the shift from one cycle period to another,
for activity (i, j) ∈ A

Z≥0

τℓ,tr binary variable indicating whether a train (ℓ, tr) is scheduled {0,1}

Yr
perceived travel time by a passenger from an OD-pair k for a route
r ∈ R Z≥0

∆v,v′ time difference between event v and v′ [0, T]

Lk
v

number of minutes before event v, in which no other departure
event for OD-pair k takes place [0, T]

Y k
v

perceived travel time for passengers of OD-pair k, from the timing
of event v onwards Z≥0

αv,v′
binary variable ensuring the correct determination of the time
difference between event v and v′ {0,1}

W k
v

expected waiting time for passenger for OD-pair k, for who event v

is the next departure event [0, T/2]

B Lower Bound for Non-Scheduled Train Penalty in Route Length
Computation

For computational stability, it is important to chose a value of Mτ
k that is as low as possible.

Consequently, we chose Mτ
k as the maximum travel time over all routes that the corresponding

OD-pair could take, plus the waiting time for a full period, that is

Mτ
k := max

r′∈Rk
{Ȳr′} + γwT = max

r′∈Rk

 ∑
(i,j)∈r′

uij + γt · 1t(i, j)

 + γwT. (13)

This ensures that there always will be a route in Rk that has a shorter travel time than Mτ
k .

Hence, no route containing an activity related to a train that is not scheduled will be chosen.

P. J. C. Duarte, M. Schmidt, D. Huisman, and L. P. Veelenturf 8:15

C Linearisation of the Mixed Integer Linear Program

C.1 Linearisation of the Minimum Time Difference Between Two Routes
Since Lk

v appears both in constraint (12i) and in the objective function, our first step is
to find a way to linearise this variable. Let us introduce a variable Ak

v that denotes for an
OD-pair k the time difference between the starting event v and its predecessor starting event.
That is, Ak

v := ∆v̂,v for v̂ being the departure event in V k that precedes v, or

Ak
v :=

{
minv̂∈V k\v{(πv − πv̂) mod T} if |V k| > 1

T otherwise

Then, for each OD-pair k, The variable Ak
v is defined using the following set of constraints:

0 ≤ ∆v,v′ = πv′ − πv + Tαv,v′ ∀v ∈ V k, ∀v′ ∈ V k \ {v} (14a)
αv,v′ + αv′,v = 1 ∀v ∈ V k, ∀v′ ∈ V k \ {v} (14b)

0 ≤ Ak
v ≤ ∆v′,v ∀v ∈ V k, ∀v′ ∈ V k \ {v} (14c)∑

v∈V k

Ak
v = T (14d)

Constraints (14a) computes the time difference between two events v and v′, and con-
straints (14b) allows us to determine which event happens first within the period. If
αv,v′ = 0, then event v is scheduled before event v′ in the period (and therefore πv′ > πv).
Constraint (14c) restricts the maximum value of Ak

v such that Ak
v can be at most the minimum

time difference between v and any other event v′. Together with constraints (14d), which
ensures that the sum of all times between events is be equal to T , this set of constraints
ensures that Ak

v is the minimum length of time between v and the next event v′.
This property is kept even when v and/or v′ belong to non-scheduled trains as, because

Y k
v = minv′∈V k

{
Yr + ∆v,v′ · γw|r ∈ Rk, σ(r) = v′}, even if a train is not scheduled, the next

scheduled train will be selected due to the large penalty for a non-scheduled train.

C.2 Linearisation of the Objective Function
Due to the relationship between W k

v and Lk
v defined in Constraints (12l), the objective

function can be rewritten as∑
k∈OD

dk

T

∑
v∈V k

Lk
v · (γw · W k

v + Y k
v) =

∑
k∈OD

dk

T

∑
v∈V k

γw

2 (Lk
v)2 + Lk

v · Y k
v (15)

As the objective is quadratic with respect to Lk
v , we must linearise it. Using the previously

defined variable Ak
v , we define a new variable xk

v,d such that

xk
v,d =

{
1 if Ak

v ≥ d

0 otherwise
∀k ∈ OD, v ∈ V k, d ∈ {1, . . . , T }

Ak
v =

T∑
d=1

xk
v,d

This allows us to rewrite (Ak
v)2 as follows:

(Ak
v)2 =

T∑
d=1

(2d − 1) · xk
v,d

ATMOS 2023

8:16 The Price of Fixed Line Frequencies in the Passenger-Oriented Timetabling Problem

Furthermore, we introduce the variable Rk
v,d = xk

v,d · Y k
v such that Rk

v,d takes the value Y k
v

(length of shortest route starting from v for OD-pair k) if the interval Ak
v corresponding to v

is greater than or equal to d, and the value 0 otherwise. To set Rd
v to the required values we

impose that

Y k
v − uk

v × (1 − xk
v,d) ≤ Rk

v,d ≤ uk
v × xk

v,d. (16a)

where uk
v is a parameter defining an upper bound on the length of a shortest route over all

timetables. Since the upper-bound is most likely defined based on the maximum penalty a
cancelled train will have, then

uk
v = max

r∈Rk

 ∑
(ℓ,tr)∈r

Mτ
k

Which represents the maximum amount of times that the penalty Mτ

k can be applied for an
OD-pair k. Given the set Rk of possible routes, this can easily be computed beforehand.
Using those two new variables, we can rewrite the objective as:∑

k∈OD

dk

T

∑
v∈V k

Lk
v · (γw · W k

v + Y k
v) =

∑
k∈OD

dk

T

∑
v∈V k

γw

2 (Ak
v)2 + Ak

v · Y k
v

=
∑

k∈OD

dk

T

∑
v∈V k

T∑
d=1

[γw

2 (2d − 1) · xk
v,d + xk

v,d · Y k
v

]

=
∑

k∈OD

dk

T

∑
v∈V k

T∑
d=1

[γw

2 (2d − 1) · xk
v,d + Rk

v,d

]

C.3 Linearisation of the Minimum Perceived Travel Time
The variable Y k

v represents, for an OD-pair k, the minimum perceived travel time of a
passenger who arrived at the station between the starting event v ∈ V k and the starting
event preceding v. Constraints (12k) model Y k

v using a minimum that we must linearise. To
that end, we define the binary variable zk

v,v′,r such that

zk
v,v′,r =

{
1 if passengers wait from event v to v′ to use the route r,
0 otherwise,

∀k ∈ OD, ∀v, v′ ∈ V k, ∀r ∈ Rk : σ(r) = v′. (17)

Note that v and v′ can be the same event, and r refers to all possible routes starting with
event v′. Given zk

v,v′,r, Constraints (12k) can now be rewritten for every k ∈ OD and for
every v ∈ V k as the set of constraints

Y k
v ≤ Yr + γw∆v,v′ ∀v′ ∈ V k, ∀r ∈ Rk : σ(r) = v′, (18a)

Y k
v ≥ Yr + γw∆v,v′ − Mk

v × (1 − zk
v,v′,r) ∀v′ ∈ V k, ∀r ∈ Rk : σ(r) = v′, (18b)∑

v′∈V k

∑
r∈Rk:σ(r)=v′

zk
v,v′,r = 1. (18c)

Constraints (18a) and (18b) provide respectively an upper- and lower-bound for Y k
v . The

big-M value Mk
v is a value large enough to ensure that the lower-bound of Y k

v is always
the minimum perceived passenger travel time at event v. Finally, Constraints (18c) ensure

P. J. C. Duarte, M. Schmidt, D. Huisman, and L. P. Veelenturf 8:17

that only one route is selected for passengers arriving between the starting event v and its
predecessor.

Again, for computational stability, Mk
v has to be a small as possible, but large enough to

make Constraints (18b) redundant if zk
v,v′,r = 0. We can take

Mk
v = γwT + max

r∈Rk
{Y r} − max

r∈Rk
{Y r} (19)

where Y r and Y r denote respectively the highest and lowest possible value for variable Yr.

D Empirical Experiment Parameters

D.1 Event Activity Network Parameters

Table 5 Activity Constraint Bounds of Instance 1.

Activity constraint bounds
Headway: [8,52] Transfer: [5,64] Dwell: [2,3]

Drive S1-S3: [16,18] S2-S3: [11,13] S3-S4: [21,24]
S4-S5: [10,11] S4-S6: [15,17]

Table 6 Activity Constraint Bounds of Instance 2. *If a line goes through a transit station but
does not stop at the station, the dwell activity constraint bounds are [0,0].

Activity constraint bounds
Headway: [5,55] Transfer: [5,64] Dwell*: [2,3]

Drive S1-S2(ℓ1): [21,24] S2-S3(ℓ1): [21,24]
S1-S2(ℓ2): [16,18] S2-S3(ℓ2): [16,18]

Table 7 Activity Constraint Bounds of Instance 3. *If a line goes through a transit station but
does not stop at the station, the dwell activity constraint bounds are [0,0].

Activity constraint bounds
Headway: [5,55] Transfer: [5,64] Dwell: [2,3]

Drive S1-S2: [10,11] S2-S3: [11,13] S3-S4: [2,3]
S4-S5: [5,6] S3-S6: [20,22] S3-S7 [31,35]

ATMOS 2023

8:18 The Price of Fixed Line Frequencies in the Passenger-Oriented Timetabling Problem

D.2 Origin-Destination Matrices

0.0

S1 S2 S3

S1

S2

S3

0.0

85.7

8.6

85.7

0.0

85.7

8.6

85.7

0.0

(a) OD(0.1) for Instance 2.

S1 S2 S3

S1

S2

S3

0.0

60

60

60

0.0

60

60

60

0.0

(b) OD(1) for Instance 2.

0.0

S1 S2 S3

S1

S2

S3

0.0

15.0

150.0

15.0

0.0

15.0

150.0

15.0

0.0

(c) OD(10) for instance 2.
S1 S2 S3 S4 S5 S6

S1

S2

S3

S4

S5

S6

0.0

60

60

60

60

60

60

0.0

60

60

60

60

60

60

0.0

60

60

60

60

60

60

0.0

60

60

60

60

60

60

0.0

60

60

60

60

60

60

0.0

(d) OD(1) for Instance 1.

S1 S2 S3 S4 S5 S6 S7

S1

S2

S3

S4

S5

S6

S7

0.0

60

60

60

60

60

60

60

0.0

60

60

60

60

60

60

60

0.0

60

60

60

60

60

60

60

0.0

60

60

60

60

60

60

60

0.0

60

60

60

60

60

60

60

0.0

60

60

60

60

60

60

60

0.0

(e) OD(1) for Instance 3.

0.0

S1 S2 S3 S4 S5 S6 S7

S1

S2

S3

S4

S5

S6

S7

0.0

104.6

10.9

104.6

10.9

10.9

10.9

104.6

0.0

104.6

105.0

104.6

104.6

104.6

10.9

104.6

0.0

104.6

10.9

10.9

10.9

104.6

105.0

104.6

0.0

104.6

104.6

104.6

10.9

104.6

10.9

104.6

0.0

10.9

10.9

10.9

104.6

10.9

104.6

10.9

0.0

10.9

10.9

104.6

10.9

104.6

10.9

10.9

0.0

(f) OD(0.1) for Instance 3.

S1 S2 S3 S4 S5 S6 S7

S1

S2

S3

S4

S5

S6

S7

0.0

11.37

113.5

11.36

113.5

113.5

113.5

11.37

0.0

11.37

11.36

11.36

11.36

11.36

113.5

11.37

0.0

11.37

113.5

113.5

113.5

11.36

11.36

11.37

0.0

11.37

11.36

11.36

113.5

11.36

113.5

11.37

0.0

113.5

113.5

113.5

11.36

113.5

11.36

113.5

0.0

113.5

113.5

11.36

113.5

11.36

113.5

113.5

0.0

(g) OD(10) for Instance 3.

Figure 5 OD-Matrices used for experiments.

Recoverable Robust Periodic Timetabling
Vera Grafe #

RPTU Kaiserslautern-Landau, Kaiserslautern, Germany

Anita Schöbel #

RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
Fraunhofer-Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany

Abstract
We apply the concept of recoverable robustness to periodic timetabling, resulting in the Recoverable
Robust Periodic Timetabling Problem (RRPT), which integrates periodic timetabling and delay
management. Although the computed timetable is periodic, the model is able to take the aperiodicity
of the delays into account. This is an important step in finding a good trade-off between short travel
times and delay resistance. We present three equivalent formulations for this problem, differing in
the way the timetabling subproblem is handled, and compare them in a first experimental study.
We also show that our model yields solutions of high quality.

2012 ACM Subject Classification Applied computing → Transportation; Mathematics of computing
→ Discrete mathematics

Keywords and phrases Public Transport, Recoverable Robustness, Periodic Timetabling, Delay
Management, Mixed Integer Programming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.9

1 Introduction

An important aspect of optimising public transport is finding a good periodic timetable.
From the passengers’ point of view, short travel times are desirable, which can be achieved
by making the timetable as tight as possible. This problem is known as the Periodic Event
Scheduling Problem (PESP), first introduced by Serafini1989, and is well researched. Tight
timetables minimise travel times, but are prone to delays which are inevitable in reality
and highly dissatisfactory for the passengers. Hence, apart from short travel times, a good
timetable should also have some degree of delay resistance. Many concepts and ideas on how
to increase the robustness of a timetable against delays exist, see [17]. However, none of these
approaches uses the promising concept of recoverable robustness introduced by [15]. The
aim is to find a periodic timetable with small travel times such that in every delay scenario
from a given uncertainty set it is possible to find a disposition timetable which fulfils some
quality criteria. To this end, we have to integrate timetabling and delay management. Delay
Management was introduced in [26] and has been treated in many papers, see [11, 3] for
surveys. Timetables are determined in a periodic network, but delay management is done in
an aperiodic network, since in general delays do not occur periodically. In order to integrate
delay management into timetabling, we hence have to find a way to bridge this gap. One
possibility to do this is to model periodic timetabling also in the aperiodic network, which
was done in [9].
In this paper, we introduce the Recoverable Robust Periodic Timetabling Problem (RRPT),
which is the first to integrate periodic timetabling and (aperiodic) delay management. We
present and analyse three equivalent MIP formulations.

The PESP was introduced by [28] and has received a lot of attention in the literature,
see [20, 19, 22, 14] for some early works. Due to its high relevance and complexity it still
keeps researchers occupied today in order to find heuristic approaches, see e.g. [1].

© Vera Grafe and Anita Schöbel;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 9; pp. 9:1–9:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vera.grafe@math.rptu.de
https://orcid.org/0009-0006-2026-0178
mailto:anita.schoebel@math.rptu.de
https://orcid.org/0000-0002-9306-5529
https://doi.org/10.4230/OASIcs.ATMOS.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2 Recoverable Robust Periodic Timetabling

Robustness has been considered for timetabling. Stochastic optimisation models were presen-
ted in [13, 12]. Different robustness concepts are used in the literature on robust timetabling,
including light robustness ([4]), recoverable robustness ([16]), recover-to-optimality ([7, 6])
and adjustable robustness ([23, 21]). For surveys on robust timetabling we refer to [2] and [17].
So far, robust optimisation models in the literature either considered aperiodic timetabling,
i.e. timetables which are not required to repeat in a regular pattern, or periodic timetabling
where also the delays are periodic. To the best of our knowledge robust periodic timetabling
with aperiodic delays has not been treated in the literature so far.

The remainder of this paper is structured as follows: Basic notions of timetabling and delay
management are given in Section 2. In Section 3 we revisit the model Periodic Timetabling
in Aperiodic Network (PTTA) from [9], which computes a periodic timetable in an aperiodic
network. This is then used the formulate the problem RRPT in Section 4, for which we derive
three equivalent formulations. We compare these formulations experimentally in Section 5
and conclude in Section 6.

2 Preliminaries

Event-Activity-Networks. An event-activity-network is a graph N = (E , A). Its nodes
(so-called events) represent the departure or arrival of a traffic line at some station and its
arcs (so-called activities) represent relations between the events. We distinguish different
types of activities. Driving activities Adrive model a train line driving from one station to
another, while waiting activities Await represent a line waiting at a station. Since these
types of activities behave similarly, we denote Atrain = Adrive ∪ Await. Passengers can
transfer between different lines, which is included by the transfer activities Atrans. Headway
activities Ahead are used to model safety regulations requiring a minimal distance between
two consecutive departures or arrivals, or safety restrictions on single-track lines. They come
in pairs, since it is not clear beforehand in which order two departures will take place, see
[27] for details.

Periodic Timetabling. The standard model used for periodic timetabling is the Periodic
Event Scheduling Problem (PESP) introduced by [28]. Given an EAN N = (E , A), we want to
find a periodic timetable with period T , which is a mapping π̃ : E → {0, . . . , T − 1} assigning
a time to every event. To simplify notation we set π̃i := π̃(i) for i ∈ E . For every activity
a ∈ A a lower bound La ∈ N and an upper bound Ua ∈ N are given. La is the minimal time
necessary to perform the activity a, while Ua is the maximal time allowed for a. A timetable
is feasible if it respects the bounds on the activities, i.e. for every activity a = (i, j) ∈ A
we require π̃j − π̃i + zaT ∈ [La, Ua] for some za ∈ Z. The modulo parameter za takes the
periodicity into account.
The PESP asks for a feasible timetable. In timetabling we additionally want to minimise
the total travel time summed over all passengers. For a ∈ A let wa ∈ N be the number of
passengers using activity a. The following is the basic IP formulation for PESP:

min
∑

a=(i,j)∈A

wa · (π̃j − π̃i + zaT) (PESP)

s.t. π̃j − π̃i + zaT ≤ Ua a = (i, j) ∈ A (1)
π̃j − π̃i + zaT ≥ La a = (i, j) ∈ A (2)
π̃i ∈ {0, . . . , T − 1} i ∈ E (3)
za ∈ Z a ∈ A. (4)

V. Grafe and A. Schöbel 9:3

Details can be found in the literature on PESP, a good introduction is given in [14, 19].
Instead of using node potentials, another approach, see [18], is to use tensions, i.e. instead of
assigning a time πi to every event i ∈ E we assign a duration ξa to every activity a ∈ A. For
this purpose, we choose an arbitrary spanning tree T and define its network matrix Γ by

Γa′,a =

1 a ∈ C+

a′ ,
−1 a ∈ C−

a′ ,
0 a /∈ Ca′

for a ∈ A, a′ ∈ A\T , where C+
a′ and C−

a′ are the arcs of the unique cycle in T ∪ {a′} in
forward respectively backwards direction. This yields the cycle-base formulation of PESP,
which is equivalent to the standard formulation, but needs significantly less computing time:

min wT ξ (PESP-cb)
s.t. Γξ = Tq (5)

L ≤ ξ ≤ U (6)
ξa ∈ Z a ∈ A (7)
qa ∈ Z a ∈ A\T . (8)

Delay Management. Given a timetable, the periodic EAN can be rolled out to obtain
a corresponding aperiodic network for some planning horizon I = [0, K · T] with K ∈ N.
Every event i ∈ E has K corresponding events i1, . . . , iK at times πis

= π̃i + (s − 1)T for
s ∈ {1, . . . , K} in the rolled out network. We denote it by N = (E , A) to distinguish it from
the periodic network.
During operation of a timetable, it can happen that some source delays occur, which require
to adapt the timetable to the current situation. If an event i ∈ E has a source delay of
di, it cannot take place before πi + di. If an activity a ∈ A has a source delay of da, the
minimal duration for this activity increases to La + da. The task of delay management is to
find a disposition timetable x assigning a new time xi to every event i ∈ E respecting the
source delays d. Additionally, for every transfer a ∈ Atrans it has to be decided if the transfer
should be maintained or if it is to be cancelled, which is modelled by a binary variable ya.
To avoid conflicts between trains, also the headway activities have to be treated with care.
Hence, we have binary variables pij , pji for all pairs (i, j), (j, i) ∈ Ahead of headway activities,
determining which of the events i and j takes place first. The objective is to minimise the
delay of the passengers. If passengers miss a transfer, we use the common assumption that
they take the next trip T minutes later and that this trip does not have a delay. Let wi

be the number of passengers leaving the transport system at event i ∈ E . This yields the
following IP formulation (for an appropriately large constant M ′):

min
∑
i∈E

wi(xi − πi) + T
∑

a∈Atrans

waya (DM)

s.t. xi ≥ πi + di i ∈ E (9)
xj − xi ≥ La + da a = (i, j) ∈ Atrain (10)
M ′ya + xj − xi ≥ La a = (i, j) ∈ Atrans (11)
M ′(1 − pij) + xj − xi ≥ La a = (i, j) ∈ Ahead (12)
pij + pji = 1 (i, j), (j, i) ∈ Ahead (13)
xi ∈ N i ∈ E (14)

ATMOS 2023

9:4 Recoverable Robust Periodic Timetabling

ya ∈ {0, 1} a ∈ Atrans (15)
pij ∈ {0, 1} (i, j) ∈ Ahead. (16)

Recoverable Robustness. The concept of recoverable robustness has been introduced in
[15]. The idea is to find solutions to an optimisation problem that can be recovered by limited
effort for a given set of scenarios. In the context of timetabling, this corresponds to finding a
timetable and a disposition timetable for every given delay scenario, such that the delay of
the disposition timetable compared to the planned timetable is limited. Specifically, there
are two types of recovery actions. The main action is cancelling transfers. Furthermore, the
times of the events have to be adapted to the delays.

3 Periodic Timetabling in an Aperiodic Network

In the context of timetabling, finding a recoverable robust timetable boils down to integrating
timetabling and delay management. The challenge is that these two problems are usually
considered in two different networks: while the PESP uses the periodic network, delay
management is done in the rolled out aperiodic network as explained above. A first idea
to integrate these problems is to solve the periodic timetabling problem also in the rolled
out network, so we can then solve both problems in the same network. For this purpose,
Periodic Timetabling in an Aperiodic Network (PTTA) was introduced in [9]. We briefly
describe the resulting model.
One obstacle when computing a timetable in the rolled out network is that usually the
timetable is already given and used as input for rolling out the network, since it influences
which of the events are connected to each other by an activity. An example for this can be
found in Figure 4 in the appendix. Hence, we adapt the roll-out procedure as follows:

We set ba :=
⌈

Ua

T

⌉
for a ∈ A, b := maxa∈A ba.

For every periodic event i ∈ E and 1 ≤ s ≤ K + b create an aperiodic event is. Let
E(i) := {is : 1 ≤ s ≤ K + b} be the set of all aperiodic events corresponding to i. The set
of all events is E := ∪i∈EE(i).
For every periodic activity a = (i, j) ∈ A\Ahead, for exactly one arc a = (i, j) of
every pair of headway activities and for every 1 ≤ s ≤ K, s ≤ t ≤ K + ba create
a potential (aperiodic) activity ast with Last = La, Uast = Ua and wast = wa. Let
A(a) := {ast = (is, jt) : 1 ≤ s ≤ K, s ≤ t ≤ s + ba} be the set of potential activities
corresponding to a. The set of all potential activities is A :=

⋃
a∈A A(a). Analogous

to A, we also partition A into subsets Adrive, Await, Atrain, Atrans and Ahead for different
types of activities.

Note that additional b periods are added at the end of the planning horizon to ensure
that we can define activities that start in I but end outside of I.

The rolled out network contains not only the actual activities, but also potential activities.
Thus, when fixing the timetable we have to simultaneously solve an assignment problem:
for each periodic activity we have to choose exactly one of the corresponding arcs in every
considered period. In order to do so we introduce a binary variable ua for every a ∈ A which
is set to 1 if and only if a is chosen. The variable Fa gives the duration of the activity a ∈ A
in the case that ua = 1. Due to the periodicity of the timetable, it is not needed for all
activities, but only for those in the first period. This yields the following MIP formulation.
Recall that (E , A) is the periodic and (E , A) the rolled out network.

min
∑

a=(i1,jt)∈A

waFa · K (PTTA)

V. Grafe and A. Schöbel 9:5

s.t. πjt
− πis

+ M(ua − 1) ≤ Ua a = (is, jt) ∈ A (17)
πjt − πis + M(1 − ua) ≥ La a = (is, jt) ∈ A (18)
πis

− πis−1 = T is ∈ E , 2 ≤ s ≤ K + b (19)∑
t:a′=(is,jt)∈A

ua′ = 1 a = (i, j) ∈ A, 1 ≤ s ≤ K (20)

πi1 ≤ T − 1 i ∈ E (21)
Fa ≥ M(ua − 1) + πjt − πi1 a = (i1, jt) ∈ A (22)
πi ∈ N i ∈ E (23)
ua ∈ {0, 1} a ∈ A. (24)
Fa ∈ N a = (i1, jt) ∈ A. (25)

The objective function minimises the total travel time over all passengers. Note that due to
the periodicity of input data and timetable it is sufficient to consider only the first period
here. In the case that an activity a is chosen, i.e. ua = 1, Constraints (17) and (18) ensure
that the upper and lower bounds for this activity are respected. If a is not selected, the
constraints become redundant for appropriately chosen M . Constraints (19) are called
periodicity constraints and ensure that the timetable has period T . For every periodic
activity the assignment constraint (20) chooses exactly one of the corresponding aperiodic
activities in every period in such a way that it fits to the timetable constraints (17) and
(18). Constraints (21) enforce that the first event takes place in the first period we consider.
Constraints (22) set the auxiliary variables needed for the objective function correctly.

▶ Lemma 1 ([9], Lemma 7). PTTA and PESP are equivalent. More precisely: Let (π̃, z) be
a solution to PESP with objective value f̃ . We set πis

= πi1 + (s − 1)T . Furthermore, for
a′ = (is, jt) ∈ A(a) we choose

ua′ =
{

1 if t = za + s,

0 otherwise,
and for a′ = (i1, jt) ∈ A(a), Fa′ =

{
πjt − πi1 if ua′ = 1,

0 otherwise.
Then (π, u, F) is a feasible solution to PTTA and the corresponding objective value is

f = Kf̃ .
The other direction also holds, for details see [9].

4 Recoverable Robust Models

We now formulate the Recoverable Robust Periodic Timetabling Problem.
Let U be a set of scenarios, where each scenario r ∈ U consists of some source delays

dr
i ∈ N for events i ∈ E and dr

a ∈ N for a ∈ Atrain.

▶ Definition 2. Let a timetable π be given. For delay scenario r ∈ U let xr be an optimal
disposition timetable and yr wait-/no-wait decisions. Let

Zr
1(π) :=

∑
i∈E

wi(xr
i − πi) and Zr

2(π) :=
∑

a∈Atrans

wayr
a

be the weighted event delay and the number of missed transfers in scenario r, respectively.
We denote the worst-case delay of π with respect to U by

fdel(π) := max
r∈U

Zr
1(π) + TZr

2(π).

ATMOS 2023

9:6 Recoverable Robust Periodic Timetabling

i1

8:00

i2

9:00

j1

8:40
8: 30

j2

9:30

i′
1

8:50
8: 40

w = 10

i′
2

9:40

+10
w = 10 w = 10

i1

8:30

i2

9:30

j1

8:00

j2

9:10
9: 00

i′
1

8:10

i′
2

9:10

+10

Figure 1 The delay of passengers leaving the planning horizon is not counted correctly.

We are interested in finding a recoverable robust timetable. This means we want to be
able to recover our timetable in every given scenario. Recovering a timetable is done by
applying delay management. Hence, our goal can be formulated as follows:

Recoverable Robust Periodic Timetabling (RRPT)

Input: Periodic EAN N = (E , A) with period T , interval I, set U of sets of source delays
within I.

Task: Find a periodic timetable π and disposition timetables xr with wait-/no-wait decisions
yr for every r ∈ U such that the real travel time f real(π) := fnom(π) + fdel(π) is
minimal, where fnom(π) is the nominal travel time of π.

To derive an MIP formulation for this problem we now can use the preparatory work
from [9]: Since we have formulated the timetabling problem, which is a subproblem of RRPT,
already in the aperiodic network, we can now simply add the delay management constraints
(9)-(16) for every scenario r ∈ U to PTTA. Of course we only have constraints for those arcs
a which are actually chosen in the assignment subproblem of PTTA, i.e. those with ua = 1.
Hence, we have to add the delay propagation constraints as big-M -constraints.

Another problem we have to deal with are the passengers leaving our planning horizon I,
as the following example demonstrates.

▶ Example 3. We consider a part of a rolled out EAN as depicted in Figure 1 with only a
single delay scenario for two different timetables. In the first one, 10 passengers arrive at i′

1
with 10 minutes delay, so we have Z1(π1) = 10. However, if we shift the timetable by 30
minutes as seen in the right subfigure, different arcs are chosen, so we have the arc (i1, j2)
leaving the planning horizon. In this case there is no delay at the event i′

1. Since the event
j2, which is delayed in this case, has weight zero, the delay is Z1(π2) = 0. The reason for
this is that the passengers’ delay is counted when they arrive at their final destination. With
the shifted timetable, the arrival is outside of our planning horizon, so no delay is recognised
by our objective function. To prevent this, we count the last known delay of those passengers
leaving the planning horizon: in this case this are the 10 minutes delay at the event j2, which
we weight with the number of passengers using the arc (i1, j2).

To handle this problem, we adapt the definition of Zr
1 (and hence also that of fdel and

f real).

▶ Definition 4. We denote the rolled out driving and waiting activities leaving the planning
horizon I by Aout := {a = (is, jt) ∈ Atrain ∪ Atrans : t > K} and adapt the definition of the
weighted event delay: Zr

1(π) :=
∑

is∈E:s≤K wis
(xr

is
− πis

) +
∑

a=(i,j)∈Aout
wa(xr

j − πj).

V. Grafe and A. Schöbel 9:7

While in periodic timetabling headway activities can be treated in the same way as the
other activities, this is not the case for aperiodic timetabling and delay management. To be
able to change the order of trains in case of delays, we need precedence constraints between
all pairs of events using the same piece of infrastructure. Additionally to the headways Ahead
we now also need to respect headways between repetitions of the same periodic event: If the
event is has a big delay, there can be a conflict with the next event is+1. Therefore, we define

A′
head := {(is, jt) : (i, j) ∈ Ahead, 1 ≤ s, t ≤ K} ∪ {(is, it) : i ∈ E , 1 ≤ s, t ≤ K}.

Note that A′
head is not a subset of A, since it also contains arcs of the form (is, jt) for t < s

and t > s + b. This is due to the fact that delays can change the order of the events.
In Section 4.1 we present a formulation of RRPT which uses PTTA in the rolled out

network. Section 4.2 presents two formulations in the periodic network (E , A).

4.1 Formulation using PTTA
We formulate RRPT as MIP in an aperiodic network.

min f real =
∑

a=(i1,jt)∈Atrain∪Atrans

waFa · K + Z (RRPT-a)

s.t. πj − πi + M(ua − 1) ≤ Ua a = (i, j) ∈ A (26)
πj − πi + M(1 − ua) ≥ La a = (i, j) ∈ A (27)
πis

− πis−1 = T is ∈ E , 2 ≤ s ≤ K + b (28)∑
t:a′=(is,jt)∈A

ua′ = 1 (i, j) ∈ A, 1 ≤ s ≤ K (29)

Fa ≥ M(ua − 1) + πjt
− πi1 a = (i1, jt) ∈ Atrain ∪ Atrans (30)

πi1 ≤ T − 1 i ∈ E (31)
xr

i ≥ πi + dr
i i ∈ E , r ∈ U (32)

M ′(1 − ua) + xr
j − xr

i ≥ La + dr
a a = (i, j) ∈ Atrain, r ∈ U (33)

M ′(1 − ua) + M ′yr
a + xr

j − xr
i ≥ La a = (i, j) ∈ Atrans, r ∈ U (34)

M ′(1 − pr
ij) + xr

j − xr
i ≥ La a = (i, j) ∈ A′

head, r ∈ U (35)
pr

ij + pr
ji = 1 (i, j), (j, i) ∈ A′

head, r ∈ U (36)∑
a∈Atrans

wayr
a ≤ Zr

2 r ∈ U (37)

∑
is∈E:s≤K

wis(xr
is

− πis) +
∑

a∈Aout

waHr
a ≤ Zr

1 r ∈ U (38)

Zr
1 + TZr

2 ≤ Z r ∈ U (39)
Hr

a ≥ M ′′(ua − 1) + xr
j − πj a = (i, j) ∈ Aout, r ∈ U (40)

πi ∈ N i ∈ E (41)
Fa ≥ 0 a = (i1, jt) ∈ Atrain ∪ Atrans (42)
ua ∈ {0, 1} a ∈ A (43)
xr

i ∈ N i ∈ E , r ∈ U (44)
yr

a ∈ {0, 1} a ∈ Atrans, r ∈ U (45)
pr

ij ∈ {0, 1} (i, j) ∈ A′
head, r ∈ U (46)

Hr
a ≥ 0 a ∈ Aout, r ∈ U (47)

ATMOS 2023

9:8 Recoverable Robust Periodic Timetabling

Zr
1 , Zr

2 ≥ 0 r ∈ U (48)
Z ≥ 0. (49)

The objective function is the sum of the nominal travel time (i.e. the objective function
of PTTA) and the worst-case delay. Constraints (26) to (31) are the same as in PTTA. The
subsequent constraints are the constraints from DM adapted to our needs: (32) ensure that
for every delay scenario and every event the time in the disposition timetable is not earlier
than in the original timetable. Constraints (33) make sure that the delays are propagated
along the driving and waiting activities for those arcs a fulfilling ua = 1. Similarly, the delay
propagation along maintained transfers is ensured by (34). The delay propagation along
headway constraints is handled by (35). For this we need to determine for (i, j), (j, i) ∈ Ahead
in which order the events i and j take place. This is done by binary variables pr

ij and (36).
The number of missed transfers and the weighted event delay for every scenario are counted
by (37) and (38), respectively, and the worst-case delay Z is determined in (39). Note that
for the weighted event delay we count the weighted delay of every event within the planning
horizon (i.e. those is with s ≤ K) as well as the weighted delay of the arcs Aout leaving
the planning horizon. For the latter we introduce a binary variable Hr

a which determines
the delay at event j with a = (i, j) ∈ Aout. To ensure that only those arcs with ua = 1 are
respected here, we need big-M -constraints given in (40).

Lemma 5 makes sure that we can find constants which are sufficiently large. The proof
can be found in the appendix.

▶ Lemma 5. There exist finite values for M ′ and M ′′ which are sufficiently large.

Note that due to the periodicity of the timetable, also the assignment variables u are
periodic (as shown in [9]), meaning that the values of those variables corresponding to
activities in the first period determine the values for the later periods. Hence, we can obtain
a reduced version with less variables. However, to simplify notation we use the full version.

4.2 Formulations using PESP
So far we have used the PTTA constraints and added delay management constraints to
obtain a formulation for RRPT. An alternative approach is to use the PESP constraints
and our knowledge from the development of the model PTTA to retrieve the assignment
variables u from the PESP variables. We present two formulations:

The event-based formulation uses PESP, while the cycle-base formulation uses PESP-cb.

4.2.1 Event-based formulation
As shown in Lemma 1, if we have a feasible solution to PESP with (π̃, z), setting

ua′ =
{

1 if t = za + s,

0 otherwise,
(50)

for a′ = (is, jt), a′ ∈ A(a), yields a feasible PTTA solution. To formulate this as linear
constraints, we again need big-M -constraints. Fortunately, for the big-M we can choose b,
which is usually quite small (≈ 2). This yields the following formulation:

min f real =
∑

a=(i,j)∈A

wa(π̃j − π̃i + zaT) · K + Z (RRPT-pe)

s.t. π̃j − π̃i + zaT ≤ Ua a = (i, j) ∈ A (51)

V. Grafe and A. Schöbel 9:9

π̃j − π̃i + zaT ≥ La a = (i, j) ∈ A (52)
πis − π̃i = (s − 1)T i ∈ E , 1 ≤ s ≤ K + b (53)
b(1 − ua′) + t − s − za ≥ 0 a ∈ A, a′ = (is, jt) ∈ A(a) (54)
b(ua′ − 1) + t − s − za ≤ 0 a ∈ A, a′ = (is, jt) ∈ A(a) (55)
(29), (32) − (40), (43) − (49)
π̃i ∈ N, 0 ≤ π̃i ≤ T − 1 i ∈ E (56)
za ∈ Z a ∈ A. (57)

The objective function minimises the real travel time. Constraints (51) and (52) are the
regular PESP constraints. Constraints (53) ensure that the times for the rolled out events
are set correctly. As stated in (50), the values of the modulo variables already determine the
values of the assignment variables. This relation is accounted for in (54) and (55). The other
constraints are taken from our previous formulation for RRPT-a.

▶ Theorem 6. RRPT-a and RRPT-pe are equivalent.

Proof. Let (π, u, F, x, y, Z1, Z2, Z, H, p) be a solution to RRPT-a. Let a = (i, j) ∈ A. Choose
the unique t such that u(i1,jt) = 1, which exists due to (29), and define za := t − 1. For i ∈ E
set π̃i := πi1 . Note that since 0 ≤ πi1 ≤ T − 1 it follows 0 ≤ π̃i ≤ T − 1. We now show that
(π̃, z, π, u, x, y, Z1, Z2, Z, H, p) is feasible for RRPT-pe with the same objective value.

π̃j − π̃i + zaT = πj1 − πi1 + (t − 1)T = πjt
− πi1 ∈ [La, Ua] by choice of t and (26) and

(27), which shows (51) and (52).
Let i ∈ E , 1 ≤ s ≤ K + b. We have πis

(28)= πi1 + (s − 1)T = π̃i + (s − 1)T, so (53) is
satisfied.
Let a ∈ A, a′ = (is, jt) ∈ A(a). We know from [9] that u(is,jt) = u(i1,jt−s+1). Hence, if
ua′ = 1, then also u(i1,jt−s+1) = 1, so by definition za = t − s. For ua′ = 0, note that by
construction of A we have 0 ≤ t − s ≤ b. Furthermore, it is well known from the literature
on PESP that 0 ≤ za ≤ b. Hence, it follows that b + t − s − za ≥ 0 and −b + t − s − za ≤ 0.
This implies that (54) and (55) are fulfilled.
All other constraints are clearly fulfilled.

Furthermore, as seen above, π̃j − π̃i + zaT = πjt − πi1 ≤ Fa, with t such that u(is,jt) = 1, so
the objective value of the constructed solution is not higher than that of the RRPT-a-solution.
Let a solution (π̃, z, π, u, x, y, Z1, Z2, H, p) to RRPT-pe be given. In particular, (π̃, z) is a
solution to PESP. By (54) and (55) u(is,jt) = 1 is only possible for t = s + za. Together with
(29), even equivalence holds, i.e. u(is,jt) = 1 if and only if t = s + za. If we additionally set

Fa =
{

πjt
− πi1 , u(i1,jt) = 1

0, otherwise

we know from Lemma 1 that (π, u, F) is feasible for PTTA, i.e. (26)-(31) are fulfilled. Since
all other constraints are fulfilled as well, (π, u, F, x, y, Z1, Z2, Z, H, p) is feasible for RRPT-a.
Lemma 1 says that f̃ = K · f , hence the equality of the objective function values follows. ◀

4.2.2 Cycle-base Formulation
The cycle-base formulation is computationally superior for solving PESP. This motivates
to use it also for RRPT. However, since we need the times of the events, and these are not
present in the cycle-base formulation, we have to extract them from the tensions. We first
need some notation.

ATMOS 2023

9:10 Recoverable Robust Periodic Timetabling

▶ Notation 7. Let T be a spanning tree in N = (E , A) and î ∈ E some fixed event. For
i ∈ E let Pi be the unique path from î to i in T . The set of arcs in Pi can be partitioned into
the sets P+

i and P−
i of forward and backward arcs.

Now, if we have a feasible solution to PESP given by the tensions ξ of the activities, we
can use these to obtain the time for every event i by adding respectively subtracting the
tensions along the path Pi. Namely, for some q̂i ∈ Z we have:

π̃i =
∑

a∈P+
i

ξa −
∑

a∈P−
i

ξa + π̃î + q̂iT.

Let q be the modulo variables of the tension ξ. We can use q and q̂ to obtain the modulo
parameters z in the formulation RRPT-pe, namely, as we will see in the proof of Lemma 8,

za =
{

q̂i − q̂j , a ∈ T
q̂i − q̂j + qa, a /∈ T .

(58)

Then, as before, we also know the values of the assignment variables u, which leads to the
following IP formulation:

min f real =
∑

a=(i,j)∈A

waξa · K + Z (RRPT-cb)

s.t. Γξ = Tq (59)

π̃i =
∑

a∈P+
i

ξa −
∑

a∈P−
i

ξa + π̃î + q̂iT i ∈ E (60)

b(1 − ua′) + t − s − q̂i + q̂j ≥ 0 a ∈ T , a′ = (is, jt) ∈ A(a) (61)
b(ua′ − 1) + t − s − q̂i + q̂j ≤ 0 a ∈ T , a′ = (is, jt) ∈ A(a) (62)
b(1 − ua′) + t − s − q̂i + q̂j − qa ≥ 0 a ∈ A\T , a′ = (is, jt) ∈ A(a) (63)
b(ua′ − 1) + t − s − q̂i + q̂j − qa ≤ 0 a ∈ A\T , a′ = (is, jt) ∈ A(a) (64)
(29), (32) − (40), (43) − (49), (53), (56)
ξa ∈ N, La ≤ ξa ≤ Ua a ∈ A (65)
qa ∈ Z a ∈ A\T (66)
q̂i ∈ Z i ∈ E . (67)

The objective function minimises the real travel time. Constraint (59) ensures that ξ is
indeed a periodic tension (as (5) in the PESP cycle base formulation). Constraints (60)
construct the event times from the tensions. The correspondence between u, q, q̂ is respected
in (61) to (64). The other constraints are the same as in the formulation of RRPT-pe.

▶ Theorem 8. RRPT-pe and RRPT-cb are equivalent.

Proof. Let (π̃, z, π, u, x, y, Z1, Z2, Z, H, p) be a solution to RRPT-pe. In particular, (π̃, z) is
a solution to PESP. We construct a solution to RRPT-cb:

From the literature on PESP we know that by setting ξa := π̃j − π̃i + zaT and qa :=∑
a′∈C+

a
za′ −

∑
a′∈C−

a
za′ we obtain a periodic tension ξ such that Γξ = Tq, i.e. (59)

holds.
We define q̂i :=

∑
a∈P−

i
za −

∑
a∈P+

i
za. By induction on the length of the unique path

Pj from î to j in T we obtain π̃j = π̃î +
∑

a∈P+
i

(ξa − zaT) +
∑

a∈P−
i

(−ξa + zaT) =
π̃î +

∑
a∈P+

i
ξa −

∑
a∈P−

i
ξa + q̂iT , which shows (60).

V. Grafe and A. Schöbel 9:11

î i j
a

Pi = Pj\{a}

(a) Case (i, j) ∈ T

î

j

i

Pi ∩ Pj

Pi\Pj

Pj\Pi

(b) Case (i, j) /∈ T

Figure 2 Paths Pi and Pj in the proof of Theorem 8.

For a = (i, j) ∈ T it holds P+
j = P+

i ∪ {a}, P−
j = P−

i (see Figure 2a) and hence
q̂i − q̂j = za, so by (54) and (55) also (61) and (62) are fulfilled.
Furthermore, note that for a = (i, j) ∈ A\T we have C+

a = (P+
i \Pj)∪ (P−

j \Pi)∪{a} and
C−

a = (P+
j \Pi) ∪ (P−

i \Pj) (see Figure 2b). Hence, we get q̂i − q̂j + qa = (
∑

a′∈P−
i

za′ −∑
a′∈P+

i
za′)− (

∑
a′∈P−

j
za′ −

∑
a′∈P+

j
za′)+(

∑
a′∈C+

a
za′ −

∑
a′∈C−

a
za′) = za, so also (63)

and (64) are satisfied.
Constraints (65) to (67) are trivially fulfilled.

On the other hand, let (ξ, π̃, q, q̂, π, u, x, y, Z1, Z2, Z, H, p) be a solution to (RRPT-cb). We
construct a solution to RRPT-pe as follows: For a = (i, j) ∈ A we define za as in (58).

For a = (i, j) ∈ A by (60) we have

π̃j − π̃i = (
∑

a∈P+
j

ξa −
∑

a∈P−
j

ξa + π̃î + q̂jT) − (
∑

a∈P+
i

ξa −
∑

a∈P−
i

ξa + π̃î + q̂iT).

For the case a ∈ T this term simplifies to ξa + (q̂j − q̂i)T = ξa − zaT .
If a /∈ T , this is equal to

∑
a′∈C−

a
ξa′ − (

∑
a′∈C+

a
ξa′ − ξa) + (q̂j − q̂i)T = ξa − (Γξ)a +

(q̂j − q̂i)T = ξa − (qa − q̂j + q̂i)T = ξa − zaT .
Hence, in both cases we have π̃j − π̃i + zaT = ξa ∈ [La, Ua], which shows (51) and (52).
Constraints (54) and (55) are satisfied by definition of z and constraints (61) to (64).

In both constructions the objective function values coincide, which completes the proof. ◀

5 Computational Experiments

In the previous section, we derived three equivalent formulations for the recoverable robust
periodic timetabling problem. An obvious question is which one of these formulations is best.
To answer this, we run some experiments and compare their computing times for solving
the MIP. However, RRPT is a very hard problem: PESP and delay management both are
NP-hard ([28, 5]) and RRPT integrates PESP and several delay management problems.
Therefore, we are not able to solve RRPT on any large instances. For the experiments
we thus use a rather small network from the LinTim library [25] with 156 periodic events
and 188 periodic activities without headway constraints. The period length is 60 minutes.
For the delay scenarios we generated uniformly distributed source delays: in every scenario
we generated a source delay between 1 and 15 minutes for 1% of all aperiodic events and
activities.
We implemented the MIP formulations in Python and solved them using Gurobi 8.1.1 [10]
on a compute server with 48 cores @2.9 GHz and 196GB RAM. The MIP optimality gap of
the solver was set to 0.015%.

We ran two different experiments: one where the number K of periods is fixed to 4 with
varying number of scenarios |U| and one with |U| = 10 and varying number of periods. These
numbers are quite small, which is due to the high complexity of the problem. However, the
experiments provide some insights on the performance of the different formulations. For

ATMOS 2023

9:12 Recoverable Robust Periodic Timetabling

10 15 20 25 30 35
number of scenarios

0

500

1000

1500

2000

2500

3000
se

co
nd

s
RRPT-a
RRPT-pe
RRPT-cb
RRPT-a’
RRPT-pe’
RRPT-cb’

(a) Computing times for K = 4 with increasing
number of scenarios |U|.

2 4 6 8 10 12
number of periods

0

500

1000

1500

2000

se
co

nd
s

RRPT-a
RRPT-pe
RRPT-cb
RRPT-a’
RRPT-pe’
RRPT-cb’

(b) Computing times for |U| = 10 with increasing
number of periods K.

Figure 3 Computing times for solving MIP formulations.

Table 1 Nominal travel time and worst-case delay of RRPT compared to sequential approach for
K = 4.

scenarios 10 15 20 25 30 35
increase of nominal travel time (%) 0.78 0.27 1.87 1.87 1.87 1.87

decrease of delay (%) 11.80 4.92 24.85 24.85 24.85 24.85

every formulation we also test its reduced version with less variables, which is indicated by
an apostrophe behind the name.
The results are shown in Figure 3. For the first experiment we can see that RRPT-a has the
highest computing times. This is not surprising, since it is based on PTTA, which is slower
than PESP for the pure timetabling problem. The lowest computing times are achieved for
RRPT-pe. Since the cycle-base formulation PESP-cb is faster than the standard formulation
when only looking for a timetable, this is a bit surprising. However, RRPT-cb not only uses
variables for the tensions, but additionally also for the event times, since they are needed for
the delay management part. This could be an explanation for the worse performance. The
variable reduction does not have an significant effect on the computing time.
For the second experiment, we have similar results. RRPT-pe performs best, while for
RRPT-a and RRPT-cb the computing times become much larger with increasing K.
Compared to an sequential approach, i.e. first fixing the timetable and then doing delay
management afterwards, we expect that RRPT yields solutions with a higher nominal travel
time and lower delays (due to added buffer times on the activities). Indeed, this behaviour
can be observed in Tables 1 and 2. For the same instances as in the previous experiment
we can see that the nominal travel time increases by up to 3.77%. On the other hand, the
worst-case delay decreases by 4.92% to 24.85%, meaning the delay can be reduced significantly
by adding only small buffer times.

Table 2 Nominal travel time and worst-case delay of RRPT compared to sequential approach for
|U| = 10.

periods 2 4 6 8 10 12
increase of nominal travel time (%) 3.77 0.78 0.22 0.33 0 0.27

decrease of delay (%) 17.95 11.80 7.56 5.67 9.21 5.17

V. Grafe and A. Schöbel 9:13

6 Conclusion

We have introduced the Recoverable Robust Periodic Timetabling Problem, which is the
first to apply the concept of recoverable robustness to periodic timetabling with aperiodic
source delays. We have developed three equivalent formulations based on different ways to
incorporate the timetabling subproblem. We have compared the formulations with respect
to their computing time when solving them with a state-of-the-art solver, showing that - as
opposed to the pure timetabling problem - a cycle-base approach is not the best choice. By
comparing the solutions to those of the standard sequential approach, we have shown that
our model manages to find solutions with significantly less delay at the cost of only a small
increase in the nominal travel time. Further experiments are subject to ongoing research, in
particular on instances with headway constraints.

Due to the high complexity of the problem, the IP formulation is only able to handle
rather small instances. Hence, developing heuristic approaches for the problem could be
a promising direction for further research. Another interesting question is how the model
performs compared to models using other robustness concepts with respect to solution quality.
Since RRPT focusses on the real travel time, the obtained timetables should be beneficial for
the passengers compared to timetables which were computed using different models, see [8].

References
1 Ralf Borndörfer, Niels Lindner, and Sarah Roth. A concurrent approach to the periodic

event scheduling problem. Journal of Rail Transport Planning & Management, 15, 2020.
doi:10.1016/j.jrtpm.2019.100175.

2 Valentina Cacchiani and Paolo Toth. Nominal and robust train timetabling problems. European
Journal of Operational Research, 219(3):727–737, 2012. doi:10.1016/j.ejor.2011.11.003.

3 Twan Dollevoet, Dennis Huisman, Marie Schmidt, and Anita Schöbel. Delay propagation and
delay management in transportation networks. In Handbook of Optimization in the Railway
Industry, pages 285–317. Springer, 2018. doi:10.1007/978-3-319-72153-8_13.

4 Matteo Fischetti and Michele Monaci. Light Robustness, pages 61–84. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009. doi:10.1007/978-3-642-05465-5_3.

5 Michael Gatto, Riko Jacob, Leon Peeters, and Anita Schöbel. The computational complexity
of delay management. In Dieter Kratsch, editor, Graph-Theoretic Concepts in Computer
Science, pages 227–238, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

6 Marc Goerigk. Exact and heuristic approaches to the robust periodic event scheduling problem.
Public Transport, 7(1):101–119, 2015. doi:10.1007/s12469-014-0100-5.

7 Marc Goerigk and Anita Schöbel. An Empirical Analysis of Robustness Concepts for Time-
tabling. In Thomas Erlebach and Marco Lübbecke, editors, 10th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’10), volume 14
of OpenAccess Series in Informatics (OASIcs), pages 100–113, Dagstuhl, Germany, 2010.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.ATMOS.2010.100.

8 Vera Grafe and Anita Schöbel. Robust periodic timetables. Working paper.
9 Vera Grafe and Anita Schöbel. Solving the Periodic Scheduling Problem: An Assignment

Approach in Non-Periodic Networks. In Matthias Müller-Hannemann and Federico Perea,
editors, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimiza-
tion, and Systems (ATMOS 2021), volume 96 of Open Access Series in Informatics (OASIcs),
pages 9:1–9:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/OASIcs.ATMOS.2021.9.

10 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

11 Eva König. A review on railway delay management. Public Transport, 12(2):335–361, 2020.

ATMOS 2023

https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/10.1016/j.ejor.2011.11.003
https://doi.org/10.1007/978-3-319-72153-8_13
https://doi.org/10.1007/978-3-642-05465-5_3
https://doi.org/10.1007/s12469-014-0100-5
https://doi.org/10.4230/OASIcs.ATMOS.2010.100
https://doi.org/10.4230/OASIcs.ATMOS.2021.9
https://www.gurobi.com
https://www.gurobi.com

9:14 Recoverable Robust Periodic Timetabling

12 Leo Kroon, Rommert Dekker, and Michiel Vromans. Cyclic railway timetabling: A stochastic
optimization approach. In Lecture Notes in Computer Science, volume 4359 LNCS, pages
41–68, 2007. doi:10.1007/978-3-540-74247-0_2.

13 Leo Kroon, Gabor Maroti, Mathijn Retel Helmrich, Michiel Vromans, and Rommert Dek-
ker. Stochastic improvement of cyclic railway timetables. Transportation Research. Part B,
Methodological, 42(6):553–570, 2008. doi:10.1016/j.trb.2007.11.002.

14 Christian Liebchen. Periodic timetable optimization in public transport. PhD thesis, TU Berlin,
2006. doi:10.1007/978-3-540-69995-8_5.

15 Christian Liebchen, Marco Lübbecke, Rolf Möhring, and Sebastian Stiller. Recoverable
Robustness. Technical report, Technische Universität Berlin, 2007.

16 Christian Liebchen, Marco E. Lübbecke, Rolf H. Möhring, and Sebastian Stiller. The concept
of recoverable robustness, linear programming recovery, and railway applications. Lecture
Notes in Computer Science, 5868:1–27, 2009. doi:10.1007/978-3-642-05465-5_1.

17 Richard M. Lusby, Jesper Larsen, and Simon Bull. A survey on robustness in railway planning.
European Journal of Operational Research, 266:1–15, 2018.

18 Karl Nachtigall. A branch and cut approach for periodic network programming. Technical
report, University of Hildesheim, 1994.

19 Karl Nachtigall. Periodic network optimization and fixed interval timetables. PhD thesis,
University of Hildesheim, 1998.

20 Michiel A. Odijk. A constraint generation algorithm for the construction of periodic railway
timetables. Transportation Research Part B: Methodological, 30(6):455–464, 1996. doi:
10.1016/0191-2615(96)00005-7.

21 Julius Pätzold. Finding robust periodic timetables by integrating delay management. Public
Transport, 13(2):349–374, 2021. doi:10.1007/s12469-020-00260-y.

22 Leon Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus Universiteit
Rotterdam, 2003.

23 Gert-Jaap Polinder, Thomas Breugem, Twan Dollevoet, and Gábor Maróti. An adjustable
robust optimization approach for periodic timetabling. Transportation Research Part B:
Methodological, 128:50–68, 2019. doi:10.1016/j.trb.2019.07.011.

24 Michael Schachtebeck. Delay Management in Public Transportation: Capacities, Robustness,
and Integration. PhD thesis, University of Göttingen, 2009.

25 Alexander Schiewe, Sebastian Albert, Vera Grafe, Philine Schiewe, Anita Schöbel, and Felix
Spühler. LinTim - Integrated Optimization in Public Transportation. URL: https://www.
lintim.net.

26 Anita Schöbel. Integer programming approaches for solving the delay management prob-
lem. Lecture Notes in Computer Science, 4359 LNCS:145–170, 2007. doi:10.1007/
978-3-540-74247-0_7.

27 Anita Schöbel. Capacity constraints in delay management. Public Transport, 1(2):135–154,
2009.

28 Paolo Serafini and Walter Ukovich. A Mathematical Model for Periodic Scheduling Problems.
SIAM Journal on Discrete Mathematics, 2:550–581, 1989. doi:10.1137/0402049.

A Proofs

Proof of Lemma 5

Proof. We choose

M ′ := max
r∈U

(max
a∈A

(La + dr
a) + max

i∈E
dr

i +
∑
a∈A

dr
a) + K · T + T · |Ahead|

2

https://doi.org/10.1007/978-3-540-74247-0_2
https://doi.org/10.1016/j.trb.2007.11.002
https://doi.org/10.1007/978-3-540-69995-8_5
https://doi.org/10.1007/978-3-642-05465-5_1
https://doi.org/10.1016/0191-2615(96)00005-7
https://doi.org/10.1016/0191-2615(96)00005-7
https://doi.org/10.1007/s12469-020-00260-y
https://doi.org/10.1016/j.trb.2019.07.011
https://www.lintim.net
https://www.lintim.net
https://doi.org/10.1007/978-3-540-74247-0_7
https://doi.org/10.1007/978-3-540-74247-0_7
https://doi.org/10.1137/0402049

V. Grafe and A. Schöbel 9:15

and

M ′′ := max
r∈U

(max
i∈E

dr
i +

∑
a∈A

dr
a) + T · |Ahead|

2 .

Let (π, u, F) be a feasible solution to the subproblem PTTA given by constraints (26) to (31),
(41), (43), (42). For some fixed r ∈ U we consider the constraints (33) and (34) for those
a ∈ A with ua = 1 and (32), (44), (45). These are the constraints of the delay management
problem, for which it is known (see [24]) that there is an optimal solution (xr, yr) fulfilling

xr
i − πi ≤ max

i∈E
dr

i +
∑
a∈A

dr
a +

∑
a=(i,j)∈Ahead:

πi>πj

(πi − πj + La). (68)

We consider the last term in (68):∑
a=(i,j)∈Ahead:

πi>πj

(πi − πj︸ ︷︷ ︸
≤T −La

+La) ≤
∑

a=(i,j)∈Ahead:
πi>πj

T ≤ T · |Ahead|
2 .

Hence, we obtain

xr
i − πi ≤ max

i∈E
dr

i +
∑
a∈A

dr
a + T · |Ahead|

2 . (69)

We set

Hr
a =

{
xr

j − πj if ua = 1
0 otherwise.

Note that by choice of M ′′ (69) implies that this is feasible. Furthermore, we set Zr
1 , Zr

2 and
Z according to the left-hand side of (37) to (39). Then (37) to (40), (47) and (48) are also
fulfilled. Hence, it remains to show constraints (33) and (34) for those a ∈ A with ua = 0
and (35). For r ∈ U we have

La + dr
a − xr

j + xr
i

≤La + dr
a + xr

i

≤La + dr
a + K · T + max

i∈E
dr

i +
∑

a′∈A
dr

a′ + T · |Ahead|
2

≤M ′. ◀

ATMOS 2023

9:16 Recoverable Robust Periodic Timetabling

B Figures

i j i′ j′drive
[20,30]

wait
[5,10]

drive
[30,40]

(a) Periodic EAN with [La, Ua] given below the
arcs.

i1

i2

i3

j1

j2

j3

i′
1

i′
2

i′
3

j′
1

j′
2

j′
3

(b) EAN rolled out with all potential activities for
K = 2, b = 1.

i1

0:00

i2

1:00

j1

0:20

j2

1:20

i′
1

0:25

i′
2

1:25

j′
1

0:55

j′
2

1:55

(c) Rolled out EAN after choosing a feasible
timetable and the corresponding activities.

i1

0:00

i2

1:00

j1

0:25

j2

1:25

i′
1

0:30

i′
2

1:30

j′
1

0:05

j′
2

1:05

(d) Rolled out EAN with another feasible timetable,
which results in different activities.

Figure 4 Rolling out a periodic EAN without knowing the timetable for T = 60 and K = 2.

Submodularity Property for Facility Locations of
Dynamic Flow Networks
Peerawit Suriya #

Department of Mathematics, Faculty of Science, Chiang Mai University, Thailand

Vorapong Suppakitpaisarn1 #

Graduate School of Information Science and Technology, The University of Tokyo, Japan

Supanut Chaidee #

Department of Mathematics, Faculty of Science, Chiang Mai University, Thailand

Phapaengmueng Sukkasem #

Department of Mathematics, Faculty of Science, Chiang Mai University, Thailand

Abstract
This paper considers facility location problems within dynamic flow networks, shifting the focus from
minimizing evacuation time to handling situations with a constrained evacuation timeframe. Our
study sets two main goals: 1) Determining a fixed-size set of locations that can maximize the number
of evacuees, and 2) Identifying the smallest set of locations capable of accommodating all evacuees
within the time constraint. We introduce flowt(S) to represent the number of evacuees for given
locations S within a fixed time limit t. We prove that flowt functions is a monotone submodular
function, which allows us to apply an approximation algorithm specifically designed for maximizing
such functions with size restrictions. For the second objective, we implement an approximation
algorithm tailored to solving the submodular cover problem. We conduct experiments on the real
datasets of Chiang Mai, and demonstrate that the approximation algorithms give solutions which
are close to optimal for all of the experiments we have conducted.

2012 ACM Subject Classification Theory of computation → Network flows; Theory of computation
→ Dynamic graph algorithms; Theory of computation → Routing and network design problems

Keywords and phrases Approximation Algorithms, Dynamic Networks, Facility Location, Submodu-
lar Function Optimization

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.10

Funding This research is partially supported by Chiang Mai University as a part of the One Faculty
One MoU Project.
Peerawit Suriya: Supported by the Development and Promotion of Science and Technology Talents
Project (DPST) under The Institute for the Promotion of Teaching Science and Technology (IPST),
Ministry of Education, Thailand.
Vorapong Suppakitpaisarn: Supported by JSPS Grant-in-Aid for Transformative Research Areas A
grant number JP21H05845, and also by JST SICORP Grant Number JPMJSC2208, Japan.

1 Introduction

The facilities location problem [12] is one of the well-known problems for finding the optimal
location of facilities that optimizes certain criteria, such as minimizing costs, under the
given constraints and considerations. In terms of a graph G = (V, E), the standard problem
statement is to identify a subset S from V comprising of k nodes. This subset S should have
the property that it minimizes the length of the longest shortest path from any node v ∈ V

to a node within the subset S. There are several approximation algorithms proposed for this
standard problem statement such as [16, 2].

1 corresponding author
© Peerawit Suriya, Vorapong Suppakitpaisarn, Supanut Chaidee, and Phapaengmueng Sukkasem;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 10; pp. 10:1–10:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peerawit_suriya@cmu.ac.th
mailto:vorapong@is.s.u-tokyo.ac.jp
https://orcid.org/0000-0002-7020-395X
mailto:supanut.c@cmu.ac.th
https://orcid.org/0000-0002-2314-1397
mailto:phapaengmuang_s@cmu.ac.th
https://doi.org/10.4230/OASIcs.ATMOS.2023.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

10:2 Submodularity Property for Facility Locations of Dynamic Flow Networks

The dynamic network [7, 8] is a graph that includes information that changes over time.
An illustrated example of a dynamic network is a plan for evacuating people from nodes in a
static graph, represented by the intersection of roads, to facilities when the edge, represented
by the road that connects these nodes’ locations. Every node v ∈ V starts off with a varying
number of evacuees at the onset of evacuation. However, each edge e ∈ E has a capacity
limit that restricts the number of people it can accommodate at any given moment. The
time-expanded networks approach outlined in [7] can be used to determine the best possible
evacuation plan. By leveraging this method, it is feasible to compute the necessary time
frame for the complete evacuation of individuals. If there exists a time constraint on the
evacuation, this technique can also be used to estimate the maximum number of evacuees
that can be transported to safe facilities within the specified time limit.

Extending the problem formulation of facility location to a dynamic network is natural.
The goal would be to identify a collection of facilities that could minimize the evacuation
time. Several algorithms were proposed for the case of path graph [10], tree [13], and general
graphs [1], as summarized in [11].

1.1 Our Contributions

While the majority of prior research has centered around minimizing evacuation time, we
argue, based on [15], that real-world evacuations often operate under strong time constraints.
This observation has led us to examine the following two variants of facility location problems
within dynamic networks:

Problem 1: Given a number of facilities, locate a set of facilities which can accommodate
the maximum number of evacuees in a given time.
Problem 2: Locate a smallest set of facilities which can accommodate all evacuees in a
given time.

We may consider that both of the problems are closer to the k-center problem where we aim
to minimize the maximum evacuees time.

Our main contribution of this paper is:

Define flowt(S) as the count of evacuees that can be accommodated by facilities
positioned at a set of nodes, S, in time t. We demonstrate that flowt exhibits the
properties of a monotone submodular function.

Consequently, Problem 1 can be reformulated as the maximum submodular function
problem subject to size constraints, as discussed in [14]. The greedy algorithm, which carries
an approximation ratio of 1− 1/e, which is approximately equal to 0.63, can be deployed,
delivering a (1− 1/e)-approximation algorithm for Problem 1. On the other hand, Problem
2 can be reformulated as the minimum submodular cover problem [18]. We can employ the
O(log n)-approximation algorithm for the problem to solve Problem 2.

Through numerical experimentation, we demonstrate that the algorithms provide solutions
that are closely aligned with optimal solutions. We construct a real dataset from the road
network, road capacity, and the resident count in each region of Chiang Mai, Thailand. For
Problem 1, we compare the capacity of evacuees accommodated by facilities derived from
the greedy algorithm against optimal solutions from an exhaustive search. We observe that
the differences across all tested cases do not exceed 5%. For Problem 2, we notice that the
approximation algorithm can find an optimal solution for our dataset.

P. Suriya, V. Suppakitpaisarn, S. Chaidee, and P. Sukkasem 10:3

1.2 Paper Organization
This paper is organized as follows. The motivation and reviews of previous studies are
compiled in the introduction section. The second section is the statement of our problem,
together with notations, basic concepts, and the Ford-Fulkerson algorithm, which we mainly
use in this study. The proof of submodularity of the function flowt, the value of maximum
flow from source node to sink node, is presented in the third section. The experiments with
results to illustrate two solved problems are presented in the fourth section. The last section
shows the concluding remarks, including comments and possible future works.

2 Preliminaries

2.1 Problem Definition
Let N = (G, S, n, c, d) be the network such that G = (V, E) is an undirected graph with a set
of vertices V and a set of edges E . S ⊆ V is a set of facilities that are the evacuation centers
for evacuees. Each vertex v has the number of evacuees n(v), and each edge e = (v1, v2)
consists of a capacity c(e) and a transit time d(e). The capacity c(e) represents the maximum
number of evacuees which can transit from v1 to v2 in one unit time, and the transit time
d(e) represents the amount of time that evacuee transit from v1 to v2.

To understand the problem formulation, let us consider a toy example. Let V = {u, v},
E = {(u, v)}, and S = {u}. To calculate the minimum evacuation time from u to v, we divide
the evacuees into ⌈n(u)/c(e)⌉ groups such that each group has the number of evacuees equals
c(e) except for the last group which has the number of evacuees at most c(e). After that, we
send each group of evacuees from u to v, which means the first group will arrive v at t = d(e)
and the last group will arrive v at t = d(e) + ⌈n(u)/c(e)⌉ − 1.

When there are more nodes in G, there can be a congestion. If there are evacuees from
other nodes to u and there are still evacuees in u. The latter evacuees must wait until the
earlier evacuees have been evacuated.

Define flowt(S) as the count of evacuees that can be accommodated by facilities positioned
at a set of nodes, S, in time t. In this study, we will consider two facility location problems
in the dynamic network N .

▶ Problem 1. Consider a facility location problem which aims to evacuate the maximum
number of persons in the given amount of time. In particular, given t, κ ∈ Z+, we give an
algorithm which outputs S ⊆ V such that |S|= κ and flowt(S) is maximized.

▶ Problem 2. Consider a facility location problem which aims to minimize the number of
facilities such that all of the evacuees can evacuate in the given amount of time. In particular,
given t, n ∈ Z+ when n is the number of evacuees, we give an algorithm which outputs S ⊆ V
such that flowt(S) = n and |S| is minimized.

To calculate the maximum number of evacuees whose evacuation time is less than or
equal to t, time-expanded network Gt(S), a static flow network for a dynamic flow network,
was first proposed by Ford and Fulkerson [6]. The vertices of Gt(S) are divided into three
parts. The first part is x∗ and ζ∗, which is a source node and sink node, respectively.
The second part is v(t′) for v ∈ V and t′ ∈ {0, 1, 2, ...t}, and the last part is u∗ for u ∈ S.
Furthermore, the edges of Gt(S) are separated into five parts as follows. The first part
is (x∗, v) for v ∈ V with a capacity n(v). The second part is (v(t), v(t + 1)) for v ∈ V and
t ∈ {0, 1, 2, ..., t − 1} with an infinite capacity. If there is edge e = (v1, v2) ∈ E , then there
are edges (v1(t′), v2(t′ + d(e))) with a capacity c(e) for t′ ∈ {0, 1, 2, ..., t− d(e)} which is the

ATMOS 2023

10:4 Submodularity Property for Facility Locations of Dynamic Flow Networks

third part of edges in Gt(S). The fourth part is (u(t′), u∗) with an infinite capacity for u ∈ S

and t′ ∈ {0, 1, 2, ..., t}. The last part is (x∗, ζ∗) with an infinite capacity. Figure 1 shows an
example of the correspondence between a given static graph and its time-expanded network.

Static Network Dynamic Network

A

B

C

D

10

5

7

3

(1, 3)

(2, 1)

(3, 2)

A(1) A(2) A(3)

B(0) B(2) B(3)

C(0)

D(0) D(1) D(2) D(3)

x⇤

C⇤ D⇤

⇣⇤

 1 1

C(1) C(2) C(3)

A(0)

B(1)

Figure 1 (left) An example of a static graph in which A, B are source nodes and C, D are sink
nodes, with their evacuee number at each node. The pair (a, b) on the edge of the graph represents
transit time a with capacity b. (right) the dynamic network representing each node at the time i,
for i = 1, ..., t.

It is easy to observe the relationship between the maximum number of nodes and the
maximum flow, as concluded in the following proposition. The correctness of this proposition
is straightforward from [7].

▶ Proposition 1. Given a dynamic flow network Gt(S) and a time horizon t, let flowt(S) be
the value of the maximum flow from x∗ to ζ∗ in Gt(S). The maximum number of evacuees
whose evacuation time is less than or equal to t is equal to flowt(S).

2.2 Maximum Flow and Flow Decomposition
While the concept of the maximum flow problem and the Ford-Fulkerson algorithm are
fundamental to graph theory, one might consider their inclusion unnecessary. However,
given their instrumental role in demonstrating our main results in Section 3, we assert their
discussion is crucial for maintaining the completeness of this paper.

In graph theory, the maximum flow problem is a well-known optimization problem. In
the problem, a network, (G = (V, E), s, t, c), is defined as a directed graph, G = (V, E), with
the capacity function c : E → Z+ such that each edge (u, v) ∈ E has a capacity c(u, v) ∈ Z+
that represents the maximum amount of flow that can be sent through it. s ∈ V is the source
node and t ∈ V is the sink node. Let f : E → Z≥0 be a function that represents the flow,
f(e) be the flow that is sent through the edge e. Finding the maximum flow value from a
source node to a sink node under the capacity constraint and flow conservation is the main
concept to solve this problem.

Capacity constraint is the limitation of the amount of flow which can be sent through
each edge. The amount of flow that can be sent through must be less than or equal to the
capacity of that edge which means for all e ∈ E, f(e) ≤ c(e).

P. Suriya, V. Suppakitpaisarn, S. Chaidee, and P. Sukkasem 10:5

The flow conservation is the property that for any vertex that is not a source node or
sink node, the incoming and outgoing flows are equal. That is for all v ∈ V \{s, t},∑

u:(u,v)∈E

f(u, v) =
∑

u:(v,u)∈E

f(v, u). (1)

The value of flow which is denoted by |f | is the amount of outgoing flow in a source node
which is equal to the amount of incoming flow in a sink node. That is

|f | =
∑

u:(s,u)∈E

f(s, u) =
∑

v:(v,t)∈E

f(v, t). (2)

f is a feasible flow if f satisfies capacity constraint and flow conservation. Therefore, the
maximum flow problem aims to find a feasible flow f such that |f | is maximized. The
maximum value of flow in a flow network can be calculated using the Ford-Fulkerson
algorithm [6]. The algorithm is described as in Algorithm 1.

The algorithm outputs a set of path flows α. For each p ∈ α, let the set of edges of p be
E(p) and the flow value of p be ν(p). For each e ∈ E, define

(3)fα(u, v) = max

 ∑
p∈α:(u,v)∈p

ν(p)−
∑

p∈α:(v,u)∈p

ν(p), 0

 .

It is known that fα is a maximum flow of G. We call the graph Gα in Line 4 of the algorithm
as a residual graph obtained from G and the path flow set α.

Algorithm 1 Ford-Fulkerson Algorithm [6].

Input: Directed graph G = (V, E, c), source node s ∈ V , sink node t ∈ V

Output: A set of path flows α such that fα is a maximum flow of G

1 α← ∅
2 Gα ← (V, E0, c0) such that E0 = E ∪ {(v, u) : (u, v) ∈ E} and c0(e) = c(e) for e ∈ E

and c0(e) = 0 otherwise
3 while there exists an s-t path p with edge sets E(p) and ν(p) = min

e∈p
c(e) > 0 in the

graph Gα do
4 α← α ∪ {p}
5 For each (u, v) ∈ E(p), Gα(u, v)← Gα(u, v)− ν(p) and

Gα(v, u)← Gα(v, u) + ν(p)
6 end

Let |E| be the number of edges and |f | be the value of maximum flow. Then, the time
complexity of the Ford-Fulkerson algorithm in the time-expanded network is O(|E||f |).

It is worth mentioning that the Ford-Fulkerson algorithm is not incorporated into our main
algorithms. Instead, we reference it solely for our submodularity proof. In practical scenarios,
we prefer using more efficient maximum flow algorithms like the Dinic algorithm [3, 4] or the
Edmonds-Karp algorithm [5].

The next fundamental concept we use in our proof is flow decomposition [17]. The concept
is introduced in the following theorem:

▶ Theorem 2 (Flow Decomposition Theorem [17]). For any flow f of G = (V, E, c), there are
feasible path flow set α such that:
1. For all p ∈ α, E(p) ⊆ E

2. |α|≤ |E|.
3. |f |=

∑
p∈α

ν(p).

ATMOS 2023

10:6 Submodularity Property for Facility Locations of Dynamic Flow Networks

By this theorem, if we have an arbitrary feasible flow, we can decompose it into path
flows. The set of path flows will be used at our submodularity proof in the next section.

2.3 Submodularity of Functions flowt

A submodular function is a mathematical function defined on finite sets satisfying the
property that, when adding an element to a smaller set, the difference in value will be greater
than or equal to the difference in value when adding it to a larger set, as shown in the
following definition [9].

▶ Definition 3. If V is a finite set, a function f : 2V → R is submodular if every S, S′ ⊆ V

with S ⊆ S′ and every k ∈ V − S′ then f(S ∪ {k})− f(S) ≥ f(S′ ∪ {k})− f(S′).

Submodular functions can be classified into a class of monotone functions and non-
monotone functions. In this study, we will mainly focus on monotone functions, a function
in which the value of a smaller set is less than or equal to that of a larger set.

▶ Definition 4. A set function f is monotone if for every S ⊆ S′, then f(S) ≤ f(S′).

In optimization, monotone submodular functions have a considerable advantage since their
properties can guarantee that the greedy algorithm is an efficient approximation algorithm.
In a computationally efficient way, these algorithms can give solutions that are close to the
optimal solution with a provable ratio between the solution from the algorithm and the
optimal solution.

In this paper, we show that flowt is a submodular function. It is clear that flowt is a
monotone function since flowt is the function of maximum flow in a time-expanded network;
it is obvious that when the set of sink nodes is larger, the maximum flow will increase. As a
result, we can use the algorithm in [14] to give a 0.63-approximation algorithm for Problem 1.
The algorithm is shown in Algorithm 2.

Algorithm 2 Greedy algorithm for Problem 1 based on the algorithm for the submodular
function maximization problem in [14].

Input: The function flowt : 2|V| → Z≥0, the number of facility κ

Output: Set of facility S

1 S ← ∅;
2 while |S|< κ do
3 v∗ ← arg max

v∈V
flowt(S ∪ {v})

4 S ← S ∪ {v∗}
5 end

Furthermore, we can solve Problem 2 by an O(log(n))-approximation algorithm when n

is the total number of evacuees. The algorithm is shown in Algorithm 3

3 Proof for Submodularity Property

We prove the submodularity property of the flowt function in this section. We denote an
inverse of edge e = (u, v) as ē = (v, u). The proof is begun with the following definition:

▶ Definition 5. Consider a graph G = (V, E, c) such that s, t ∈ V . An s-t path flow of
G, represented as p, can be determined by E(p), a subset of E combined with {ē : e ∈ E}.
This subset represents the directed edges along the path. Additionally, the flow value of p is
symbolized by ν(p).

P. Suriya, V. Suppakitpaisarn, S. Chaidee, and P. Sukkasem 10:7

Algorithm 3 Greedy algorithm for Problem 2 based on the algorithm for the submodular
cover minimization problem in [18].

Input: The function flowt : 2|V| → Z≥0, the number of evacuees n

Output: Set of facility S

1 S ← ∅;
2 while flowt(S) < n do
3 v∗ ← arg max

v∈V
flowt(S ∪ {v})

4 S ← S ∪ {v∗}
5 end

Let α be a set of s-t path flows. We say that α is an s-t path flow set of a graph
G = (V, E, c) if, for any e ∈ E such that ē ∈ E,

(4)−c(ē) ≤
∑

p∈α:e∈E(p)

ν(p)−
∑

p∈α:ē∈E(p)

ν(p) ≤ c(e),

and, for e ∈ E such that ē /∈ E,

(5)0 ≤
∑

p∈α:e∈E(p)

ν(p)−
∑

p∈α:ē∈E(p)

ν(p) ≤ c(e),

We say that α is an s-t maximum path flow set of G if, for any s-t path flow set of G denoted
by α′,

∑
p∈α′ ν(p) ≤

∑
p∈α ν(p).

Under the earlier defined parameters, it is interesting to note that E(p) might not always
be a subset of E, despite p being a path flow of the graph G = (V, E, c). In fact, when
applying the Ford-Fulkerson algorithm to determine path flows, the output set of edges may
not necessarily be confined within E.

The following definition will focus on a particular instance of path flows that does not
incorporate edges in the set {ē : e ∈ E}.

▶ Definition 6. Consider a graph G = (V, E, c) such that s, t ∈ V . Let α be a set of s-t path
flow. We say that α is a one-sided s-t path flow set if:
1. for all p ∈ α, E(p) ⊆ E, and,
2. for all e ∈ α,

∑
p∈α:e∈E(p)

ν(e) ≤ c(e).

We can construct a one-sided path flow set from a path flow set using the flow decompos-
ition algorithm introduced in the previous section.

Recall the graph Gt(S) defined in the previous section. Let F (S) be the collection of
all x∗-ζ∗ maximum path flow sets of Gt(S). By the definition, we obtain the following
proposition.

▶ Proposition 7. For any S ⊆ S′, there is α ∈ F (S) and α′ ∈ F (S′) such that α ⊆ α′.

Proof. Let Gα = (V, Eα, c) be a residual graph obtained from the graph Gt(S) and the path
flow set α. Let E′ = Eα ∪ {(v∗, ζ∗) : v ∈ S′\S}. Consider a function c′ : E′ → Z≥0 ∪ {∞}
such that c′(e) = c(e) for all e ∈ Eα and c′(e) = ∞ for all e ∈ {(v∗, ζ∗) : v ∈ S′\S}. We
can apply the Ford-Fulkerson algorithm to the graph G′ = (V, E′, c′). Let β be the set of
path flows obtained from the Ford-Fulkerson algorithm. It is straightforward to confirm that
α′ = α ∪ β is an x∗-ζ∗ maximum path flow set of G(S′). Hence, α′ ∈ F (S′). ◀

ATMOS 2023

10:8 Submodularity Property for Facility Locations of Dynamic Flow Networks

For each α ∈ F (S), let Gα = (V, Eα, c) be a residual graph obtained from the graph
Gt(S) and the path flow set α. Let E∗

k = Eα ∪ {(k∗, ζ∗)}, c∗
k(e) = c(e) for all e ∈ Eα,

c∗
k((k∗, ζ∗)) = ∞, and G∗

k = (V, E∗
k , c∗). We use the previous proposition to prove the

subsequent lemma.

▶ Lemma 8. There is α ∈ F (S), α′ ∈ F (S ∪ {k}) such that α ⊆ α′ and, for all p ∈ α′ − α,
k∗ ∈ E(p). Furthermore, α′ − α is a maximum path flow set of G∗

k.

Proof. We construct α, α′ based on the proof of Proposition 7. To have α′ ∈ F (S ∪ {k}, it
is straightforward that α′ − α is a maximum path flow set of the residual graph G∗

k.
We then show that, for all p ∈ α′ − α, k∗ ∈ E(p) by contradiction. Let assume that

β = α′ − α there is a path p ∈ β such that k∗ /∈ E(p). Then, there exists s ∈ S such that
s∗ ∈ E(p). Then, let us consider β as an x∗-ζ∗ maximum path flow set of G∗. By the flow
decomposition, we can construct a one-side path flow set of G∗ from β. Let us denote that
one-side path flow set by β′. Since there exists p ∈ β such that s∗ ∈ E(p), there exists p′ ∈ β′

such that s∗ ∈ E(p′). We obtain that p′ is a path in G∗. This contradicts with the fact that
α ∈ F (S). ◀

We are ready to prove the following theorem which confirms the submodularity for the
considered function flowt.

▶ Theorem 9. Let S ⊆ S′, then flowt(S ∪ {k})− flowt(S) ≥ flowt(S′ ∪ {k})− flowt(S′)

Proof. Let α ∈ F (S). By Proposition 7, there are α′ ∈ F (S′) and α′′ ∈ F (S′ ∪ {k}) such
that α ⊆ α′ ⊆ α′′. For all p ∈ α′′ − α′, we can assume from Lemma 8 that k∗ ∈ p. By
flowt(S′ ∪{k})− flowt(S′) =

∑
p∈α′′−α′

ν(p), we obtain that flowt(S′ ∪{k})− flowt(S′) is equal

to the flow value at edge (k∗, ζ∗) in α′′.
Let E∗

sk = Eα ∪ {(s∗, ζ∗) : s ∈ S′ ∪ {k}}, c∗
sk(e) = c(e) for all e ∈ Eα, c∗

sk((s∗, ζ∗)) =∞
for all s ∈ S′ ∪ {k}, and G∗

sk = (V, E∗
sk, c∗). Let β = α′′ − α. We can consider β as an

x∗-ζ∗ maximum path flow set of G∗. By the flow decomposition, we can construct a one-side
path flow set of G∗ from β. Let us denote that one-side path flow set by β′. Also, let us
denote β′

k as a set of path flows in β which passes k∗, i.e. β′
k := {p ∈ β′ : (k∗, ζ∗) ∈ E(p)}.

The flow at the edge (k∗, ζ∗) in α′′ is equal to
∑

p∈β′
k

ν(p), and, by the previous paragraph,∑
p∈β′

k

ν(p) = flowt(S′ ∪ {k})− flowt(S′).

The path flow set β′
k is a path flow set of G∗

k because, for all e ∈ G∗
k,

∑
p∈β′

k
:e∈p

ν(p) ≤∑
p∈β′:e∈p

ν(p) ≤ c(e). The path flow set α ∪ β′
k is then a path flow set of G(S ∪ {k}). Hence,

the maximum flow value of G(S ∪ {k}) is at least
∑

p∈α
ν(p) +

∑
p∈β′

k

ν(p). We obtain that:

(6)

flowt(S ∪ {k})− flowt(S) ≥
∑
p∈α

ν(p) +
∑

p∈β′
k

ν(p)−
∑
p∈α

ν(p)

=
∑

p∈β′
k

ν(p)

= flowt(S′ ∪ {k})− flowt(S′) ◀

P. Suriya, V. Suppakitpaisarn, S. Chaidee, and P. Sukkasem 10:9

4 Experimental Results

4.1 Data
An example for verifying the proposed method is derived from a graph of a road network
extracted from the city of Chiang Mai, generated by the open data from the project “Urban
Observatory and Citizen Engagement by Data-driven and Deliberative Design: A Case Study
of Chiang Mai City”. The information on the roads (road width and length) and population
number is stored as .csv file, which can be opened using QGIS software.

A B C D E

FGHI

J
K

L M
N O

P
Q

R
ST

U

V

Figure 2 (left) An example of a selected network from a map of Chiang Mai (from Google
Map) (right) the planar graph generated from the map such that the nodes are derived from the
intersections of roads, and edges are roads.

4.2 Data Extraction
Based on the provided information, the graph nodes represent the intersection of roads. The
capacity of each edge is interpreted as two times the width of the road, and the transit time
is computed from the length of the road.

Since the population number information is stored as the population number per district,
the following instruction illustrates the assignment of the population to each node of the
graph. Assume that the considered region consisting of D1, ..., Dn districts with population
number n(D1), ..., n(Dn), respectively.
1. Generate the ordinary Voronoi diagram which generators are the graph nodes over the

considered region.
2. For each Voronoi region, consider whether it belongs to district(s). Then compute the

area of each district contained within each Voronoi polygon.
Suppose that V (v) is the Voronoi region of the node v such that V (v) = V1(v)∪ ...∪Vp(v)
and Vi(v) ⊆ Dk for some k.

3. The number of population at node v is computed by

n(v) =
∑

i

Area(Vi ∩Dk)
Area(Dk) × n(Dk).

4.3 Results
To set up experiments, we use a graph of a road network with 22 nodes, where the total
number of evacuees is 1455, and 30 edges. We assume that unit time in a time-expanded
network is 3 seconds; in one meter of road width, two evacuees can evacuate, and in 3 seconds,
evacuees can evacuate 2 meters. The experiments were done for both problems as follows.

ATMOS 2023

10:10 Submodularity Property for Facility Locations of Dynamic Flow Networks

4.3.1 Experiment Results for Problem 1

The objective of the experiments in problem 1 is to find the facilities’ location by Algorithm
2 among the given graph with 2, 3, 4, and 5 facilities such that the facilities in each case will
be located on the node of the given graph. Furthermore, we can find the optimal facility
location by considering all possible Cn,k cases. In this section, we will show the facility
location from Algorithm 2 and the optimal facility location with the number of evacuees
whose evacuation time is less than or equal to 3 minutes. The results are shown in Table 1
with Figure 3 and 4.

Table 1 The table of the result from Algorithm 2 in Problem 1. The table includes the set
of facility locations, and the number of evacuees whose evacuation time is less than 3 minutes,
comparing to the optimal facility location set by considering all of the possible C22,k.

Facilities No. (k) Result from Algorithm Result from Enumeration Cn,k

Set of Nodes No. Evacuees Set of Nodes No. Evacuees
2 [I, K] 625 [I, K] 625
3 [I, K, T] 826 [I, L, V] 870
4 [I, K, T, C] 983 [I, L, V, C] 1027
5 [I, K, T, C, G] 1115 [I, L, V, B, G] 1159

Figure 3 Result of facility locations from Algorithm 2 showed by orange nodes, which is the
same location with and the optimal facility location by considering all possible locations in the case
of two facilities.

The experiment result shows that, in the case that the number of facilities is 2, the set of
facilities from the greedy algorithm is the same as the optimal solution. On the other hand,
when the number of facilities is 3, 4, and 5, the solution from the greedy algorithm is slightly
different from the optimal solution because the greedy algorithm may not guarantee that the
solution from the algorithm will be the same as the optimal solution.

4.3.2 Experiment Result for Problem 2

In Problem 2, we use Algorithm 3 with the same data set as Problem 1 to find the set of
facilities S such that the number of facilities is minimized and the evacuation time of all
evacuees is less than or equal to 5 minutes. It is worth noting that, in the minimization
problem, we do not fix the number of facilities but aim to minimize it.

P. Suriya, V. Suppakitpaisarn, S. Chaidee, and P. Sukkasem 10:11

Figure 4 (left) Results of facility locations from Algorithm 2 with 3, 4, and 5 facilities (right)
results of optimal facility locations by considering all of the possible locations with 3, 4, and 5
facilities. Orange nodes show the locations of facilities.

The result from the experiment shows that the number of optimal facilities in this data is
equal to 4 when we employ Algorithm 3, in which the set of facility locations is [B, F, J, Q].
This satisfies the optimal solution acquired from enumerating all possible locations, as shown
in Figure 5.

5 Concluding Remarks

In this study, we proposed the proof of the submodularity of the function flowt, which is
defined by the maximum flow of a time-expanded network with a given time t from a static
graph, which is the function that represents the number of evacuees whose evacuation time
is less than or equal to t. This property enables us to apply the greedy algorithm for solving
the facility location problem of dynamic flow networks by finding the locations that maximize
the number of evacuees whose evacuation time is less than or equal to 3 minutes and the
location where the number of them is minimized, making every evacuee evacuate within 5
minutes. We also found the minimum number of facilities such that all evacuees can evacuate
within the given time. The experimental results for Problem 1 in the case of 2, 3, 4, and
5 facilities, and Problem 2, showed practical examples with spatial data. This shows that
applying the greedy algorithm guaranteed by the submodularity proof to the real data on
larger dynamic flow networks is reasonable.

ATMOS 2023

10:12 Submodularity Property for Facility Locations of Dynamic Flow Networks

Figure 5 The facility locations (orange nodes) from Algorithm 3, which is the same location as
the optimal facility location by considering all possible locations.

Based on the proof of submodularity, developing an efficient and robust approximation
algorithm for solving the facilities location problem with a larger network is challenging. It
would be useful for planning purposes, especially in the evacuation due to disasters in the
near future.

We have created a real dataset for evacuation plan in Chiang Mai and have tested with
the dataset. However, as a future work, we are planning to conduct more experiments with
other datasets including the datasets with larger sizes.

References

1 Rémy Belmonte, Yuya Higashikawa, Naoki Katoh, and Yoshio Okamoto. Polynomial-time
approximability of the k-sink location problem. arXiv preprint arXiv:1503.02835, 2015.

2 Fabián A Chudak and David B Shmoys. Improved approximation algorithms for the uncapa-
citated facility location problem. SIAM Journal on Computing, 33(1):1–25, 2003.

3 Yefim Dinitz. Dinitz’ algorithm: The original version and Even’s version. In Theoretical
Computer Science: Essays in Memory of Shimon Even, pages 218–240. Springer, 2006.

4 Yefim A Dinitz. An algorithm for the solution of the problem of maximal flow in a network
with power estimation. In Doklady Akademii nauk, volume 194, pages 754–757. Russian
Academy of Sciences, 1970.

5 Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

6 Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

7 Lester R Ford Jr and Delbert Ray Fulkerson. Constructing maximal dynamic flows from static
flows. Operations research, 6(3):419–433, 1958.

8 Norie Fu and Vorapong Suppakitpaisarn. Clustering 1-dimensional periodic network using
betweenness centrality. Computational Social Networks, 3(1):1–20, 2016.

9 Satoru Fujishige. Submodular functions and optimization. Elsevier, 2005.
10 Yuya Higashikawa, Mordecai J. Golin, and Naoki Katoh. Multiple sink location problems in

dynamic path networks. Theoretical Computer Science, 607:2–15, 2015.
11 Yuya Higashikawa and Naoki Katoh. A survey on facility location problems in dynamic flow

networks. The Review of Socionetwork Strategies, 13:163–208, 2019.
12 Dorit S Hochbaum. Heuristics for the fixed cost median problem. Mathematical programming,

22:148–162, 1982.

P. Suriya, V. Suppakitpaisarn, S. Chaidee, and P. Sukkasem 10:13

13 Satoko Mamada, Takeaki Uno, Kazuhisa Makino, and Satoru Fujishige. An O(n log2 n)
algorithm for the optimal sink location problem in dynamic tree networks. Discrete Applied
Mathematics, 154(16):2387–2401, 2006.

14 George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14:265–294, 1978.

15 Jorge Qüense, Carolina Martínez, Jorge León, Rafael Aránguiz, Simón Inzunza, Nikole
Guerrero, Alondra Chamorro, and Malcom Bonet. Land cover and potential for tsunami
evacuation in rapidly growing urban areas. the case of Boca Sur (San Pedro de la Paz, Chile).
International Journal of Disaster Risk Reduction, 69:102747, 2022.

16 Maxim Sviridenko. An improved approximation algorithm for the metric uncapacitated facility
location problem. In International Conference on Integer Programming and Combinatorial
Optimization, pages 240–257. Springer, 2002.

17 Lucia Williams, Alexandru I Tomescu, and Brendan Mumey. Flow decomposition with
subpath constraints. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
20(1):360–370, 2022.

18 Laurence A Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2(4):385–393, 1982.

ATMOS 2023

Spillback Changes the Long-Term Behavior of
Dynamic Equilibria in Fluid Queuing Networks
Theresa Ziemke1 #

Combinatorial Optimization and Graph Algorithms, Technische Universität Berlin, Germany
Transport Systems Planning and Transport Telematics, Technische Universität Berlin, Germany

Leon Sering #

Institute for Operations Research, ETH Zürich, Switzerland

Kai Nagel #

Transport Systems Planning and Transport Telematics, Technische Universität Berlin, Germany

Abstract
We study the long-term behavior of dynamic traffic equilibria and find that it heavily depends on
whether spillback is captured in the traffic model or not. We give an example where no steady state
is reached. Although the example consists of a single-commodity instance with constant inflow rate,
the Nash flow over time consists of infinitely many phases. This is in contrast to what has been
proven for Nash flows over time without spillback [3, 7].

Additionally, we show that similar phase oscillations as in the Nash flow over time with spillback
can be observed in the co-evolutionary transport simulation MATSim. This reaffirms the robustness
of the findings as the simulation does (in contrast to Nash flows over time) not lead to exact user
equilibra and, moreover, models discrete time steps and vehicles.

2012 ACM Subject Classification Computing methodologies → Agent / discrete models; Mathe-
matics of computing → Network flows; Applied computing → Transportation

Keywords and phrases flows over time, transport simulation, Nash flow, dynamic equilibrium,
long-term behavior, steady state, oscillation, spillback, MATSim

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.11

Funding Theresa Ziemke: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-
2046/1, project ID: 390685689).

Acknowledgements We thank Max Zimmer for technical work on the Nash flow over time computa-
tion tool.

1 Introduction

Reliable transport models are a central instrument to design efficient transport systems that
provide accessibilities to locations of interest for people and goods and at the same time
reduce the transport system’s negative effects like environmental pollution or its significant
contribution to climate warming.

Arguably, static (i.e., time-independent) models are still the mainstay of transport
modeling, despite their shortcomings in particular with respect to temporal effects [1]. An
important reason is that they are less complex than dynamic (i.e., time-dependent) models,
well-studied, and usually have unique solutions under relatively light conditions [16, 10, 14].
Often, static models are motivated with the argument that they are at least able to model a
stable long-term situation of their dynamic counterpart. This stable long-term situation –

1 corresponding author

© Theresa Ziemke, Leon Sering, and Kai Nagel;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 11; pp. 11:1–11:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tziemke@vsp.tu-berlin.de
https://orcid.org/0000-0001-8812-9041
mailto:sering@math.ethz.ch
https://orcid.org/0000-0003-2953-1115
mailto:nagel@vsp.tu-berlin.de
https://orcid.org/0000-0003-2775-6898
https://doi.org/10.4230/OASIcs.ATMOS.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 Spillback Changes the Long-Term Behavior of Dynamic Equilibria

called steady state – is in this context defined as a situation which is reached after an initial
warm-up phase where congestion builds up on the links of the network and then remains
constant (as long as the overall demand remains stable). But does such a steady state exist?

For the dynamic flows over time model (in the single sink-source setting), Cominetti
et al. [3] proved the existence of a steady state which is reached in finite time under the
necessary condition that the minimal s-t cut is larger or equal to the constant network inflow
rate. Olver et al. [7] generalized this result by proving that even without this condition, a
Nash flow over time will reach a final stable phase in finite time (whereby in a final stable
phase, queue length do not need to be constant but at least only change linearly, forever into
the future).

That result, however, assumes that no spillback occurs, i.e., traffic jams are never longer
than a link. This can be achieved by making the particles infinitely small or by giving links
unlimited storage capacity. As the occurrence of a spillback determines whether a local
over-saturation of a link affects other (upstream) links – and maybe even blocks intersections
or road segments – it is critical for a realistic model to be able to capture spillback effects.
Recently, the aforementioned flows over time model has been extended to also capture
spillback effects [13]. It is well-known that spillback can have a significant impact on the price
of anarchy, i.e., on the efficiency of the equilibrium [5, 11, 15]. Our study complements this
related work by identifying another effect that changes when spillback effects are modeled.

Our contribution

We study the long-term behavior of Nash flows over time capturing spillback effects and
show that they do not necessarily reach a steady state and not even a stable phase. This is
of high relevance as it changes two fundamental properties that have been proven for the
long-term behavior of Nash flows over time without spillback: On the one hand, we show
that – in contrast to what Cominetti et al. [3] have proven for the case without spillback
– there are instances with spillback where Nash flow queue lengths do not become stable,
even if the minimal s-t cut exceeds the constant network inflow rate. Additionally, the same
example shows that – in contrast to what Olver et al. [7] have proven for the case without
spillback – Nash flows over time with spillback even do not necessarily reach a situation
where queues increase linearly forever (i.e., a stable phase).

With that, this study shows that it is essential to include spillback effects into dynamic
network models to realistically model effects over time.

Moreover, we show that the Nash flow over time with spillback can consist of an infinite
number of phases – even for a single commodity with constant inflow rate. This shows
that there are instances where no algorithm exists to calculate Nash flows over time with
spillback that runs in polynomial time dependent on the input size, as doubling the value of
the considered time horizon doubles the number of phases. In the studied example, the Nash
flow phases behave periodically, though.

In general, this study highlights the importance of dynamic transport models: There are
effects over time that do not vanish after an initial warm-up phase. Although the importance
of dynamic transport models has been apparent for real-world applications with high time
dependency, it is still a common motivation for the use of static models that they model the
situation beyond the initial warm-up phase, i.e., the steady state. However, we show that
such a steady state does not necessarily exist, even for very simple instances.

The given example is not limited to the flows-over-time model. We also study its outcome
in the multi-agent transport simulation MATSim [4]. It can be seen that also this simulation
does not necessarily lead to a steady state and similar phase oscillations are visible. This
shows that the non-existence of a steady state with spillback is not limited to continuous
models (as the simulation models discrete time steps and discrete vehicles).

T. Ziemke, L. Sering, and K. Nagel 11:3

As MATSim is based on a co-evolutionary process which iteratively improves the users’
choice, it does not result in exact user equilibria. The fact that the Nash flow phase oscillations
can still be observed supports the robustness of this finding. However, the results of the
simulation also show that the phase oscillations become rarer the more randomness (or
error) is included in the co-evolutionary process. Moreover, phase oscillations even become
indistinct and vanish in the long term when we average out the deviations resulting from the
specific random seeds in the simulation.

The remainder of this paper is structured as follows. The next section concentrates on the
long-term behavior of Nash flows over time with spillback. We describe the model, present
the considered example and analyze the oscillating long-term behavior of the resulting phases
of the Nash flow over time. In Section 3 we transfer the example to the co-evolutionary
transport simulation MATSim. Section 4 draws a conclusion based on the findings.

2 Long-term behavior of dynamic equilibira in fluid queuing networks
with spillback

2.1 Flows over time with spillback
We consider a network consisting of a directed graph G = (V, E) with a source node s and
and sink node t. Each link e ∈ E is equipped with free-flow transit time τe ≥ 0, an in- and
outflow capacity rate ν+

e > 0 and ν−
e > 0, and most importantly, a storage capacity σe > 0.

From time 0 on, infinitesimally small flow particles are released with constant network
inflow rate of R > 0 at the source s. The particles, each seen as a single agents, travel into
the network with the goal to reach the destination as fast as possible. After entering a link e,
the particles first traverse this link, which takes τe seconds. Arriving at the end of the link,
they may have to wait in a queue, which forms if the outflow rate of the link exceeds the
outflow capacity, or if spillback occurs. These queues always operate at the maximum rate,
so either with outflow capacity rate (in the case of no spillback) or with a throttled rate
which might happen if a downstream link is full. After the waiting time particles reach the
next node and decide which outgoing link they want to take to continue their journey.

Spillback occurs if the total volume of flow that is on a link e from v to w (so either
traversing or waiting in the queue) reaches the storage capacity σe. In this case, the inflow
capacity rate of e is immediately reduced to the outflow capacity rate (or in the case that the
outflow capacity is already throttled to this throttled value). This ensures that links never
become overfull. As flow cannot wait on nodes, this might lead to a reduction of the outflow
capacity rate of upstream links (i.e. incoming links at v). If there is more than one incoming
link, the reduction of the capacity rate is done proportionally, i.e., the spillback factor cv

at v is the maximum value of (0, 1] such that – if all outflow capacities of incoming links
of v are multiplied by this value – flow conservation at v is possible (and throttled inflow
capacity rates are respected). For more details on these flow dynamics refer to [13] and [11].

A Nash flow over time (also called dynamic equilibrium) in this setting is a feasible flow
over time in which each particle travels from s to t on a shortest path. They form a Nash
equilibrium in the following sense: Each agent considers the chosen paths of all other agents.
This determines the given flow over time f . (Note that a single infinitesimally small agent
does not have any impact on the flow over time so it does not matter if the agent considers
the flow over time with or without themself.) We identify agents by the time they enter the
network, so let θ ≥ 0 be the agent that starts their journey at time θ. With the given flow
over time it is possible to determine the travel time of θ for any s-t path in the network. We
call f a Nash flow over time if every agent travels along a path that has the shortest travel
time over all possible path choices. For a mathematically precise definition, see [13] and [11].

ATMOS 2023

11:4 Spillback Changes the Long-Term Behavior of Dynamic Equilibria

It is far from trivial to see if these flows over time exist at all. Fortunately, it has been
proven by Sering and Vargas Koch [13] that Nash flows over time always exist in the spillback
setting (under some natural condition on the network). Thereby, the path choice of an
agent θ does only depend on the path choices of all agents entering the network before time
θ. That is, we have a network-wide FIFO (first in first out) principle: Agents cannot be
overtaken by following agents and, therefore, are not impacted by them by any means. Even
better, intervals of agents always choose the same path (more precisely the same convex
combination of paths). This means that a Nash flow over time can be decomposed into
phases corresponding to the choices of an interval of agents. For example in Figure 2, all
agents entering the network within [0, 14) choose the middle path; agents entering within
[21, 50) split up between the middle and the lower path, more precisely a rate of two takes
the middle path and a rate of four takes the lower path.

These phases are called thin flow phases and the flow split is given by very specific static
flows called spillback thin flows; see [13]. These flows can be computed with the help of a
mixed integer program, which leads to a constructive algorithm for a Nash flow over time:
Start with the empty network (1), compute a spillback thin flow for the current configuration
(2), determine for how long this phase will be valid (3), and compute the Nash flow over time
for this phase by simulating it with the flow split given by the spillback thin flow. Step (2)
to (4) can be repeated to extend the Nash flow over time until a final phase is found (i.e., a
phase that is valid forever). For Nash flows over time in the model without spillback this
final phase is always reached in finite time [7] but for the spillback model we show that no
such final phase exists and, therefore, such an algorithm may not terminate.

2.2 Periodic long-term behavior of Nash flows over time with spillback
The oscillating long-term behavior of Nash flows over time can be observed in the example
given in Figure 1. All demand (six flow units per second; in the following denoted as vol/s)
travels from s to t through the network. There are three possible paths: The upper path,
the middle path and the lower path. Free-flow travel times (in s) per link are given in black,
outflow capacities (in vol/s) in red ovals, and storage capacities (in vol) in green boxes.

Because of the specific choice of the travel times, outflow-, and storage capacities, an
interesting Nash flow pattern arises: There is no point in time when a steady state is reached.
Path inflow rates change periodically over time and no stable queue lengths are reached
(neither constant nor linearly increasing). This special pattern will be described in the
remainder of this section.

Note that the network resembles Braess’ network [2] with adapted travel times and
capacities. This network is well-known to be hard for selfish routing network flows. Similar
to the original Braess’ network, the present example contains a Braess’ paradox: If one
removes the middle link v3v4, the equilibrium travel time is much lower (and queue length
are constant). Accordingly, one can show that the price of anarchy in the present example is
unbounded, which is in line with previous research on the impact of spillback on the price of
anarchy [5, 11, 15].

Phase description of the Nash flow over time

Figure 2 shows the resulting phases of the Nash flow over time. A phase consists of agents θ

departing in a specific time interval and experiencing similar network conditions. The phase
illustrations are, therefore, given from the perspective of the agents.

T. Ziemke, L. Sering, and K. Nagel 11:5

1

45

42

13

3
6

6

6
v3

2
v2v1

60 30

6
v4 ts

1 6

transit time

outflow capacity

τe

ν−
e

σe storage capacity

11

Figure 1 The network used in this study. Free-flow travel times [s] per link are stated as black
numbers, outflow capacities [vol/s] in red ovals, and storage capacities [vol] in green boxes. Links
without a label for storage capacities have unlimited storage. The network inflow rate constitutes
six flow units per second traveling from s to t through the network.

θ ∈ [0, 14)

6

θ ∈ [14, 19)

6

θ ∈ [19, 21)

6

θ ∈ [21, 50)

4
2

2

2

θ ∈ [50+18k, 53+18k)

2
0

0

θ ∈ [53+18k, 54+18k)

6
0

6

θ ∈ [54+18k, 61+18k)

4
2

θ ∈ [61+18k, 68+18k)

v1v2 full v1v3 active

v2v4 active

v1v2 full v2v3 full b+v1v2 changed

v2v4 active

inactive

non-queuing

queuing

full

increasing queue

decreasing queue

k ∈ N0

v2v3 full

2
3

2
3

1
2

2
3

1
2

2
3

1
2

2
3

spillback node

Figure 2 Consecutive thin flow phases of the Nash flow over time in the present example. There
are infinitely many of them, as phase five to eight repeat periodically every 18 seconds. θ denotes
the network entrance time of the agents forming the phases. The small numbers close to the links
(in black) denote the path inflow rates during the phase. The small numbers on top of the spillback
nodes (in red) denote the spillback factor – the outflow capacity rates of all incoming links are
reduced by this factor. Between the phases the event that triggered the previous phase to end is
indicated. Note that the events between the phases are not in chronological order, but from the
perspective of the agents; e.g. all agents of the second phase (i.e., all agents entering the network
within [14, 19)) experience a non-full link v1v2 but a full link v2v3 even though time-wise v1v2

becomes full before v2v3. The links are colored by their category: Inactive links do not belong to
any fastest s-t path in the corresponding phase; on non-queuing links, the first agent of the interval
is not delayed; on queuing links (also called resetting links in the literature), all agents of the interval
have to wait in a queue; and full links are full when the first agent of the interval reaches its tail.

ATMOS 2023

11:6 Spillback Changes the Long-Term Behavior of Dynamic Equilibria

It is important to understand that this agent view is different from a snapshot view. The
latter shows the dynamics of the network over time as one is used to from visualizations of
simulations. The former shows the view of the decision-making agent. For this, the state of
the links as they will be when the agent will be there is important. Note that with the agent
view events between the phases do not appear in chronological order, but in the order the
agents are impacted by them.

To understand this perspective, let us first consider the network filling up (corresponding
to the phases in the first line of Figure 2). In the first three phases (consisting of all agents
entering the network before time 21), all flow takes the shortest middle path.

For link v1v2 this means that from time 1 onward (i.e., after the first agent has passed
link sv1), a flow rate of 6 vol/s enters the link. Due to the bottleneck given by the outflow
capacity, only a rate of 3 vol/s leaves the link after the free-flow travel time, i.e., from time 2
onward. Hence, at time 20, there is a flow volume of 19 · 6 − 18 · 3 = 60 on this link, which
means that it becomes full at this moment. This is the time when agent θ = 19 arrives at v1.

Let us consider link v2v3 now: From time 2 on, a flow rate of 3 vol/s enters this link,
but due to the even smaller bottleneck, only a rate of 2 vol/s leaves it, starting at time 3.
Hence, at time 30 a total flow volume of 28 · 3 = 84 has entered the link and a flow volume
of 27 · 2 = 54 has left, i.e., at that time the flow volume reaches the storage capacity of 30
and the link becomes full. The agent departing at θ = 14 reaches this link at time 30, thus,
from the perspective of departing agents, v2v3 is full from θ = 14 on, thus, earlier than v1v2
(see the phase illustration in Figure 2).

For brevity, we are not going through all details of the Nash flow phases, here. Exemplarily,
let us examine the phase shift between phase three and four in more detail in the following:
Consider an (infinitesimally small) agent departing at time 20. From her perspective, both
links v1v2 and v2v3 are full. Due to spillback across node v1 from snapshot time 20 on, the
outflow capacity of link sv1 reduces to 3 vol/s. Note that it is not 2 vol/s, because at this
snapshot time, the downstream link v2v3 is not full yet. So, agent θ = 20 has 3 flow volumes
in the queue on link sv1 ahead of her, meaning that she needs one second for traversing the
link plus one second for waiting and reaches node v1 at time 22. Consider the agents ahead
of her: The first one needs 3 seconds to reach v3, and from then on v3 discharges agents with
a rate of 2 vol/s. As agent θ = 20 has 20 · 6 = 120 agents ahead of her, this needs another 60
seconds, i.e., she can finally leave v2v3 at time 63, and, with that, 41 seconds after arriving
at node v1. Thus, the bypass with 42 seconds travel time is still slightly longer.

This, however, changes for agent θ = 21. He reaches v1 at time 24 (transit time of 1 plus
a waiting time of 2). 21 · 6 = 126 agents are ahead of him, i.e., he can leave v2v3 at time
3 + 63 = 66, i.e., 42 seconds after arriving at node v1. If he takes the lower path instead,
he would experience the same travel time. For that reason, the lower path or, in particular,
v1v3 becomes active for agent θ = 21.

The following agents split 2 : 4 between the middle and the lower path such that travel
times on both paths stay balanced during the whole phase (for all agents θ ∈ [21, 50); see
Figure 2). At snapshot time 24, when agent θ = 21 enters link v1v2, agents still leave the
link with the full outflow capacity of 3 vol/s as the downstream link v2v3 only becomes full
at snapshot time 30. With that, the queue on v1v2 decreases again (by 1 vol/s for 6 time
steps, and then stays constant) such that spillback dissipates from node v1. Nevertheless,
the queue on sv1 does not decrease but stays constant. On the other hand, link v3v4 starts
growing a queue (from the perspective of the agents).

The Nash flow phases continue to process as depicted in Figure 2. Let us concentrate on
the main aspects in the following. For more details and examples on how Nash flows over
time with spillback evolve in general, the reader is referred to previous studies [11, 13].

T. Ziemke, L. Sering, and K. Nagel 11:7

The fourth phase ends with the moment when travel times on all three paths become
equal, and, with that, the upper path becomes active and used. This happens at departure
time θ = 50. With phase five, the warm-up phase has ended and from now on phase five to
eight repeat cyclically every 18 seconds.

The increased inflow to link v1v2 causes the queue on that link to grow again. Simultane-
ously (so for the same agents) only 1/3 of the flow uses the link v2v3 (which was full at the
beginning) causing it to become non-full. For agents entering only 3 seconds later, v1v2 gets
full again, which means that the queue on this link can no longer grow. As a consequence,
all flow travels through the middle path, which leads to spillback across v1. For agents
entering only one second later, v2v3 becomes full yet again, but this does not change the
flow behaviour. For agents entering seven seconds later, the outflow rate of link v1v2, which
was 3 vol/s before, is reduced to 2 vol/s due to spillback arriving at v2 (from the perspective
of the particle). For that reason, the lower path (which was active all the time but not used
by any flow) is used again causing link v1v2 to become non-full. Finally, for agents entering
seven seconds later, the upper path becomes active, which results in the same situation as at
the beginning of the loop (phase five) with the only difference that the queue on the first
link sv1 has increased. Since the storage capacity on this link is unbounded and all the flow
has to traverse this link in any case, the loop repeats indefinitely.

Flow values, travel times, and queue length of the Nash flow over time

Figure 3 shows the cumulative flow values of flow particles in the Nash flow over time for the
three different routes in the present example for the first 200 seconds. When the distribution
of flow particles on the three routes changes between the phases of the Nash flow over time,
this can be observed in the plot by changes in line slopes.

Figure 5 and Figure 6 illustrate the link travel time and volume of queuing flow particles
in the Nash flow over time for the two most interesting links sv1 and v3v4. The plots verify
that the queue (and, with that, the travel time) on the first link keeps growing (in phases
6 + 4k and 7 + 4k, k ∈ N0, respectively; see Figure 2) and never decreases. Hence, also
overall travel time in the network (which is depicted in Figure 4) increases over time. This
shows that the network throughput is strictly smaller than the inflow rate, although the
minimal s-t cut is larger, and, thus, it would be possible to send all flow through the network
without delay. Such an inefficient Nash flow is typical for a Braess-like instance, though.
Note that Nash flow travel times of all flow particles with the same departure time are equal,
independent of their route, as all flow particles share the same origin and destination.

The steps in the link travel time plot for the first link (see Figure 5) exactly correspond
to the time intervals of the phases from Figure 2: Link travel time increases when spillback
occurs, i.e., when the next link is full. Interestingly, the corresponding steps on the queue
volume plot in Figure 6 happen more seldom. This is because queue volumes increase on link
sv1 as long as flow particles experience a situation with larger in- than outflow (in this case
due to spillback from v1v2). Note that this might be longer than the departure time interval
of the agents corresponding to that phase. Consider for example the spillback phases six and
seven. The first agent of that phases, θ = 53, arrives at node v1 at time 53 + 1 + 2 = 56. The
last agent θ = 61 arrives 24 seconds later at v1, i.e., the queue volume increase holds on for
these 24 seconds, although the two phases together only have a length of 8 seconds (in terms
of departure time at s). Afterwards, the queue volume stays constant for 10 seconds, which
corresponds to the length of the departure time interval of phases eight and nine, because
travel time on sv1 stays constant in that time period. Together, one Nash flow phase cycle
of 18 seconds corresponds to a queue volume period of 34 seconds, and the queue volume
periods repeat periodically, similar to the Nash flow phases.

ATMOS 2023

11:8 Spillback Changes the Long-Term Behavior of Dynamic Equilibria

0 50 100 150 200
depature time [s]

0

25

50

75

100

125
cu

m
ul

at
iv

e
flo

w
[v

ol
] upper

middle
lower

Figure 3 Cumulative flow values in the Nash
flow over time for the three different routes.

0 50 100 150 200
departure time [s]

0

50

100

150

200

tra
ve

l t
im

e
[s

]

Figure 4 Travel time per departure time in
the Nash flow over time.

0 50 100 150 200
link enter time [s]

0

25

50

75

100

125

lin
k

tra
ve

l t
im

e
[s

] s_v1
v3_v4

Figure 5 Link travel time of links sv1 and
v3v4 in the Nash flow over time dependent on
the link enter time.

0 50 100 150 200
time [s]

0

100

200

300

400

qu
eu

e
vo

lu
m

e
[v

ol
] s_v1

v3_v4

Figure 6 Volume of queuing flow particles
on the links sv1 and v3v4 in the Nash flow over
time.

For link v3v4, the periods for the travel time and the queue volume in Figure 5 and
Figure 6 have the same length, because the travel time does not increase every period but
oscillates around a stable value dependent on the Nash flow phase oscillation. Both measures
have a period length of 34 seconds.

In sum, the analysis of phases and queue length of the Nash flow over time in this instance
has shown that there is no point in time when a steady or stable state is reached, and
there exist infinitely many oscillating phases in the Nash flow over time. To be precise, the
oscillating pattern of the lines in Figures 3–6 repeats indefinitely.

3 Long-term behavior of equilibria in a discrete, co-evolutionary
transport simulation

This section shows that it is not only a theoretical finding that the phases of a dynamic
equilibrium oscillate infinitely and no steady state is reached when spillback effects are
modeled. When we apply the co-evolutionary transport simulation MATSim to the same
instance as in Section 2, similar phase oscillations can be observed. This is interesting as the
simulation does (in contrast to Nash flows over time) not lead to an exact user equilibrium
and, moreover, it models discrete time steps and vehicles (whereas Nash flows over time are
continuous). For a detailed model comparison the reader is referred to our previous study

T. Ziemke, L. Sering, and K. Nagel 11:9

Figure 7 Iterative, co-evolutionary cycle of MATSim [4].

[17]. Despite the different perspectives, both models behave very similar. Our previous
experiments indicate that Nash flows over time are the limit of the convergence processes
when decreasing the vehicle size and time step length in the simulation coherently [17].
Accordingly, we were able to mathematically prove the convergence of the flow models [12],
and, even further, that Nash flows over time converge to competitive packet routing games
(similar to MATSim) with decreasing refinement level [8].

3.1 The multi-agent transport simulation MATSim
In MATSim, the road network is represented by a directed graph. Each link is defined by a
free-flow travel time, a flow capacity and a storage capacity. The storage capacity determines
the number of vehicles which fit on a link spatially. An exceeded storage capacity effects
that vehicles have to remain on the upstream link and, as such, the model allows to model
spillback effects. MATSim’s traffic simulation handles each link as a first-in-first-out (FIFO)
queue. A vehicle that enters a link is immediately put into the FIFO queue and a so-called
earliest exit time is set as the entrance time plus the link’s free-flow travel time. In each
time step, MATSim’s traffic simulation checks the following conditions to determine whether
a vehicle can leave the queue of a given link: (1) The vehicle is at the head of the queue,
(2) the link’s earliest exit time has passed since the vehicle entered the link, (3) the flow
capacity of the link is sufficient, and (4) the next link has sufficient space left, i.e., its storage
capacity is not exceeded. When a vehicle leaves a link its flow volume is subtracted from the
remaining flow capacity for this time step. If a sufficient flow capacity for the flow volume of
the next vehicle remains, this other vehicle is allowed to leave the link. Otherwise, a next
vehicle can only leave once sufficient flow capacity has accumulated over the following time
step(s). When no vehicle wants to leave the link for some time, the flow capacity does not
accumulate more than its value per time step, i.e., flow capacity cannot be saved for the
future.

MATSim is based on a co-evolutionary algorithm, i.e., an iterative process where in each
iteration a fraction of agents is allowed to change their plans by choosing from a set of good
responses with the goal to improve their (individual) score. This procedure leads to a state
where most of the agents do not have any incentive to deviate, but this does not necessarily
correspond to an exact user equilibrium. The co-evolutionary algorithm consists of the
three steps mobsim, scoring and replanning and is illustrated in Figure 7. The flow model
described above corresponds to the mobsim module, where plans of agents are executed on
the network. Next, all executed plans are evaluated by the scoring module (in this study,
scores are only based on the experienced travel times). Based on these scores, agents either
change their plans within their current plan choice set or generate completely new plans
during replanning. In this study, agents are only allowed to change their routes, whereas in
general changes along other choice dimensions (e.g., departure time or mode choice) can be
represented in MATSim [4]. During re-routing, agents use the knowledge of all travel times
in the network of the last iteration and, based on those, choose the shortest possible route
based on the last iteration.

ATMOS 2023

11:10 Spillback Changes the Long-Term Behavior of Dynamic Equilibria

Simulation setup for the present study

For the present study, we use a simulation time step size of 1/16 seconds, and, in line with
our previous study [17], the square of this as the vehicle size. MATSim’s co-evolutionary
algorithm is run for 1000 iterations. At the beginning, all agents of the simulation are
equipped with the three possible routes and aim to find their best option within that plan
choice set over the iterations. In the first 800 iterations, 1/3 of the agents choose the plan
with the best score (i.e., lowest travel time in this case), 1/3 stay with their last choice, and
the other 1/3 of the agents apply a logit model to choose a plan from their choice set, i.e.,
a plan is chosen with a certain probability based on the score. From iteration 800 on, the
logit-model-based strategy is switched off and the probability of the other two strategies
becomes 50 : 50. Additionally, a method of successive averaging is applied on the score of the
plans from iteration 800 onwards. With that, the plan scores become more stable between
iterations which supports convergence towards a stable choice.

Some parts of MATSim depend on random values. In this setup this mainly applies to
the logit model used to choose plans from the choice set of the agents. One can influence the
randomness by choosing the initial random seed of the simulation. Based on this initial value,
the simulation will then set the random seed to a different value in each iteration. With the
same initial seed, two different simulation runs will underlie the same random values, though.
To be able to analyze the deviations depending on the specific random values, we, therefore,
repeat the simulation with 20 different initial random seeds.

We analyze the present example for an inflow time interval of [0, 500], i.e. in each simulation
run agents depart within the first 500 seconds of simulation time (with the aforementioned,
constant inflow rate). This keeps the run time within reasonable limits and still shows the
relevant pattern of phase oscillations.

3.2 Long-term behavior of equilibria in MATSim
The oscillating phases of the Nash flow over time (see Section 2.2) can also be observed in
MATSim: Figure 8 illustrates the queue volumes over time in the simulation for the two
links sv1 and v3v4 with the most interesting behavior. The plots show the full period of
queue increase and decrease for the simulation time of 500 seconds. (All following figures are
zoomed into the first 300 seconds of the simulation to better see the phase structures.) For
all following figures, the right plot shows the values for a specific random seed run; the left
plots show the average value over all random seed runs.

First of all, we can see a lot of phase switches where path inflow rates change (identified
by changes in line slopes). They are particularly distinct in the plots on the right that show
a selected random seed run. Interestingly, the phases in MATSim become the longer the
more time has passed. Probably, this is because the simulation does never result in exact
best solutions, but includes some randomness in agents’ route choice. This causes small
errors that accumulate over time and, again, increase the inaccuracy of the route choice of
the following agents. In the present example, this leads to slightly fewer agents using the
current best path in the simulation than in the Nash flow over time. Accordingly, queues
on the best path in the simulation built up a bit slower. Therefore, the balancing of route
travel times, which is necessary for the phase shifts, happens later than in the Nash flow.
Hence, phases expand.

The expansion of phases can also be seen in the right part of Figure 9, which depicts link
travel times on the two links sv1 and v3v4: In particular, the link travel times on the first
link show the aforementioned delayed increase for later phases (by a decreasing slope).

T. Ziemke, L. Sering, and K. Nagel 11:11

0 200 400 600 800
time [s]

0

50

100

150

200

qu
eu

e
vo

lu
m

e
[v

ol
] s_v1

v3_v4

0 200 400 600 800
time [s]

0

50

100

150

200

qu
eu

e
vo

lu
m

e
[v

ol
] s_v1

v3_v4

Figure 8 Flow volume of delayed vehicles in MATSim for the two links sv1 and v3v4 – on the
left, averaged over all random seed runs; on the right, corresponding to a selected random seed run.

0 100 200 300
link enter time [s]

0

50

100

150

200

lin
k

tra
ve

l t
im

e
[s

] s_v1
v3_v4

0 100 200 300
link enter time [s]

0

50

100

150

200

lin
k

tra
ve

l t
im

e
[s

] s_v1
v3_v4

Figure 9 Link travel time on sv1 and v3v4 in MATSim dependent on the link enter time – on the
left, averaged over all random seed runs; on the right, corresponding to a selected random seed run.

0 100 200 300
departure time [s]

0

50

100

150

200

av
g.

 c
um

ul
at

iv
e

flo
w

[v
ol

]

upper
middle
lower

0 100 200 300
departure time [s]

0

50

100

150

200

cu
m

ul
at

iv
e

flo
w

[v
ol

] upper
middle
lower

Figure 10 Cumulative flow values of vehicles in MATSim for the three different routes – on the
left, averaged over all random seed runs; on the right, corresponding to a selected random seed run.

ATMOS 2023

11:12 Spillback Changes the Long-Term Behavior of Dynamic Equilibria

0 100 200 300
departure time [s]

0
50

100
150
200
250
300

av
er

ag
e

tra
ve

l t
im

e
[s

]

avg. path

0 100 200 300
departure time [s]

0
50

100
150
200
250
300

tra
ve

l t
im

e
[s

]

upper
middle
lower

Figure 11 Travel time of vehicles in MATSim dependent on their departure time. The left plot
shows the average travel time over all routes and random seed runs, the right plot the average travel
time for one specific random seed run and each route separately.

Figure 10 shows the cumulative flow values on the three different routes in the simulation.
Again, the oscillating route distribution depending on the phases and their expansion over
time can be seen, especially for the selected random seed run on the right.

The effect that most of the phase oscillation vanishes in the long run, when the results
are averaged over multiple random seed runs (see all left plots in Figures 8–10), is an
interesting side finding of this study. The reason for this effect is a natural consequence of the
aforementioned error in the simulation that accumulates over time. As this error is heavily
dependent on the random values that are used in the simulation (i.e., the initial random
seed), the deviations from the exact user equilibrium are dependent on the random values as
well. With that, the results of the different random seed runs diverge more and more, the
more time has passed, i.e., the more error has accumulated. Clearly, averaging over multiple
random seed runs, therefore, averages out the long-term oscillations and results in stable,
average line slopes. This is important as it might result in significantly different results.
While modeling transport realistically, one usually is not interested in average network travel
times or queue length, but wants to know where and when congestion occurs and which
effects exist over time.

Because fewer agents use the middle route in the simulation than in the perfect Nash flow
due to the aforementioned deviations over time, another interesting side effect occurs: The
overall travel time (see Figure 11) is slightly lower compared to the Nash flow over time (the
higher the departure time, the lower the slope of the plot). This means that the simulation
leads to a slightly better overall situation – not because of intelligent measures, but because
of randomness and inaccuracy.

However, the right plot of Figure 11 also shows that the travel time in the simulation
is not fully converged: Some agents travel longer than other agents with the same (or
later) departure time and can, therefore, improve by unilaterally changing their route. In
consequence, we assume that route travel times, and, with that, cumulative flow values
would approximate further to the Nash flow over time values if the co-evolutionary learning
approach of the simulation was run for even more iterations and, thus, would result in a
situation that is closer to the exact user equilibrium. Alternatively, one could force the
agents in the simulation to choose their routes sequentially, one after the other, depending
on their departure time. Because our example constitutes a single-commodity instance, this
would result in the perfect user equilibrium [6]. However, real-world traffic will never be so
perfectly distributed. Instead, the observed deviations that the co-evolutionary approach
results in, might even rather align with how real-world travelers make their decisions and
are, therefore, also relevant to study on its one.

T. Ziemke, L. Sering, and K. Nagel 11:13

4 Conclusion and outlook

This study has shown that dynamic Nash flows capturing spillback effects do not necessarily
reach a steady state, i.e., a situation with constant queue lengths. Moreover, there are
(indeed very simple) instances where the phases of the Nash flow over time oscillate infinitely.
As a consequence, the long-term behavior of dynamic equilibria heavily depends on the
fact whether spillback is captured in the model or not. These findings also highlight the
importance of dynamic transport models in general. Additionally, we have shown that similar
phase oscillations as in the Nash flows over time model can be observed in the multi-agent
transport simulation MATSim. This supports robustness of the findings as the simulation
does (in contrast to Nash flows over time) not lead to exact user equilibria and, moreover,
uses discrete time steps and vehicles.

However, we also observed a significant deviation in the results when more randomness
is added to the co-evolutionary process of finding a stable state in the simulation. This is
because there is a strong dependence between following vehicles in the example considered
here. A route change of a preceding vehicle influences the travel time of all following vehicles.
Thus, deviations from the user equilibrium accumulate and persist over time and cause even
further deviations/errors. Still, the simulation outcome always had a structure similar to the
Nash flow over time. It would be an interesting follow-up question whether there exists an
example where these vehicle dependencies and accumulated errors result in a structurally
different solution, or, whether the co-evolutionary algorithm of the simulation might even
result in a chaotic solution, e.g. a grid lock, whereas the Nash flow over time does not.

Related to this is the question regarding continuity of dynamic equilibria, i.e., whether
small perturbations to the instance can lead to structurally different equilibrium solutions.
Although continuity of Nash flows over time has been proven recently for the case without
spillback [7], simulation studies have shown, that the co-evolutionary approach of MATSim
can lead to situations where a small change in the agent behavior can lead to huge changes in
the congestion pattern [9]. We assume, this discrepancy also stems from the presence/absence
of spillback effects. It would be interesting to investigate this further.

In the present example, the Nash flow over time consists of an infinite number of phases,
but the same three phases repeat periodically. A naturally next question is whether there
exists an instance with finite input and pure infinite output. This would finally rule out the
efficient calculation of Nash flows over time with spillback.

References
1 M. Balmer, N. Cetin, K. Nagel, and B. Raney. Towards truly agent-based traffic and mobility

simulations. In Proceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 60–67, 2004.

2 D. Braess. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung, 12:258–268,
1968.

3 R. Cominetti, J. Correa, and N. Olver. Long-term behavior of dynamic equilibria in fluid
queuing networks. Operations Research, published online, 2021.

4 A. Horni, K. Nagel, and K. Axhausen, editors. Multi-agent transport simulation MATSim.
Ubiquity Press, London, UK, 2016.

5 J. Israel and L. Sering. The impact of spillback on the price of anarchy for flows over time. In
International Symposium on Algorithmic Game Theory (SAGT), pages 114–129, Augsburg,
Germany, 2020. Springer, Springer.

6 R. Koch and M. Skutella. Nash equilibria and the price of anarchy for flows over time. Theory
of Computing Systems, 49(1):71–97, 2011.

ATMOS 2023

11:14 Spillback Changes the Long-Term Behavior of Dynamic Equilibria

7 N. Olver, L. Sering, and L. Vargas Koch. Continuity, uniqueness and long-term behavior of
Nash flows over time. IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 851–860, 2021.

8 N. Olver, L. Sering, and L. Vargas Koch. Convergence of approximate and packet routing
equilibria to Nash flows over time. IEEE 64nd Annual Symposium on Foundations of Computer
Science (FOCS), 2023.

9 M. Rieser and K. Nagel. Network breakdown “at the edge of chaos” in multi-agent traffic
simulations. European Journal of Physics, 63(3):321–327, 2008.

10 R.W. Rosenthal. The network equilibrium problem in integers. Networks, 3(1):53–59, 1973.
11 L. Sering. Nash flows over time. PhD thesis, Technische Universität Berlin (Germany), 2020.
12 L. Sering, L. Vargas Koch, and T. Ziemke. Convergence of a Packet Routing Model to Flows

Over Time. Mathematics of Operations Research, 2022.
13 L. Sering and L. Vargas Koch. Nash flows over time with spillback. In Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 935–945,
San Diego, California, USA, 2019. SIAM.

14 Y. Sheffi. Urban Transportation Networks: Equilibrium Analysis with Mathematical Program-
ming Methods. Prentice-Hall, Englewood Cliffs, NJ, USA, 1985.

15 T. Thunig and K. Nagel. Braess’s paradox in an agent-based transport model. Procedia
Computer Science, 83:946–951, 2016.

16 J.G. Wardrop. Some theoretical aspects of road traffic research. Proceedings of the Institute
of Civil Engineers, 1(3):325–378, 1952.

17 T. Ziemke, L. Sering, L. Vargas Koch, M. Zimmer, K. Nagel, and M. Skutella. Flows over time
as continuous limit of packet-based network simulations. Transportation Research Procedia,
52:123–130, 2021.

A Faster Algorithm for Recognizing Directed
Graphs Invulnerable to Braess’s Paradox
Akira Matsubayashi # Ñ

Division of Electrical Engineering and Computer Science, Kanazawa University, Japan

Yushi Saito
Division of Electrical Engineering and Computer Science, Kanazawa University, Japan

Abstract
Braess’s paradox is a counterintuitive and undesirable phenomenon, in which for a given graph
with prescribed source and sink vertices and cost functions for all edges, removal of edges decreases
the cost of a Nash flow from source to sink. The problem of deciding if the phenomenon occurs is
generally NP-hard. In this paper, we consider the problem of deciding if, for a given graph with
prescribed source and sink vertices, Braess’s paradox does not occur for any cost functions. It is
known that this problem can be solved in O(nm2) time for directed graphs, where n and m are
the numbers of vertices and edges of the input graph, respectively. In this paper, we propose a
faster O(m2) time algorithm solving this problem for directed graphs. Our approach is based on
a simple implementation of a known characterization that the subgraph of a given graph induced
by all source-sink paths is series-parallel. The faster running time is achieved by speeding up the
simple implementation using another characterization that a certain structure is embedded in the
given graph. Combined with a known technique, the proposed algorithm can also be used to design
a faster O(km2) time algorithm for directed graphs with k source-sink pairs, which improves the
previous O(knm2) time algorithm.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Network flows; Mathematics of computing → Graph algorithms; Mathematics of
computing → Network flows

Keywords and phrases Braess’s paradox, series-parallel graph, route-induced graph, Nash flow

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.12

Funding Akira Matsubayashi: This work was supported by JSPS KAKENHI Grant Number
23K10984.

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable
comments.

1 Introduction

Braess’s paradox is a counterintuitive and undesirable phenomenon, in which for a given
two-terminal graph G with prescribed vertices (or terminals) s and t, and nonnegative,
continuous, nondecreasing cost functions {ce} for every edge e, removal of an edge decreases
the cost of a Nash flow (or Wardrop flow) from s to t. Here, a network is modeled by the
two-terminal graph G, in such a way that a pair of source and sink (or origin and destination)
of the network is represented by the vertices s and t, respectively, and that the latency or any
other cost depending on the amount x of users passing through each edge e is represented
by the edge cost function ce(x). Nash flow is a flow from s to t in the graph reaching an
equilibrium among selfish users, each of which chooses a route from s to t that incurs the
minimum cost for the user.

© Akira Matsubayashi and Yushi Saito;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 12; pp. 12:1–12:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mbayashi@t.kanazawa-u.ac.jp
http://carrera.ec.t.kanazawa-u.ac.jp/index_e.html
https://orcid.org/0000-0002-7861-4876
https://doi.org/10.4230/OASIcs.ATMOS.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

12:2 Faster Algorithm for Recognizing Directed Invulnerable Graphs

Braess’s paradox was first published in 1968 [2]1 and has been quite extensively studied
in wide range of engineering, but it was not until 2001 that the computational complexity
of detection of Braess’s paradox was proved by Roughgarden [11, 13]. Specifically, given a
two-terminal graph G and cost functions {ce}, the problem of deciding if Braess’s paradox
occurs is NP-complete. Besides, for the problem of network design, i.e., finding a subgraph
of G with the minimum Nash flow cost, (4/3 − ϵ)-approximation for linear cost functions and
(⌊n/2⌋ − ϵ)-approximation for general cost functions, where n is the number of vertices, are
both NP-hard [11, 13]. Formal definitions of Nash flow and Braess’s paradox are provided in
Section 2.4.

Roughgarden [13] also raised a relaxed variation of the problem focusing on graph structure
that can cause Braess’s paradox without considering cost functions as input. This property of
graphs was called vulnerability in [13]. Milchtaich [10] characterized undirected two-terminal
graphs that are not vulnerable, or paradox-free [8], i.e., that do not admit Braess’s paradox
for any cost functions.

▶ Theorem 1 ([10]). Let G be an undirected two-terminal graph such that every edge
is contained in a path from source to sink. Then, G is paradox-free if and only if G is
series-parallel.

A counterpart for directed graphs was proved by Chen, Diao, and Hu [8].

▶ Theorem 2 ([8]). Let G be a directed two-terminal graph such that every edge is contained
in a path from source to sink. Then, G is paradox-free if and only if G is series-parallel.

Theorems 1 and 2 raise a question: Can we decide in polynomial time if Braess’s paradox
occurs in a general given two-terminal graph G that may have vertices and edges contained
in none of source-sink paths, for some cost functions? Obviously only edges contained in a
(simple) source-sink path have a positive flow in any Nash flow. Therefore, a straightforward
approach to this question would be to first construct the subgraph G̃ of G induced by
all edges contained in a path from source to sink, called the maximally irredundant or
route-induced subgraph,2 and then to check if G̃ is series-parallel. This idea succeeds if G

is undirected [8], because G̃ can be obtained through finding biconnected components of G

in linear time [14], and (directed and undirected) series-parallel graphs can be recognized
in linear time [15]. However, this approach fails for directed graphs, because computing
the route-induced subgraph G̃ of a directed graph G is generally NP-hard [7]. This means
that any polynomial time algorithm deciding if a given directed two-terminal graph G

is paradox-free must (implicitly or explicitly) solve the problem of deciding if the route-
induced subgraph G̃ is series-parallel in polynomial time without construction of G̃, unless
P = NP. Although this seems to be intractable as conjectured in [8], Cenciarelli, Gorla, and
Salvo [7] succeeded in designing a polynomial time algorithm. The authors of [7] presented a
constructive (but somewhat complicated) proof for a characterization [8, 6] that directed
vulnerable graphs contain a subgraph homeomorphic to the graph shown in Fig. 1, which is
called the Wheatstone network, and derived from the constructive proof an O(nm2) time
algorithm to detect such a subgraph, where n and m are the numbers of vertices and edges
of G, respectively.

1 English version of [2] (in German) is published as [3].
2 In the terminology of [8, 7, 9], this graph is said to be maximum or maximal(ly) irredundant. We

introduce and mainly use the more self-explanatory term “route-induced” in this paper.

A. Matsubayashi and Y. Saito 12:3

p q

Figure 1 The Wheatstone network.

In this paper, we propose a faster O(m2) time algorithm for deciding if a given directed
two-terminal graph G is paradox-free. Our approach is based on a simple implementation
of Theorem 2, which decides if the route-induced subgraph G̃ of G is series-parallel. More
specifically, we check if G̃ satisfies a recursive characterization of series-parallel graphs, i.e.,
G̃ is decomposed into single edges by a sequence of series and parallel decompositions. Since
it is unrealistic to depend on the complete information of G̃, instead, we recursively try to
decompose G into the maximum number of subgraphs G1, . . . , Gℓ in such a way that G̃ is
obtained either by series decompositions or by parallel compositions of the route-induced
subgraphs G̃1, . . . , G̃ℓ of G1, . . . , Gℓ, respectively. This can be performed in polynomial time
without complete information of G̃ or G̃1, . . . , G̃ℓ as we prove in this paper.

It was conjectured in [7] that not a characterization in terms of the route-induced subgraph
(as Theorem 2) but a characterization in terms only of the input graph (as the inclusion of
the Wheatstone network [8, 6]) would be necessary to design a polynomial time algorithm
for checking vulnerability. Our implementation of Theorem 2 disproves this conjecture.

To achieve O(m2) time complexity, we also use the characterization of [8, 6] (but not the
constructive proof in [7]) that G is vulnerable, i.e., G̃ is not series-parallel, if and only if G

contains a subgraph homeomorphic to the Wheatstone network.

Our algorithm, as well as the algorithm of [7], can be used to design an algorithm for
multicommodity networks modeled by directed 2k-terminal graphs with k > 1 source-sink
pairs. Chen et al. [8] defined a naturally extended concept of paradox-freeness for 2k-terminal
graphs with k > 1 (see [8] for the definition). Under the extended definition, they generalized
Theorems 1 and 2 to undirected and directed 2k-terminal graphs and proposed a polynomial
time algorithm for deciding if a given undirected 2k-terminal graph is paradox-free. For the
directed case, Fiorenza, Gorla, and Salvo [9] presented an O(knm2) time algorithm. Their
k-commodity algorithm for 2k-terminal graphs calls the single-commodity algorithm of [7]
for two-terminal graphs as a subroutine. The crucial property exploited by [9] is that if the
input directed two-terminal graph G is paradox-free, then the single-commodity algorithm
of [7] not only returns the result of decision but also produces the route-induced subgraph
of G, with simple modification. Actually, the k-commodity algorithm of [9] can use any
single-commodity algorithm with this property as a subroutine, and essentially runs in time
of k executions of the subroutine. Our algorithm has this property as well; therefore, we can
obtain a faster O(km2) time algorithm for deciding if a given directed 2k-terminal graph is
paradox-free (in the sense of the definition of [8]).

This paper is organized as follows: We describe some notation and definitions in Section 2.
In Section 3, we present our algorithm for deciding if a given directed two-terminal graph is
paradox-free, together with analysis of the correctness and time complexity. We conclude
this paper in Section 4.

ATMOS 2023

12:4 Faster Algorithm for Recognizing Directed Invulnerable Graphs

s t

G

s t

G̃

s t

H

s t

H̃

Figure 2 Two-terminal graphs G and H and their route-induced subgraphs G̃ and H̃ (solid
vertices and edges), respectively.

2 Preliminaries

2.1 Graphs and Paths
Graphs considered in this paper are directed or undirected, and may have multiple (or
parallel) edges joining the same pair of vertices, but no loops joining a single vertex. A
path P in a directed (undirected, resp.) graph consists of a sequence of distinct vertices
(v1, . . . , vℓ) and directed (undirected, resp.) edges (vi, vi+1) for all 1 ≤ i < ℓ. The path may
be empty, i.e., v1 = vℓ. The end-vertices of P are v1 and vℓ. The internal vertices of P are
vertices of P except its end-vertices, i.e., v2, . . . , vℓ−1. A directed path that starts from s

and ends with t, i.e., has end-vertices s and t and edges leaving s and entering t, is called
an st-path. For an undirected path with end-vertices s and t, we may call it an st-path or
a ts-path. We define that two paths intersect if an internal vertex of one of the paths is
also an internal vertex of the other path. Two paths that do not intersect are said to be
internally vertex disjoint, or simply disjoint.

2.2 Two-terminal graphs and Route-Induced Subgraphs
A two-terminal graph (or a single-commodity graph) is a graph that has two prescribed
distinct vertices representing source and sink. For a two-terminal graph G with source s

and sink t, a vertex or an edge of G is said to be irredundant if it is contained in an st-path
of G, redundant otherwise. The graph G is said to be irredundant if all edges (and hence
all vertices) of G are irredundant, and redundant otherwise. The maximally irredundant or
route-induced subgraph, denoted by G̃, is the subgraph of G induced by all irredundant edges.
The route-induced subgraph G̃ is also defined as the subgraph obtained as the graph union
of all st-paths of G. Examples are shown in Fig. 2. We note that route-induced subgraphs
are not necessarily vertex-induced subgraphs, as the graphs G̃ and H̃ in Fig. 2.

2.3 Series-Parallel Graphs
Suppose that G1 and G2 are directed or undirected two-terminal graphs, such that for each
i ∈ {1, 2}, Gi has source si and sink ti. The series composition of G1 and G2 is to compose
the new two-terminal graph from G1 and G2 by identifying t1 and s2, and by setting s1 and

A. Matsubayashi and Y. Saito 12:5

t2 to the new source and sink, respectively. The parallel composition of G1 and G2 is to
compose the new two-terminal graph from G1 and G2 by identifying s1 and s2 as the new
source, and t1 and t2 as the new sink. A (two-terminal) series-parallel graph is recursively
defined as follows.

▶ Definition 3 (series-parallel graphs).
1. A single edge (s, t) is a series-parallel graph with source s and sink t.
2. A graph obtained from two series-parallel graphs by series or parallel composition is

series-parallel.
As an example, the graph H̃ in Fig. 2 is series-parallel, but the rest in Fig. 2 are not.

2.4 Nash Flows and Braess’s Paradox
Let G = (V, E) be a directed or undirected two-terminal graph with source s and sink t, and
for each edge e ∈ E, let ce : R+ → R+ be a nonnegative, continuous, nondecreasing cost
function. We associate a traffic rate r ≥ 0 with the source-sink pair. Let P be the set of
all st-paths in G. We assume P ̸= ∅ in this paper. A flow vector (or simply flow) f is a
nonnegative real vector (fP)P ∈P . A flow f is said to be feasible if

∑
P ∈P fP = r. A flow on

an edge e is defined as fe =
∑

P ∈P:e∈P fP . The cost of a path P ∈ P with respect to a flow f

is defined as cP (f) =
∑

e∈P ce(fe). The cost of a flow f is defined as c(f) =
∑

P ∈P cP (f)fP ,

which is equal to∑
P ∈P

(∑
e∈P

ce(fe)
)

fP =
∑
e∈E

(∑
P ∈P:e∈P

fP

)
ce(fe) =

∑
e∈E

ce(fe)fe.

A feasible flow f is at Nash equilibrium (Wardrop equilibrium), or called a Nash flow
(Wardrop flow), if and only if for all P, P ′ ∈ P with fP > 0, cP (f) ≤ cP ′(f). Note that
this means that all paths in P with positive flows have the same cost in a Nash flow. It is
known that there exists a Nash flow for any instance (G, r, c), where c = (ce)e∈E , and that
all Nash flows have the same cost. For any Nash flows f and f ′, specifically, it follows that
ce(fe) = ce(f ′

e) for every edge e ∈ E, and hence, cP (f) = cP (f ′) for any path P ∈ P. See,
e.g., [12] for further detailed discussion.

Braess’s paradox occurs in the instance (G, r, c) if removal of some edges of G decreases
the unique cost of a Nash flow, i.e., there exists a spanning subgraph H = (V, E′) of G such
that

d(H, r, c) < d(G, r, c),

where d(H, r, c) and d(G, r, c) are the unique costs of Nash flows for the instances (H, r, c)
and (G, r, c), respectively. If there exist a traffic rate r and cost functions c = (ce)e∈E such
that Braess’s paradox occurs in the instance (G, r, c), then we define that Braess’s paradox
can occur in G, or G is paradox-ridden or vulnerable. Any graph that is not vulnerable is
said to be paradox-free.

The following is a characterization of directed vulnerable graphs, which we use in our
algorithm.

▶ Theorem 4 ([8, 6]). A directed two-terminal graph G with source s and sink t is vulnerable
if and only if there is an st-embedding ⟨ϕ, ρ⟩ of the Wheatstone network in Fig. 1 into G.
Here, ϕ is an injective mapping from the vertices in Fig. 1 to the vertices of G, and ρ maps
each edge in Fig. 1, denoted by (u, v), to a ϕ(u)ϕ(v)-path in G, as well as constructs a
(possibly empty) sϕ(p)-path and a (possibly empty) ϕ(q)t-path, in such a way that all these
paths are disjoint with each other.

ATMOS 2023

12:6 Faster Algorithm for Recognizing Directed Invulnerable Graphs

3 Algorithm for Directed Graphs

Our algorithm recursively performs series and parallel decompositions, which are similar to
the inverse operations of series and parallel compositions, respectively. Specifically, there
are two goals of series and parallel decompositions in our algorithm: One is to find the
maximum number of two-terminal subgraphs G1, . . . Gk of an input graph G, in such a way
that the route-induced subgraph G̃ of G is obtained either by series compositions or by
parallel compositions of the route-induced subgraphs G̃1, . . . G̃k of G1, . . . Gk, respectively.
The redundant vertices and edges in G− G̃ may or may not remain in the resulting subgraphs
G1, . . . Gk. The other goal is that the subgraphs G1, . . . Gk are almost separated, by which the
running time is reduced. Actually, only terminals of each of the subgraphs may be shared by
another subgraph. The series and parallel decompositions are implemented using depth-first
search (DFS) on G, as defined in this section. To obtain an O(m2) time implementation for
graphs with m edges, the parallel decomposition algorithm quits when an st-embedding of the
Wheatstone network is detected. We decide that G is paradox-free, i.e., G̃ is series-parallel
if and only if G̃ is decomposed into a collection of single edges by recursive executions of
the series and parallel decompositions with detecting no st-embedding of the Wheatstone
network. Because the series and parallel decomposition algorithms preserve irredundant
edges as the first goal above, the proposed algorithm can produce the series-parallel G̃ if G

is paradox-free.
We define and analyze the series and parallel decomposition algorithms in Sections 3.1

and 3.2, respectively, and the main procedure of the proposed algorithm in Section 3.3. To
simplify the discussion, we assume without loss of generality that the input graph G with m

edges has O(m) vertices. Note that this assumption is simply implied by weak connectivity,
and hence affects neither the vulnerability of G nor the time complexity of our algorithm.

3.1 Series Decomposition

3.1.1 Idea and Definition of Series Decomposition Algorithm
Our series decomposition algorithm, called Series_Decomposition, is based on the simple
observation that the route-induced subgraph G̃ of an input graph G is obtained by series
composition of two graphs H1 and H2, identifying the sink t1 of H1 and the source s2 of
H2, if and only if all st-paths in G contain the identified vertex t1 = s2 (Lemma 5). We call
such a vertex, including s and t, an st-articulation point. All st-articulation points can be
found in linear time using several algorithms [1, 4, 5] (Step 1). Lemma 5 implies that all
st-articulation points appear in the same order on all st-paths. If v0 = s, v1, . . . , vk−1, vk = t

are st-articulation points appearing in this order on an st-path, then for 1 ≤ i ≤ k, we define
Gi as the graph induced by the vertices reachable from vi−1 with passing through neither vi

nor vertices reachable from vj−1 with j < i (Step 2). In this way, the route-induced subgraph
G̃ is series decomposed into the route-induced subgraphs G̃1, . . . , G̃k as desired (Lemma 6).
The following is a high level pseudocode of Series_Decomposition.

Algorithm Series_Decomposition(G, s, t)
Input A directed two-terminal graph G with source s and sink t.
Output The maximum number k of two-terminal subgraphs G1, . . . , Gk of G, such that G̃

is obtained by series composition of G̃1, . . . , G̃k, and that for each 1 ≤ i < k, Gi and⋃
j>i Gj share vi+1 only.

A. Matsubayashi and Y. Saito 12:7

P

Q

s vu t

Figure 3 Intersecting sv-path P and vt-path Q.

1. Find all st-articulation points v0 = s, v1, . . . , vk−1, vk = t appearing in this order on an
st-path.

2. For i = 1 to k, perform the following:
a. Find a set Vi of vertices x such that there exists a vi−1x-path in G consisting of edges

neither leaving vi nor entering a vertex in
⋃i−1

j=1 Vj .
b. Return the graph induced by Vi as Gi.

3.1.2 Analysis of Series_Decomposition

We prove the correctness of Series_Decomposition in Lemmas 5 and 6 below, together
with the time complexity in Lemma 7.

▶ Lemma 5. For a directed two-terminal graph G with source s and sink t, the route-induced
subgraph G̃ is obtained by series composition of some graphs H1 and H2 if and only if there
exists an st-articulation point v /∈ {s, t}.

Proof. The necessity (⇒) is immediate by the definition of series composition. Specifically,
if G̃ is obtained by identifying the sink t1 of a graph H1 and the source s2 of a graph H2,
then s and t must be contained in H1 and H2, respectively, and all st-paths of G must pass
through the vertex t1 = s2 in G.

For the sufficiency (⇐), let v /∈ {s, t} be an st-articulation point. If an sv-path P and a
vt-path Q intersect, then let u be the internal vertex of both P and Q that appears first on P .
Then, we obtain the st-path avoiding v, which proceeds from s to u along P and then from
u to t along Q (Fig. 3). This contradicts that v is an st-articulation point. Therefore, any
sv-path and any vt-path are distinct. This means that G̃ is obtained by series composition
of two subgraphs induced by all sv-paths and vt-paths. ◀

▶ Lemma 6. Series_Decomposition returns the maximum number k of two-terminal
subgraphs G1, . . . , Gk of an input graph G such that G̃ is obtained by series composition of
G̃1, . . . , G̃k, and that for each 1 ≤ i < k, Gi and

⋃
j>i Gj share vi only.

Proof. In Step 1, we find st-articulation points v0 = s, v1, . . . , vk−1, vk = t appearing in this
order on an st-path. Lemma 5 implies that G̃ is obtained by series compositions of k graphs
H1, . . . , Hk, where Hi has the source vi−1 and sink vi, and that k is the maximum number
of such graphs. We observe the following claim.

▷ Claim. For each 1 ≤ i ≤ k, the graph Gi defined in Step 2 contains no vertices in⋃
j>i Hj − vi.

Proof. The claim holds because for 1 ≤ i < j ≤ k, any vertex x ̸= vi contained in both Gi and
Hj would yield an st-path avoiding vi, which proceeds from s to vi−1 through H1, . . . , Hi−1,
from vv−1 to x in Gi, and then from x to t through Hj , . . . , Hk (Fig. 4). ◁

ATMOS 2023

12:8 Faster Algorithm for Recognizing Directed Invulnerable Graphs

s v1 vi-1 vi

x

H1 Hi-1

Gi

Hj

t

HkHi

vj

Figure 4 A vertex x ̸= vi in both Gi and Hj with j > i yields an st-path avoiding vi.

Now we prove the lemma by showing that G̃i and Hi are identical for each 1 ≤ i ≤ k.
Since G̃ is induced by all the st-paths and obtained by series compositions of H1, . . . , Hk,
every vertex x of Hi is on a vi−1vi-path, denoted by Qx, consisting of edges not leaving vi.
In addition, Qx has no internal vertices in the graph

⋃
j<i Gj by the above claim. Thus, the

vi−1x-subpath of Qxconsists of edges neither leaving vi nor entering a vertex in the graph⋃
j<i Gj , implying that Hi is a subgraph of G̃i. On the other hand, since G̃i is the subgraph

induced by all vi−1vi-paths in Gi, every vertex y of G̃i is on a vi−1vi-path, denoted by Qy.
The path Qy has no internal vertices in the graph

⋃
j>i Hj by the above claim. Moreover,

Qy has no internal vertices in the graph
⋃

j<i Hj , since Gi contains no vertices in
⋃

j<i Gj

by the definition of Step 2, and since Hj is a subgraph of G̃j . Therefore, the path Qy is
included in Hi, and hence G̃i is a subgraph of Hi. Thus, the graphs G̃i and Hi are identical.

It is obvious by the definition of Step 2 that for each 1 ≤ i < k, Gi and
⋃

j>i Gj share vi

only. We thus conclude that Series_Decomposition returns desired subgraphs. ◀

▶ Lemma 7. Series_Decomposition runs in O(m) time for an input graph G with m edges.

Proof. Step 1 can be executed in linear time using one of the algorithms in [1, 4, 5]. Step 2
can be implemented as graph search, e.g., DFS from vi−1 for each 1 ≤ i ≤ k. Since no edge
entering a vertex in Vj with j < i is visited by the ith search from vi−1, each edge is visited
at most once. Therefore, Step 2 finishes also in linear time. Thus Series_Decomposition
runs in O(m) time. ◀

3.2 Parallel Decomposition
We describe two versions of our parallel decomposition algorithm. We first present a base
version in Section 3.2.1, which depends on Theorem 2 but not on Theorem 4, and prove
its correctness and the polynomial time complexity in Section 3.2.2. Our main purpose of
presenting this version is to prove the correctness of the base idea of our algorithm. We then
present a faster version with improved implementation using Theorem 4 in Section 3.2.3.

3.2.1 Idea and Definition of Parallel Decomposition Algorithm
To describe the idea of our parallel decomposition algorithm, it is convenient to represent
st-paths of an input graph G as another undirected graph, called the route intersection
graph, which is obtained by creating a vertex for each st-path and an edge for any two
intersecting st-paths in G. On the basis of the route intersection graph, we introduce graph
notion, such as adjacency and distance, into st-paths: Two st-paths are said to be adjacent
to each other if they intersect in G, and the distance between two st-paths P and P ′ is the
distance between them in the route intersection graph, i.e., the minimum number h of pairs
of adjacent st-paths Qi−1 and Qi, 1 ≤ i ≤ h, such that Q0 = P and Qh = P ′. To avoid
confusion, we use the terms chains and chained for the notions “paths” and “connected” in
the route intersection graph, respectively. In particular, connected components in the route
intersection graph are called chained components below.

A. Matsubayashi and Y. Saito 12:9

A key observation is that the goal of our parallel decomposition algorithm is to decompose
G into subgraphs, in such a way that st-paths are partitioned into the chained components
(Lemma 9). To this end, in the base version called Parallel_Decomposition, we begin by
finding a maximal number of disjoint st-paths P1, . . . , Pℓ (Step 1). By the maximality of ℓ,
any remaining st-path is adjacent to some Pi. We find st-paths adjacent to Pi, and put them
together as one subgraph, by searching for vertices x such that there are ux-path and xv-path
for certain vertices u and v on Pi (Step 2). At this point every st-path is contained in at
least one of subgraphs emerged from paths P1, . . . , Pℓ (Lemma 10). We then find subgraphs
sharing an internal vertex and put them together as one subgraph (Step 3). This procedure
merges paths Pi and Pj within distance 3, together with paths adjacent to them, into one
subgraph (Lemmas 11 and 12). Conversely, we can prove that two subgraphs are merged
by this procedure only if they contain such Pi and Pj within distance 3 (Lemma 13). The
algorithm thus yields desired subgraphs, each of which contains st-paths composing a chained
component in the route intersection graph (Lemma 14).

The following is a high level pseudocode of Parallel_Decomposition.

Algorithm Parallel_Decomposition(G, s, t)
Input A directed two-terminal graph G with source s and sink t.
Output The maximum number k of two-terminal subgraphs G1, . . . , Gk of G, sharing s and

t only, such that G̃ is obtained by parallel composition of G̃1, . . . , G̃k.

1. Find a maximal number of disjoint st-paths P1, . . . , Pℓ of G greedily.
2. For each 1 ≤ i ≤ ℓ, let Vi be the vertex set obtained from the vertex set of Pi by adding

every vertex x satisfying the following condition.
▶ Condition 8. The vertex x is not contained in Pi, and there exist (not necessarily
distinct) vertices u and v in Pi, such that
a. there are a ux-path and an xv-path in G, each of which is disjoint with Pi, and
b. u /∈ {s, t} and v /∈ {s, t}, or u = s and v /∈ {s, t}, or u /∈ {s, t} and v = t.

3. If Vi and Vj (i < j) share a vertex that is neither s nor t, then Vi = Vi ∪ Vj and Vj = ∅.
Perform this process as long as two sets sharing a vertex neither s nor t exist.

4. For each i such that Vi ̸= ∅, return the subgraph of G induced by Vi.

3.2.2 Analysis of Parallel_Decomposition

We prove the correctness of Parallel_Decomposition in Lemmas 9–14 below, together with
the polynomial time complexity in Lemma 15.

▶ Lemma 9. Let C1, . . . , Ck be the sets of st-paths in all the chained components of the
route intersection graph of an input graph G. Then, the route-induced subgraph G̃ of G is
obtained by parallel compositions of the maximum number k of graphs H1, . . . , Hk, which are
induced by the edges of the st-paths in C1, . . . , Ck, respectively.

Proof. For each 1 ≤ i ≤ k, let Hi be the subgraph of G induced by the edges of the st-paths
in Ci. Then, G̃ can be obtained by parallel composition of the two graphs Hi and

⋃
j ̸=i Hj ,

because any st-path in G is contained in exactly one of the sets C1, . . . , Ck, and because
any st-path in Ci and any st-path not in Ci are disjoint. Moreover, the graph Hi cannot be
obtained by parallel composition of two smaller graphs, because for any partition of Ci into
two non-empty disjoint subsets, there are two intersecting st-paths contained in the different
subsets. Therefore, G̃ can be obtained by parallel compositions of H1, . . . , Hk but not of
more than k graphs. ◀

ATMOS 2023

12:10 Faster Algorithm for Recognizing Directed Invulnerable Graphs

P
i

P

s tu1u2u5u4u3

x

Figure 5 Intersecting st-paths P and Pi, and a vertex x in P but not in Pi.

▶ Lemma 10. For any st-path P of a graph G input to Parallel_Decomposition, there
exists 1 ≤ i ≤ ℓ such that P and Pi intersect or P = Pi. Moreover, all vertices of P are
contained in Vi for each such i after Step 2.

Proof. If P = Pi for some i, then Vi contains the vertices of P by definition, and therefore,
the lemma holds for this case.

Assume otherwise. By the maximality of the number ℓ of disjoint st-paths, there exists
1 ≤ i ≤ ℓ such that P and Pi intersect, i.e., share at least one internal vertex. For each
such i, let u0 = s, u1, . . . , uh−1, uh = t (h ≥ 2) be all the vertices shared by P and Pi and
appearing in this order on P . For each 0 ≤ j < h, each internal vertex x on the subpath
of P from uj to uj+1 is not in Pi, and added to Vi at Step 2 because of the ujuj+1-path
disjoint with Pi (Fig. 5). Here, we observe by h ≥ 2 that uj /∈ {s, t} and uj+1 /∈ {s, t} for
0 < j < h − 1, uj = s and uj+1 /∈ {s, t} for j = 0, and uj /∈ {s, t} and uj+1 = t for j = h − 1.
We thus have the lemma. ◀

▶ Lemma 11. For any 1 ≤ i < j ≤ ℓ, if there is an st-path Q such that Pi and Q intersect,
and Q and Pj intersect, then Vi and Vj are merged in Step 3.

Proof. Under the assumption of the lemma, Pi and Q share an internal vertex x. By
Lemma 10, x is contained in Vi after Step 2. Since Q and Pj intersect, x is also contained in
Vj after Step 2 by Lemma 10. Therefore, Vi and Vj are merged in Step 3, since they share
the vertex x that is neither s nor t. ◀

▶ Lemma 12. For any 1 ≤ i < j ≤ ℓ, if there are two distinct st-paths Q and Q′ such that
Pi and Q intersect, Q and Q′ intersect, and Q′ and Pj intersect, then Vi and Vj are merged
in Step 3.

Proof. Under the assumption of the lemma, all vertices of Q are contained in Vi, and all
vertices of Q′ are contained in Vj , both after Step 2 by Lemma 10. Moreover, Q and Q′

share an internal vertex x. This implies that x, which is neither s nor t, is contained in both
Vi and Vj . Therefore, Vi and Vj are merged in Step 3. ◀

▶ Lemma 13. If two vertex sets, denoted by V and V ′, are merged in Step 3, then there exist
i and j with 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ℓ, and i ̸= j such that the vertex sets of the st-paths Pi and
Pj are included in V and V ′, respectively, and that at least one of the following conditions is
satisfied.
1. There is an st-path Q such that Pi and Q intersect, and Q and Pj intersect.
2. There are st-paths Q and Q′ such that Pi and Q intersect, Q and Q′ intersect, and Q′

and Pj intersect.

A. Matsubayashi and Y. Saito 12:11

Proof. Under the assumption of the lemma, the sets V and V ′ share a vertex x that is
neither s nor t. Since st-paths P1, . . . , Pℓ are disjoint with each other, x is contained in
at most one of these paths and added to V and/or V ′ in Step 2. We assume without loss
of generality that x is added to V in Step 2. Then, there exists 1 ≤ i ≤ ℓ such that the
vertices of Pi are included in V , and Condition 8 for x to be added to Vi in Step 2 is satisfied.
Specifically, there are a ux-path Qu and an xv-path Qv for some vertices u and v of Pi, such
that these paths are both distinct with Pi, and that u /∈ {s, t} and v /∈ {s, t}, or u = s and
v /∈ {s, t}, or u /∈ {s, t} and v = t. We prove by cases.

1. Suppose that u /∈ {s, t} and x is contained in no st-path Pj with j ̸= i whose vertices
are included in V ′. Then, x is added to V ′ in Step 2, and therefore, there exists j ̸= i

such that the vertices of Pj are included in V ′, and Condition 8 for x to be added to Vj

in Step 2 is satisfied. Specifically, there are a yx-path Qy and an xz-path Qz for some
vertices y and z of Pj , such that these paths are both distinct with Pj , and that y /∈ {s, t}
and z /∈ {s, t}, or y = s and z /∈ {s, t}, or y /∈ {s, t} and z = t.

a. If Qu and Pj intersect, then let r be the internal vertex of both Qy and Pj that appears
first on Qu. Then, we obtain the st-path Q proceeding s → u → r → t (Fig. 6(a)).
The paths Q and Pi intersect at u, and Q and Pj intersect at r.

b. If Qv and Pj intersect, then let r be the internal vertex of both Qv and Pj that appears
last on Qv. Then, we obtain the st-path Q proceeding s → r → v → t (Fig. 6(b)).
The paths Q and Pi intersect at v, and Q and Pj intersect at r.

c. If Qy or Qz intersects with Pi, then we can prove the existence of an st-path Q

intersecting with Pi and Pj as in the case 1a or 1b, with exchanged roles of i and j, u

and y, and v and z. (Fig. 6(c)-i,ii).
d. Assume that both Qu and Qv are disjoint with Pj , and both Qy and Qz are disjoint

with Pi.
i. If z ̸= t, then let r be the vertex of Qz appearing first on Qu. The vertex r is

identical with x if Qu and Qz are disjoint. Then, we obtain the st-path Q proceeding
s → u → r → z → t (Fig. 6(d)-i). The paths Q and Pi intersect at u, and Q and
Pj intersect at z.

ii. If z = t, then let r be the vertex of Qz that appears first on Qu, and let w be the
vertex of Qz that appears first on Qy. Then, we obtain two st-paths Q proceeding
s → u → r → t and Q′ proceeding s → y → w → t (Fig. 6(d)-ii). The paths Q and
Pi intersect at u, Q and Q′ intersect at one of the vertices r and w that appears
latter on Qz, and Q′ and Pj intersect at y.

2. Suppose that u /∈ {s, t} and x is contained in Pj for some j ̸= i whose vertices are included
in V ′. We can prove for this case as in the case 1a.

3. Suppose u = s, implying v /∈ {s, t}. Let G′ be the graph obtained from G by reversing
the direction of every edge. Then, any path in G is a path in G′ with reverse direction,
and vice versa. Also, vertex sets V1, . . . , Vℓ created and processed in the algorithm are
exactly the same for G′ as for G. Therefore, this case can be reduced to the case 1 or 2
with exchanged roles of s and t, u and v, and y and z.

In all cases, there is an st-path Q that intersect with Pi and Pj , or there are two
intersecting st-path Q and Q′ that intersect Pi and Pj , respectively. ◀

ATMOS 2023

12:12 Faster Algorithm for Recognizing Directed Invulnerable Graphs

Pi

x

u

ts

rPj

(a)

Pi

x

v

ts

rPj

(b)

Pi

x

y

ts

r

Pj

(c)-i

Pi

x ts

Pj z

r

(c)-ii

Pi

x

u

ts

Pj z

r

(d)-i

Pi

x

u

t =z s

Pj

r

y

w

(d)-ii

Figure 6 Paths Pi and Pj (solid arrows), Qu and Qv (dotted arrows), and Qy and Qz (dashed
arrows).

▶ Lemma 14. Parallel_Decomposition returns the maximum number k of subgraphs
G1, . . . , Gk of an input graph G, sharing s and t only, such that G̃ is obtained by parallel
composition of G̃1, . . . , G̃k.

Proof. We begin with proving that the sets of st-paths in the returned subgraphs G1, . . . , Gk

induce the chained components. To this end, we prove the following claims.

▷ Claim. Every st-path in G is contained in exactly one of the returned subgraphs.

Proof. By Lemma 10 and the property of Parallel_Decomposition that the vertex sets
created in Step 2 are not divided in the subsequent steps, every st-path in G is contained
at least one of the returned subgraphs. Since the returned subgraphs share s and t only by
definition, the claim holds. ◁

▷ Claim. Any two chained st-paths are contained in one of the returned subgraphs.

Proof. By Lemma 10, any st-path P not in {P1, . . . , Pℓ} intersects with some Pi, and the
vertices of P are added to Vi in Step 2. So it suffices to show that any chained Pi and Pj

are contained in one of the returned subgraphs. Consider a chain from Pi to Pj in the route
intersection graph, and suppose that the chain consists of c st-paths Q1, . . . , Qc. For each
1 ≤ h ≤ c, if the hth st-path Qh in the chain is in {P1, . . . , Pℓ}, then let Q′

h be this hth path
Qh. Otherwise, let Q′

h be an st-path in {P1, . . . , Pℓ} adjacent to the hth st-path Qh in the
chain. Note Q′

1 = Pi and Q′
c = Pj . For each 1 ≤ h < c, the distance between Q′

h and Q′
h+1

is at most 3, because Qh and Qh+1 are adjacent, and the distances between Qh and Q′
h and

between Qh+1 and Q′
h+1 are both at most 1. Moreover, the distance between Q′

h and Q′
h+1

is at least 2, because P ′
h and P ′

h+1 are in the set {P1, . . . , Pℓ} of disjoint st-paths, and hence
at a distance more than 1. By Lemmas 11 and 12, therefore, the vertex sets of Q′

h and Q′
h+1

are merged in Step 3. This means that the vertex sets of Q′
1 = Pi and Q′

c = Pj are merged
in Step 3 as well. ◁

▷ Claim. Any two st-paths contained in one of the returned subgraphs are chained.

A. Matsubayashi and Y. Saito 12:13

Proof. By Lemma 13, when two vertex sets are merged in Step 3, there are two st-paths at
a distance 2 or 3, whose vertex sets are included in each of the two merged sets. This means
that in Step 4, any two st-paths in one of the returned subgraphs are within a finite distance.

◁

By the above claims, the sets of st-paths in G1, . . . , Gk induce the chained components.
Combined with Lemma 9, we have the lemma. ◀

▶ Lemma 15. Parallel_Decomposition runs in O(nm2) time for an input graph G with
n vertices and m edges.

Proof. We prove a (naive) implementation of Parallel_Decomposition runs in polynomial
time. For Step 1, we can find a maximal number ℓ of disjoint st-paths by ℓ + 1 iterations
of DFS on G with removal of the internal vertices (or possibly the single edge (s, t)) of an
st-path found in each DFS. Step 1 thus finishes in O(ℓm) = O(m2) steps.

For Step 2, we can obtain the set of vertices satisfying Condition 8 as the intersection
of (i) the vertices not in Pi and reachable from Pi − t without passing through the vertices
of Pi, and (ii) the vertices not in Pi from which Pi − s are reachable without passing through
the vertices of Pi. These vertex sets (i) and (ii) can be found in O(m) steps using DFS with
some ingenuity, such as avoiding Pi and traversing edges in the reverse direction for (ii).
Merging the vertices of Pi and the intersection of the sets (i) and (ii) for each 1 ≤ i ≤ ℓ,
Step 2 finishes in O(ℓm) = O(m2) steps.

An implementation of Step 3 is to iterate the process that we find a combination of a
vertex x /∈ {s, t} and 1 ≤ i < j ≤ ℓ such that x ∈ Vi ∩ Vj , in O(ℓn) steps, and merge Vi and
Vj in O(n) steps if such a combination is found. Because at most ℓ iterations of this process
are enough, Step 3 finishes in O((ℓn + n)ℓ) = O(nm2) steps.

Putting together, Parallel_Decomposition runs in O(nm2) steps. ◀

3.2.3 Implementation for Linear Time Parallel Decomposition

We describe intuitively (not precisely) the idea of a linear time implementation of Parallel_
Decomposition using the characterization of Theorem 4.

The original Step 1, which finds a maximal number ℓ of disjoint st-paths P1, . . . , Pℓ, can
be implemented as iterations of DFS on the input graph G that starts at source s and ends
at sink t. By avoiding previously visited vertices and single edges (s, t) in each DFS, we can
find desired paths in linear time.

For the original Step 2, which is, for each 1 ≤ i ≤ ℓ, adding all vertices x satisfying
Condition 8 to the vertex set of Pi (the resulting vertex set is denoted by Vi), we define
the following sets of vertices of G: Si and Ti are the sets of vertices x not in Pi such that
there exists an sx- and xt-path disjoint with Pi, respectively. In addition, O′

i and I ′
i are the

sets of vertices x not in Pi such that there exist an internal vertex u of Pi and a ux- and
xu-path disjoint with Pi, respectively. The set of vertices satisfying Condition 8 is obtained
as Xi = (O′

i ∩ I ′
i) ∪ (O′

i ∩ Ti) ∪ (I ′
i ∩ Si). Each of the sets O′

i, I ′
i, Si, and Ti can be found in

linear time using DFS with some ingenuity, such as, traversing edges in the reverse direction
for I ′

i and Ti, which we call reverse DFS, and avoiding vertices of Pi. However, it possibly
takes a super-linear Θ(ℓm) time to find these sets for all 1 ≤ i ≤ ℓ for graphs with m edges
and ℓ = ω(1). To reduce this running time, we modify the original Steps 2 and 3.

ATMOS 2023

12:14 Faster Algorithm for Recognizing Directed Invulnerable Graphs

In the original Step 3, two sets Vi and Vj are merged if they share a vertex neither s nor
t, i.e., Vi ∩ Vj ≠ {s, t}.3 Merging the sets is necessary to complete the parallel decomposition.
However, this process is not necessary to check if the route-induced subgraph G̃ of G is
series-parallel, because if Vi ∩ Vj ̸= {s, t}, then there is an st-embedding of the Wheatstone
network into G (Lemmas 19 and 17), and hence G̃ is not series-parallel by Theorems 2 and 4.
In this case, therefore, we quit our algorithm with the return value “No” (meaning G̃ is
not series-parallel). Otherwise, i.e., if Vi ∩ Vj = {s, t} for all 1 ≤ i < j ≤ ℓ, then we return
the subgraph Gi induced by Vi for each 1 ≤ i ≤ ℓ. Note that not all st-embeddings of the
Wheatstone network can be detected in this way; each of the returned subgraphs may have
an st-embedding of the Wheatstone network.

To implement the modified Steps 2 and 3 in linear time, we find S =
⋂ℓ

i=1 Si and
T =

⋂ℓ
i=1 Ti using (reverse) DFS avoiding vertices of P1, . . . , Pℓ. Then, for i = 1 to ℓ, we

find Oi ⊆ O′
i by DFS, starting at internal vertices of Pi in turn and avoiding vertices in Pi

and in Oj with each j < i, as well as vertices already found as elements of Oi. During DFS
for Oi, if we reach an internal vertex of Pj with j < i, then Vi ∩ Vj ̸= {s, t}, and therefore we
quit with “No”. In addition, if we reach a vertex Oj ∩ T with j < i, then Vi ∩ Vj ≠ {s, t}, and
therefore we quit with “No”. We find Ii ⊆ I ′

i similarly (using reverse DFS). In this way, we
can actually obtain the set Xi of vertices satisfying Condition 8 as (Oi ∩Ii)∪(Oi ∩T)∪(Ii ∩S)
(Lemma 18).

The following is a high level pseudocode of the implementation, called Fast_Parallel_
Decomposition.
Algorithm Fast_Parallel_Decomposition(G, s, t)
Input A directed two-terminal graph G with source s and sink t.
Output Either the maximum number k of two-terminal subgraphs G1, . . . , Gk of G, sharing

s and t only, such that G̃ is obtained by parallel composition of G̃1, . . . , G̃k, or “No”
meaning G̃ is not series-parallel.

1. Set i = 1 and suppose that there are d edges leaving s, denoted by (s, u1), . . . , (s, ud).
For j = 1 to d, perform the following.
a. If uj = t, then we define Pi as the st-path consisting of the single edge (s, uj) and

increment i by 1.
b. If uj ̸= t, then perform DFS starting at s, traversing the edge (s, uj) first, and avoiding

vertices visited by previous DFS for smaller j. In the current DFS, if we reach a vertex
incident to an edge entering t, then we define Pi as the st-path visited by the DFS.
We then quit the DFS and increment i by 1. If we backtrack to s with no st-path
found, then we just quit the DFS.

2. Suppose that we have ℓ st-paths P1, . . . , Pℓ. For each 1 ≤ i ≤ ℓ, let Ui be the set of
internal vertices of Pi, In addition, let Uo

i and U i
i be the set of vertices that are not in Pi

and incident to an edge leaving and entering a vertex in Ui, respectively.

3. Find the set S of vertices x, excluding s, such that there exists an sx-path disjoint with
P1, . . . , Pℓ, by performing DFS starting at s and avoiding vertices in

⋃ℓ
i=1 Ui ∪ {t}.

4. Find the set T of vertices x, excluding t, such that there exists an xt-path disjoint with
P1, . . . , Pℓ, by performing reverse DFS (i.e., DFS traversing edges in the reverse direction)
starting at t and avoiding vertices in

⋃ℓ
i=1 Ui ∪ {s}.

5. For i = 1 to ℓ, perform the following.

3 Note that both Vi and Vj contain s and t.

A. Matsubayashi and Y. Saito 12:15

a. Find the set Oi of the vertices, visited by DFS starting at every vertex v in Uo
i and

avoiding vertices in Pi or in
⋃

j<i Oj and vertices already found as elements of Oi.
During the DFS, we perform the following.
i. If we reach a vertex in Uj with j ̸= i, then return “No”.
ii. If we reach a vertex incident to an edge entering a vertex in Oj ∩ T for some j < i,

then return “No”.
b. Find the set Ii of the vertices, visited by reverse DFS starting at every vertex v in U i

i

and avoiding vertices in Pi or in
⋃

j<i Ij and vertices already found as elements of Ii.
During the DFS, we perform the following.
i. If we reach a vertex in Uj with j ̸= i, then return “No”.
ii. If we reach a vertex incident to an edge leaving a vertex in Ij ∩ S for some j < i,

then return “No”.
6. For each 1 ≤ i ≤ ℓ, define Vi = {s, t} ∪ Ui ∪ (Oi ∩ Ii) ∪ (Oi ∩ T) ∪ (Ii ∩ S) and return the

graph induced by Vi as Gi.

We prove the correctness of Fast_Parallel_Decomposition in Lemmas 16–20 below.

▶ Lemma 16. The paths P1, . . . , Pℓ found in Step 1 are the maximal number ℓ of disjoint
st-paths.

Proof. In the DFS starting with the edge (s, uj) in Step 1, when we reach a vertex x incident
to an edge (x, t), we define Pi as the ith st-path found. At this point, there is no st-path
that contains a vertex visited by this DFS before we reach x and is disjoint with previously
found st-paths P1, . . . , Pi−1 (for otherwise, we should have found another vertex x′ incident
to an edge (x′, t) before we reach x). This means that the number ℓ of st-paths is maximal.
Because the DFS starting with the edge (s, uj) avoids vertices visited by previous DFS, the
found st-paths P1, . . . , Pℓ are disjoint. We thus have the lemma. ◀

▶ Lemma 17. If Fast_Parallel_Decomposition returns “No”, then there exists an st-
embedding of the Wheatstone network into G.

Proof. There are four cases that “No” is returned. If “No” is returned in Step 5(a)i or 5(b)i,
then it is implied that there is a path, denoted by Q, from a vertex in Ui to a vertex in Uj

or from a vertex in Uj to a vertex in Ui, containing neither s nor t. Since Ui and Uj are the
sets of internal vertices of disjoint st-paths Pi and Pj by Lemma 16, in either case, Pi, Pj ,
and Q constitute an st-embedding of the Wheatstone network (Fig. 7(a)).

Suppose that “No” is returned in Step 5(a)ii due to a vertex x ∈ Oi incident to an edge
entering a vertex y ∈ Oj ∩ T for some j < i. By the conditions on x and y, there exist a
path Qy

i from a vertex u ∈ Ui to y via vertices in Oi, and a path Qt
j from a vertex w ∈ Uj

to t via vertices in Oj (including y) and in T . We observe the following.
Qy

i and Pi are disjoint, because Oi is found by DFS avoiding vertices in Pi.
Qt

j and Pi are disjoint and share only one vertex t. For otherwise, some vertex z in
Qt

j is contained in Ui. The vertex z is not contained in T , because T is found by DFS
avoiding vertices in Ui ∪ {s}. The vertex z is not contained in Oj either, because the
algorithm should have quit at Step 5(a)i if a vertex in Ui such as z was visited by DFS
for finding Oj . Therefore, there exists no such vertex z.

Let r be the vertex of Qt
j appearing first on Qy

i . By the observations above, Pi, the ur-
subpath of Qy

i , and the st-path obtained by concatenating the sw-subpath in Pj and Qt
j

constitute an st-embedding of the Wheatstone network (Fig. 7(b)).

ATMOS 2023

12:16 Faster Algorithm for Recognizing Directed Invulnerable Graphs

Pi

ts

Pj

Q

(a)

Pi
u

t s

Pj

r

y
w

Q y
iQ t

j

(b)

Figure 7 Paths constituting an st-embedding of the Wheatstone network.

The case that “No” is returned in Step 5(b)ii can be reduced to the case for Step 5(a)ii
with the paths in the reverse direction and with the exchanged roles of Oi and Ii, and T

and S. ◀

▶ Lemma 18. If Fast_Parallel_Decomposition does not return “No”, then the set (Oi ∩
Ii) ∪ (Oi ∩ T) ∪ (Ii ∩ S) in Step 6 equals the set of vertices satisfying Condition 8.

Proof. Let Si, Ti, O′
i, and S′

i be the sets of vertices defined as follows:

Si ={x | x is not in Pi, and there exists an sx-path disjoint with Pi}
Ti ={x | x is not in Pi, and there exists an xt-path disjoint with Pi}
O′

i ={x | x is not in Pi, and there exist a vertex u∈Ui and a ux-path disjoint with Pi}
I ′

i ={x | x is not in Pi, and there exist a vertex v ∈Ui and an xv-path disjoint with Pi}

By these definitions, the set of vertices x satisfying Condition 8 is Xi = (O′
i ∩ I ′

i) ∪ (O′
i ∩

Ti) ∪ (I ′
i ∩ Si). Because S, T , Oi, and Ii found in the algorithm are obviously subsets of Si,

Ti, O′
i, and I ′

i, respectively, it follows that Xi ⊇ (Oi ∩ Ii) ∪ (Oi ∩ T) ∪ (Ii ∩ S). We prove
Xi ⊆ (Oi ∩ Ii) ∪ (Oi ∩ T) ∪ (Ii ∩ S) by observing that if there is a vertex in Xi but not in
(Oi ∩ Ii) ∪ (Oi ∩ T) ∪ (Ii ∩ S), then the algorithm returns “No”.

Suppose x ∈ Xi \ ((Oi ∩ Ii) ∪ (Oi ∩ T) ∪ (Ii ∩ S)). Then, x is contained in at least one of
the sets O′

i \ Oi, I ′
i \ Ii, Ti \ T , and Si \ S.

1. If x ∈ O′
i \Oi, then DFS for finding Oi either quits before visiting x at Step 5(a)i or 5(a)ii,

or does not visit x because of x ∈ Oj for some j < i. In the former possibility, we are
done. In the latter possibility, x ∈ (O′

i \ Oi) ∩ Oj , the vertex x is contained in I ′
i or Ti.

a. If x ∈ (O′
i \ Oi) ∩ Oj ∩ I ′

i, then it is implied that there is a path from a vertex in Uj

to a vertex in Ui via vertices in Oj ∪ I ′
i, and hence the algorithm quits at Step 5(a)i

during DFS for Oh with minimum h ≤ j such that O′
h ∩ Ui ̸= ∅.

b. If the vertex x ∈ (O′
i \ Oi) ∩ Oj is contained in Ti, then either x ∈ T or x ∈ Ti \ T .

i. If x ∈ (O′
i \ Oi) ∩ Oj ∩ T , then there exists a path from a vertex v in Uo

i (defined
in Step 2) to x. This path is obtained by concatenating i − j + 1 (possibly empty)
paths: Qi from v to a vertex yi via vertices in Oi, Qh from yh+1 to a vertex yh via
vertices in Oh for each j < h < i, and Qj from yj+1 to x via vertices in Oj . Note
that all vertices in Qj are also contained in T . Therefore, the algorithm quits at
Step 5(a)ii during DFS for Oh with the minimum h (j < h ≤ i) such that Qh is not
empty.

ii. If the vertex x ∈ (O′
i \ Oi) ∩ Oj is contained in Ti \ T , then it is implied that there

exists a path from a vertex in Ui to a vertex in Uh for some h ̸= i. For the minimum
such h, the algorithm quits at Step 5(a)i during DFS for Oi if i < h, or at Step 5(b)i
during DFS for Ih if h < i.

A. Matsubayashi and Y. Saito 12:17

2. If x ∈ Ti \ T , then x ∈ O′
i. If x ∈ O′

i \ Oi, then the algorithm returns “No” as proved in
the case 1. If x ∈ (Ti \ T) ∩ Oi, then it is implied that there exists a path from a vertex
in Ui to a vertex in Uj for some j ≠ i, and hence the algorithm quits as in the case 1(b)ii.

3. If x ∈ I ′
i \ Ii or x ∈ Si \ S, then we can prove that the algorithm returns “No” as in the

case 1 or 2, respectively, with the paths in the reverse direction and with the exchanged
roles of O

(′)
i and I

(′)
i , and T(i) and S(i).

We thus conclude that Xi = (Oi ∩ Ii) ∪ (Oi ∩ T) ∪ (Ii ∩ S) in Step 6. ◀

▶ Lemma 19. If Fast_Parallel_Decomposition does not return “No”, then Vi ∩Vj = {s, t}
for Vi and Vj with any i ̸= j in Step 6.

Proof. We prove that if there exists a vertex in Vi∩Vj but not in {s, t} for some i ̸= j, then the
algorithm returns “No”. Suppose that x ∈ (Vi∩Vj)\{s, t} for some i > j. Then, x is contained
in one of the sets Ui ∩ Xj , Uj ∩ Xi, and Xi ∩ Xj , where Xi = (Oi ∩ Ii) ∪ (Oi ∩ T) ∪ (Ii ∩ S)
and Xj = (Oj ∩ Ij) ∪ (Oj ∩ T) ∪ (Ij ∩ S).

If x ∈ Ui ∩ Xj , then because neither T nor S contains any vertex in Ui, it follows that
x ∈ Ui ∩ Oj ∩ Ij . Therefore, the algorithm quits at Step 5(a)i during DFS for Oj . Similarly,
if x ∈ Uj ∩ Xi, then x ∈ Uj ∩ Oi ∩ Ii. Note that this also implies Ui ∩ Oj ≠ ∅ and Ui ∩ Ij ̸= ∅.
Therefore, the algorithm quits at Step 5(a)i during DFS for Oj .

Suppose x ∈ Xi ∩ Xj . If x ∈ Oi ∩ Ij or x ∈ Ii ∩ Oj , then it is implied that there is a path
from a vertex in Ui to a vertex in Uj via vertices in Ij , or from a vertex in Uj to a vertex in
Ui via vertices in Oj . Therefore, the algorithm quits at Step 5(a)i or at Step 5(b)i during
DFS for Oj or Ij . The remaining possibilities are x ∈ Oi ∩ Oj ∩ T and x ∈ Ii ∩ Ij ∩ S, by
which the algorithm quits at Step 5(a)ii or 5(b)ii during DFS for Oi or Ii. ◀

▶ Lemma 20. Fast_Parallel_Decomposition returns either desired graphs or “No” mean-
ing G̃ is series-parallel in O(m) time for an input graph G with m edges.

Proof. If Fast_Parallel_Decomposition returns “No”, then G̃ is not series-parallel by
Lemma 17 and Theorems 2 and 4. Otherwise, by Lemmas 16, 18 and 19, V1, . . . , Vℓ

defined in Step 6 are exactly the sets obtained in Step 2 of Parallel_Decomposition, and
Vi ∩ Vj = {s, t} for any i ̸= j. Therefore, by Lemma 14, the desired subgraphs are returned.
Fast_Parallel_Decomposition runs in O(m) time, because each edge is searched at most
constant times. ◀

3.3 Main Procedure
The following is a high level pseudocode of main procedure, called SP_Test.

Algorithm SP_Test(G, s, t)
Input A directed two-terminal graph G with source s and sink t.
Output “Yes” if the route-induced subgraph G̃ of G is series-parallel, “No” otherwise.

1. If G̃ is a single edge (s, t), then return “Yes”.
2. Perform Series_Decomposition(G, s, t).
3. For each subgraph G′ and its source s′ and sink t′ returned by Series_Decomposition(G,

s, t), perform the following.
a. Perform Fast_Parallel_Decomposition(G′, s′, t′). If it returns “No” or a single

subgraph whose route-induced subgraph is not a single edge (s′, t′), then return “No”.
b. For each subgraph G′′ and its source s′′ and sink t′′ returned by Fast_Parallel_

Decomposition(G′, s′, t′), perform SP_Test(G′′, s′′, t′′) recursively.

ATMOS 2023

12:18 Faster Algorithm for Recognizing Directed Invulnerable Graphs

4. If all executions of SP_Test in Step 3 return “Yes”, then return “Yes”. Otherwise, return
“No”.

▶ Theorem 21. SP_Test correctly decides if the route-induced subgraph of an input graph
with m edges is series-parallel in O(m2) steps.

Proof. SP_Test makes decision depending on whether or not an input graph G is decom-
posed into subgraphs whose route-induced graphs consist only of a single edge by Series_
Decomposition and Fast_Parallel_Decomposition. Correctness of these decomposition
algorithms are proved in Lemmas 6 and 20. In particular, if the route-induced subgraph
G̃ of G is not series-parallel, then G or its subgraph appearing at some recursive step has
the route-induced subgraph obtained by neither series nor parallel composition. Such a
graph may be either input to SP_Test, which is possibly a recursive step of the parent
process, or returned by Series_Decomposition in Step 2. In either case, Fast_Parallel_
Decomposition in Step 3 receives a graph whose route-induced subgraph neither is a single
edge nor can be parallel decomposed into smaller graphs, and therefore, returns “No” or a
single subgraph whose route-induced subgraph is not a single edge. Since SP_Test returns
“No” for such a case, it makes decision correctly.

We analyze the time complexity of SP_Test. We can decide that the route-induced
subgraph G̃ is a single edge (s, t) by checking if G has an edge (s, t) and no st-paths avoiding
the edge (s, t), using DFS. Combined with Lemma 7, we can perform Steps 1 and 2 in O(m)
steps.

Suppose that Series_Decomposition in Step 2 returns graphs G1, . . . , Gk such that for
each 1 ≤ i ≤ k, Gi has mi edges. Since Gi and

⋃
j<i Gj share only one vertex by Lemma 6, it

follows that
∑k

i=1 mi ≤ m. By Lemma 20, therefore, Step 3 finishes in
∑k

i=1 O(mi) = O(m)
steps. Since subgraphs returned by Fast_Parallel_Decomposition are edge-disjoint by
Lemma 20, the sum of the numbers of edges of all the subgraphs returned by all executions of
Fast_Parallel_Decomposition in Step 3 is at most m. This means that the total number
of recursive executions of SP_Test is at most the number of vertices of a tree with m leaves.
Thus, SP_Test runs in O(m2) steps. ◀

We observe two remarks on SP_Test.
▶ Remark 22. If we use Parallel_Decomposition instead of Fast_Parallel_Decomposi-
tion in SP_Test, then by Lemma 15 and a slightly modified proof of Theorem 21, we obtain
an O(nm3) time algorithm based only on the characterization of Theorem 2.
▶ Remark 23. If we modify SP_Test so that we mark the single edge in Step 1, then after
all recursive executions of SP_Test finish with “Yes”, we can obtain the series-parallel
route-induced subgraph of an input graph as the subgraph induced by all the marked edges.

4 Conclusion

In this paper, we presented an O(m2) time algorithm for deciding if, for a given directed
two-terminal graph with m edges, its route-induced subgraph is series-parallel. On the basis
of the characterization proved in [8], our algorithm decides if the given graph does not admit
Braess’s paradox for any cost functions. Our approach is based on a simple implementation of
the characterization of [8]. Since this implementation runs in polynomial time, we disproved
a conjecture in [7] that another characterization in terms of the input graph (not of the
route-induced subgraph) would be necessary to design a polynomial time algorithm. The
faster O(m2) running time is achieved by speeding up the simple implementation using

A. Matsubayashi and Y. Saito 12:19

another characterization proved in [8, 6] that the Wheatstone network is embedded in the
given graph. The proposed algorithm is faster than the previous O(nm2) time algorithm
presented in [7], where n is the number of vertices of the given graph. Combined with the
technique of [9], the proposed algorithm can also be used to design a faster O(km2) time
algorithm for the k-commodity case, which solves a question posed in [9] by improving the
O(knm2) time algorithm presented in [9]. As future work, it would be interesting to design
an even faster algorithm, such as a linear time algorithm.

References
1 Stephen Alstrup, Dov Harel, Peter W. Lauridsen, and Mikkel Thorup. Dominators in linear

time. SIAM Journal on Computing, 28(6):2117–2132, 1999. doi:10.1137/S0097539797317263.
2 Dietrich Braess. Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung,

12:258–268, 1968. doi:10.1007/BF01918335.
3 Dietrich Braess, Anna Nagurney, and Tina Wakolbinger. On a paradox of traffic planning.

Transportation Science, 39(4):446–450, 2005. doi:10.1287/trsc.1050.0127.
4 Adam L. Buchsbaum, Loukas Georgiadis, Haim Kaplan, Anne Rogers, Robert E. Tarjan,

and Jeffery R. Westbrook. Linear-time algorithms for dominators and other path-evaluation
problems. SIAM Journal on Computing, 38(4):1533–1573, 2008. doi:10.1137/070693217.

5 Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook. Corrigendum: A
new, simpler linear-time dominators algorithm. ACM Transactions on Programming Languages
and Systems, 27(3):383–387, 2005. doi:10.1145/1065887.1065888.

6 Pietro Cenciarelli, Daniele Gorla, and Ivano Salvo. Inefficiencies in network models: A graph-
theoretic perspective. Information Processing Letters, 131:44–50, 2018. doi:10.1016/j.ipl.
2017.10.008.

7 Pietro Cenciarelli, Daniele Gorla, and Ivano Salvo. A polynomial-time algorithm for detecting
the possibility of Braess paradox in directed graphs. Algorithmica, 81:1535–1560, 2019.
doi:10.1007/s00453-018-0486-6.

8 Xujin Chen, Zhuo Diao, and Xiaodong Hu. Network characterizations for excluding Braess’s
paradox. Theory of Computing Systems, 59:747–780, 2016. doi:10.1007/s00224-016-9710-4.

9 Dario Fiorenza, Daniele Gorla, and Ivano Salvo. Polynomial recognition of vulnerable multi-
commodities. Information Processing Letters, 179:106282, 2023. doi:10.1016/j.ipl.2022.
106282.

10 Igal Milchtaich. Network topology and the efficiency of equilibrium. Games and Economic
Behavior, 57(2):321–346, 2006. doi:10.1016/j.geb.2005.09.005.

11 Tim Roughgarden. Designing networks for selfish users is hard. In Proceedings of the
42nd Annual Symposium on Foundations of Computer Science, pages 472–481, 2001. doi:
10.1109/SFCS.2001.959923.

12 Tim Roughgarden. Selfish Routing and the Price of Anarchy. The MIT Press, 2005.
13 Tim Roughgarden. On the severity of Braess’s Paradox: Designing networks for selfish users is

hard. Journal of Computer and System Sciences, 72(5):922–953, 2006. doi:10.1016/j.jcss.
2005.05.009.

14 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

15 Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series parallel
digraphs. SIAM Journal on Computing, 11(2):298–313, 1982. doi:10.1137/0211023.

ATMOS 2023

https://doi.org/10.1137/S0097539797317263
https://doi.org/10.1007/BF01918335
https://doi.org/10.1287/trsc.1050.0127
https://doi.org/10.1137/070693217
https://doi.org/10.1145/1065887.1065888
https://doi.org/10.1016/j.ipl.2017.10.008
https://doi.org/10.1016/j.ipl.2017.10.008
https://doi.org/10.1007/s00453-018-0486-6
https://doi.org/10.1007/s00224-016-9710-4
https://doi.org/10.1016/j.ipl.2022.106282
https://doi.org/10.1016/j.ipl.2022.106282
https://doi.org/10.1016/j.geb.2005.09.005
https://doi.org/10.1109/SFCS.2001.959923
https://doi.org/10.1109/SFCS.2001.959923
https://doi.org/10.1016/j.jcss.2005.05.009
https://doi.org/10.1016/j.jcss.2005.05.009
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0211023

Assignment Based Resource Constrained Path
Generation for Railway Rolling Stock Optimization
Boris Grimm # Ñ

Freie Universtät Berlin, Germany
Zuse Institute Berlin, Germany

Ralf Borndörfer # Ñ

Freie Universtät Berlin, Germany
Zuse Institute Berlin, Germany

Julian Bushe #

Zuse Institute Berlin, Germany

Abstract
The fundamental task of every passenger railway operator is to offer an attractive railway timetable
to the passengers while operating it as cost efficiently as possible. The available rolling stock
has to be assigned to trips so that all trips are operated, operational requirements are satisfied,
and the operating costs are minimum. This so-called Rolling Stock Rotation Problem (RSRP)
is well studied in the literature. In this paper we consider an acyclic version of the RSRP that
includes vehicle maintenance. As the latter is an important aspect, maintenance services have to be
planned simultaneously to ensure the rotation’s feasibility in practice. Indeed, regular maintenance
is important for the safety and reliability of the rolling stock as well as enforced by law in many
countries. We present a new integer programming formulation that links a hyperflow to model
vehicle compositions and their coupling decisions to a set of path variables that take care of the
resource consumption of the individual vehicles. To solve the model we developed different column
generation algorithms which are compared to each other as well as to the MILP flow formulation
of [2] on a test set of real world instances.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases Railway Rolling Stock Optimization, Integer Programming, Column Genera-
tion

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.13

1 Introduction

The fundamental task of every passenger railway operator is to offer an attractive railway
timetable to the passengers while operating it as cost efficiently as possible. The available
rolling stock has to be assigned to trips so that all trips are operated, operational requirements
are satisfied, and the operating costs are minimum. This so-called Rolling Stock Rotation
Problem (RSRP) is well studied in the literature, for example in [6] or [4]; we refer to [12] for
a detailed overview. An important aspect in optimizing railway rolling stock rotations is the
scheduling of maintenance services. Indeed, regular maintenance is important for the safety
and reliability of the rolling stock as well as enforced by law in many countries. However,
each maintenance service causes additional costs not just for the service itself but also for
deadhead trips to and from the maintenance location, and the opportunity costs arising from
the unavailability of the vehicle to operate trips for the duration of the service. Therefore,
integrating maintenance planning into rolling stock rotation planning is of central importance
for finding efficient solutions. This holds particularly for railway companies that operate
long-distance routes, where a vehicle typically does not end in the same depot after each
day of operation. In the railway literature it is often the case that the considered models

© Boris Grimm, Ralf Borndörfer, and Julian Bushe;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 13; pp. 13:1–13:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grimm@zib.de
https://www.zib.de/members/grimm
mailto:borndoerfer@zib.de
https://www.zib.de/borndoerfer
mailto:bushe@zib.de
https://doi.org/10.4230/OASIcs.ATMOS.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Assignment Based Resource Constrained Path Generation

and solution approaches are highly tailored to the specific requirements, operational rules,
and setting of the respective railway operator. The way in which maintenance services are
handled or not is no exception to that.

In [4] an arc-based and a path-based model to optimize rotations for instances modeling
a cyclic one-day vehicle schedule of a regional railway operator were presented. Compositions
of different train types were considered in the sense that the number of vehicle types in a
composition is taken into account, but without explicit handling of couplings. Maintenance
is considered in the path-based model in the sense that for each maintenance constraint and
each vehicle type a certain share of the paths must contain a maintenance service. Both
models where solved by an LP-based heuristic.

Rolling stock rotations for a single vehicle type with a fixed composition for a cyclic
one-day planning horizon are studied in [7]. Turns and maintenance services are determined
by a MILP Model that uses a resource flow to track the resource consumption of each vehicle;
it is solved by a commercial MILP-Solver.

A path-based mixed integer program is introduced in [10] in order to find rolling stock
rotations for the S-tog trains in Copenhagen. Deadhead trips are not considered and
an explicit predecessor-successor relation is considered for turns between trips. Although
coupling is not modeled explicitly, the order of vehicles in a composition is, and composition
changes are possible. Maintenance services are considered to be carried out after the vehicle
arrives at a depot, and unit specific distance limits are included as a maximum distance
threshold. The presented model is solved by a branch and price algorithm combining column
generation and branch and bound.

[13] consider fixed maintenance services which are already integrated into the timetable
and which a fraction of the vehicles have to visit. Three MIP formulations that are based on
the flow model of [6] are introduced to optimize short re-scheduling situations for scenarios of
Nederlandse Spoorwegen. The models very explicitly take into account multiple vehicle types
and model coupling and decoupling as well as the position of each vehicle in a composition.
A MIP solver is used to solve the models.

A two-stage MILP approach is presented by [14] to optimize a cyclic two day planning
horizon of the Chinese high speed railway system. In the first stage an adaptation of [6] is
used to compute optimized rotations for vehicle types, followed by a second MILP-stage to
assign maintenance-feasible trip sequences to individual vehicles.

In this paper we present a novel integer linear formulation to model the Rolling Stock
Rotation Problem with maintenance constraints as well as approaches to tackle the resulting
model. Though being based on the work of [2] where a mixed integer linear program,
based on a graph-based hypergraph, was developed to optimize rolling stock rotations, the
model presented here uses path-based variables to take care of the resource consumption of
individual vehicles instead of using an arc based resource flow. In contrast to [10] positions of
vehicle types in operated vehicle compositions and their impact on turnings between the trips
are considered. As the model contains exponentially many variables if all paths variables
were added explicitly, different column generation algorithms are presented to solve a model
with a suitable selection of path and hyperarc variables.

The paper is structured as follows. Section 2 presents a description of the hypergraph
that is used to model the RSRP and a novel integer linear programming formulation to
solve it. Section 3 describes several column generation algorithms that we use to tackle
this formulation. In Section 4 we show the results of our computational study, that gives a
comparison of the column generation algorithms and the approach of [2] on a test set of real
world instances. Finally, a conclusion and outlook is given in Section 5.

B. Grimm, R. Borndörfer, and J. Bushe 13:3

2 Solving the RSRP with Maintenance Paths

We tackle the Rolling Stock Rotation Problem with maintenance constraints in a very
similar way as [2] or [8], but with a different, namely, a path-based handling of the resource
consumption of the individual vehicles. Among other ideas, [2] employed a coarse-to-fine
approach where a part of the problem is solved on a less detailed coarse hypergraph layer, and
the coarse solution is used to find a solution to the original problem on the fine hypergraph
layer more efficiently. In the hypergraph model of [2] and [8], a binary hyperflow is used to
compute the vehicles movement and shunting decisions. An additional arc flow linked to the
hyperarcs is used to track the resource consumption for each individual vehicle. However,
the linear relaxation of this model allows that fractions of vehicles are maintained such
that the model systematically underestimates the number of maintenance services. This in
turn means that the lower bound provided by the linear relaxation is not very tight and, as
we have observed, can even schedule more maintenance services than the integer optimum.
To overcome this drawback, we present a path-based model of the Rolling Stock Rotation
Problem which provides a lower bound that is at least as tight as or tighter than the lower
bound provided by the flow-based model of [2]. To solve the model, we developed multiple
column generation algorithms which compute feasible paths, with respect to maintenance
rules, in a coarsened graph. The approaches were tested on real world instances for an
intercity railway network.

The ILP model used in this paper can be described as follows. Let T be the set of trips in
the timetable. We consider the RSRP as given by a graph-based hypergraph G := (V, A, H)
where V is a set of nodes, A a set of standard arcs, and H a set of hyperarcs. V contains nodes
for arrival or departure events of vehicles that operate trips in certain compositions of vehicles,
or events where vehicles become available or are required at begin or end of the planning
horizon, respectively. Let M ⊂ V be a set of service events where maintenance services can
be performed. The arc set A contains a standard arc (v, w) if a vehicle of the respective type
can transfer in an operationally feasible way from v to w. The hypergraph H also contains
hyperarcs h ∈ H, which are node disjoint subsets of A. If two arcs (a, b), (v, w) ∈ h ⊂ A

belong to a hyperarc h, this models the coupled transfer of two vehicles from a to b and from
v to w, respectively. For more details concerning the construction of such a graph-based
hypergraph we refer to [2]. Different from [2], but according to [8], we consider an acyclic
setting with a time horizon, which leads to the consideration of start and end conditions
for the rolling stock. Therefore let S, E ⊂ T define sets of dummy trips modeling these
conditions. For a start condition dummy trip s ∈ S, the trip’s arrival node is the location
of the respective vehicle at the beginning of the planning horizon. For an end condition
dummy trip e ∈ E the trip’s departure node is a location where a vehicle of that type can be
parked at the end of the planning horizon. Moreover, there are cost and resource functions
c : H → Q and r : H → Q that give the cost to operate and the resource consumption with
respect to maintenance services of a hyperarc h, respectively. The resource consumption of
trip s ∈ S is the initial level of resource consumption of the vehicle, while trips e ∈ E require
an extra resource buffer amount that must be kept available. Finally, HM ⊂ H defines the
set of hyperarcs that include maintenance services. The RSRP is the task of finding a cost
minimal hyperflow in G such that each sub-path of standard arcs between two hyperarcs of
HM is maintenance-feasible, i.e., taht the sum of resource consumptions along this path is
below a certain threshold R ∈ Q.

Figure 1 illustrates the hypergraph construction. It shows a snippet of a hypergraph
that models four trips. Each node refers to an arrival or departure event of a single vehicle.
Departure events are on the left hand side of the smallest surrounding box while arrival events

ATMOS 2023

13:4 Assignment Based Resource Constrained Path Generation

Trip 1 Trip 2

Trip 3 Trip 4

Figure 1 An Exmaple Hypergraph Modeling Four Trips.

are the nodes on the right. The trips 3 and 4 can be operated with a single vehicle composition
either in orientation tick (1st class is in front) or tock (2nd class is in front), the former is
shown as a single red arc surrounded by a white box while the latter is shown as a single
red arc surrounded by a gray box. Compositions itself are grouped into a surrounding blue
box. So there are two blue composition boxes for each of the two trips modeling two options
to operate them. Trips 1 and 2 can additionally be operated by a two vehicle composition
with orientation tick for both vehicles. Thus there are two white boxes surrounded by a
blue box. The four nodes – two arrival and two departure events – are connected by a single
hyperarc connecting the four nodes. All possible compositions to operate a trip are then
surrounded by a white box headlined with the trip’s name. The example shows the possible
turnings of the vehicles between the four trips. If for example trip 1 is operated by a single
vehicle composition with orientation tock (gray box), it has to be either succeeded by trip
2 operated by a single vehicle composition with orientation tock or trip 4 operated by a
single vehicle composition with orientation tick. Therefore there is an orientation change
for the turn between trip 1 and 4 while there is none between 1 and 2. A reason for that
could be a different direction, in which a vehicle has to depart when it operates trip 2 or 4,
or an additional deadhead trip for one of the two turns. Similarly, if trip 1 is operated by a
single vehicle composition with orientation tick (white box), it has to be either succeeded
by trip 2 operated by a single vehicle composition with orientation tick, or trip 4 operated
by a single vehicle composition with orientation tock. Additionally, it can also be coupled
to one of the two positions of the two-vehicle composition by which trip 2 can be operated.
Finally, if trip 1 is operated by a two vehicle composition with orientation tick for both
vehicles (white boxes), the vehicles can either procceed in two-vehicle composition of trip
2 using the hyperarc that connects the two arrival nodes of trip 1 with the two departure
nodes of the two-vehicle composition of trip 2, or the composition can be uncoupled such
that one vehicle is assigned to trip 2 and the other to trip 4. So there must be an orientation
change for turns of vehicles from Trip 1 to Trip 3 while vehicles that turn from Trip 1 to
Trip 2 maintain their orientation.

2.1 A Path-Based Integer Linear Programming Model to the RSRP
Here is an integer programming model of the RSRP. We denote by H(t) ⊂ H the set of
hyperarcs that operate trip t ∈ T , by H(a) ⊂ H the set of hyperarcs that contain arc a ∈ A,
and by P (a) the set of maintenance feasible paths in (V, A) that contain arc a ∈ A. The
model contains three different types of integer decision variables, namely, xh for all h ∈ H,
zp for all p ∈ P , where P denotes the set of maintenance feasible paths in (V, A), and slack
variables st for t ∈ T .

B. Grimm, R. Borndörfer, and J. Bushe 13:5

min
∑
h∈H

chxh +
∑
t∈T

Mst (RSRPpath)

s.t.
∑

h∈H(t)

xh + st = 1 ∀t ∈ T, (1)

∑
h∈H(a)

xh −
∑

p∈P (a)

zp = 0 ∀ a ∈ A, (2)

∑
p∈P +

m

zp −
∑

p∈P −
m

zp = 0 ∀ m ∈ M, (3)

st ∈ {0, 1} ∀ t ∈ T, (4)
xh ∈ {0, 1} ∀ h ∈ H, (5)
zp ∈ {0, 1} ∀ p ∈ P. (6)

The objective function (RSRPpath) minimizes the costs of vehicle movements associated
with the chosen hyperarcs and penalties resulting from uncovered trips. Constraints (1)
stipulate that each trip is either operated by a suitable composition hyperarc or that slack
costs are paid. In case of a dummy trip for start or end conditions the slack costs are zero.
Constraints (2) make sure that each standard arc contained in a chosen hyperarc is covered by
a feasible maintenance path, and that flow conservation holds. The equalities (3) handle the
conservation of paths entering and leaving a maintenance service location; these constraints
are only considered in some of our algorithms, namely, those in which generated paths are
split into subpaths at each visited maintenance service location. Finally, constraints (4),(5),
and (6) define the variable domains.

The model potentially contains an exponentially large number of path variables. We there-
fore developed a number of column generation procedures to generate promising maintenance
paths in order to solve the linear programming relaxation of this formulation.

3 Column Generation Approaches to the Path-Based ILP Formulation

To tackle the RSRPpath-formulation we run a column generation approach with different
schemes to dynamically generate promising maintenance-feasible paths. Column generation
is a technique best suited to solve MILP formulations with a very large set of variables
compared to the number of constraints. It is based on the observation that there are very few
basic variables in an optimal solution and that most others are zero. In a nutshell a so called
restricted master problem – usually the original problem restricted to a subset of variables –
is solved to obtain a primal and a dual solution vector x̄ and π, respectively. Based on the
dual information a pricing problem is solved to find variables with negative reduced cost. If
there are no such variables the actual primal incumbent can not be improved anymore and
is thus optimal. Otherwise variables with negative reduced cost are added to the restricted
master problem and the next iteration begins. For deeper insights on the topic of column
generation we refer to [5]. In our application the restricted master problem RSRPres is the
RSRPpath-formulation restricted to the variables st for all t ∈ T and xh for all h ∈ Ht, the
constraints (1) and (2) where already variables are present, and the constraints (3) for nodes
s ∈ S ∪ E. All other constraints are added at the time when one of the associated variables
is added.

ATMOS 2023

13:6 Assignment Based Resource Constrained Path Generation

Listing 1 Algorithm 1: Column Generation Algorithm.
Input : Hypergraph G = (V, A, H), cost function c, resource function r,
maximum tolerance for optimality gap ε, number of vehicles k

Output : Generated paths P ′ and hyperarcs H ′ such that RSRPres has
optimality gap of at most ε

1 Initialize : H ′ ← HT , P ′ ← ∅, L← 0
2 do
3 π ← dualSolve (RSRPres(H ′, P ′))
4 c̄← calculateReducedCostFunction (c, π)
5 P ∗ ← calculateShortestMaintenancePathsTemplate ((V, A), c, r)
6 if c̄(p) ≥ 0 ∀p ∈ P ∗ then
7 break
8 end
9 P ′ ← P ′ ∪ P ∗

10 H ′ ← H ′ ∪
⋃

a∈p∈P
H(a)

11 x∗ ← objectiveValue (π)
12 L← max(x∗ + k min{c̄(p)|p ∈ P}, L)
13 while (x∗ − L)/x∗ > ε

14 return H ′ ,P ′

In the pricing problem we have to check for promising variables xh for H \ Ht and zp for
all maintenance feasible paths p ∈ P with negative reduced cost. In the latter case this can
be done by solving the minimization problem

c∗
P := min

{∑
a∈p

c(a) +
∑
a∈p

πa | p ∈ P

}
,

which is a resource constrained shortest path problem in D = (V, A) with cost function
ĉ : A → Q, ĉ(a) := c(a) + πa and resource function r. As it is possibly the case that the
restricted master problem RSRPres does not yet cover some arcs a ∈ A by at least one
hyperarc, we compensate for that by using the cost function

c̄ : A → Q, c̄(a) :=
{

c(a) + πa ∀a ∈ A : ∃h ∈ HRSRPres
: a ∈ h,

c(a) else,

where HRSRPres
denotes the set of hyperarcs present in RSRPres. Solving the optimization

problem

c̄∗
P := min

{∑
a∈p

c̄(a) | p ∈ P

}

gives a set of promising hyperarc and path variables to add to RSRPresin case of c̄∗
P < 0,

or proves that the column generation process can be stopped. The pseudo code for this
algorithm is given in Algorithm 1.

Column generation often suffers from so-called tailing off: The closer the objective value of
the incumbent approaches the optimal objective value, the smaller becomes the improvement
of the objective function in each iteration. We therefore apply an additional stopping criterion
in terms of a progress threshold. It applies when c(x̄)−kc̄∗

P

c(x̄) ≤ ε, where ε is a given threshold
and k := |S| is the number of vehicles (of the respective type).

B. Grimm, R. Borndörfer, and J. Bushe 13:7

3.1 Coarsening Projections for the RSRP Hypergraph
Our algorithms are based on the previously mentioned hypergraph coarsening scheme
developed by [11]. In the node set V of our original hypergraph G, a node v ∈ V represents
an arrival or departure event e ∈ {a, d} of a vehicle of some type r operating a trip t ∈ T in
a chosen composition q at position i with orientation o. This node can be represented by a
tuple v := (e, t, r, q, i, o). The first coarsening of the hypergraph G is defined by the mapping

[·] : V → [V], [(e, t, r, q, i, o)] := (e, t, r, q)

which omits the position and the orientation of the node. We accordingly coarsen the arc
and hyperarc sets to

[A] := {([v], [w]) ∈ [V]2 | ∃ (v, w) ∈ A} and [H] := {
⋃

(v,w)∈h

([v], [w]) | ∃ h ∈ H}.

These three sets define a coarsened hypergraph [G] := ([V], [A], [H]), which we call the
configuration layer. Similarly, we define a third layer called the vehicle layer by the mapping

[[·]] : V → [[V]], [[(e, t, r, q, i, o)]] := (e, t, r),

which additionally omits the composition. The sets of arcs and hyperarcs of the vehicle layer
[[G]] := ([[V]], [[A]], [[H]]) are defined as

[[A]] := {([[v]], [[w]]) ∈ [[V]]2 | ∃ (v, w) ∈ A} and [[H]] := {
⋃

(v,w)∈h

([[v]], [[w]]) | ∃ h ∈ H}.

The costs of a hyperarc belonging to one of the coarse layers are conservatively defined
as c : [H] → Q, c([h]) := min{c(h′) | h′ ∈ H : [h′] = [h]} and c : [[H]] → Q, c([[h]]) :=
min{c(h′) | h′ ∈ H : [[h′]] = [[h]]}, respectively.

The idea behind these graph contractions is that the coarsened graph becomes much
smaller, but hopefully looses only little information, such that algorithms will run faster on
the coarse graph, but still generate fesaible solutions and, in particular, maintenance-feasible
paths. We remark that the coarsening projections of arc, hyperarcs, and path always result
in underestimations of their respective costs, i.e., [c]([p]) < c(p) always holds.

Trip 1 Trip 2

Trip 3 Trip 4

(a) Fine layer H.

Trip 1 Trip 2

Trip 3 Trip 4

(b) Configuration layer [H].

Trip 1 Trip 2

Trip 3 Trip 4

(c) Vehicle layer [[H]].

Figure 2 An Example for the Layers built by [·] and [[·]] for the Hypergraph of Figure 1.

3.2 Generating Maintenance Feasible Paths Using Coarsened
Hypergraphs

The most crucial part of every column generation algorithm is to generate the best suited new
variables as fast as possible. A straight forward idea to come up with promising maintenance
paths is to solve the induced resource constrained shortest path problem (SPPRC) which is

ATMOS 2023

13:8 Assignment Based Resource Constrained Path Generation

a well studied problem, see [9] for more details. To this purpose, we implemented a Label
Setting Algorithm that first computes a topological ordering of the nodes in the graph, then
traverses the graph in this order and stores labels at each node for all Pareto-optimal sub-path.
The pseudo-code for a version that returns the best n paths is shown in Algorithm 3. Remark
that it is easy to handle the initial resource consumption of vehicles as this only requires to
set the resource consumption variables of the initial labels to their respective values. Note
that it is possible (though not required in our application) to enforce in this way at least one
maintenance service stop for each vehicle, which is a constraint that is hard to include into
the flow formulation of [2]. Using Algorithm 3 with n = 1 as the shortest path routine in
Line 5 of Algorithm 1 results in our first column generation algorithm, which adds exactly
one path per iteration.

To take better advantage of the layered structure of our hypergraph, we implemented
an additional resource constrained shortest path algorithm whose pseudo code is given in
Algorithm 4. The idea is the following: In each iteration of the column generation algorithm,
the path search iteratively computes for each vehicle i ∈ {1, ..., k} a coarse maintenance-
feasible path qi with minimum coarse reduced cost in the configuration layer by running
Algorithm 3 on [G] := ([V], [A], [H]). After that, a fine maintenance feasible path pi is again
computed by Algorithm 3 on the subgraph (Vqi

, Aqi
) induced by qi. The nodes Vpi

and
all adjacent arcs of A are then removed from G before the next path for vehicle i + 1 is
computed. If at least one maintenance feasible path pi with c̄(pi) < 0 was generated, the
set Pi :=

⋃k
i=1{pi} is added to the variables of the RSRPres. As it could be the case that

there is no fine maintenance feasible path pi in the subgraph induced by qi, or all feasible
ones are already added, we iterate through a set of shortest coarse paths until we find a
feasible fine path. In our computational experiments this happens rarely. Both algorithms
were implemented and evaluated in the master thesis [3].

Table 4 of the Appendix shows computational results for these two algorithms and shows
that the algorithms are able to compute significantly better lower bounds for specific instances,
but for a substantial price in terms of run time, and with the drawback that generated paths
are often not able to cover all trips in an integer way. This motivated the development of a
procedure that aims at a (more) simultaneous generation of paths.

3.3 Assignment Based Resource Constrained Path Generation Algorithm
The main algorithmic contribution of this paper is the Assignment Based Resource Con-
strained Path Generation Algorithm shown in Algorithm 2. It is motivated by the observation
that the paths that are generated in later iterations, even if they have negative reduced costs,
often lack complementary paths that are needed to cover all trips. The general idea behind
the algorithm is to avoid this situation by simultaneously computing paths for the entire set
of vehicles. This is done by solving an assignment problem that assigns a successor trip to
each trip in the super-coarse layer [[G]]. The ensuing predecessor-successor relations result
in implicit paths in G. Due to the integrality of the Assignment Problem they often produce
an integral solution of the RSRPpath – if all computed paths are maintenance feasible. In
order to improve the lower bound or to terminate this method is combined with a single
resource constrained shortest path computation.

The algorithm works as follows. At first a single iteration of Algorithm 4 is done to
compute a single coarse resource constrained shortest path q in the configuration layer [G].
This path defines a subgraph (V (q), A(q)) ⊆ G, where V (q) and A(q) denote the sets of
nodes and arcs that can be projected by [·] on nodes or arcs of q. In this subgraph a shortest
maintenance feasible path p is determined by Algorithm 3 and added to P ′. If no such

B. Grimm, R. Borndörfer, and J. Bushe 13:9

Listing 2 Algorithm 2: Assignment Based Path Generation.
Input : Hypergraph (V, A, H), cost function c, gap
tolerance ϵ, number of vehicles k, coarseining projections [·], [[·]]
Output : Sets H ′ ⊂ H and paths P ′ ⊂ P with min{c̄(p)|p ∈ P ′} < 0 or P ′ = ∅
1 Initialize : H ′ ← ∅, P ′ ← ∅, L← 0
2 π ← dualSolve (RSRPres(H ′, P ′))
3 H ′, P ′ ← calculateCoarse2FineShortestPathSet (k = 1, [n] = 64, n=1)
4 if P ′ = ∅ then
5 break
6 end
7 [[c̄]]← calculateSuperCoarseReducedCostFunction (c, π)
8 [c̄]← calculateCoarseCostFunction (c, π)
9 c̄← calculateFineCostFunction (c, π)
10 [[A]] ⊃ A′ ← solveAssignment (([[V]], [[A]]), [[c̄]])
11 [[P]]← computeMaintenanceFeasiblePathDecompostion (A′)
12 for [[p]] ∈ [[P]] do
13 [G][[p]] ← ([V ([[p]])], [A([[p]])])
14 q ← calculateCoarseShortestPath ([G][[p]], [c], [r], n = 1)
15 p← calculateFineShortestPath ((A(q), V (q)), c̄, r, n = 1)
16 P ′ ← P ′ ∪ {p}
17 H ′ ← H ′ ∪H(p)
18 end
19 return H ′, P ′

path exists or c̄(p) > 0, the path generation is stopped. Otherwise we set up the following
assignment problem for the vehicle layer [[G]] and reduced cost function [[c̄]], adding arcs
(v, v) to [[A]] ∀v ∈ [[S]] ∪ [[E]] with [[c̄]](v, v) := 0.

min
∑

a∈[[A]]

[[c̄]](ya) (AP)

s.t.
∑

a∈[[A]]+
v

ya = 1 v ∈ [[V (t)]], ∀t ∈ T, (7)

∑
a∈[[A]]−

v

ya = 1 v ∈ [[V (t)]], ∀t ∈ T, (8)

ya ∈ [0, 1] a ∈ [[A]]. (9)

The two sets of constraints (8) and (7) AP assign to each node of the vehicle layer a
predecessor and a successor. The objective function ensures that this is done in a cost
minimal way according to the super coarse reduced cost [[c̄]]. Remark that each trip t ∈ T

has exactly two nodes in [[V]], an arrival and a departure node. The problem is solved with
an implementation of the Primal Hungarian Method of [1]. Because of the acyclic structure of
the graphs, the solution translates into a set of paths [[P]] (and loops for unused start or end
vehicles) in the vehicle layer. Each path [[p]] defines disjoint subgraphs ([V ([[p]])], [A([[p]])])
of the configuration layer [G] that can be projected onto [[p]]. For each of these subgraphs we
compute a shortest coarse maintenance feasible path q with respect to [c̄] with Algorithm 3,
and from that a shortest maintenance feasible path p with respect to c̄, which are added to
P ′. Denote the set of generated hyperarcs by H ′ = {h ∈ H | ∃a ∈ p : a ∈ h}. The sets P ′

and H ′ are returned as promising variables for the next iteration of the column generation
round.

ATMOS 2023

13:10 Assignment Based Resource Constrained Path Generation

Table 1 Characteristics of the Test Instances.

Instance |T | |M | |[V]| |V | |[H]| |H|
Instance 1-3 215 5 259 518 40362 159286
Instance 4-6 267 4 315 630 66227 264054
Instance 7-8 274 4 274 548 70702 281748
Instance 9-11 276 4 276 562 71123 283406
Instance 12-14 276 4 276 562 71362 284402
Instance 15-17 284 4 284 568 75602 301362
Instance 18-20 62 20 69 138 3374 13414

3.4 Improving the IP by Using Subpaths
In all our approaches to solve the RSRP, we generate paths to solve the root LP. This can
cause problems for the solution of the IP, as it might be hard to find subsets of path that
jointly cover all trips. To overcome problem this we implemented for all of our algorithms a
variant that splits each s-e-path at each maintenance service location into a set of subpaths.
These subpaths are added to the master problem, coupled together by a path conservation
constraint (3) for each maintenance service and each split, repsectively. Note that we can
ignore the dual variables of the constraints (3) becasue we are still computing maintenance
feasible paths with minimum reduced cost from a start trip to an end trip. The reason for
that is that it is not possible to end a path at a maintenance service stop. Thus there must
be exactly one subpath that enters and exactly one that leaves the maintenance service stop
such that the associated dual variables cancel in an s-e-path. The construction increases
flexibility in future iterations as solutions can be combined from subpaths, and are not limited
to the set of generated s-e-paths. Note also that it is not possible to construct a path that is
not maintenance-feasible. We refer to the variant of Algorithm 2 using maintenance-feasible
subpaths as Algorithm 2+subpath in Section 4.

4 Computational Results

We evaluate all our algorithms on real world test set of long distance rolling stock rotation
problems. All instances model an acyclic planning horizon of one week. Turnings including
deadheads and additional turnaround trips are possible between each pair of trips as long
as time and spacial constraints are met. Additional characteristics of the instances and the
resulting numbers of coarse and fine nodes and hyperarcs are given in Table 1. In all of
our instances we consider an initial resource consumption level of 0. Despite this idealized
setting, almost all (optimal) solutions of the considered instances require each vehicle to have
at least one maintenance service during the one week planning horizon.

All of our column generation procedures were implemented in the software tool ROTOR
which is a railway rolling stock optimizer developed at ZIB and described in [11]. We ran our
column generation routines with a run time limit of 2 hours to solve the linear programming
relaxation. Afterwards the resulting IP formulation RSRPres is solved without any additional
generation of paths. In spite of ROTOR’s tailor-made branching scheme, we use CPLEX
with a run time limit of 4 hours to have a more accessible comparison. All computations
were performed on Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz and 64 GB of RAM. All
restricted master problems that arise during column generation as well as the integer program
that results from the column generation were solved using CPLEX 12.8.0.0 with an IP
tolerance of 0.01 and a maximum of four threads in parallel.

B. Grimm, R. Borndörfer, and J. Bushe 13:11

Table 2 Computational Results for the linear relaxation of the final RSRPres.

Algorithm 2 Algorithm 2+subpath Flow
Instance CPU(s) Bound CPU(s) Bound CPU(s) Bound
Instance 1 7220 0.970 7231 0.971 3 1
Instance 2 4283 1.000 3360 1 3 0.998
Instance 3 150 0.998 87 0.997 3 1
Instance 4 7271 0.858 7208 0.858 25 1
Instance 5 7251 0.979 4733 1 24 0.980
Instance 6 204 0.997 214 0.997 24 1
Instance 7 7234 0.952 2693 1 5 0.968
Instance 8 498 0.998 220 0.998 5 1
Instance 9 7220 0.855 7275 0.855 5 1
Instance 10 6314 0.997 2951 1 5 0.968
Instance 11 505 0.997 185 0.997 5 1
Instance 12 7278 0.856 7248 0.856 5 1
Instance 13 6279 1 2537 0.999 5 0.968
Instance 14 170 0.998 187 0.997 5 1
Instance 15 7222 0.845 7208 0.845 5 1
Instance 16 7209 0.997 3079 1 5 0.966
Instance 17 262 0.997 239 0.997 5 1
Instance 18 378 1 125 0.996 1 0.971
Instance 19 275 0.996 122 1.000 1 1
Instance 20 118 0.994 80 0.994 1 1

In Table 2 we compare the solution process for the linear relaxation of RSRPpath for
three different algorithms: Algorithm 2 adding s-e-paths only, Algorithm 2+subpaths adding
subpaths, and the Flow model of ROTOR. For each of the three algorithms Table 2 contains
two columns. The columns headlined CPU(s) show the computation time of the column
generation procedure of the respective algorithm in CPU seconds. The columns Bound show
the best lower bounds of the algorithms relative to the best known bound that was computed
by any of the three algorithms (marked by an integer 1 in bold font instead of a float 1.000).
The comparison shows that although the path formulation gives in theory a better bound, it
was only able to compute the best bound in 7 of the 20 cases, which is due to the run time
limit. It becomes also clear that the better bound requires a lot of run time. Comparing the
two versions of Algorithm 2 shows that the version where subpaths are added significantly
outperforms the other version in sense of run time and bound quality; a results that is of
course again related to the run time.

In Table 3 the characteristics of the solution process and the solutions of the final RSRPres

formulations is shown. For each of the three algorithms, Table 2 contains three blocks of
columns headlined CPU(s), Cost, and Gap. The first column marks the computation time in
seconds that was required by the respective algorithm to solve the underlying IP formulation
up to an LP-IP gap of 1% or to reach the run time limit. The Cost column contains relative
costs compared to the minimum cost that was found by any of the three algorithms. The
last column gives the LP-IP gap of the solutions found by the three algorithms compared
to the best lower bound by any of the algorithms. Comparing the solution quality of the
integer solutions shows that in 75% of the instances one of the path formulations finds an
integer solution with a lower objective function value than the solution ROTOR computes.
The cost and Gap column for Algorithm 2 shows a significant outlier for Instance 1. This is
due to the fact that the computed solutions were not able to cover all trips in the timetable
and thus have to use slack variables which have a huge impact on the objective function
value. A direct comparison of the two variants of Algorithm 2 reveals that although the
version without adding subpaths is able to best solve 10 compared to 7 instances, it still gets
outperformed by the variant that add subpaths as the latter one computes superior solutions
it the sense of lower average objective function values.

ATMOS 2023

13:12 Assignment Based Resource Constrained Path Generation

Table 3 Computational Results for Solution Process of the Final IP of RSRPres.

Algorithm 2 Algorithm 2+subpath Flow
Instance CPU(s) Cost Gap CPU(s) Cost Gap CPU(s) Cost Gap
Instance 1 14420 53,816 6297,00 14431 1,193 41,79 14404 1 18,87
Instance 2 11483 1,004 2,32 8474 1 1,89 14404 1,011 2,97
Instance 3 151 1 0,49 88 1,000 0,52 13 1,003 0,81
Instance 4 14472 1,161 52,03 14409 1 30,90 14422 1,019 33,35
Instance 5 7371 1,007 1,62 4765 1 0,94 14408 1,010 1,97
Instance 6 205 1 0,57 215 1,003 0,89 12 1,001 0,65
Instance 7 7280 1,011 1,70 2696 1 0,62 14420 1,006 1,27
Instance 8 501 1 0,58 220 1,001 0,67 51 1,004 1,00
Instance 9 14420 1,055 40,06 7296 1 32,74 14407 1,050 39,40
Instance 10 6325 1 0,47 2954 1 0,47 14411 1,003 0,80
Instance 11 509 1 0,57 185 1,001 0,68 25 1,003 0,83
Instance 12 7287 1,000 35,62 7319 1,000 35,62 14410 1 35,61
Instance 13 6304 1 0,81 2544 1,004 1,19 14410 1,003 1,14
Instance 14 171 1 0,54 187 1,001 0,65 43 1,001 0,66
Instance 15 7229 1,000 36,87 7216 1,001 36,99 14409 1 36,87
Instance 16 7223 1 0,77 3082 1 0,77 14420 1,000 0,78
Instance 17 263 1 0,55 240 1,001 0,66 44 1,002 0,72
Instance 18 382 1,001 1,41 162 1,133 14,79 14402 1 1,28
Instance 19 277 1 0,75 132 1,010 1,79 4794 1,008 1,53
Instance 20 119 1,200 20,93 82 1,002 1,03 1 1 0,80

5 Conclusion and Outlook

In this paper we presented a novel path based ILP-formulation to the Rolling Stock Rotation
Problem as well as sophisticated column generation algorithms to tackle the Problem.
Although the presented algorithms were designed with the focus of generating tight lower
bounds for the Rolling Stock Rotation Problem with maintenance constrains, it turns out
that it was even possible to compute high quality integer solutions for practically relevant
instances, albeit for the price of longer running times as compared to the flow model of
ROTOR. Moreover, we were able to solve the instances considered in this paper by solely
generating paths, respectively subpaths, of the root relaxation, without any additional path
generation later on in the branching tree. This favorable outcome might be a consequence
of a good overall fit of the generared paths, which in turn is caused by extended degrees of
freedom from the subpath construction and the generation of maintenance-feasible paths
with a fleet focus in the assignment based generation approach. Additional research is needed
to further improve the run time of the path generation.

References

1 M. L. Balinski and R. E. Gomory. A Primal Method for the Assignment and Transportation
Problems. Management Science, 10(3):578–593, April 1964. doi:10.1287/mnsc.10.3.578.

2 Ralf Borndörfer, Markus Reuther, Thomas Schlechte, Kerstin Waas, and Steffen Weider.
Integrated optimization of rolling stock rotations for intercity railways. Transportation Science,
50(3):863–877, 2016. doi:10.1287/trsc.2015.0633.

3 Julian Bushe. Rolling stock rotation optimization with maintenance paths. Master’s thesis,
Technische Universität Berlin, 2021.

4 Valentina Cacchiani, Alberto Caprara, and Paolo Toth. Solving a real-world train-unit
assignment problem. Mathematical Programming, 124(1):207–231, July 2010. doi:10.1007/
s10107-010-0361-y.

5 Jacques Desrosiers and Marco E Lübbecke. A primer in column generation. In Column
generation, pages 1–32. Springer, 2005.

https://doi.org/10.1287/mnsc.10.3.578
https://doi.org/10.1287/trsc.2015.0633
https://doi.org/10.1007/s10107-010-0361-y
https://doi.org/10.1007/s10107-010-0361-y

B. Grimm, R. Borndörfer, and J. Bushe 13:13

6 Pieter-Jan Fioole, Leo Kroon, Gábor Maróti, and Alexander Schrijver. A rolling stock
circulation model for combining and splitting of passenger trains. European Journal of
Operational Research, 174(2):1281–1297, 2006. doi:10.1016/j.ejor.2005.03.032.

7 Giovanni Luca Giacco, Andrea D’Ariano, and Dario Pacciarelli. Rolling stock rostering
optimization under maintenance constraints. Journal of Intelligent Transportation Systems,
18(1):95–105, 2014. doi:10.1080/15472450.2013.801712.

8 Boris Grimm, Ralf Borndörfer, Markus Reuther, Stanley Schade, and Thomas Schlechte. A
propagation approach to acyclic rolling stock rotation optimization. In 7th International
Conference on railway operations modelling and Analysis (RailLille 2017), pages 688–698,
2017.

9 Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints. In
Column generation, pages 33–65. Springer, 2005.

10 Richard M. Lusby, Jørgen Thorlund Haahr, Jesper Larsen, and David Pisinger. A branch-
and-price algorithm for railway rolling stock rescheduling. Transportation Research Part B:
Methodological, 99:228–250, 2017. doi:10.1016/j.trb.2017.03.003.

11 Markus Reuther. Mathematical Optimization of Rolling Stock Rotations. PhD thesis, Technical
University Berlin, 2017. URL: https://depositonce.tu-berlin.de/handle/11303/6309.

12 Per Thorlacius, Jesper Larsen, and Marco Laumanns. An integrated rolling stock planning
model for the Copenhagen suburban passenger railway. Journal of Rail Transport Planning &
Management, 5(4):240–262, 2015. doi:10.1016/j.jrtpm.2015.11.001.

13 Joris C. Wagenaar, Leo G. Kroon, and Marie Schmidt. Maintenance appointments in railway
rolling stock rescheduling. Transportation Science, 51(4):1138–1160, 2017. doi:10.1287/trsc.
2016.0701.

14 Qingwei Zhong, Richard M. Lusby, Jesper Larsen, Yongxiang Zhang, and Qiyuan Peng.
Rolling stock scheduling with maintenance requirements at the Chinese high-speed railway.
Transportation Research Part B: Methodological, 126:24–44, 2019. doi:10.1016/j.trb.2019.
05.013.

ATMOS 2023

https://doi.org/10.1016/j.ejor.2005.03.032
https://doi.org/10.1080/15472450.2013.801712
https://doi.org/10.1016/j.trb.2017.03.003
https://depositonce.tu-berlin.de/handle/11303/6309
https://doi.org/10.1016/j.jrtpm.2015.11.001
https://doi.org/10.1287/trsc.2016.0701
https://doi.org/10.1287/trsc.2016.0701
https://doi.org/10.1016/j.trb.2019.05.013
https://doi.org/10.1016/j.trb.2019.05.013

13:14 Assignment Based Resource Constrained Path Generation

Listing 3 Algorithm 3: Calculate Shortest Path Labels with Resource Constraints.
Input : Graph G=(V, A), topological ordering of V, start and end node
sets S and E, cost function c, resource function r, integer n.
Output : Label of k minimum cost maintenance feasible s-e-path
1 // initialize empty pareto sets at each node
2 foreach v ∈ V do
3 labels (v) ← ∅
4 end
5 bestEndLabelsList ← sortedListOfLength (n)
6 // create labels at initial departure nodes
7 foreach v ∈ V do
8 label ← createStartLabel (v)
9 labels (v). add(label)
10 end
11 // relax outgoing arcs of nodes in topological order
12 for i ∈ {1, ..., n} do
13 if vi /∈ E then
14 foreach a = (vi, w) ∈ A+

vi
do

15 foreach label ∈ labels (vi) do
16 newLabel ← createLabel (label , a, c, S)
17 if newLabel is feasible then
18 if newLabel is not dominated of lables (w) then
19 labels (w). add(newLabel)
20 labels (w). discardLabelsDominatedBy (newLabel)
21 end
22 end
23 end
24 end
25 end
26 //if vi is a terminal arrival node
27 else
28 // labels at each node ordered by ascending cost
29 for candidateLabel in labels (vi) do:
30 if cost(candidateLabel) < cost(bestEndLabel) then
31 bestEndLabelsList . insert (candidateLabel)
32 end
33 end
34 end
35 end
36 return bestEndLabelsList

B. Grimm, R. Borndörfer, and J. Bushe 13:15

Listing 4 Algorithm 4: Calculate Coarse2Fine Shortest Path Set.
Input : Hypergraph (V, A, H), cost function c, gap
tolerance ϵ, number of vehicles k, coarseining projection [·],
number of coarse paths [n], number of fine paths [n]
Output : Sets H ′ ⊂ H and paths P ′ ⊂ P with min{c̄(p)|p ∈ P ′} < 0 or P ′ = ∅
1 Initialize : H ′ ← HT , P ′ ← ∅, L← 0
2 π ← dualSolve (RSRPres(H’,P ’))
3 [c̄]← calculateCoarseReducedCostFunction (c, π)
4 c̄← calculateFineCostFunction (c, π)
5 Q← ∅ \\ Set of shortest coarse paths
6 [G]← ([V], [A])
7 for i = 1, ..., k do
8 Qi ← calculateCoarseShortestPath ([G], [c], [r], [n])
9 if min{[c](q) | q ∈ Q1} ≥ 0 then
10 break
11 end
12 for qi ∈ Qi do
13 Pqi ← calculateFineShortestPath ((A(qi), V (qi)), c̄, r, n)
14 if |Pqi | > 0 then
15 P ′ = P ′ ∪ Pqi

16 [G]← deleteArcsAndNodesOfPath ([G], qi)
17 break
18 end
19 end
20 end
21 if min{c̄(p) | p ∈ P ′} ≥ 0 then
22 return H ′, P ′

23 end
24 H ′ ← H ′ ∪

⋃
p∈P ′

⋃
a∈A(p) H(a)

25 return H ′, P ′

Table 4 Computational Results for Algorithm 3 and Algorithm 4.

LP IP
Relative Objective CPU(s) Relative Obj. Gap(%)

Id F A1 A2 F A1 A2 A1 A2 F A1 A2
1 0.992 0.992 0.992 6 18912 4705 54.0 21.43 0.8 98.2 95.3
3 0.865 0.912 0.912 13 71792 28441 48.3 38.90 8.8 98.1 97.7
4 0.994 0.997 0.997 34 70940 15739 43.5 1.000 0.3 97.7 0.3
6 0.758 0.885 0.885 34 66011 10923 21.6 6.822 11.4 95.9 87.0
7 0.759 0.991 0.992 21 99375 18538 27.9 0.972 3.6 97.6 0.9
9 0.995 0.999 0.999 21 48371 18179 27.1 0.996 0.4 96.3 0.1
11 0.786 0.999 0.999 10 60850 21799 19.4 0.950 5.0 95.1 0.1
12 0.996 0.999 0.999 17 49164 15475 33.5 0.995 0.5 97.0 0.1
14 0.748 0.970 0.970 25 154049 10850 35.6 10.19 3.0 97.3 90.5
15 0.991 0.992 0.992 1 297 191 197.2 1.196 0.7 99.5 17.1
18 0.959 0.991 0.991 1 520 493 147.9 1.216 0.9 99.3 18.5
20 0.996 0.999 0.999 18 65313 10362 33.0 0.998 0.2 97.0 0.1
17 0.996 0.998 0.999 23 76086 12305 48.3 0.996 0.4 97.9 0.1

ATMOS 2023

Scheduling Electric Buses with Stochastic Driving
Times
Philip de Bruin #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Marjan van den Akker #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Han Hoogeveen #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Marcel van Kooten Niekerk #

Department of Information and Computing Sciences, Utrecht University, The Netherlands
Qbuzz BV, The Netherlands

Abstract
To try to make the world more sustainable and reduce air pollution, diesel buses are being replaced
with electric buses. This leads to challenges in scheduling, as electric buses need recharging during
the day. Moreover, buses encounter varying traffic conditions and passenger demands, leading to
delays. Scheduling electric buses with these stochastic driving times is also called the Stochastic
Vehicle Scheduling Problem. The classical approach to make a schedule more robust against
these delays, is to add slack to the driving time. However, this approach doesn’t capture the variance
of a distribution well, and it doesn’t account for dependencies between trips. We use discrete event
simulation in order to evaluate the robustness of a schedule. Then, to create a schedule, we use a
hybrid approach, where we combine integer linear programming and simulated annealing with the
use of these simulations. We show that with the use of our hybrid algorithm, the punctuality of the
buses increase, and they also have a more timely arrival. However, we also see a slight increase in
operating cost, as we need slightly more buses compared to when we use deterministic driving times.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; Computing
methodologies → Modeling and simulation; Computing methodologies → Planning under uncertainty;
Computing methodologies → Discrete-event simulation

Keywords and phrases Electric Vehicle Scheduling Problem, Simulated Annealing, Hybrid Algorithm,
Simulation, Stochastic Driving Times

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.14

1 Introduction

In an effort to make the world more sustainable, electrification in the public transport sector
is becoming more and more important. More specifically, everywhere in The Netherlands,
diesel buses are replaced with their electric counterparts. This, however, introduces more
constraints when scheduling these buses. In their current status, electric buses are constrained
in their range, and need to be recharged during the day. For diesel buses, this is not an issue,
as they could generally drive the whole day on a single tank.

The introduction of range restrictions on the buses leads to various additional problems.
Electric buses either need to recharge, or swap their batteries during the day. This makes the
scheduling of electric buses more difficult, as we not only need to determine the routes for
the buses, but also when to recharge the vehicle. This results in an NP-hard problem [12].

There are several approaches to solve this problem, as is also discussed in a recent review
by Perumal et al. [11]. However, most of these solutions assume deterministic driving times.
This is not a realistic assumption, as traffic conditions and passenger loads vary from day to

© Philip de Bruin, Marjan van den Akker, Han Hoogeveen, and Marcel van Kooten Niekerk;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 14; pp. 14:1–14:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.debruin@uu.nl
https://orcid.org/0000-0002-1981-0527
mailto:j.m.vandenakker@uu.nl
https://orcid.org/0000-0002-7114-0655
mailto:j.a.hoogeveen@uu.nl
https://orcid.org/0000-0001-8544-8848
mailto:marcel.van.kooten.niekerk@qbuzz.nl
https://doi.org/10.4230/OASIcs.ATMOS.2023.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2 Scheduling Electric Buses with Stochastic Driving Times

day, which causes delays. These delays can cause various issues, such as delay propagation in
our network or inconveniences for the end-user, as it results in longer waiting times, delayed
arrivals, and possibly missed transfers. We investigate using stochastic driving times in order
to make our schedules more robust against these delays. Furthermore, we also consider the
driving behaviour of the bus drivers, since someone with a more sporty driving style has a
different energy consumption than someone who drives more conservatively. The scheduling
of these buses with the use of stochastic variables is called the Stochastic Electric
Vehicle Scheduling Problem (stochastic E-VSP).

A classical way to deal with stochastic driving times, is to include some slack based on
their distribution. This slack time could be based on a factor of the mean of the distribution,
or a percentile of the distribution. With this, all the stochastic driving times are converted
back into deterministic ones. However, this results in an approximation where the different
trips do not affect each other. Also, the variance of the distribution is only partly accounted
for, as we will not encounter the more extreme delays that realistically could still occur.
Thus, this approximation may not be very realistic. A better way to deal with stochastic
driving times is to work with the expected start- and end-times of a trip given the trips
that are driven before it. Unfortunately, it is very time-consuming, if not outright infeasible,
to compute these values exactly. This could be solved by estimating these values. An
approach to do this, is to use simulations in a local search algorithm [15]. However, the use
of simulations is computationally very expensive. Therefore, in their research on parallel
machine scheduling, Passage et al. [9] chose to assume normal distributions, which makes
calculating the expected start- and end-times a lot simpler and very quick. This also yielded
better results compared to the use of simulation, unless we do a lot of simulations each
iteration of the local search, which slows down the algorithm.

However, since driving times of trips on the same day are dependent, we focus on the
use of simulations inside a local search algorithm, as this will give us a better view on the
robustness of our solution. Using simulations in a local search algorithm is computationally
expensive. Doing only a few simulations is great runtime-wise, but might not give a correct
view on which solution is better. Thus, we minimize the number of simulations, while making
sure that we can make a “correct” decision. To do this, we tested several techniques. Namely,
Optimal Computation Budget Allocation, Indifference Zones, and a self-developed method
based on t-tests. For an explanation and comparison of these techniques, we refer to [4].

For the local search algorithm, we extend the simulated annealing approach used by
ten Bosch et al. [14], by including robustness and simulations to evaluate solutions in each
iteration. Their method is based on a column-generation approach by van Kooten Niekerk
et al. [16], where each column represents the schedule of a single vehicle. However, instead
of solving a pricing problem to find new columns, they use simulated annealing to find a
solution and use the vehicle schedules in this solution as columns. These are then recombined
into a final solution by an ILP-solver.

For simulating a schedule, we need to know the distribution of the driving time. To
determine these, we worked with Qbuzz, a major bus company from The Netherlands, who
provided data and insights of their operations. We looked at historic data and determined the
various sources of delays. Furthermore, we also found that the driving times in the simulation
depend on each other, with the main idea that people taking the bus in the morning, will
also take the bus back in the afternoon. Thus, if we have higher passenger demands in the
morning, we will also see these higher passenger demands in the afternoon, likely resulting in
higher driving times both in the morning and the afternoon. With this, we determined the
distributions to use in our simulation. A detailed overview of this is given in Appendix A.

P. de Bruin, M. van den Akker, H. Hoogeveen, and M. van Kooten Niekerk 14:3

Our contribution. We present an algorithm that takes into account the relevant sources of
delays to increase the robustness and punctuality of a schedule. Hereto, we combine local
search with simulation and integer linear programming. The probability distributions are
determined by analysing historical driving times and weather data.

The rest of this paper is organized as follows. In Section 2, we will first discuss the
relevant literature for this problem. In Section 3, we will describe the problem into more
detail. Then in Sections 4 and 5 we will go into the details of our model, where we discuss
our local search approach and its extension with simulation. Lastly, we run experiments to
test our model in Section 6, which we will discuss in Section 7.

2 Literature Overview

In this section, we discuss some of the literature on the planning of electric vehicles and the
use of stochastic driving times. In recent years, there has been an increasing focus on the
study of this problem due to its relevance in the context of electric vehicles. Considering the
scheduling of electric vehicles can be viewed as scheduling vehicles with resource constraints,
taking into account the limitations imposed by their range. In 1983, Raff [12] studied this
VSP problem with any resource constraint and show that is NP-hard. In 2007, Wang and
Shen [17] expanded this problem, adding fuelling time constraints. Here, they specifically
focus on electric vehicles.

In a recent review, Perumal et al. [11] divide the research of this problem into different
challenges and different methodologies to overcome these challenges. For the recharging of
these electric buses, multiple technologies can be considered [7, 3]. The main technologies
considered are battery swapping and the use of recharging stations. For example, the use of
battery swapping is studied by Chao and Xiaohong [2]. They solve the resulting problem
using a genetic algorithm. There is more focus on the use of recharging stations. Wen et al.
[18] present a large neighbourhood search heuristic for solving E-VSP with recharging stations,
where they assume the charging time to be linear in the charging volume. However, this
assumption of linear charging times is not realistic and, as shown by Olsen and Kliewer [8],
may lead to infeasible routes, as not enough time is planned for charging. Van Kooten Niekerk
et al. [16] incorporated such non-linear charging times and proposed a column-generation
approach to solve E-VSP. Ten Bosch et al. [14] built on this approach, by using simulated
annealing to solve the pricing problem.

The use of stochastic driving times in the E-VSP problem is novel. Tang et al. [13]
propose a branch-and-price framework for solving E-VSP under both static and dynamic
traffic conditions. They do this by using a so-called buffer-distance, which makes sure that
the bus does not run out of charge while in traffic. Furthermore, while they propose a model
to avoid running out of charge due to the traffic conditions, they still use the average travel
time for cost and delay calculations. So, while they look at stochastic driving conditions, they
still solve it deterministically. Bie et al. [1] use a Non-dominated Sorting Genetic Algorithm
with the elitist strategy (NGSA-II) to solve E-VSP for stochastic driving times. For their
recharging strategy, they set a range in which the battery’s state of charge is allowed to vary.
They recharge a bus when it is idle, i.e. when it is currently waiting for its next trip to start.

3 Problem Description

In the Vehicle Scheduling Problem (VSP), we are given a set of trips T̄ . These trips
consist of a departure and arrival location, a planned starting time, and a driving time. The
goal is to schedule a set of identical vehicles such that every trip in T̄ is driven. For this,

ATMOS 2023

14:4 Scheduling Electric Buses with Stochastic Driving Times

we minimize the costs of using these vehicles. These costs consist of a fixed cost, a cost per
kilometer driven, and a cost per block. In this case, a block is a set of trips driven after
each other without going back to the depot. A cost for these blocks is included to penalize
situations where a bus only drives a single trip before going back to the depot. For this
problem, we consider only one depot location. All vehicles must start and end their route at
this location.

As we work with electric vehicles, we get the E-VSP problem. Since electric vehicles have a
lower range than their non-electric counterparts, we need to consider how and when to charge
these vehicles. When recharging the battery, we take the battery life into consideration This
is because certain charging strategies could significantly degrade the battery life, resulting
in more maintenance costs. Therefore, we follow the approach of van Kooten Niekerk et al.
[16]. They looked at the Depth-of-Discharge (DoD), which is a percentage that indicates how
much the battery is discharged. Based on the number of charge cycles of a battery and the
current DoD, they estimated the cost of charging, given the DoD at the start and the end of
charging. We use the exact same cost for our charging sessions. Lastly, we need a charging
strategy for these vehicles. For this, we make use of so-called opportunity charging. Thus, we
charge a bus whenever possible for as long as possible. Note that this charging strategy also
minimizes the DoD over the whole trip. Furthermore, charging a vehicle takes time. For
calculating this time, we take the same approach as van Kooten Niekerk et al. [16], thus we
assume the charging time to consist of two linear parts. Here, we assume that charging from
0% to 80% takes the same time as charging from 80% to 100%.

As we alluded to before, we want the created schedules to be robust against delays. This
is why we use stochastic driving times instead of deterministic ones. However, we also need
a measure for the robustness of a schedule. For this, we compare the robustness of a given
schedule using simulation, where we compare the planned and actual starting times of a trip,
because a delayed vehicle will start its next trip late when there is not enough slack between
the trips. For this measure, we use a piecewise-linear function, where we penalize being less
than 3 minutes late significantly less than being more than 3 minutes late. Doing this over
multiple simulations, and taking the mean, gives a good score for the robustness.

Summarizing, we schedule electric buses to perform a set of trips, where we minimize
operational costs, a cost for the battery lifetime, and the robustness penalty.

4 The Hybrid Algorithm

As mentioned before, we use the same approach as ten Bosch et al. [14] to solve the E-VSP
problem, which we expand with simulations in order to solve stochastic E-VSP. We first
look at how they set up their local search. For this, they take a set-covering MIP as a basis.
Remember that T̄ is the set of trips that need to be driven. Then, let V be the set of all
possible vehicle tasks. Here, a vehicle task, from now on task for short, is a set of trips that
can be driven by a single vehicle. For a task v ∈ V , we can calculate its cost Cv. This cost is
the sum of three components, as described in Section 3.

With this, we can formulate the master problem. We use the variable xv to denote if a
task v is chosen. Furthermore, we have the parameter rvt to denote that a trip t ∈ T̄ is in v.
Then our objective is to

minimize
∑
v∈V

xvCv. (1)

P. de Bruin, M. van den Akker, H. Hoogeveen, and M. van Kooten Niekerk 14:5

Which is subject to the constraints:∑
v∈V

rvtxv = 1 ∀t ∈ T̄ , (2)

xv ∈ {0, 1} ∀v ∈ V. (3)

Here, Equation (2) ensures that we drive every trip in the final schedule and Equation (3)
sets the domain of our decision variables.

A common way to solve this problem, is to use column generation and find columns
by solving a pricing problem. However, ten Bosch et al. [14] have shown a better way to
solve this problem. They use simulated annealing to find a set of vehicle tasks. We use the
approach. Finally, we include these tasks in the restricted master problem and solve it to
find our final solution. However, in our setup we cannot calculate Cv directly, because of
the use of stochastic variables. Thus, we need to estimate the cost of a task. We do this by
simulating them and taking the average. To calculate the number of simulations that are
required each iteration, we look at the results of de Bruin [4]. We use the t-test method they
developed, as this seems to be a good compromise between runtime and solution quality.

5 Robustness

In order to simulate a task or a complete schedule, we make use of discrete-event simulation.
Each vehicle (or task) in the schedule has multiple subtasks. These subtasks are essentially
everything that needs to be driven, thus trips, deadheads, or going to and from the depot.
The discrete-event simulation consists of two events: the start and end of a subtask. During
this simulation, we also need to keep track of the state of charge in order to calculate the
minimum required charging times to make sure that buses do not run out of charge. Thus,
we also simulate the energy consumption, which we explain further in Section 5.2.

To integrate this into our simulated annealing algorithm, we perform multiple simulations
for a given solution and return the average result. However, when comparing two solutions, we
need to make sure that they are compared fairly. Specifically, the randomness of the driving
times and energy consumption can cause a worse solution to be “lucky” and outperform
the better solution. In order to make comparisons more fair, we employ a technique called
Common Random Numbers (CRN) [6]. With this technique, we make sure that both solutions
get the same realizations of driving times, thus solutions cannot gain an advantage by drawing
shorter driving times. However, this technique is not applicable to the energy consumption,
which we will explain further in Section 5.2.

5.1 Simulating Driving Times
To simulate the driving times, we first need to find appropriate distributions for them. To do
this, we analysed historic driving times that were provided by the bus company Qbuzz. This
analysis is available in Appendix A. Here, we also found that driving times within the same
day are somewhat dependent on each other. To capture this behaviour in our simulation,
we need to create scenarios where, for example, longer driving times in the morning also
lead to longer driving times in the evening, allowing us to create days with higher passenger
demands that could lead to higher driving times over the whole day. To accomplish this, we
generate instances of simulated driving times. These contain the simulated driving times of
all the trips on a single day.

We create a set of instances for multiple types of situations. First, we have a set of
instances for “normal” days. These are days with an average passenger load and mostly
average driving times. But, as we want our schedules to be robust against delays, we will

ATMOS 2023

14:6 Scheduling Electric Buses with Stochastic Driving Times

also create scenarios for busier days, where we have more passengers and thus more above
average driving times. By simulating a mix of these situations, we make our schedules robust
against these busy days, while maintaining a good schedule under more normal loads.

To start a simulation, we randomly select one of these instances and simulate the whole
schedule with it. Before running the simulations, we also decide how many of each of the
instance types we simulate per iteration. This is set beforehand, such that we always run
the simulation with the same distribution of instance types. Here, we also ensure that each
instance type is accounted for.

5.2 Simulating Energy Consumption
In our simulation, we account for different bus drivers having different driving styles, and
thus different energy consumption figures. However, since we do not create a crew schedule,
we need to estimate this, as we do not know who is driving when. Therefore, we create three
scenarios, namely for 95%, 100%, and 105% of the base energy consumption. Then, before
the vehicle pulls out of the depot, we select one of these scenarios randomly. We assume
that these driving styles do not have an influence on the driving time. This might not be a
completely realistic assumption, but we do not expect the driving style to have a big effect
on the driving time.

As drivers need breaks, bus drivers may be swapped along the route. Since we do not
create a crew schedule, we use a more high-level model. Here, we allow these driver swaps at
the start of every trip. However, to make sure that drivers are not swapped too frequently, a
driver needs to drive the bus for at least 2 hours before he is allowed to be swapped. After
these 2 hours, we try to swap the drivers as soon as possible. Note that since we employ only
three different driving styles, this does not always lead to a change in energy consumption.

Unfortunately, this approach does not allow for CRN to be used on these stochastic
energy consumptions. Since we are comparing different bus routes, it is unreasonable to
assume that every trip is still driven by the same driver. Furthermore, the actual distance
driven could also be significantly different between these routes. This could be solved by
using the same driver scenario over the whole solution, but this could lead to unrealistically
large energy usage. Another approach would be to select a driver scenario per trip, however
this could lead to an excessive number of driver swaps. For these reasons, we will not use
CRN for these driver scenarios in our model.

6 Experiments and Results

To test our algorithm, we compare the use of stochastic driving times with using deterministic
driving times. These deterministic driving times are given in the input data and form the
basis of the stochastic driving times. Note that the deterministic driving times already
contain some slack in order to make the schedule more robust. For our input, we use several
instances that were provided by Qbuzz. These instances are from various regions of The
Netherlands, namely the regions of Dordrecht, Groningen, and Utrecht. A short overview of
these instances is provided in Table 1.

We use 15 simulated annealing runs to generate trips for the restricted master problem.
These trips are then combined into a final solution using CPLEX version 22.1 as our ILP
solver. Note that the simulated annealing can handle both stochastic and deterministic
driving times.

In order to have a fair comparison between our final solutions, we simulate these 1 000
times. This is also done for solutions that were created with deterministic driving times.
Thus, we can fairly compare the robustness between each method. Here it is important

P. de Bruin, M. van den Akker, H. Hoogeveen, and M. van Kooten Niekerk 14:7

Table 1 Overview of the used datasets and their parameters.

Dataset #Trips #Lines Battery Capacity (kWh)

dmg 631 8 232
gn345 463 3 184
qlink 590 3 160
zst 317 2 232

to note that we do not employ CRN in these simulations. However, due to the number
of simulations we use, we do not expect this to result in unfairness, since using a lot of
simulations reduces the variance.

6.1 General results
First we compare the lateness, maximum DoD, and number of vehicles used. Averages of
these statistics over multiple solutions are shown in Table 2. In this table, we use L to denote
the set containing the lateness values for each trip. We define the lateness as the difference
between the planned starting time of a trip and the earliest time a bus could depart for this
trip. This can be negative, and a positive value means the trip started late. Furthermore,
these values are in minutes. This means that L̄ denotes the mean lateness of all the trips,
and we use L95 to denote the 95th percentile of the lateness. We define the punctuality to
be the percentage of trips that started on time. Lastly, the column “Mean Late” denotes
the mean of the set {x ∈ L | x > 0}. Thus, it is the average number of minutes a bus starts
late, given that it starts late. From these results, we see some reductions in the lateness of a
trip, and also a reduction in the “Mean Late” statistic. However, this sometimes comes at
the cost of having to use more buses. We checked these results with Qbuzz, confirming that
these lateness values are similar to what they encounter in practice.

Table 2 Various statistics regarding the final solutions calculated with either deterministic or
stochastic driving times.

#Vehicles L̄ L95 Mean Late Punctuality Max DoD
Dataset Driving times

dmg
Deterministic 45.0 -3.8 2.0 2.9 89.5% 53.2%
Stochastic 52.2 -4.5 1.0 2.0 92.7% 58.3%

gn345
Deterministic 92.0 -2.3 1.2 4.7 93.4% 95.1%
Stochastic 94.0 -2.9 1.0 3.3 94.7% 95.2%

qlink
Deterministic 37.8 0.8 5.0 5.1 83.2% 52.9%
Stochastic 45.8 -3.0 1.6 2.7 91.8% 62.3%

zst
Deterministic 38.6 -5.9 0.0 2.4 98.4% 69.8%
Stochastic 37.4 -6.2 0.0 2.2 98.5% 70.0%

6.2 Recombination
We also compare our simulated annealing runs with the results from the recombination. For
this, we compare the scores of the schedules. We use 15 simulated annealing runs for the
recombination. During our simulated annealing, we keep multiple of our best solutions, which

ATMOS 2023

14:8 Scheduling Electric Buses with Stochastic Driving Times

are used for the recombination, i.e. to be included in the MIP (of restricted master problem).
From a certain point in our simulated annealing we will collect the new best solutions,
however after collecting a new best solution, we wait a few iterations before collecting the
next one. This is done in order to not collect solutions that just differ in one neighbour. This
means that we collect about 20 to 40 solutions per simulated annealing run, which results
in about 7 000 to 56 000 columns depending on the dataset that is used. Recall, that one
simulated annealing solution is a complete schedule resulting in multiple vehicle tasks, and
hence multiple columns. Lastly, we set the time limit of the ILP to 20 minutes in order to
reduce the total computation time.

We show the average result for different statistics in Table 3. Note that the runtime
consists of both the recombination and the score calculation of the columns, which is why
some instances report a time that is above 20 minutes. Also, the “Improvement” denotes the
percentage improvement compared to the best simulated annealing score, where a negative
value means that the recombination did not improve compared to the simulated annealing.
We do not give the ILP solver an initial solution. Thus, the solver will not necessarily come
up with a solution that is better than simulated annealing in the given timeframe, which
is why we see these datasets run into the time limit of 20 minutes. Furthermore, these are
also the only tests with fairly big integrality gaps, and they do not show an improvement
compared to the simulated annealing. However, the results on the other tests are quite
promising, as they show 1 to 3 percent improvements compared to simulated annealing,
which is a big improvement cost-wise.

Table 3 Various statistics regarding the performance of the recombination. Here, “Gap” denotes
the gap to the LP relaxation, and “Improvement” denotes the percentage improvement compared to
the best simulated annealing score.

#Columns Gap Improvement Time (s)
Dataset Driving Times

dmg
Deterministic 20 523.7 5.889% −2.377% 1 200.41
Stochastic 27 566.7 7.411% −3.425% 1 251.85

gn345
Deterministic 33 320.8 0.013% 1.545% 467.80
Stochastic 55 770.7 0.038% 2.372% 760.99

qlink
Deterministic 21 931.6 0.005% 3.645% 18.70
Stochastic 25 805.3 4.672% −1.237% 1 238.82

zst
Deterministic 7 037.4 0.009% 2.713% 74.39
Stochastic 23 271.2 0.010% 3.206% 245.42

6.3 Lateness
To better understand the robustness of our solutions, we first look at the histogram of the
lateness values (the set L) we encountered in our simulations. This is displayed in Figure 1.
There are a few things to notice. First, we see that for most trips the bus is early by about 2
minutes or less, which is normal and expected behaviour. We also see some peaks at −10
and −15 minutes. This is especially clear in the qlink dataset. These peaks correspond to
the frequency of some lines in these datasets. We suspect that these peaks are due to the
dataset not containing many lines, thus the only way to increase robustness is to keep a bus
reserve at the starting location of the trip. One way to do this, is to arrive just when the

P. de Bruin, M. van den Akker, H. Hoogeveen, and M. van Kooten Niekerk 14:9

next bus departs, essentially arriving 1 trip early. Furthermore, for every dataset, there is
also a big peak at 0 minutes. This is partly due to the buses charging until their trip starts,
but also due to tight planning. Comparing the lateness between deterministic and stochastic
driving times, we see that in case of stochastic driving times, a bus generally arrives earlier,
which is in line with our other results.

Figure 1 Histogram of the set L.

We ran our algorithm with different penalty factors for the lateness, in order to get a
better overview of how the stochastic driving times compare to the deterministic driving
times. Thus, we verify what happens when we change the importance of the lateness factor
in the solution score. For this, we look at both the punctuality and the mean lateness.

First, punctuality. We compare this with the operating costs and the number of vehicles
used. These comparisons are shown in Figures 2 and 3 respectively. In these figures we see
that using stochastic driving times, generally leads to solutions with a better punctuality, but
they use more vehicles. This is also reflected in Figure 2, where we see higher operating costs
for the same punctuality. Note that the operating cost also contains a time component. Thus,
buses that need to wait for their trip to start increase the operating cost. The stochastic
model includes more slack in the schedule, and not having enough slack, or waiting time,
might result in lateness penalties.

We also compare the lateness itself to the operating cost and the number of vehicles used.
For the lateness, we use the mean minutes late statistic (L̄). The results of these comparisons
are shown in Figures 4 and 5 respectively. These figures show results that are similar to the
punctuality, where we decrease the average lateness for a bit more vehicle usage, which is
reflected in the operating costs.

6.4 Depth of Discharge
We also ran our algorithm with different penalty factors for the DoD, to see what happens
when we prioritize battery costs more. In Figure 6, we see the maximum DoD for different
number of vehicles used in the final solution. For most of the datasets, we see very similar
results between the use of stochastic and deterministic driving times. Meaning that the
maximum DoD is more or less the same for both deterministic and stochastic driving times.

ATMOS 2023

14:10 Scheduling Electric Buses with Stochastic Driving Times

Figure 2 Punctuality compared to the operating cost.

Figure 3 Punctuality compared to the number of vehicles used.

The main difference here is the number of vehicles a solution requires. This seems intuitive,
as a higher DoD means that a bus can drive longer without recharging. Hence, fewer vehicles
are required in order to drive all trips, but this have a negative effect on the lifetime of the
battery.

7 Conclusion

In this paper, we show a model to solve E-VSP with stochastic driving times. For this, we
used a hybrid algorithm including a local search approach in the form of simulated annealing
and a set covering ILP. We extended an existing simulated annealing approach for the case
of deterministic driving times by including robustness and simulations, such that we could
use it with stochastic driving times.

P. de Bruin, M. van den Akker, H. Hoogeveen, and M. van Kooten Niekerk 14:11

Figure 4 Mean minutes late compared to the operating cost.

Figure 5 Mean minutes late compared to the number of vehicles used.

We compared the robustness by using stochastic variables in Table 2 and Figure 1. Here
we see a decrease in lateness compared to using deterministic driving times. This is not only
true for the average lateness, but more importantly also for the worse cases. That is, we see
reduction of the 95th percentile of the lateness. From this, we can conclude that the use of
these stochastic driving times indeed increases robustness of our schedules. However, this
comes at a small cost. In general, these solutions could require about the same number of
vehicles, although on average solutions created with stochastic driving times require slightly
more vehicles. Furthermore, the operating cost of these solutions is also higher. This is due
to the additional vehicles required, and the extra waiting time that is sometimes needed.

From the results of the combination of different simulated annealing runs, we see improve-
ments on the solution quality of up to 3%. However, for some of our experiments the ILP
ran into the time limit of 20 minutes, where it did not find any improvements compared to

ATMOS 2023

14:12 Scheduling Electric Buses with Stochastic Driving Times

Figure 6 Maximum DoD for different number of vehicles used.

the simulated annealing. This is especially visible in the integrality gaps reported in Table 3,
where the experiments that ran into the time limit have a fairly big gap compared to the
experiments that did not run into this limit. Given more time, these instances should find a
solution that is at least as good as the solution found by the simulated annealing. For the
other instances, we can improve our best solution quite quickly. Thus, although it is not
always improving our best result, this extra step seems a good addition to our simulated
annealing.

7.1 Future Research
We showed that our model for stochastic E-VSP is quite successful in creating more robust
schedules. This approach could be further enhanced to increase the applicability of our
results. One of the assumptions we made for our stochastic driving times is that we use the
same distribution for every line in every direction. This is not necessarily realistic, as there
are lines that solely cross city centers, but also lines that cover longer distances. Buses on
these lines encounter different traffic conditions and stopping patterns, and thus they could
end up with different distributions for their driving time. Our work could be extended to
include a distinction between these different line types, which would require more research
into how these distinctions should be made and also the distributions that are required.

The model itself could also be further enhanced. Currently, we make use of opportunity
charging and do not look at the price of electricity. Hence, future extensions could look at
making charging plans, taking these prices into account.

References
1 Yiming Bie, Jinhua Ji, Xiangyu Wang, and Xiaobo Qu. Optimization of electric bus scheduling

considering stochastic volatilities in trip travel time and energy consumption. Computer-Aided
Civil and Infrastructure Engineering, 36(12):1530–1548, 2021. doi:10.1111/mice.12684.

2 Zhu Chao and Chen Xiaohong. Optimizing battery electric bus transit vehicle scheduling
with battery exchanging: Model and case study. Procedia - Social and Behavioral Sciences,
96:2725–2736, 2013. doi:10.1016/j.sbspro.2013.08.306.

https://doi.org/10.1111/mice.12684
https://doi.org/10.1016/j.sbspro.2013.08.306

P. de Bruin, M. van den Akker, H. Hoogeveen, and M. van Kooten Niekerk 14:13

3 Zhibin Chen, Yafeng Yin, and Ziqi Song. A cost-competitiveness analysis of charging infra-
structure for electric bus operations. Transportation Research Part C: Emerging Technologies,
93:351–366, 2018. doi:10.1016/j.trc.2018.06.006.

4 Philip de Bruin. Scheduling electric buses with stochastic driving times. mathesis, Utrecht
University, 2022. URL: https://studenttheses.uu.nl/handle/20.500.12932/41969.

5 KNMI. Hourly weather station readings. https://daggegevens.knmi.nl/klimatologie/
uurgegevens. Accessed: 2022-05-24.

6 Averill M. Law. Simulation Modeling and Analysis. McGraw-Hill, 5th edition, 2015.
7 Jing-Quan Li. Battery-electric transit bus developments and operations: A review. Interna-

tional Journal of Sustainable Transportation, 10(3):157–169, 2016. doi:10.1080/15568318.
2013.872737.

8 Nils Olsen and Natalia Kliewer. Scheduling electric buses in public transport: Modeling
of the charging process and analysis of assumptions. Logistics Research, 13(1):4, 2020.
doi:10.23773/2020_4.

9 G. J. P. N. Passage, J. M. van den Akker, and J. A. Hoogeveen. Local search for stochastic
parallel machine scheduling: improving performance by estimating the makespan. In European
Conference on Stochastic Optimization, 2017.

10 Jayakrishna Patnaik, Steven Chien, and Athanassios Bladikas. Estimation of bus arrival times
using APC data. Journal of Public Transportation, 7(1):1–20, 2004. doi:10.5038/2375-0901.
7.1.1.

11 Shyam S. G. Perumal, Richard M. Lusby, and Jesper Larsen. Electric bus planning &
scheduling: A review of related problems and methodologies. European Journal of Operational
Research, 301(2):395–413, 2022. doi:10.1016/j.ejor.2021.10.058.

12 Samuel J. Raff. Routing and scheduling of vehicles and crews : The state of the art. Computers
& Operations Research, 10(2):63–67, 1983. doi:10.1016/0305-0548(83)90030-8.

13 Xindi Tang, Xi Lin, and Fang He. Robust scheduling strategies of electric buses under stochastic
traffic conditions. Transportation Research Part C: Emerging Technologies, 105:163–182, 2019.
doi:10.1016/j.trc.2019.05.032.

14 W. ten Bosch, J. A. Hoogeveen, and M. E. van Kooten Niekerk. Scheduling electric vehicles
by simulated annealing with recombination through ILP. Submitted for publication, 2021.

15 Marjan van den Akker, Kevin van Blokland, and Han Hoogeveen. Finding robust solutions
for the stochastic job shop scheduling problem by including simulation in local search. In
Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela, editors, Experi-
mental Algorithms, 12th International Symposium, SEA 2013, Rome, Italy, June 5-7, 2013.
Proceedings, volume 7933 of Lecture Notes in Computer Science, pages 402–413. Springer,
2013. doi:10.1007/978-3-642-38527-8_35.

16 Marcel E. van Kooten Niekerk, J. M. van den Akker, and J. A. Hoogeveen. Scheduling electric
vehicles. Public Transport, 9(1-2):155–176, 2017. doi:10.1007/s12469-017-0164-0.

17 Haixing Wang and Jinsheng Shen. Heuristic approaches for solving transit vehicle scheduling
problem with route and fueling time constraints. Applied Mathematics and Computation,
190(2):1237–1249, 2007. doi:10.1016/j.amc.2007.02.141.

18 M. Wen, E. Linde, S. Ropke, P. Mirchandani, and A. Larsen. An adaptive large neighborhood
search heuristic for the electric vehicle scheduling problem. Computers & Operations Research,
76:73–83, 2016. doi:10.1016/j.cor.2016.06.013.

A Driving Time Analysis

In order to find good distributions for the driving times, we analysed historic driving times.
This data is mainly from the region of Dordrecht, The Netherlands. This data was provided
by Qbuzz, the bus company that serves this region. We looked at total time of trips driven
in this region during 2019. It contains the information about the delay at the start of a
trip, the planned driving time of the trip, the actual driving time of the trip, the dwell time

ATMOS 2023

https://doi.org/10.1016/j.trc.2018.06.006
https://studenttheses.uu.nl/handle/20.500.12932/41969
https://daggegevens.knmi.nl/klimatologie/uurgegevens
https://daggegevens.knmi.nl/klimatologie/uurgegevens
https://doi.org/10.1080/15568318.2013.872737
https://doi.org/10.1080/15568318.2013.872737
https://doi.org/10.23773/2020_4
https://doi.org/10.5038/2375-0901.7.1.1
https://doi.org/10.5038/2375-0901.7.1.1
https://doi.org/10.1016/j.ejor.2021.10.058
https://doi.org/10.1016/0305-0548(83)90030-8
https://doi.org/10.1016/j.trc.2019.05.032
https://doi.org/10.1007/978-3-642-38527-8_35
https://doi.org/10.1007/s12469-017-0164-0
https://doi.org/10.1016/j.amc.2007.02.141
https://doi.org/10.1016/j.cor.2016.06.013

14:14 Scheduling Electric Buses with Stochastic Driving Times

during the trip, and the driving distance. Note that the dwell time is the time a bus stands
still at a stop. Furthermore, it contains 27 different routes with an average length of 11.8 km
and on average 22 stops. In total, this dataset contains 77 937 trips.

To analyse these driving times, we will first remove some outliers from the dataset. For
this, we require the dwell time to be non-negative and not bigger than the total driving time,
as values outside this range are simply not possible. Furthermore, we look at the average
speed of the bus. This has to be between 0 and 80 kilometers per hour. Lastly, we also filter
trips based on their delay at the start of the trip. We observed some trips to start exactly 1
hour before or after their planned time, suggesting an error in linking the bus with the exact
trip they drove. Thus, we filter trips based on the z-score of their delay at the start. The
z-score is the number of standard deviations by which this value is above or below the mean
of the observed values. In this case, we remove trips where the z-score of the delay at the
start is bigger than 2.5. After filtering, our dataset contains 76 485 different trips.

A.1 Variables
To create distributions for the driving times, we first investigate different sources for variation
in the driving times. For this, we look into the time of day, the weather conditions, and also
the effect of the dwell time.

A.1.1 Time of Day
One source of variation in the driving times is the time of day. Traffic conditions vary over
the day, where mornings and afternoons are usually more busy due to people commuting
to work or back home. For the same reasons, we also expect there to be more passengers,
thereby increasing the dwell time and thus the total driving time. These variations are
already accounted for in the bus schedule, as illustrated in Figure 7, where we observe higher
planned driving times in the morning and late afternoon.

Figure 7 Example of planned driving times over a single day. The blue lines indicate the time
periods defined in Table 4.

Looking at the full data, we extract the average driving time as a percentage of the
planned driving time. This is plotted in Figure 8, where we grouped each trip by the hour it
departs in. In this figure, we do not see big differences in these percentages over the whole

P. de Bruin, M. van den Akker, H. Hoogeveen, and M. van Kooten Niekerk 14:15

day. However, we still create different distributions for different periods of the day. We
base this division on the work of Patnaik et al. [10] and the planned driving times. For our
simulation, we use the time periods defined in Table 4. These time periods are also indicated
by the blue lines in Figures 7 and 8. These do largely correspond to the time periods used
by Qbuzz for, for example, their deadhead driving time calculations. The main difference
being that we define more time periods.

Figure 8 Average driving time plus/minus two times its standard deviation as a percentage of
the planned driving over a whole day. The blue lines indicate the time periods defined in Table 4.

Table 4 Time periods used.

Time Period Description

Early Morning 4:00 till 6:59
Morning Peak 7:00 till 8:59
Late Morning 9:00 till 11:59
Early Afternoon 12:00 till 14:59
Afternoon Peak 15:00 till 17:59
Evening 18:00 till 19:59
Late night 20:00 and later

A.1.2 Weather
Another variable we investigated is the effect of the weather on the driving times. We expect
the driving times to be higher on days with bad weather. The reasoning behind this is that
we expect more people to take either public transport or go by car, thus increasing driving
times due to traffic conditions and higher passenger loads.

To test this hypothesis, we used the hourly weather data of 2019 made publicly available
by the KNMI [5]. For this, we used the readings from the weather station in Rotterdam,
which is closest to Dordrecht. We use information about the duration of rainfall (DR) and the
total amount of rainfall (RH) during the timeblock of an hour. For every trip, we calculate
the duration and total amount of rainfall during the day the trip took place, the morning of

ATMOS 2023

14:16 Scheduling Electric Buses with Stochastic Driving Times

the day the trip took place, and the hour in which the trip departed. For this, we define
rain during the morning to be any rain that falls between 6:00 and 9:00, while rain during
the day is defined as any rain that falls between 6:00 and 20:00. We performed correlation
tests on these variables and the driving time, using Pearson’s correlation coefficient. These
coefficients are shown in Figure 9. Unfortunately, these tests indicate no relationship between
the driving time and various variables indicating rainfall.

Figure 9 Pearson’s correlation coefficients between various rainfall parameters and the driving
time.

To see why this is the case, we looked at the driving times under various rain conditions.
We looked at the average rain intensity in millimeters per hour. This is done for both for the
whole day (excluding the night) and within a certain hour. We use the rain intensity as this
would be the most accurate classifier within the available data. Another factor that could
be taken into consideration is, for example, the size of the rain droplets. However, we do
not have data for that and this is usually not reported in the weather reports, so we do not
expect this to be a major factor when people decide how they travel.

We classify an average rain intensity of 3 mm/h or less to be light rain, and higher values
are classified as rain. The driving times under these conditions are shown in Figure 10. This
indicates that there are not always significant differences between rain or no rain. We also
note that the amount of rain does not predict the driving time very well, as the figure shows
that higher intensities of rain sometimes lead to lower driving times than when there is no
rain.

From this we conclude that we cannot use these weather patterns in our simulations,
because it remains unclear how they influence the driving times. We saw that in some
scenarios there do not seem to be significant differences, and also that heavier rain did not
necessarily lead to higher driving times. This could be due to passenger behaviour, where
for some weather conditions people go by bus rather than by bike, while for other weather
conditions people just stay at home. We could not verify this behaviour as we do not have
access to passenger data for this route. Thus, we do not include these weather patterns in
our simulations, since we can not draw conclusions from our current data.

P. de Bruin, M. van den Akker, H. Hoogeveen, and M. van Kooten Niekerk 14:17

Figure 10 Mean driving times with their 95% confidence interval under different rain conditions
during the day. Here, light rain has an average rain intensity of 3 mm/h or less, and more than 3
mm/h is classified as rain.

A.1.3 Number of Passengers
The last variable we looked at is the effect of passenger numbers on the driving times. While
we do not have exact passenger data, we do have information about the dwell times, which
gives an indication of how busy a trip is, since more people moving in or out of the bus leads
to longer dwell times. The dwell time could be a significant part of the total driving time,
thus we have to understand its influence.

To get a better understanding of how the driving times are influenced and by how much,
we group the dwell times into three categories. For each line, we calculate the 70th and
90th percentiles of the dwell time and use these to categorize the dwell time of a specific
trip. Then we create three groups with driving times. Group 1 contains driving times, where
the dwell time is below the 70th percentile of the dwell time of that trip. Group 2 contains
driving times, where the dwell time is above the 70th percentile and below the 90th percentile.
Lastly, group 3 contains the remaining driving times. Grouping on these categories gives us
insight into the mean and standard deviation of these driving times. These are shown in
Table 5.

Table 5 Mean and standard deviation of the driving time (as percentage of the planned driving
time) grouped by the dwell time category.

Driving time (% of planned driving time)

Mean Standard deviation #Trips

Group 1 91.77 9.23 53 519
Group 2 95.72 7.54 15 285
Group 3 99.45 8.62 7 681

From this table we can already see some differences between the driving times with the
different dwell times. To confirm that these differences are also significant, we performed
Welch’s unequal variances t-test. Our null-hypothesis in these tests is: “The means of the

ATMOS 2023

14:18 Scheduling Electric Buses with Stochastic Driving Times

driving times from the two tested dwell time categories are equal.” For these tests, we
will use α = 0.005. This is lower than the usual 0.05, because we perform multiple t-tests.
The p-values for these tests are shown in Table 6. Note that some of these values are 0.0,
meaning that they are too small to be represented by a 64-bit floating point number. All
these p-values are lower than our chosen α, thus the means of the driving times in these
categories are significantly different. Note these p-values seem exceptionally low, which is
due to the number of trips in each category.

Table 6 p-Values of Welch’s unequal variances t-test we performed on the driving times in the
different dwell time categories.

Group 1 Group 2 Group 3

Group 1 − 0.0 0.0
Group 2 0.0 − 7.69 · 10−219

Group 3 0.0 7.69 · 10−219 −

For our implementation, it is important to know if there are any patterns in which
these higher dwell times happen. For example, are there certain days on which most of the
trips encounter higher dwell times? We mainly looked at patterns over a whole day, as our
simulation model generates driving times for a whole day. We found that these higher dwell
times could occur during the whole day. However, we could not find patterns in this. Hence,
we make sure to generate higher driving times over the whole day.

A.2 Distributions
Now that we know which variable to account for, we can fit distributions on the historical
data. To do this, we fit different distributions on the driving times for trips departing in the
time periods defined in Table 4. Based on Appendix A.1.3, we only use driving times with a
dwell time that is less than the 70th percentile of the dwell time for that trip. This is to
create a baseline distribution, that is not influenced by the more busy days. Then, in our
simulation model, we set a probability to generate driving times for a busy day, in which
case all simulated driving times are multiplied by a set factor. We base these factors on the
results shown in Table 5. Thus, with a 20% probability we will generate driving times that
are 5% higher and with a 10% probability we will generate driving times that are 10% higher.

We fitted normal distributions for the driving times in each period. These fits are shown
in Figure 11. For some time periods, we used a single normal distribution to fit the data
to, but for others we used a combination of two normal distributions to create a better fit.
Thus, these distributions are a mixture of the distributions N(µ1, σ2

1) and N(µ2, σ2
2) with

the weights p and 1 − p respectively. The parameters we use for these distributions are given
in Table 7.

In our simulation, we only use these distributions to generate the driving times of trips,
which means that deadheads and trips to and from the depot use deterministic driving times.
This is because we only have data on the planned driving times. However, these driving times
vary less in general, since they are not influenced by passenger loads. These deterministic
driving times still vary over the day to account for different traffic conditions; we vary these
according to specified time periods given in our input data.

P. de Bruin, M. van den Akker, H. Hoogeveen, and M. van Kooten Niekerk 14:19

Figure 11 Histograms and the fitted probability density function of the driving time distribution
for each time period. Here, the density is the probability of a certain driving time occurring.

Table 7 Parameters of the fitted driving time distributions.

p µ1 σ1 µ2 σ2

Early Morning 1.00 0.924 0.055
Morning Peak 0.87 0.934 0.055 0.740 0.075
Late Morning 0.84 0.944 0.055 0.760 0.067
Early Afternoon 0.79 0.963 0.053 0.790 0.072
Afternoon Peak 0.93 0.950 0.063 0.740 0.061
Early Evening 0.94 0.945 0.062 0.740 0.050
Late Night 1.00 0.917 0.065

ATMOS 2023

Non-Linear Charge Functions for Electric Vehicle
Scheduling with Dynamic Recharge Rates
Fabian Löbel1 #

Zuse Institute Berlin, Germany

Ralf Borndörfer #

Zuse Institute Berlin, Germany

Steffen Weider #

LBW Optimization GmbH, Berlin, Germany

Abstract
The ongoing electrification of logistics systems and vehicle fleets increases the complexity of associated
vehicle routing or scheduling problems. Battery-powered vehicles have to be scheduled to recharge
in-service, and the relationship between charging time and replenished driving range is non-linear. In
order to access the powerful toolkit offered by mixed-integer and linear programming techniques, this
battery behavior has to be linearized. Moreover, as electric fleets grow, power draw peaks have to be
avoided to save on electricity costs or to adhere to hard grid capacity limits, such that it becomes
desirable to keep recharge rates dynamic. We suggest a novel linearization approach of battery
charging behavior for vehicle scheduling problems, in which the recharge rates are optimization
variables and not model parameters.

2012 ACM Subject Classification Mathematics of computing → Integer programming; Mathematics
of computing → Linear programming; Applied computing → Transportation

Keywords and phrases Electric Vehicle Scheduling, Battery Powered Vehicles, Charging Process,
Non-linear Charging, Recharge Modeling, Dynamic Recharge Rate

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.15

Category Short Paper

Funding This work has been conducted within the Research Campus MODAL funded by the German
Federal Ministry of Education and Research (BMBF) (fund number 05M20ZBM).

1 Introduction and Problem Overview

The Electric Vehicle Scheduling Problem (EVSP) extends the classic Vehicle Scheduling
Problem to include the scheduling of recharge events such that vehicle batteries are never
fully depleted in-service. European operators prefer to recharge their vehicles at depots and
fast chargers at selected locations to minimize infrastructure acquisition costs (cf. [3]). The
amount of replenished charge depends non-linearly on the charging time and the initial state
of charge (soc). Moreover, as electric fleet sizes continue to grow, operators have begun
adopting active charge management tools which may not always recharge at full capacity.
Power grid limitations at the depot can bound the total admissible electricity usage over
time, pricing schemes may incentivize smoothing out peak loads, and there are even case
studies with bi-directional chargers where electric bus batteries fed charge back into the
grid (cf. [5]), effectively applying negative charge rates. Therefore, on top of the non-linear
charging behavior, vehicle scheduling procedures have to take dynamic recharge rates into
account instead of a priori fixing them to the highest available rate.

1 Corresponding author.

© Fabian Löbel, Ralf Borndörfer, and Steffen Weider;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 15; pp. 15:1–15:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.loebel@zib.de
https://orcid.org/0000-0001-5433-184X
mailto:borndoerfer@zib.de
https://orcid.org/0000-0001-7223-9174
mailto:stw@ivu.de
https://doi.org/10.4230/OASIcs.ATMOS.2023.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

15:2 Non-Linear Charge Functions

To the best of our knowledge, [6] is the only paper on electric vehicle scheduling to
explicitly treat the recharge rate as a decision variable to bound the total simultaneous power
draw. However, like in the majority of the available literature (cf. surveys [2, 10]), a linear
charging behavior is assumed, which may cause solutions to be infeasible in practice or to
underestimate driving ranges depending on the exact data used [8].

We have identified three approaches in the EVSP literature to take non-linear battery
behavior into account. [11] and [4] suggest an energy (state) expansion in analogy to the
well-known time expansion. While not mentioned by either authors, one could incorporate
recharge rate decisions by allowing connections between different charge states at recharge
facilities. Naturally, this comes at the cost of an exponential increase in problem size.

A branch-and-check procedure is proposed in [1] for an EVSP application of tow trains
at a factory which seem return to their charging facility after every tow duty. Once a master
problem finds an integer solution, charge states are explicitly computed from exact charge
functions along vehicle courses and infeasible solutions are cut off via subtour elimination
constraints. It is unclear how this approach extends to general EVSP settings where vehicles
have to be explicitly scheduled for detours to reach charging facilities.

Originally proposed in [7], and adopted by a growing number of publications, is a piecewise
linear approximation of a function that maps the time spent charging an empty battery to
the resulting soc. This approach has the advantage that it is easy to incorporate into MILPs
by standard techniques, but it does not allow dynamic recharge rates.

In this paper we develop a linearization technique for battery charging behavior with
dynamic recharge rates from a general battery model.

2 Recharging a Battery

According to the literature, e.g., [9], batteries under load have a terminal voltage

Vterm = VOC(y) − R · I (1)

depending on the soc y and the current I. The open circuit voltage VOC and R are properties of
individual batteries. Note that charging currents are negative by convention, so Vterm ≥ VOC .
In general, VOC is a monotonically increasing non-linear function of the soc.

Chargers must keep battery voltage and charging current within safety limits Vmax and
−Imax, moreover, operating near those limits accelerates battery aging. Consequently, vehicle
batteries are usually replenished following a Constant Current - Constant Voltage (CC-CV)
charging scheme. Initially, a roughly constant current is applied causing the soc to increase
nearly linearly accompanied by a rising terminal voltage. Once Vterm hits some threshold,
at most Vmax, the charger switches to a constant voltage phase, limiting the maximum
incoming current as given in (1) by fixing Vterm to the threshold value. Note that a high
initial current will force this cut-off to happen earlier, causing more time to be spend in
the slower CV phase. The battery is defined to be full once the maximum charging current
permitted by the battery voltage drops below some minimum dictated by the battery and
charger combination.

In the EVSP literature on non-linear charging, this behavior is usually modeled using a
charge curve that maps the time t spent charging an initially empty battery at presumably
full power to the final soc. In accordance with the CC-CV charging scheme, the charge curve
is initially linear until some time tV and then monotonically and concavely grows towards
the maximum soc as the charge rate decreases during the CV phase.

Since we wish to keep the charge rate dynamic, we think of charge curves as solutions of
differential inequalities.

F. Löbel, R. Borndörfer, and S. Weider 15:3

▶ Definition 1. A charging power profile is a function f : [0, 1] → [0, 1] that maps the
(relative) battery soc to the (relative) maximal charge rate, and that is of the form

f(y) =
{

fCC , y < yV

fCV (y), y ≥ yV ,
(2)

where fCV is differentiable, monotonically non-increasing, and satisfies fCV (yV) = fCC ,
fCV (1) = 0.

▶ Example 2. Equation (1) for the terminal voltage yields the power profile

f(y) = min
(

−R · Imax

K
,

Vmax − VOC(y)
K

)
(3)

where K scales the soc to be within [0, 1]. Note that f need not be differentiable in yV .

▶ Definition 3. Given a charging power profile f , a charge curve mapping time to soc is a
differentiable function ξ : [0, ∞) → [0, 1] satisfying

(i) ξ(0) = 0,
(ii) there exists tfull > 0 such that ξ(t) = 1 for t ≥ tfull,
(iii) 0 < ξ′(t) ≤ f(ξ(t)) for all t ∈ [0, tfull).

▶ Observation 4. Charge curves are bijective as functions from [0, tfull] to [0, 1].

▶ Definition 5. The maximum power charge curve ζ is the charge curve satisfying condition
(iii) at equality, i.e, ζ is the unique solution to the autonomous non-linear ordinary differential
equation ζ ′ = f(ζ) with boundary conditions (i) and (ii).

In general, there is no closed form for ζ on the CV segment and it has to be determined
empirically or computed numerically from a given f . We want to emphasize the distinct
interpretations of f , ξ and ξ′: f yields the maximum permissible rate the charger may apply
to the battery at its current soc. It is a property of the battery and charger combination
and needs to be fixed a priori as part of the model. The charge curve derivative ξ′ gives the
actually applied charge rate at time t of a particular charging process. By condition (iii),
throttling the rate is explicitly allowed. Subsequently, ξ gives the resulting soc of charging
an initially empty battery for t time units at the rate its derivative specifies. See Figure 1
for an example of these three functions with ξ = ζ.

The current state-of-the-art in the literature of using a piecewise linear interpolation of ζ

does not permit charge rate throttling. Conceivable generalizations to incorporate dynamic
recharge rates into such a model, i.e., treating the choice of ξ as a decision variable for every

tV = 55 95
time (min)

yV = 80

100

so
c

(%
)

tV = 55 95
time (min)

ch
ar

ge
 ra

te

yV = 80 100
soc (%)

ch
ar

ge
 ra

te

Figure 1 CV segment of an example ζ, ζ′, and the underlying profile f (left to right) modeled
after real electric bus fast charging data. The linear CC segment is mostly cropped out.

ATMOS 2023

15:4 Non-Linear Charge Functions

recharge event, seem to be cumbersome. Moreover, if a piecewise linear approximation of
ζ is used, its derivative is piecewise constant and the model therefore can only consider a
discrete set of charge rates, which is inadequate for the CV phase. Furthermore, since the
piecewise constant derivative periodically overestimates the actual charge rate, approximate
models may underestimate recharge durations and overestimate final charge states.

3 Recharge Modeling with Dynamic Rates

Consider a recharge event and let [ts, te] be its time interval and ys the initial soc at ts. Let
∆ be a function operator working on charge curves as

∆ξ(y, t) = ξ(ξ−1(y) + t) − y; (4)

which is well-defined by Observation 4 if we choose ξ−1(1) = tfull. ∆ξ gives the difference
between the final charge state reached from an initial charge state y of a charging process of
duration t. Consequently, the final soc at te is then ∆ξ(ys, te − ts) + ys.

∆ξ can be evaluated iteratively.

▶ Lemma 6. For a charge curve ξ, let y0 = ys and θi > 0, yi = yi−1 + ∆ξ(yi−1, θi) for
i = 1, . . . , k. Then ∆ξ(ys,

∑k
i=1 θi) = yk − ys.

Proof. By induction: For k = 1 the claim is trivially true, so let k > 1 and exercise

yk − ys = yk−1 + ∆ξ(yk−1, θk) − ys = ∆ξ(ys,
k−1∑
i=1

θi) + ∆ξ(∆ξ(ys,
k−1∑
i=1

θi) + ys, θk)

= ξ(ξ−1(ξ(ξ−1(ys) +
k−1∑
i=1

θi)) + θk) − ys = ξ(ξ−1(ys) +
k∑

i=1
θi) − ys = ∆ξ(ys,

k∑
i=1

θi), (5)

where the second line is the result of applying (4) to the outer and then inner occurrence of
∆ξ in the rightmost term on the first line. ◀

Moreover, if the time steps θi admit an equidistant discretization θ, the soc yi at the end of
any time step is yi−1 + ∆ξ(yi−1, θ) from the immediately preceding charge state. By fixing
the step size we obtain a unary recharge function depending solely on the initial soc and we
may write ∆ξ(y) = ∆ξ(y, θ).

▶ Lemma 7. Let ζ be a maximum power charge curve w.r.t. a charging power profile f .
Then for fixed time step θ > 0, ∆ξ(y) ≤ ∆ζ(y) for every y ∈ [0, 1] and charge curve ξ of f .

Proof. Monotonicity of f and the mean value theorem assert the claim by contradiction. ◀

▶ Corollary 8. ξ ≤ ζ for every charge curve ξ of f .

This formally asserts the intuitive observation that maximizing the charge rate does
maximize the obtained charge state. More importantly, Lemma 7 guarantees that the
computation scheme justified with Lemma 6 can be modified by introducing charge increment
variables φi such that yi = yi−1 + φi and φi ≤ ∆ζ(yi−1). Any sequence of positive φi can be
associated with a sequence of ∆ξ(yi) for some charge curve ξ and vice versa. Additionally,
we may allow φi to become zero to temporarily suspend charging or possibly even negative
if charge is fed back into the grid, although we will assume φi ≥ 0 for the remainder of this
paper. Furthermore, we can incorporate φi into the objective function to consider time or
peak-dependent pricing, and we can add φi to additional constraints limiting the total power
draw per time step.

F. Löbel, R. Borndörfer, and S. Weider 15:5

▶ Definition 9. For a maximum power charge curve ζ, let Φ ··=
{

(y, φ) ∈ [0, 1]2 | φ ≤ ∆ζ(y)
}

be the charge increment variable domain.

▶ Observation 10. Since ∆ζ(y) ≤ 1 − y and 0 ≤ ∆ζ(0) ≤ θfCC , Φ is the intersection of the
triangle spanned by the unit vectors in the upper right quadrant of the two-dimensional plane
and the area below the graph of ∆ζ, see Figure 2 for an illustration.

50 yV = 80 100
initial soc (%)

0.0

2.5

5.0

7.5

10.0

fin
al

 -
in

iti
al

 so
c

(%
)

Figure 2 The shaded area is Φ on [0.5, 1] for the charge curve presented in Figure 1 with θ = 5min.

In order to obtain a linearization of the charging process, we need to approximate Φ
by a polygon. In particular, we have to approximate the function graph of ∆ζ with a
concave piecewise linear function so that we can replace φi ≤ ∆ζ(yi−1) by linear inequalities.
The left- and rightmost linear segment of such an approximation might be φi ≤ θfCC and
φi ≤ 1 − yi−1. Fitting the rest of the boundary in general requires finding an acceptable
trade-off between approximation accuracy and possible charge state overestimation.

▶ Theorem 11. Let ζ be a maximum power charge curve w.r.t. a charging power profile f .
Furthermore, let fCV be concave. Then the corresponding charge increment variable domain
Φ is convex for any time step size θ > 0.

Proof. By Observation 10 it suffices to show that ∆ζ is concave or equivalently, ∂2

∂y2 ∆ζ ≤ 0.
Computing the second derivative (note that ζ ′ is differentiable almost everywhere) we see

∂2

∂y2

(
ζ(ζ−1(y) + θ) − y

)
= ζ ′(ζ−1(y))ζ ′′(ζ−1(y) + θ) − ζ ′′(ζ−1(y))ζ ′(ζ−1(y) + θ)

ζ ′(ζ−1(y))3 (6)

and plugging in ζ ′(t) = f(ζ(t)) and ζ ′′(t) = f ′(ζ(t))f(ζ(t)) we obtain

∂2

∂y2 ∆ζ(y) =
(
f ′(ζ(ζ−1(y) + θ)) − f ′(y)

) f(ζ(ζ−1(y) + θ))
f(y)2 . (7)

Since f is non-negative, the sign of ∂2

∂y2 ∆ζ is entirely dictated by f ′(ζ(ζ−1(y) + θ)) − f ′(y).
Note that y = ζ(ζ−1(y)) ≤ ζ(ζ−1(y) + θ) because ζ is monotonically increasing. Moreover,
since we have f ′ ≡ 0 approaching yV from the left and f ′

CV ≤ 0 by Definition 1, concavity
of fCV extends to the entirety of f . Thus, f ′ is monotonously non-increasing on its entire
domain and we obtain f ′(y) ≥ f ′(ζ(ζ−1(y) + θ)). Therefore, ∂2

∂y2 ∆ζ ≤ 0 and Φ is convex. ◀

Hence, a straightforward piecewise linear interpolation yielding an inequality of the
form φi ≤ myi−1 + b per linear segment will do if f is concave. These inequalities can be
incorporated directly into any mixed-integer linear program for the EVSP. By Lemma 7 and
Theorem 11, computing the soc via the φi along a recharge event is then guaranteed to never
overestimate the final soc and the approximation error at the boundary is well understood
numerically.

ATMOS 2023

15:6 Non-Linear Charge Functions

▶ Proposition 12. Let ∆ζ̃ be a piecewise linear spline interpolation of ∆ζ. Then the
approximation error is∥∥∆ζ − ∆ζ̃

∥∥ ≤ θh2

8 ∥f ′′
CV ∥ (8)

where h is the width of the largest linear segment.

Proof. It is a well-known result that the linear spline approximation error is bounded by
h2 ∥(∆ζ)′′∥ /8. Using Taylor approximation for some t∗ ∈ (ζ−1(y), ζ−1(y) + θ),

f ′(ζ(ζ−1(y) + θ)) = f ′(y) + θ
∂

∂t
f ′(ζ(t∗)) = f ′(y) + θf ′′(ζ(t∗))f(ζ(t∗)) (9)

and plugging into (7) yields ∥(∆ζ)′′∥ ≤ θ ∥f∥2 ∥f ′′∥ / ∥f∥2 = θ ∥f ′′∥. ◀

The key observation enabling the approach presented in this paper is that while the
maximum charge rate as a function of time (given by ζ ′) is usually convex during the CV
phase, there are reasonable battery models where the rate as a function of battery soc (given
by f) is concave (see Figure 1) and the shape of ∆ζ and thus Φ is dictated by the latter.

References
1 H. Diefenbach, S. Emde, and C.H. Glock. Multi-depot electric vehicle scheduling in in-plant

production logistics considering non-linear charging models. European Journal of Operational
Research, 306(2):828–848, 2023. doi:10.1016/j.ejor.2022.06.050.

2 T. Erdelić and T. Carić. A Survey on the Electric Vehicle Routing Problem: Variants
and Solution Approaches. Journal of Advanced Transportation, 2019:1–48, May 2019. doi:
10.1155/2019/5075671.

3 D. Jefferies and D. Göhlich. A Comprehensive TCO Evaluation Method for Electric Bus Systems
Based on Discrete-Event Simulation Including Bus Scheduling and Charging Infrastructure
Optimisation. World Electric Vehicle Journal, 11, August 2020. doi:10.3390/wevj11030056.

4 L. Li, H.K. Lo, and F. Xiao. Mixed bus fleet scheduling under range and refueling constraints.
Transportation Research Part C: Emerging Technologies, 104:443–462, 2019. doi:10.1016/j.
trc.2019.05.009.

5 S. Lösel. Elektrobusse im ländlichen Raum: VLP startet Sektorenkopplung Energiewirtschaft
und Verkehr. Der Nahverkehr Elektrobus-Spezial 2023, 41:40–43, March 2023. (German).

6 B. Messaoudi and A. Oulamara. Electric Bus Scheduling and Optimal Charging. In Carlos
Paternina-Arboleda and Stefan Voß, editors, Computational Logistics, pages 233–247. Springer
International Publishing, 2019. doi:10.1007/978-3-030-31140-7_15.

7 A. Montoya, C. Guéret, J.E. Mendoza, and J.G. Villegas. The electric vehicle routing problem
with nonlinear charging function. Transportation Research Part B: Methodological, 103:87–110,
2017. Green Urban Transportation. doi:10.1016/j.trb.2017.02.004.

8 N. Olsen and N. Kliewer. Scheduling Electric Buses in Public Transport: Modeling of
the Charging Process and Analysis of Assumptions. Logistics Research, 13(4), 2020. doi:
10.23773/2020_4.

9 S. Pelletier, O. Jabali, G. Laporte, and M. Veneroni. Battery degradation and behaviour for
electric vehicles: Review and numerical analyses of several models. Transportation Research
Part B: Methodological, 103:158–187, 2017. doi:10.1016/j.trb.2017.01.020.

10 S.S.G. Perumal, R.M. Lusby, and J. Larsen. Electric bus planning & scheduling: A review
of related problems and methodologies. European Journal of Operational Research, 2022.
doi:10.1016/j.ejor.2021.10.058.

11 M.E. van Kooten Niekerk, J.M. van den Akker, and J.A. Hoogeveen. Scheduling electric
vehicles. Public Transport, 9:155–176, 2017. doi:10.1007/s12469-017-0164-0.

https://doi.org/10.1016/j.ejor.2022.06.050
https://doi.org/10.1155/2019/5075671
https://doi.org/10.1155/2019/5075671
https://doi.org/10.3390/wevj11030056
https://doi.org/10.1016/j.trc.2019.05.009
https://doi.org/10.1016/j.trc.2019.05.009
https://doi.org/10.1007/978-3-030-31140-7_15
https://doi.org/10.1016/j.trb.2017.02.004
https://doi.org/10.23773/2020_4
https://doi.org/10.23773/2020_4
https://doi.org/10.1016/j.trb.2017.01.020
https://doi.org/10.1016/j.ejor.2021.10.058
https://doi.org/10.1007/s12469-017-0164-0

Subproblem Separation in Logic-Based Benders’
Decomposition for the Vehicle Routing Problem
with Local Congestion
Aigerim Saken # Ñ

Department of Mathematics, University of Exeter, United Kingdom

Stephen J. Maher # Ñ

Quantagonia GmbH, Bad Homburg, Germany

Abstract
Subproblem separation is a common strategy for the acceleration of the logic-based Benders’
decomposition (LBBD). However, it has only been applied to problems with an inherently separable
subproblem structure. This paper proposes a new method to separate the subproblem using the
connected components algorithm. The subproblem separation is applied to the vehicle routing
problem with local congestion (VRPLC). Accordingly, new Benders’ cuts are derived for the new
subproblem formulation. The computational experiments evaluate the effectiveness of subproblem
separation for different methods applying new cuts. It is shown that subproblem separation
significantly benefits the LBBD scheme.

2012 ACM Subject Classification Theory of computation → Mathematical optimization; Applied
computing → Transportation

Keywords and phrases logic-based Benders’ decomposition, vehicle routing, subproblem separation,
connected components

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.16

Supplementary Material
Software (Source Code): https://git.exeter.ac.uk/as1392/subproblem-separation-in-lbbd

Acknowledgements Computational experiments were performed on resources provided by the
Swedish National Infrastructure for Computing (SNIC) and National Academic Infrastructure for
Supercomputing in Sweden (NAISS).

1 Introduction

Logic-based Benders’ decomposition (LBBD) is an extension of classical Benders’ decom-
position. LBBD extends the classical Benders’ approach by allowing the subproblem to
be an optimisation problem of any form. LBBD was first introduced in Hooker [4] and
then formalised in Hooker and Ottosson [7]. It generates Benders’ cuts by using logical
deductions from subproblem solutions, therefore it can handle any type of subproblem. This
makes LBBD an effective method of combining different approaches such as mixed-integer
programming (MIP) and constraint programming (CP).

Successful applications of LBBD include resource allocation and scheduling problems
([5],[12],[2],[19],[3],[9]), vehicle routing problems ([17],[14],[15],[10]), and other types of large-
scale optmisation problems ([6]). Various acceleration techniques have been used in these
applications in order to improve the effectiveness of the LBBD scheme. The common
acceleration techniques are subproblem relaxation, cut strengthening, and subproblem
separation. In their works on the evaluation of cut-strengthening techniques in LBBD, Saken
et al. [18] and Karlsson and Rönnberg [8] show that for problems, which have inherently
separable subproblems, benefits of applying subproblem separation dominate the benefits of
applying cut strengthening.

© Aigerim Saken and Stephen J. Maher;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 16; pp. 16:1–16:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:as1392@exeter.ac.uk
http://aigerimsaken.github.io
https://orcid.org/0000-0003-0032-2782
mailto:stephen@sjmsolutions.co.uk
http://www.stephenjmaher.com/
https://orcid.org/0000-0003-3773-6882
https://doi.org/10.4230/OASIcs.ATMOS.2023.16
https://git.exeter.ac.uk/as1392/subproblem-separation-in-lbbd
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

16:2 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

Subproblem separation can be applied to problems with a bordered block-diagonal
structure. This structure allows splitting the subproblem when master problem variables
are fixed. We propose a new method for subproblem separation for problems that do not
have such structure. On the example of the VRPLC, we demonstrate why problems with
no block-diagonal structure can not be separated at the problem formulation stage. We
then introduce a new method that applies the connected components algorithm to identify
separable blocks of the subproblem based on the master problem solution in each iteration
of the Benders’ algorithm. The computational evaluation of the new method confirms that
subproblem separation we propose has a significant impact on the LBBD scheme.

The rest of this paper is structured as follows. Section 2 describes the VRPLC. Section 3
presents the problem formulation. A brief description of the LBBD scheme for the problem
is given in Section 4. The main contributions of this paper are Sections 5–7. Section 5
introduces the new method for subproblem separation. The derivation of new Benders’ cuts
is given in Section 6. The computational results in Section 7 demonstrate the effectiveness of
the subproblem separation by evaluating the solution run times for the various new methods.
Finally, concluding comments are given in Section 8.

Our contribution

The main contributions are:
A new method of subproblem separation in the LBBD scheme using the connected
components in a graph.
A derivation and analytical validation of various Benders’cuts.
Detailed computational experiments evaluating four different methods applying sub-
problem separation and the default method with no subproblem separation.
The code related to the LBBD scheme and the subproblem separation is freely available
at https://git.exeter.ac.uk/as1392/subproblem-separation-in-lbbd.

2 Vehicle routing problem with local congestion

The vehicle routing problem (VRP) is a problem that finds a set of suitable routes for a
fleet of vehicles that deliver/collect goods from the central depot to a set of customers. The
obtained routes must satisfy all of the customer requests while minimising the total travel
distance and/or other costs. Some examples of practical applications are grocery delivery,
parcel delivery, farm produce collection, waste collection etc. The VRP is one of the most
extensively studied problems in optimisation due to both practical and theoretical interest.

There is no standard VRP formulation. However, one of the best-studied formulations of
the vehicle routing problem is the capacitated VRP (CVRP)([16],[13],[20],[1],[17],[14],[15],
and references therein). A lot of VRP problem formulations are based on CVRP. A feasible
solution of CVRP is a set of routes starting and ending at the central depot. Every customer
is visited only once on a specific route, and the cumulative demand (weight) of all requests
the vehicle delivers must not exceed its capacity.

The VRPLC is the CVRP enriched with time window and local congestion constraints.
This variant of the CVRP was introduced in Lam and Van Hentenryck [11]. The customer
requests are grouped by locations. The congestion constraint at each location is a cumulative
resource constraint that limits the number of vehicles present and/or in service at any
given time. If all resources at a location are engaged, incoming vehicles must wait until the
resources become available. This leads to time dependencies, and, subsequently, a scheduling
substructure that is not present in conventional CVRPs [11]. An example of such time

https://git.exeter.ac.uk/as1392/subproblem-separation-in-lbbd

A. Saken and S. J. Maher 16:3

Table 1 Data and decision variables for the model.

Name Description

T ∈ {1, . . . , ∞} Time horizon
l ∈ {1, . . . , L} Set of locations
n Number of requests
R = {1, . . . , n} Set of requests
Cl ∈ {1, . . . , ∞} Resource capacity of location l ∈ L
Rl = {i ∈ R|li = l} Set of requests at location l ∈ L
li ∈ L Location of request i ∈ R

ri ∈ [0, T] Release time of request i ∈ R

di ∈ [0, T] Deadline of request i ∈ R

pi ∈ [0, T] Processing time of request i ∈ R

qi ∈ [1, Q] Weight of request i ∈ R

Q ∈ {0, . . . , ∞} Maximum weight a vehicle can carry
O+ Artificial start that corresponds to the central depot
O− Artificial end that corresponds to the central depot
N = R ∪ {O−, O+} Set of nodes
A = {(i, j) ∈ N × N |i ̸= j} Set of arcs connecting the nodes
cij Travel time along arc (i, j)

xij ∈ {0, 1} Indicates if a vehicle travels along arc (i, j)
ystart

i ∈ [ri, di] Time a vehicle starts unloading goods
yweight

i ∈ [qi, Q] Total accumulated weight of delivered goods

dependency is that a delay on one route entails delays on other routes visiting the same
location. These delays can cause infeasibility of a solution because of the time window
constraints.

Developing a hybrid MIP and CP solver “Nutmeg”, Lam et al. [10] introduce a logic-based
Benders’ decomposition (LBBD) scheme for the VRPLC. As VRPLC can be decomposed
into a routing and a scheduling problem, it is naturally suited to LBBD. The authors use
the branch-and-cut style of LBBD known as branch-and-check. Two objective types are
considered – minimising total travel distance and minimising makespan.

3 Problem formulation

The problem formulation studied in this paper is based on the VRPLC formulation in Lam et
al. [10]. However, we only consider the minimising total tardiness objective. The requests are
allowed to be delivered past their time window, the tardiness of each request is the amount of
time that has passed since the end of the window until the delivery time. The total tardiness
is the sum of the tardiness of all requests.

The problem is to create a set of routes for vehicles to deliver goods from a central depot
to various locations. The vehicles and the locations are subject to vehicle capacity and
congestion constraints, respectively.

Table 1 lists the data and decision variables for the problem. The requests for goods
are grouped by locations. Each request i ∈ R must be delivered to location li ∈ L within a
time window [ri, di], and all vehicles must return to the central depot before time T . Each

ATMOS 2023

16:4 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

vehicle requires the use of one piece of equipment for processing time pi to unload the goods
for request i ∈ R. Each location only has the total fixed set of equipment Cl, the limited
capacity of equipment then leads to location congestion.

The problem can be modeled using a graph (N , A). The central depot and each request
i ∈ R with the corresponding location information are represented through the set of nodes N .
The set A denotes the arcs connecting the nodes. The variables xij equal 1 if a vehicle travels
along arc (i, j) ∈ A, and 0 otherwise. Moving along arc (i, j) takes cij time units. There are
two continuous subproblem variables at each node i ∈ N . The continuous variables ystart

i

and yweight
i are equal to the time a vehicle starts unloading goods and the total accumulated

weight of delivered goods, respectively.
The model for the vehicle routing problem with location congestion is given by

min
∑
i∈R

max{ystart
i + pi − di, 0} (1)

s. t.
∑

i:(i,j)∈A

xij = 1, j ∈ R, (2)

∑
j:(i,j)∈A

xij = 1, i ∈ R, (3)

Cumulative((ystart
i |i ∈ Rl), (pi|i ∈ Rl), (1|i ∈ Rl), Cl), l ∈ L, (4)

xij = 1 → yweight
i + qj ≤ yweight

j , (i, j) ∈ A, (5)

xij = 1 → ystart
i + pi + cij ≤ ystart

j , (i, j) ∈ A, (6)
xij ∈ {0, 1}, (i, j) ∈ A, (7)
ystart

i ∈ [ri, di], i ∈ N , (8)

yweight
i ∈ [qi, Q], i ∈ N . (9)

The objective function (1) minimises total tardiness of all requests. Constraints (2)–(3)
ensure each node has exactly one incoming and outgoing arc. This ensures each request is
assigned to exactly one vehicle. The Cumulative constraints (4) enforce processing capacity
limit at each location. Vector ((1|i ∈ Rl)) represents resource requirement for each request
i ∈ Rl. The Cumulative constraints require the following:

∑
i∈Rlt

1 ≤ Cl for all times
t, where Rlt = {i|ystart

i ≤ t < ystart
i + pi} is the set of requests being processed at time t.

Constraints (5)–(6) are only enforced when the corresponding values of xij are equal to 1.
Constraints (5) ensure that the total accumulated weight of delivered goods by a vehicle does
not decrease after each delivered request. Constraints (6) ensure request processing time and
minimum travel times are respected. Constraints (6) are sufficient to avoid cycles. All of
the vehicles are assumed to be identical, and each node has one incoming and outgoing arc,
therefore the vehicles are not presented explicitly. The number of arcs outgoing from (or
incoming to) the central depot gives the number of vehicles used in a solution.

4 Logic-based Benders’ decomposition for VRPLC

The VRPLC decomposes into routing and scheduling components. The variables xij are
viewed as the complicating variables. Fixing variables xij to trial values leads to a scheduling
subproblem. The scheduling subproblem can be solved as a CP. The trial values of xij are
found by solving the routing master problem as a MIP. The master problem identifies a set
of vehicle routes that satisfy all delivery requests.

A. Saken and S. J. Maher 16:5

Let T denote the total tardiness. The master problem in iteration k is given by

min T (10)

s. t.
∑

i:(i,j)∈A

xij = 1, j ∈ R, (11)

∑
j:(i,j)∈A

xij = 1, i ∈ R, (12)

T ≥ Bxi(x), i = 1, ..., k − 1, (13)
[Valid inequalities]. (14)

The [Valid inequalities] contain constraints (5)–(6), they are added to the master problem to
retain some information about the subproblem. They state that for a vehicle that travels
along arc (i, j) the accumulated weight of goods delivered after request j cannot be smaller
than the accumulated weight after request i. Similarly, unloading of goods at node j cannot
start before unloading at node i. Inequalities (13) are the Benders’ cuts obtained by solving
the subproblem for master problem solutions xi in iterations i = 1, . . . , k − 1. The Benders’
cuts ensure feasibility and optimality of the problem solution.

Let xk be the master problem solution in iteration k, then the subproblem is given by

min
∑
i∈R

max{ystart
i + pi − di, 0} (15)

s. t. Cumulative((ystart
i |i ∈ Rl), (pi|i ∈ Rl), (1|i ∈ Rl), Cl), l ∈ L, (16)

xk
ij = 1 → yweight

i + qj ≤ yweight
j , (i, j) ∈ A, (17)

xk
ij = 1 → ystart

i + pi + cij ≤ ystart
j , (i, j) ∈ A. (18)

The subproblem is solved to schedule deliveries on the routes identified by the master problem.
The solution procedure is an iterative process that iterates between solving the master

problem and the subproblem. Let T ∗ and T ∗
k denote the optimal objective value of the

master problem and the subproblem, respectively. In each iteration, the optimal value T ∗

provides a lower bound on the optimal value of (1)–(9), and T ∗
k provides an upper bound.

The optimal value T ∗ increases monotonically, the subproblem value T ∗
k can increase or

decrease. The procedure terminates when T ∗ = min{T ∗
1 , . . . , T ∗

k }.
The main idea of LBBD is to use T ∗

k and the reasoning behind this solution to obtain a
bounding function Bxk (x) that gives a valid lower bound on the optimal value of (1). The
bounding function Bxk (x) should have following two properties.

▶ Property 1. Bxk (x) provides a valid lower bound on (1) for any given x ∈ Dx, where Dx

is the domain of x. That is, T ≥ Bxk (x) for any feasible (x, y) in problem .

▶ Property 2. Bxk (xk) = T ∗
k .

It is convenient to regard T ∗
k as having an infinite value if the subproblem is infeasible.

By this assumption, a strong duality holds for the dual of the subproblem: the optimal value
of the subproblem is always equal to the optimal value of its dual [7].

▶ Theorem 1 ([5]). If the bounding function Bxk (x) satisfies properties 1 and 2 in each
iteration of the Benders algorithm, and the domain Dy of y is finite, the Benders algorithm
converges to the optimal value of (problem) after finitely many steps.

ATMOS 2023

16:6 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

Let Jk = {(i, j) ∈ A|xk
ij = 1} be the set of arcs that were selected in the master problem

solution in iteration k. If the subproblem is infeasible, a feasibility cut given by∑
(i,j)∈Jk

(1 − xij) ≥ 1 (19)

is generated. If the subproblem has an optimal solution with value T ∗
k , an optimality cut

T ≥ Bxk (x) is generated. The cut is given by

T ≥ T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
. (20)

The cut indicates that the total tardiness T will have a value of at least T ∗
k , unless one of

the arcs (i, j) ∈ Jk is removed from the route.
Both feasibility cuts (19) and optimality cuts (20) can be routinely strengthened by

replacing Jk with a smaller subset J ′

k ⊆ Jk, if the subproblem corresponding to J ′

k gives a
solution with the same objective value as the solution for Jk.

5 Subproblem separation

Subproblem separation is a common strategy used to accelerate the LBBD scheme. It
is especially useful when the subproblem is a scheduling problem. Given that scheduling
problems are difficult to scale up, splitting one big subproblem into many small independent
subproblems usually benefits the solution procedure.

The subproblem can be separated when the problem has a bordered block diagonal
structure, where the master variables define the border. Therefore, fixing the master
variables to trial values makes the blocks separable. Meaning that the subproblem can be
decoupled into a separate subproblem for each such block, and the solution of any decoupled
subproblem does not depend on solutions of other subproblems.

The VRPLC formulation does not exhibit a block diagonal structure. Fixing master
variables for the vehicle routing problem, does not naturally decouple the subproblem. One
might consider decoupling the subproblem by each location. However, since a vehicle can
travel through more than one location, constraints (5)–(6) create a border that connects the
locations. For example, if a vehicle first travels through location l1 and then location l2, the
subproblem for location l2 would require the subproblem solution for l1. This issue could be
resolved by solving the subproblem for l1 before solving subproblem for l2. However, since a
location may host several requests, it is possible that another vehicle travels through l1 and
l2 in the opposite order, thus making this method of subproblem separation inapplicable.
Therefore, the subproblem cannot be decoupled by locations at the problem formulation
stage.

We propose to separate the subproblem during the solution process. One can note that
some master subproblem solutions give routes that only connect some of the locations. For
example, see Figure 1a, locations 1 and 4 are connected to each other and the central depot,
while locations 2 and 3 are only connected to the central depot. One subproblem can be
solved for locations 1 and 4 together, and one subproblem for each of locations 3 and 4.

We propose to identify separable blocks of locations in each iteration of the Benders’
algorithm. The master problem solution xk

ij can be represented as a graph Jk. The edges in
graph Jk are the connections between requests. In order to identify separable locations, a
new graph is formed where the nodes are given by locations. The edges between requests are
mapped onto the edges between locations. Connected locations can then be found by using

A. Saken and S. J. Maher 16:7

1

2

D

3

4

(a) Routes in the MP solution.

1

2

D

3

4

(b) Connected components.

Figure 1 Example of a graph representing the central depot (D) and four locations.

an algorithm to identify connected components in the location graph. Our implementation
uses a depth-first search (DFS) to identify connected components. Note that the edges
that connect the central depot to the locations are ignored, otherwise, all of the locations
will belong to a single connected component through the central depot. The number of
independent calls of the DFS function is equal to the number of connected components.
In the example above, (see Figure 1b) the connected components are {[1, 4], [2], [3]}. A
separate subproblem is then solved for each connected component. Observe that solving the
subproblem when a connected component is a path is trivial.

It is important to note that the proposed algorithm can identify connected components
for more general cases than the example above. Since a vehicle can travel to multiple
locations, the algorithm ensures that all of the locations visited by one vehicle belong to
a single component. Moreover, if several vehicles deliver requests to the same location, all
of the locations traversed by the vehicles will be encompassed in a single component. This
is possible due to the step of mapping the edges between requests to the edges between
locations – several request nodes become one location node.

6 New Benders’ cuts

There is an inherent computational benefit to splitting the subproblem into smaller inde-
pendent subproblems. Nevertheless, in order to fully exploit the new subproblem structure it
is important to generate strong Bender’s cuts. In this section, we analytically derive different
sets of valid Benders’ cuts.

Let xk be the master problem solution in iteration k, and let set Jk be given by Jk =
{(i, j)|xk

ij = 1}. As mentioned in Section 5, since Jk ⊆ A is a graph, it can be separated
into connected components. Let set Ck denote the set of connected components in iteration
k. The connected components partition the set Jk, i.e.,⋃

c∈Ck

J c
k = Jk and J c

k

⋂
J c′

k = ∅ c, c′ ∈ Ck, c ̸= c′,

where J c
k ⊆ Jk is the set of all edges from Jk in the connected component c.

Sets J c
k partition Jk, cut (20) therefore can be rewritten as

T ≥ T ∗
k

(
1 −

∑
c∈Ck

∑
(i,j)∈J c

k

(1 − xij)
)
. (21)

Each connected component c ∈ Ck describes a separate subproblem. The optimal objective
for subproblem c in iteration k is given by T ∗

ck. Further, cut (21) can then be rewritten as
the first cut we are proposing to generate

T ≥
∑

c∈Ck

T ∗
ck

(
1 −

∑
(i,j)∈J c

k

(1 − xij)
)
. (22)

ATMOS 2023

16:8 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

The cut (22) can be seen as a summation of cuts of type (20) for each component c ∈ Ck.
Note that cut strengthening can be applied to all cuts presented in this section unless
otherwise stated.

The second valid set of cuts we propose to generate in iteration k is given by

Tck ≥ T ∗
ck

(
1 −

∑
(i,j)∈J c

k

(1 − xij)
)
, c ∈ Ck, (23)

T ≥
∑

c∈Ck

Tck. (24)

The auxiliary variables Tck, denoting total tardiness for each connected component, are
added to the master problem.

We now looking at splitting the cuts further. The main idea is to look at the edges
(i, j) ∈ A in the routes identified by the master problem. When the subproblem is decoupled,
the corresponding edges are also decoupled. Tardiness incurred by a vehicle traveling along
(i, j) is denoted by Tij . Consider cut (20), replacing T with T =

∑
(i,j)∈A Tij results in∑

(i,j)∈A

Tij ≥ T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
. (25)

Since (i, j) ∈ A \ Jk have no influence on the bound given by cut (25), we can replace A
by Jk and rewrite the cut as

∑
(i,j)∈Jk

Tij ≥ T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
, (26)

▶ Theorem 2. Cuts (26) will provide a valid set of cuts to solve the problem to optimality.

Proof. Cuts (26) can be presented in the form of Benders’ cuts T ≥ Bxk (x). Where in
iteration k

T =
∑

(i,j)∈Jk

Tij , and Bxk (x) = T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)

According to Theorem 1 and Properties 1 and 2, if for any feasible solution (x, y) the
total tardiness is bounded such that T ≥ Bxk (x), and Bxk (xk) = T ∗

k , the Benders’ algorithm
converges to the optimal value.

We start from proving that T ≥ Bxk (x) for any feasible (x, y). Note that, trivially
T ≥

∑
(i,j)∈Jk

Tij .
Let m be an iteration of the Benders’ algorithm, such that m ≠ k. Let set Jm be defined

as Jm = {(i, j)|xm
ij = 1}. There can be three cases: Jm is a subset of Jk, Jm is a superset of

Jk, and the symmetrical set difference Jm△Jk is non-empty. In the third case, the indices
in Jm \ Jk do not influence the bound by the definition of the cut, the indices in set Jk \ Jm

correspond to variables xm
ij = 0 in the cut and do not influence the bound. Therefore, it is

sufficient to consider the former two cases:
Jm ⊆ Jk. This gives

(
1 −

∑
(i,j)∈Jk

(1 − xm
ij)

)
≤ 0, since ∃(i, j) ∈ Jk, such that xm

ij = 0.
Therefore T ≥ T ∗

k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
.

Jk ⊆ Jm. This gives
(
1 −

∑
(i,j)∈Jk

(1 − xm
ij)

)
= 1, since ∀(i, j) ∈ Jk, xm

ij = 1. Therefore
T ≥ T ∗

k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
, because T ≥ T ∗

k .

A. Saken and S. J. Maher 16:9

We now prove that Bxk (xk) = T ∗
k in any iteration k:

Bxk (xk) = T ∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)

= T ∗
k , since ∀(i, j) ∈ Jk, xk

ij = 1. ◀

The third set of cuts we propose to generate can be derived by splitting the edges in Jk

by the connected components. Since sets J c
k partition Jk, cut (26) can be rewritten as the

set of cuts∑
(i,j)∈J c

k

Tij ≥ T ∗
ck

(
1 −

∑
(i,j)∈J c

k

(1 − xij)
)
, c ∈ Ck (27)

T ≥
∑

c∈Ck

∑
(i,j)∈J c

k

Tij . (28)

▶ Theorem 3. Cuts (27)–(28) will provide a valid set of cuts to solve the problem to optimality

Proof. A logic similar to the proof of Theorem 2 can be applied here. Let Tck be defined as
Tck =

∑
(i,j)∈J c

k
Tij . We first prove that Tck ≥ T ∗

ck

(
1 −

∑
(i,j)∈J c

k
(1 − xij)

)
for any feasible

solution (x, y).
Let Jm be the master problem solution in iteration m. The set Jm can be split by the

connected components obtained in iteration k such that
⋃

c∈Ck
J c

m = Jm. Similar to the
proof of Theorem 2, it is sufficient to consider the following two cases:

J c
m ⊆ J c

k . This gives
(
1 −

∑
(i,j)∈J c

k
(1 − xm

ij)
)

≤ 0, since ∃(i, j) ∈ J c
k , such that xm

ij = 0.
Therefore Tck ≥ T ∗

ck

(
1 −

∑
(i,j)∈J c

k
(1 − xij)

)
.

J c
k ⊆ Jm. This gives

(
1−

∑
(i,j)∈J c

k
(1−xm

ij)
)

= 1, since ∀(i, j) ∈ J c
k , xm

ij = 1. Therefore
Tck ≥ T ∗

ck

(
1 −

∑
(i,j)∈J c

k
(1 − xij)

)
◀

7 Computational experiments

The computational effectiveness of subproblem separation and various Benders’ cuts, described
in Section 6, is evaluated in a series of computational experiments. The evaluated cuts are
cuts (22), cuts (23)–(24), cuts (27), and the combination of cuts (23)–(24) and cuts (27).
Using the combination of cuts (23)–(24) and cuts (27) means generating both sets of cuts
in each iteration. Each experiment solves the VRPLC with the minimising total tardiness
objective. The experiments run the LBBD scheme with the separated subproblem generating
each type of cuts separately. Another experiment runs the default implementation of the
LBBD scheme with no subproblem separation. The different implementations are referred to
as “methods” for the sake of brevity. Since it is important to apply cut strengthening to
accelerate the solution process, the deletion filter cut-strengthening technique ([8],[18]) has
been applied in all computational runs.

The main metric of computational effectiveness is the impact of different methods on the
run time of the LBBD scheme. For the run time plots, the horizontal axis gives the time and
the vertical axis gives the percentage of solved instances. A point (x, y) on the curve means
that y% of instances can be solved in less than x seconds.

ATMOS 2023

16:10 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

Experiment setting

The LBBD scheme is implemented in Python 3.8, and the MIP and CP models are solved
using Gurobi Optimizer version 9.1.2 and IBM ILOG CP Optimizer version 20.1, respectively.
All tests have been carried out on a computer with two Intel Xeon Gold 6130 processors (16
cores, 2.1 GHz each) and 96 GB RAM. Each instance was given a total time of 20 minutes
and the MIP-gaps are set to 0 for the master problems.

Instances

We use 450 instances from Lam et al. [10], the instances are available at https://github.com/
ed-lam/nutmeg/tree/master/examples/vrplc/Instances. The instances are generated
for 5, 8, or 10 locations. For each number of locations, there are instances with 20, 30, and
40 requests. Location resource capacities vary between one and eight for all instances The
instances are modified for the minimising total tardiness objective with deadlines decreased
by 10%.

Percentage of solved instances

The main observation from Figure 2 is that all of the methods applying subproblem separation
outperform the default implementation. The default implementation with 12% of solved
instances is notably behind the methods applying subproblem separation. Cuts (23)–(24)
have the highest effectiveness with 81.5% of solved instances. Cuts (22) and the combination
of cuts (23)–(24) and (27) have marginally lower percentages of solved instances – 77.8% and
80%, respectively.

An interesting result is that although cuts (27) outperform the default method, they show
significantly lower results than other methods applying subproblem separation – 28.2% of
solved instances. The main reason is that the cuts lead to repeated master problem solutions
with the same connected components. This implies that this type of cut introduces symmetry
that is difficult to handle for the master problem solver. The results for the combination
of cuts (27) and cuts (23)–(24) being slightly lower than the results for cuts (23)–(24) also
imply that cuts (27) adversely impact the run time.

0 200 400 600 800 1000 1200
Time Spent

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

cuts_22
cuts_23_24
cuts_27
cuts_27_and_23_24
default_nosplit

Figure 2 Percentage of instances solved to optimality for the minimising tardiness for cumulative
scheduling problem.

https://github.com/ed-lam/nutmeg/tree/master/examples/vrplc/Instances
https://github.com/ed-lam/nutmeg/tree/master/examples/vrplc/Instances

A. Saken and S. J. Maher 16:11

Table 2 The table presents the average master problem solution time, average subproblem
solution time, and number of subproblems solved per instance. The instances for which the results
were not retrieved within 20 minutes are omitted.

Method TMP Tsub Tsub Nsub Niter Ninst Ninst

(per iter) (solved)
Default 1.36 3.75 0.67 1453 40.3 105 53
Cuts 22 0.92 0.138 0.02 430 11.25 352 349
Cuts 23-24 1.09 0.141 0.016 578 17.6 367 366
Cuts 27 0.26 0.065 0.03 108 3.3 126 126
Combination 1.19 0.068 0.015 502 12.11 361 359

The results in Table 2 highlight the effect of subproblem separation on the LBBD scheme.
The reported values are calculated for different sets for each method. For each method,
the set comprises retrieved instances that were either solved to optimality or timed out.
The Ninst column indicates the number of instances in each set. The number of instances
solved to optimality by each method is given in the last column. As can be seen in Table 2,
the default implementation spends much more time solving subproblem per instance – 3.75
seconds compared to 0.141 seconds and below by other methods. This can be explained by
the greater average subproblem solution time per Benders’ iteration – 0.67 seconds compared
to 0.02 seconds, 0.016 seconds, 0.03 seconds, and 0.015 seconds by cuts (22), cuts (23)–(24),
cuts (27), and the combination of cuts (23)–(24) and cuts (27), respectively. This result shows
that it takes less time to solve multiple smaller subproblems than to solve one subproblem.
Another interesting observation is that the default implementation leads to a higher number
of Benders’ iterations and subproblems solved, this suggests that the cuts generated by the
default implementation are less effective than the cuts generated by the other methods.

8 Conclusion

This paper proposes a new implementation of the LBBD scheme for the vehicle routing
problem with local congestion. We propose using the connected components algorithm to
identify separable blocks of the subproblem. The new implementation reformulates the
separated subproblem in each Benders’ algorithm iteration. This method of separating the
subproblem can be applied to other vehicle routing problems with vehicle capacity and
congestion constraints. Since the new reformulation requires new Bender’s cuts, we derive
various types of cuts. We then evaluate subproblem separation and new Benders’ cuts in
computational experiments.

The main conclusion is that subproblem separation is an effective technique for accelerating
the LBBD scheme for the vehicle routing problem with local congestion. However, in order to
fully exploit the new subproblem structure, it is important to generate strong cuts. Splitting
the cuts by the connected components showed the best computational results. Whereas,
splitting the cuts by edges was not effective. An area of future work is to investigate methods
to handle the difficulty introduces by these cuts.

References

1 Florian Arnold, Michel Gendreau, and Kenneth Sörensen. Efficiently solving very large-scale
routing problems. Computers & Operations Research, 107:32–42, 2019.

ATMOS 2023

16:12 Subproblem Separation for the Vehicle Routing Problem with Local Congestion

2 Elvin Coban and John N Hooker. Single-facility scheduling by logic-based benders decomposi-
tion. Annals of Operations Research, 210:245–272, 2013.

3 Simon Emde, Lukas Polten, and Michel Gendreau. Logic-based benders decomposition for
scheduling a batching machine. Computers & Operations Research, 113:104777, 2020.

4 John N Hooker. Logic-Based Benders Decomposition, chapter 19, pages 389–422. John Wiley
& Sons, Ltd, 2000.

5 John N Hooker. Planning and scheduling by logic-based benders decomposition. Operations
research, 55(3):588–602, 2007.

6 John N Hooker. Logic-Based Benders Decomposition for Large-Scale Optimization. Large
Scale Optimization in Supply Chains and Smart Manufacturing: Theory and Applications,
pages 1–26, 2019.

7 John N Hooker and Greger Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96(1):33–60, 2003.

8 Emil Karlsson and Elina Rönnberg. Strengthening of Feasibility Cuts in Logic-Based Benders
Decomposition. In Integration of Constraint Programming, Artificial Intelligence, and Oper-
ations Research: 18th International Conference, CPAIOR 2021, Vienna, Austria, July 5–8,
2021, Proceedings 18, pages 45–61. Springer, 2021.

9 Emil Karlsson and Elina Rönnberg. Logic-based Benders decomposition with a partial
assignment acceleration technique for avionics scheduling. Computers & Operations Research,
146:105916, 2022.

10 Edward Lam, Graeme Gange, Peter J Stuckey, Pascal Van Hentenryck, and Jip J Dekker.
Nutmeg: a MIP and CP Hybrid Solver Using Branch-and-Check. SN Operations Research
Forum, 1:1–27, 2020.

11 Edward Lam, Panos M. Pardalos, and Pascal Van Hentenryck. A branch-and-price-and-check
model for the vehicle routing problem with location congestion. Constraints, 21:394–412, 2016.

12 Michele Lombardi and Michela Milano. Optimal methods for resource allocation and scheduling:
a cross-disciplinary survey. Constraints, 17:51–85, 2012.

13 Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved branch-cut-and-price
for capacitated vehicle routing. Mathematical Programming Computation, 9:61–100, 2017.

14 Günther R Raidl, Thomas Baumhauer, and Bin Hu. Speeding up Logic-Based Benders’
Decomposition by a Metaheuristic for a Bi-Level Capacitated Vehicle Routing Problem. In
International Workshop on Hybrid Metaheuristics, pages 183–197. Springer, 2014.

15 Günther R Raidl, Thomas Baumhauer, and Bin Hu. Boosting an Exact Logic-Based Benders
Decomposition Approach by Variable Neighborhood Search. Electronic Notes in Discrete
Mathematics, 47:149–156, 2015.

16 Ted K. Ralphs, Leonid Kopman, William R. Pulleyblank, and Leslie E. Trotter. On the
capacitated vehicle routing problem. Mathematical Programming, 94:343–359, 2003.

17 Sarmad Riazi, Carla Seatzu, Oskar Wigström, and Bengt Lennartson. Benders/gossip methods
for heterogeneous multi-vehicle routing problems. In 2013 IEEE 18th Conference on Emerging
Technologies & Factory Automation (ETFA), pages 1–6. IEEE, 2013.

18 Aigerim Saken, Emil Karlsson, Stephen J. Maher, and Elina Rönnberg. Computational
Evaluation of Cut-Strengthening Techniques in Logic-Based Benders’ Decomposition. SN
Operations Research Forum, 4:62, 2023.

19 Defeng Sun, Lixin Tang, and Roberto Baldacci. A Benders decomposition-based framework
for solving quay crane scheduling problems. European Journal of Operational Research,
273(2):504–515, 2019.

20 Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand
Subramanian. New benchmark instances for the Capacitated Vehicle Routing Problem.
European Journal of Operational Research, 257(3):845–858, 2017.

Optimizing Fairness over Time with Homogeneous
Workers
Bart van Rossum1 #

Econometric Institute, Erasmus University Rotterdam, The Netherlands

Rui Chen #

Cornell Tech, New York City, NY, USA

Andrea Lodi #

Cornell Tech, New York City, NY, USA

Abstract
There is growing interest in including fairness in optimization models. In particular, the concept of
fairness over time, or, long-term fairness, is gaining attention. In this paper, we focus on fairness
over time in online optimization problems involving the assignment of work to multiple homogeneous
workers. This encompasses many real-life problems, including variants of the vehicle routing problem
and the crew scheduling problem. The online assignment problem with fairness over time is formally
defined. We propose a simple and interpretable assignment policy with some desirable properties.
In addition, we perform a case study on the capacitated vehicle routing problem. Empirically, we
show that the most cost-efficient solution usually results in unfair assignments while much more fair
solutions can be attained with minor efficiency loss using our policy.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases Fairness, Online Optimization, Combinatorial Optimization, Vehicle Routing

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.17

Category Short Paper

1 Introduction

While most optimization literature focuses on minimizing costs or maximizing efficiency, there
is growing interest in including fairness in optimization models. In particular, fairness over
time is desirable for sequential decision making. It relates to the situation where a central
decision maker is faced with a multi-period optimization problem involving multiple agents,
and the goal is to maximize fairness (minimize unfairness) of the (dis)utilities that agents
gain from the solution. A mixed-integer programming framework has been proposed for the
offline version of the problem, in which the optimization problems to be solved in all time
periods are known in advance [1, 2]. The online version of the problem, where instances are
revealed in a dynamic fashion, has been studied for, among other things, resource allocation
[5] and railway crew planning [8].

In this paper, we restrict our attention to fairness over time in the context of online
assignment problems. We define assignment problems as combinatorial problems that involve
dividing the solution into blocks of work to be assigned to workers. Many real-life problems,
including vehicle routing and crew scheduling, can be modeled in this way. In each time
period, a local problem instance is revealed, and a solution must be determined with a cost
that is within a pre-determined factor of the minimum cost. Next, the solution is assigned to
a fixed group of workers whose utilities are updated accordingly. The goal is to determine
solutions and assignments such that the unfairness of the workers’ (dis)utilities is minimized.

1 Corresponding author

© Bart van Rossum, Rui Chen, and Andrea Lodi;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 17; pp. 17:1–17:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vanrossum@ese.eur.nl
mailto:rui.chen@cornell.edu
mailto:andrea.lodi@cornell.edu
https://doi.org/10.4230/OASIcs.ATMOS.2023.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

17:2 Optimizing Fairness over Time with Homogeneous Workers

2 The Online Assignment Problem with Fairness over Time

2.1 Problem Description
We consider a sequential decision making problem with a planning horizon of length T . In
each period t ∈ T , the decision maker receives an instance (ct(·), X t) of a combinatorial
optimization problem, where ct(·) and X t denote its cost objective and its feasible region,
respectively. The decision maker has to choose a solution xt ∈ X t

α. Here, X t
α denotes the set

of acceptable solutions to the local problem of period t, parameterized by α. In principle,
the definition of the set of acceptable solutions can be very general. In this paper, we focus
on cost-efficient solutions to avoid pathological cases of perfectly fair but highly inefficient
solutions. Specifically, we define X t

α to be the set of feasible solutions whose costs are within
a factor (1 + α) of the minimum cost, i.e.,

X t
α =

{
x ∈ X t : ct(x) ≤ (1 + α) min

z∈X t
ct(z)

}
. (1)

Varying α allows us to characterize the trade-off between efficiency and equity.
We assume that each solution xt ∈ X t can be partitioned into n pieces of work (xt

1, . . . , xt
n)

that must be assigned to n homogeneous workers. As such, the work assignment can be freely
permuted without changing its cost. With a slight abuse of notation, for each permutation
π ∈ Πn of {1, . . . , n}, we define the mapping π(·) : Rn → Rn by π(y1, . . . , yn) = (yπ1 , . . . , yπn

).
We assume that xt ∈ X t if and only if π(xt) ∈ X t. We do not distinguish between
a permutation of subvectors of (xt

1, . . . , xt
n) and a permutation of coordinates of an n-

dimensional vector as long as they follow the same order.
Each assignment of xt yields a payoff vector p(xt) ∈ Rn, representing the payoffs to the

n workers. Since the workers are homogeneous, we assume that the same piece of work xt
i

yields an identical payoff to each worker, i.e., p(π(xt)) = π(p(xt)) for all permutations π.
Payoffs are aggregated in a linear fashion, such that the current utility vector equals the
sum of all previous payoff vectors, i.e., ut =

∑t
τ=1 p(xτ). We let ϕ(·) denote an unfairness

measure of the worker’s utilities satisfying the definition of the inequity measure in [6], e.g.,
the difference between the largest and smallest utilities. Our goal is to determine online
a sequence of solutions (x1, . . . , xT) ∈

∏T
t=1 X t

α such that ϕ(uT) is minimized. The offline
version of the online assignment problem with fairness over time (OAPFoT) reads as

min
x,u

ϕ(uT)

s.t. ut = ut−1 + p(xt), xt ∈ X t
α, t = 1, . . . , T,

u0 = 0.

In brief, in each time period t, the problem can be split into the following three steps:
1. Defining the set the acceptable solutions. In the case of X t

α being cost-efficient solutions
as defined in (1), we must compute the optimal cost miny∈X t ct(y) to explicitly define
X t

α. We assume that a suitable algorithm is available for this problem, and consider this
step to be outside the scope of this paper.

2. Picking an acceptable solution. A criterion, which may or may not depend on ut−1,
has to be decided in order to pick a solution from X t

α. Then, potentially we need to
solve an optimization problem associated with that criterion, which we refer to as the
α-subproblem, to obtain a particular acceptable solution zt.

3. Assigning the solution to workers. If the criterion we use in Step 2 has not yet taken ut−1

into account, we may need to determine how to assign the solution zt obtained in Step 2
to workers to obtain xt = π(zt). In other words, we decide upon a permutation π.

B. van Rossum, R. Chen, and A. Lodi 17:3

The latter two steps can be used to minimize ϕ. Proposing good strategies for picking and
assigning solutions is the main goal of this paper. In the remainder of this work, we analyze
the performance of the following combination of strategies. In Step 2, we propose to pick the
solution whose payoffs minimize the inequity function, i.e., we pick zt ∈ arg minz∈X t

α
ϕ(p(z)).

The rationale behind this strategy is that solutions with equitable payoffs, when properly
assigned, lead to equitable utilities. In Step 3, we make use of a simple policy that assigns
work, in increasing order of payoffs, to workers, in decreasing order of current utility. Some
theoretical justifications for this assignment policy are provided in Section 2.3.

2.2 Complexity of the Problem
We first present some results regarding the complexity of OAPFoT. A simple reduction from
the partition problem yields the following proposition.

▶ Proposition 1 (N P-hardness of the Offline OAPFoT). The offline version of OAPFoT is
N P-hard even if the original cost minimization problem is solvable in polynomial time and
T = 1, or even if each X t

α contains only solutions identical up to a permutation and n = 2.

The above results indicate that even the offline assignment problem is hard to solve. We now
turn our attention to online assignment policies.

▶ Definition 2 (Online assignment policy). An online assignment policy is a function τ(·, ·)
that maps any combination of a utitlity vector u ∈ Rn and a payoff vector p ∈ Rn to a
permutation π ∈ Πn.

Informally, each policy determines how the next payoffs should be assigned to workers based
on their current utilities and the next payoffs. Due to the online nature of the problem, it is
easy to see that no such policy can always attain minimum unfairness.

▶ Proposition 3 (Non-existence). For n ≥ 2 and t ≥ 3, there does not exist an online
assignment policy that attains perfect fairness on all instances that admit perfect fairness.

2.3 A Simple Online Assignment Policy
We close this section with some positive results for one particular policy that is rather
intuitive and simple to implement. This policy, which we refer to as the best-to-worst policy
(BTW) and denote by τBTW, assigns payoffs, in increasing order, to workers, in decreasing
order of current utility. More formally, πBTW := τBTW(u, p) satisfies πBTW

i (p) < πBTW
j (p)

if ui > uj and only if ui ≥ uj with ties broken arbitrarily. We next show that this policy is
always locally optimal in the unfairness measure ϕ.

▶ Proposition 4 (Local optimality of BTW). Let u, p ∈ Rn and ϕ be an inequity measure. It
holds that πBTW = τBTW(u, p) ∈ arg min

π∈Πn
ϕ(u + π(p)).

Proof. Assume without loss of generality that p1 ≤ p2 ≤ . . . ≤ pn, u1 ≤ u2 ≤ . . . ≤ un,
and πBTW

i = n − i + 1 for i = 1, . . . , n. Let π ∈ arg min
π∈Πn

ϕ(u + π(p)), and let i be the

smallest index for which πi < n − i + 1, i.e., for which the assignments of π and πBT W

differ. This implies that there exists a j > i for which πj = n − i + 1 > πi. Recall that,
by construction, pπi

≤ pπj
. If pπi

= pπj
, then we can reverse the assignments of i and j

without affecting the resulting utilities. Otherwise, we have pπi
< pπj

, and reversing the
assignments of i and j constitutes a Pigou-Dalton transfer that can only decrease unfairness
[6]. Note that the smallest index satisfying our condition is now increased by at least one.

ATMOS 2023

17:4 Optimizing Fairness over Time with Homogeneous Workers

Hence, in at most n − 1 of such transfers we can convert the assignment determined by π

into that determined by πBT W . Since each transfer can only decrease unfairness, it holds
that ϕ(u + πBT W (p)) ≤ ϕ(u + π(p)). Therefore, πBT W ∈ arg min

π∈Πn
ϕ(u + π(p)). ◀

In addition, under the BTW policy the unfairness at any stage is bounded by the
maximum unfairness of any set of payoffs. We present a simplified version of this result for
range unfairness, defined as the largest difference between payoffs/utilities.

▶ Proposition 5 (Bounded range unfairness). Under the best-to-worst policy and with ϕ(u) =
maxi=1,...,n ui − mini=1,...,n ui, it holds that ϕ(ut) ≤ maxτ=1,...,t ϕ(pτ) for all t = 1, . . . , T .

The above result is the main motivation for minimizing the unfairness of the payoffs in our
proposed strategy, as it further minimizes an upper bound of ϕ(ut) for all t.

3 Case Study: Capacitated Vehicle Routing Problem

We perform a case study on the capacitated vehicle routing problem (CVRP) to test the
effectiveness of our proposed strategies and to analyze the role of the budget parameter α.
We define the payoff of a route in terms of either its distance or its load, i.e., we use both
variable-sum and constant-sum payoffs [3]. As the unfairness measure ϕ, we use the range,
defined as the largest difference in payoffs between any two routes. Solving the α-subproblem,
i.e., zt ∈ arg minz∈X t

α
ϕ(p(z)), now corresponds to selecting a set of routes for which the

range, in terms of either distance or load, is minimized, subject to the α-budget constraint.
This problem strongly relates to the CVRP with route balancing, for which no efficient exact
algorithms are known.

We now introduce the necessary notations for the α-subproblem, omitting time indices
t for brevity. Let N denote the set of customers, K denote the number of vehicles, i.e.,
workers, and B denote the cost of the most cost-efficient solution. We denote by R the set
of all feasible routes and we introduce a binary variable xr, ∀r ∈ R that takes value 1 if
route r is selected. The cost and payoff of route r are denoted by cr and pr, respectively.
Binary parameter air indicates whether customer i ∈ N is visited by route r. We model the
range using variables η and γ representing the maximum payoff and the minimum payoff,
respectively. We model the maximum and minimum based on the last customer of the route.2
Binary parameter bir indicates whether customer i is the last on route r. Finally, let M be
an upper bound on the minimum payoff of any route. Our formulation for the α-subproblem
now reads as

min η − γ

s.t.
∑
r∈R

airxr = 1, ∀i ∈ N,∑
r∈R

prbirxr ≤ η, ∀i ∈ N,

M

(
1 −

∑
r∈R

birxr

)
+
∑
r∈R

prbirxr ≥ γ, ∀i ∈ N,∑
r∈R

crxr ≤ B(1 + α),
∑
r∈R

xr = K, x ∈ {0, 1}R.

2 We build on the formulation for the min-max multiple traveling salesman as presented by N. Bianchessi,
C. Tilk, and S. Irnich at Column Generation 2023 in Montréal.

B. van Rossum, R. Chen, and A. Lodi 17:5

We solve the above program using branch and price, in which we solve a pricing problem
for each possible last customer at each node of the search tree. The pricing problems
are solved using bidirectional labeling and the ng-route relaxation [4]. Since we consider
symmetric instances of the CVRP, we strengthen the formulation by enforcing that the index
of the last customer along a route is at least that of the first customer. We branch on the
last customer first, followed by arcs, and separate rounded capacity inequalities at the root
node of the branching tree.

The set-up of our experiments is as follows. Similar to [3], we generate a sequence of 20
daily instances of N = 15 customers by taking disjoint subsets of instance X-n641-k35 [7]. This
yields a single online instance of T = 20 time periods. We use K = 5 vehicles (one for each
worker, i.e., n = 5), and set the vehicle capacity of each instance to Q = ⌈ 1

K−1
∑N

i=1 qi − 1⌉.
We consider values of α in {0, 1%, . . . , 10%}, and use the best-to-worst policy to assign routes
to workers. We solve the LP-relaxation of the restricted master problem using CPLEX 22.1.0.

0 1 2 3 4 5 6 7 8 9 10
0

500

1,000

1,500

2,000

α (%)

R
an

ge

0

1,000

2,000

3,000

T
im

e
(s

)

Payoffs Utilities Time

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

α (%)

R
an

ge

0

500

1,000

1,500
T

im
e

(s
)

Payoffs Utilities Time

Figure 1 Results for the distance (top) and load (bottom) resources for different values of α.

Results of our case study for both the distance and load resource are summarized in
Figure 1. For each value of α, we present the range of the payoffs (p), utilities (u), and the
computing time. All results are averaged over the periods in our planning horizon. In line
with Proposition 5, we find that the unfairness of the utilities is generally well below that of
the payoffs, showing the effectiveness of the best-to-worst policy. Both ranges of payoffs and
utilities decrease as α grows, though the effect is more pronounced for the payoffs. While we
observe similar patterns for distance and load, we note that the range of the load displays a
stronger reduction as a function of α. In addition, the range of the utilities is closer to that
of the payoffs for load than for distance.

ATMOS 2023

17:6 Optimizing Fairness over Time with Homogeneous Workers

The computing times grow rapidly in α. We remark that the α-subproblem appeared
to be a lot harder to solve than the cost minimization problem. While an optimal solution
to the latter was always obtained within seconds, the former could take multiple hours for
α = 10%. This discrepancy can be attributed to the large integrality gap of our formulation,
resulting in large branch-and-bound trees, which can have more than 100,000 nodes.

4 Future Research

We consider several directions for future research. First, we aim to study the performance of
using a different criterion for picking acceptable solutions. In particular, we will base the
selection on current utilities ut−1 and select the solution zt = arg minzt∈X t

α
ϕ(p(zt) + ut−1).

This would effectively eliminate the need for an assignment policy, and would also require
a slight reformulation of the α-subproblem. Surprisingly, preliminary experiments indicate
that this approach might be counterproductive in some cases. Second, we aim to further
explore why the α-subproblem appears to be much harder than the original cost-efficient
problem. Hopefully, the resulting insights can be used towards the development of more
efficient solution methods. We experimented with the use of cutting planes from the vehicle
routing literature but these attempts proved ineffective, indicating the need for developing
other techniques. Finally, we plan to perform a case study on a large-scale crew scheduling
problem, to analyze the performance of our approach in settings with a larger number of
workers.

References
1 Andrea Lodi, Philippe Olivier, Gilles Pesant, and Sriram Sankaranarayanan. Fairness over time

in dynamic resource allocation with an application in healthcare. Mathematical Programming,
2022.

2 Andrea Lodi, Sriram Sankaranarayanan, and Guanyi Wang. A framework for fair decision-
making over time with time-invariant utilities, 2022. URL: https://arxiv.org/abs/2212.
10070.

3 Piotr Matl, Richard F Hartl, and Thibaut Vidal. Workload equity in vehicle routing: The
impact of alternative workload resources. Computers & Operations Research, 110:116–129,
2019.

4 Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved branch-cut-and-price
for capacitated vehicle routing. Mathematical Programming Computation, 9:61–100, 2017.

5 Tareq Si Salem, Georgios Iosifidis, and Giovanni Neglia. Enabling long-term fairness in dynamic
resource allocation. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 6(3):1–36, 2022.

6 Man Yiu Tsang and Karmel S. Shehadeh. A unified framework for analyzing and optimizing a
class of convex inequity measures, 2022. URL: https://arxiv.org/abs/2211.13427.

7 Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand
Subramanian. New benchmark instances for the capacitated vehicle routing problem. European
Journal of Operational Research, 257(3):845–858, 2017.

8 Bart van Rossum, Twan Dollevoet, and Dennis Huisman. Dynamic railway crew planning with
fairness over time. Technical Report EI 2022-10, Economometric Institute, Erasmus University
Rotterdam, 2022.

https://arxiv.org/abs/2212.10070
https://arxiv.org/abs/2212.10070
https://arxiv.org/abs/2211.13427

Simple Policies for Capacitated Resupply Problems
Mette Wagenvoort #

Econometric Institute, Erasmus University Rotterdam, The Netherlands

Martijn van Ee #

Faculty of Military Sciences, Netherlands Defence Academy, Den Helder, The Netherlands

Paul Bouman #

Econometric Institute, Erasmus University Rotterdam, The Netherlands

Kerry M. Malone #

Military Operations, TNO, The Hague, The Netherlands

Abstract
We consider the Capacitated Resupply Problem in which locations with a given demand rate should
be resupplied by vehicles such that they do not run out of stock and the number of vehicles is
minimised. Compared to related problems, we consider the scenario where the payload of the
vehicles may not suffice to bring the stock level back to full capacity. We focus on the Homogeneous
Capacitated Resupply Problem and present both simple policies that provide 2-approximations and
an optimal greedy policy that runs in pseudo-polynomial time.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases resupply problems, periodic schedules, approximation guarantee, greedy
policy

Digital Object Identifier 10.4230/OASIcs.ATMOS.2023.18

Category Short Paper

Funding This research was made possible by TNO in collaboration with Erasmus University
Rotterdam and the Netherlands Defence Academy.

1 Introduction

There are numerous applications, such as disaster relief and expeditions in harsh environments,
where people operating at different locations need periodic resupply of commodities such as
food, fuel and medicines. Such resupplies can typically be performed using faster motorized
(off-terrain) vehicles. Recent advances in drone technology make fast resupply at remote
locations increasingly possible. In many of the mentioned applications, it is vital that the
stock of the commodities never drops below a critical level for a sustained period of time.
An interesting tactical question is how many vehicles are needed to sustain all the stocks of
the commodities above the critical level.

We consider a periodic resupply problem for a single commodity. In this problem we
have a set of locations with associated capacities and demand rates. The goal is to determine
whether the stock levels can be indefinitely sustained above a critical threshold by a set of
vehicles that have an associated maximum payload. Several variants of the problem can be
considered. The locations and vehicles can either be homogeneous or heterogeneous and
each vehicle may or may not have a sufficient payload to fully restock locations to maximum
capacity. Hence, partial restocking or multi-vehicle convoys can be considered.

Our problem, which we formally define in the next section, has a relation with periodic
scheduling problems, such as the Pinwheel Scheduling problem [4], the Windows Scheduling
problem [2], and the Periodic Latency problem [3]. In each of these problems, we are given
integers pi, and we have to schedule job i at least once in any period of pi consecutive

© Mette Wagenvoort, Martijn van Ee, Paul Bouman, and Kerry M. Malone;
licensed under Creative Commons License CC-BY 4.0

23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2023).
Editors: Daniele Frigioni and Philine Schiewe; Article No. 18; pp. 18:1–18:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wagenvoort@ese.eur.nl
https://orcid.org/0000-0001-6928-4978
mailto:M.v.Ee.01@mindef.nl
https://orcid.org/0000-0002-7724-8990
mailto:bouman@ese.eur.nl
https://orcid.org/0000-0003-4893-4083
mailto:kerry.malone@tno.nl
https://orcid.org/0000-0003-1694-8966
https://doi.org/10.4230/OASIcs.ATMOS.2023.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

18:2 Simple Policies for Capacitated Resupply Problems

time-units. In the Windows Scheduling problem, we seek the minimum number of vehicles
that are needed for a feasible solution, whereas the other two problems are concerned with
feasibility only. From our problem’s perspective, they all implicitly assume that each time a
visit to a location is scheduled, its inventory is restocked to its full capacity. In our problem,
it is possible that a vehicle’s payload is not sufficient to restock a location to its full capacity,
introducing interplay between payload and capacity. Also, the UAV resupply scheduling
problem considered in [1] has some similarities with our model, but again locations are
restocked (recharged) to their full capacity at each visit. We leave a full comparison of our
model with the related literature for the full version of this paper.

In this article, we discuss the general problem and show it is intractable. We then
focus on the homogeneous variant and study several simple policies that we prove to give
2-approximations. Finally, we present a greedy policy that is able to find a feasible schedule
for the optimal number of vehicles and explain how the optimal number of vehicles can be
found in pseudo-polynomial time.

2 Problem Description and Complexity

In this article we consider a single commodity problem as there is often a commodity that
is most important in terms of size and weight. We consider discrete time-units, and at
time-unit zero, each location starts with initial stock at maximum capacity. We then apply
the following procedure: each time-unit each vehicle resupplies at most one location by a
round-trip from a depot. If a location is resupplied, the payload from the vehicle is added to
the stock at the location up to its capacity within the time-unit. At the start of a time-unit,
consumption decreases the stock level of locations by the demand rate. If the stock drops
below 0 after consumption, we call this a stock-out, a situation we want to avoid. We formally
define the decision variant of our problem as follows:

Capacitated Resupply Problem (CRP)
Instance: A set of n ∈ N locations N = {1, . . . , n} to be supplied, m ∈ N vehicles
available for resupply, vectors c ∈ Nn and r ∈ Nn with the maximum capacity and the
demand rates per location, and p ∈ N the maximum payload of the vehicles.
Question: Is it possible to perform resupply of the locations with the given vehicles, such
that there is never a time-unit where a stock-out occurs?

We show that CRP is intractable by a reduction from the Pinwheel Scheduling problem.
In this problem, we have n′ jobs with periods p1, . . . , pn′ . In each time-unit, we can schedule
one job. The question is whether we can construct a perpetual schedule such that job i is
scheduled in any period of pi consecutive time-units. It is not known whether the Pinwheel
Scheduling problem is NP-complete, or even contained in NP. It was shown by [5] that there
cannot be a polynomial time exact algorithm for the Pinwheel Scheduling problem, unless
Satisfiability can be solved in expected time O(nlog n log log n), which is deemed unlikely.

▶ Theorem 1. There is no polynomial time exact algorithm for CRP, unless the Satisfiability
problem can be solved in expected time O(nlog n log log n).

Proof. Given an instance of the Pinwheel Scheduling problem, i.e., p1, . . . , pn′ , create an
instance of CRP as follows. Create a location for each job, where location i has ri =∏n′

j=1 pj/pi, and ci = c =
∏n′

j=1 pj . Furthermore, we set p =
∏n′

j=1 pj , and m = 1. Now, we
can verify there exists a feasible resupply schedule for this instance of CRP if and only if
there is a feasible schedule for the original instance of the Pinwheel Scheduling problem. ◀

M. Wagenvoort, M. van Ee, P. Bouman, and K. M. Malone 18:3

The proof above shows it is hard to distinguish instances of CRP where one vehicle is
sufficient, and instances for which at least two vehicles are necessary. This implies that for
any α < 2, there is no α-approximation for minimizing the number of vehicles, unless we
can solve the Pinwheel Scheduling problem in polynomial time. The same holds for the
Windows Scheduling problem, which can be seen as the multi-vehicle version of the Pinwheel
Scheduling problem. For the Windows Scheduling problem, a 2-approximation is known [2].
It is an open question whether a 2-approximation exists for the optimization version of CRP.
For now, we focus on the following homogeneous special case of this challenging problem:

Homogeneous Capacitated Resupply Problem (HCRP)
Instance: n ∈ N locations to be supplied, m ∈ N vehicles available for resupply, c ∈ N the
maximum capacity per location, r ∈ N the demand rates at the locations, and p ∈ N the
maximum payload of the vehicles, where p ≤ c.
Question: Is it possible to perform resupply of the locations with the given vehicles, such
that there is never a time-unit where a stock-out occurs?

More specifically, we consider the optimization variant where we seek the smallest m such
that no stock-out occurs. As the input of an instance consists of four numbers, a polynomial
time algorithm must be polynomial in log n, log c, log r, and log p.

3 Resupply policies

Let us now define the structure of the policies that we consider for the HCRP.

▶ Definition 2 (Policy). A policy π(xt, t, j) : Nn × N × N → N takes a vector xt of stock
levels at the locations right after the demand of time-unit t, the current time-unit t, and a
vehicle index j, and produces the index of the location it visits in time-unit t.

In each time-unit t we apply the policy π to the current stock vector xt, by adding
the payloads of the m available visiting vehicles during time-unit t up to the capacity and
subtracting the demand of time-unit t + 1 as follows:

xt+1
i = min

{
c, xt

i + p
∣∣V t

i

∣∣} − r, with V t
i =

{
j : j ∈ {1, . . . , m}, π(xt, t, j) = i

}
(1)

We are interested in when policies can guarantee a stock-out never occurs, i.e., xt ≥ 0
for any time-unit t. We define the minimum number of vehicles needed to operate policy π

without a stock-out as m∗(π) and m∗ as the minimum number of vehicles needed by any
possible policy. We observe that the total supply per time-unit (at most mp) should exceed
the total demand per time-unit (nr), otherwise the stocks will keep decreasing in the long
run. It follows that m∗ ≥

⌈
nr
p

⌉
. Furthermore, we argue that interesting cases have r < p,

i.e., the vehicle payload is greater than the demand at a location. If the demand exceeds
the payload, we can assign dedicated vehicles to each location and derive an instance with
m′ = m − n

⌊
r
p

⌋
, c′ = c − p

⌊
r
p

⌋
, r′ = r − p

⌊
r
p

⌋
which has r′ < p.

We now introduce three simple policies with specific operational advantages and consider
their performance. First, the Wrap Around Policy produces a schedule where vehicles visit the
same location consecutively, resulting in a sense of short-term consistency of the operations.
Second, the No Migration Policy assigns a single vehicle to each location. Finally, the Shift
Policy has a single sequence of visits operated by all vehicles at different offsets in time,
resulting in consistent operations for the vehicles.

ATMOS 2023

18:4 Simple Policies for Capacitated Resupply Problems

▶ Policy 1 (Wrap Around Policy). The Wrap Around Policy πWA assigns r consecutive visits
to each location and divides these sequentially within a period of p time-units. For example,
if r = 3 and p = 5, vehicle 1 visits location 1 in the first three time-units and location 2 in
time-units 4 and 5, whereas vehicle 2 visits locations 2 in the first time-unit, location 3 in
time-units 2, 3 and 4, and location 4 in time-unit 5, etcetera. Formally, this is defined as:

πWA(xt, t, j) = 1 +
⌊

(t − 1 mod p) + (j − 1)p
r

⌋
(2)

▶ Theorem 3. Policy 1 is optimal with m∗(πW A) =
⌈

nr
p

⌉
vehicles if c

r ≥ p.

Proof. Consider the first time-unit of a location where the stock starts decreasing below the
maximum stock level c. Since it takes at least c

r ≥ p time-units for a stock-out to occur,
and there are fewer than p time-units until the next visit, no stock-out can occur. The total
decrease in stock level is at most (p − r + 1)r. Then, the location is visited in the next r

time-units where the stock level can increase by rp − (r − 1)r. After these visits the location
is at full capacity again. We establish that no location can run out of stock. ◀

▶ Lemma 4. If each location is visited at intervals of at most
⌊

p
r

⌋
time-units, no stock-out

occurs.

Proof. The ratio p
r which is the number of time-units before stock-out after performing a

resupply, assuming the stock does not exceed capacity. Since we assume c ≥ p it holds that
c
r ≥

⌊
p
r

⌋
. If each location is visited at least every

⌊
p
r

⌋
time-units, the total supply satisfies

the total demand and no stock-outs can occur. ◀

▶ Policy 2 (No Migration Policy). The No Migration Policy πNM divides all locations over
all vehicles such that each location is always visited by the same vehicle. It repeats this
assignment every

⌊
p
r

⌋
time-units. This implies the first vehicle visits locations 1, . . . ,

⌊
p
r

⌋
, the

second vehicle locations
⌊

p
r

⌋
+ 1, . . . , 2

⌊
p
r

⌋
, and so on. Formally, this is defined as follows:

πNM(xt, t, j) = 1 + (j − 1)
⌊p

r

⌋
+

(
(t − 1) mod

⌊p

r

⌋)
(3)

▶ Theorem 5. Policy 2 gives a 2-approximation with m∗(πNM) =
⌈

n
⌊p/r⌋

⌉
vehicles.

Proof. From Lemma 4, it follows that no stock-out occurs with Policy 2. As each vehicle has
a periodic schedule of length ⌊p/r⌋, this results in

⌈
n

⌊p/r⌋

⌉
vehicles. Using that ⌊x⌋ ≥ x/2

for x ≥ 1, and ⌈nx⌉ ≤ n⌈x⌉ for n ∈ N, we get an approximation guarantee of

m∗(πNM)
m∗ =

⌈
n

⌊ p
r ⌋

⌉
m∗ ≤

⌈
n

⌊ p
r ⌋

⌉
⌈

nr
p

⌉ ≤

⌈
n

1
2

p
r

⌉
⌈

nr
p

⌉ ≤
2
⌈

nr
p

⌉
⌈

nr
p

⌉ = 2. (4)

◀

▶ Policy 3 (Shift Policy). The Shift Policy πSH lets each vehicle visit the same sequence
of locations 1, . . . , n, but varies the starting point of each vehicle within this sequence by
increments of

⌊
p
r

⌋
. Thus this policy repeats after n time-units. For example, if n = 10, p = 9

and r = 3, vehicle 1 start at location 1, vehicle 2 starts at location 4, vehicle 3 starts at
location 7 and vehicle 4 starts at location 10. Formally, this is defined as follows:

πSH(xt, t, j) = 1 +
(

t − 1 + (j − 1)
⌊p

r

⌋)
mod n (5)

M. Wagenvoort, M. van Ee, P. Bouman, and K. M. Malone 18:5

▶ Theorem 6. Policy 3 gives a 2-approximation with m∗(πNM) =
⌈

n
⌊p/r⌋

⌉
vehicles.

The proof of Theorem 6 is similar to the proof of Theorem 5. Note that both Policy 2
and Policy 3 are optimal if p/r is an integer, i.e., if p is an integer multiple of r. The next
example shows that the analysis for both Policy 2 and Policy 3 is tight.

▶ Example 7. Consider an instance with n = 10, r = 10, p = 19, and c = 30. Then, Policy
2 and 3 both result in a schedule with m =

⌈
n

⌊p/r⌋

⌉
= 10 vehicles. However, the optimal

number of vehicles is equal to 6 with the following schedule. Apply the idea of Policy 3 to 5
vehicles with a shift of ⌈p/r⌉ = 2. Then, add a sixth vehicle with a schedule that is out of
sync with the other schedules. This implies that both policies are a factor 5

3 off. In general,
we can set r = n, p = 2n − 1, and c = 3n, with n even. Then, Policy 2 and 3 use n vehicles,
whereas there is an optimal schedule that uses n/2 + 1 vehicles.

4 A Greedy Policy

Up until now we considered policies for which the required number of vehicles can be easily
derived, as they are only dependent on the current time-unit, which provides operational
benefits. It is also interesting to consider a policy that assigns vehicles based on the current
stock level. We consider a greedy policy that aims to maximally postpone stock-outs.

▶ Policy 4 (Greedy Policy). The greedy policy πGR assigns the vehicles to the locations
with the lowest current stock levels. We define the sequence σ(x) as a permutation of
the indices 1, . . . , n in increasing lexicographic order of their stock levels and indices, i.e.,
(xσ(x)i

, i) ≤lex (xσ(x)j
, j) for any i < j. Now the greedy policy is defined as follows:

πGR(xt, t, j) = σ(x)j (6)

▶ Theorem 8. The greedy policy πGR is optimal, i.e. m∗(πGR) = m∗.

Proof. Given the current stock level xt
i of a location i and assuming no future restocks occur,

the time until a stock-out occurs can be expressed as xt
i

r . In order to detect a stock-out, we
only need to be concerned with the lowest stock level xt

min = mini=1...n xt
i.

First, we argue that the total stock level over all locations increases by the maximum
amount possible with the greedy policy. Consider another policy that prefers restocking a
location i which has a higher stock level than a location j that is not restocked by that policy.
We thus have xt

i > xt
j . It is clear to see that the maximum amount that can be restocked at

location i is at most the amount that can be restocked at location j, as c − xt
i < c − xt

j .
Second, we argue that the greedy policy maximally postpones stock-outs. Consider

another policy that at time-unit t prefers restocking a location i which has a higher stock
level than a location j that is not restocked by that policy. In case xt+1

j > xt+1
min, location j is

not critical and xt+1
min will be equal for both policies. In case xt+1

j = xt+1
min, the xt+1

min of the
greedy policy will be greater than or equal to that value of the other policy.

We conclude that among all policies, the greedy policy maximally postpones stock-outs
as it maximally increases the total stock at the most critical locations. As locations are
otherwise identical, the greedy policy can avoid stock-outs with m∗ vehicles. ◀

If n/m is integer, the greedy schedule visits each location exactly once in each period
of n/m consecutive time-units. It is easy to check if no stock-out can occur. If n/m is not
integer, note that the time between two visits to a location in the greedy schedule is either
⌊n/m⌋ or ⌈n/m⌉. Observe that for the HCRP the greedy policy coincides with a round-robin
policy defined as πRR(xt, t, j) = 1 + (j − 1 + mr) mod n. For each location this results in a
schedule with ns periods of ⌊n/m⌋ time-units and nl periods of ⌊n/m⌋ + 1 time-units.

ATMOS 2023

18:6 Simple Policies for Capacitated Resupply Problems

▶ Theorem 9. If n/m /∈ N, the following statements hold.
If ⌈n/m⌉ ≤ ⌊p/r⌋, then the greedy schedule is feasible.
If ⌈n/m⌉ ≥ ⌊p/r⌋ + 2, then the greedy schedule is infeasible.
Else, the greedy schedule is feasible if and only if

min {c, (ns + 1)p − ns⌊p/r⌋r} ≥ nl (⌊p/r⌋ + 1) r − (nl − 1)p. (7)

Proof. If ⌈n/m⌉ ≤ ⌊p/r⌋, then every location is visited at least once every ⌊p/r⌋ time-units.
Hence, by Lemma 4, the schedule is feasible.

If ⌈n/m⌉ ≥ ⌊p/r⌋ + 2, then the number of time-units between any two visits to a location
is at least ⌊p/r⌋ + 1 which therefore consumes more than p between any two consecutive
visits. Thus, the stock will eventually drop below 0.

Else, the refill after ns periods of length ⌊p/r⌋ time-units should be at least the decrease
in nl periods of length ⌊p/r⌋ + 1 time-units. If this inequality holds, the greedy schedule is
feasible. It is also necessary, since a violation will lead to a stock-out. ◀

We now argue that we can solve the optimisation variant of the HCRP in pseudo-
polynomial time. By using a binary search, we can solve the optimization variant by solving
the decision variant O(log n) times. For this, Theorem 9 can be used which takes at most O(n)
time as πRR has a period of at most n time-units. More precisely, when ⌈n/m⌉ = ⌊p/r⌋ + 1,
we can find ns and nl from the periodic schedule with length at most lcm(n, m)/m. Hence,
we can find m∗ for HCRP in O(n log n) time, which is pseudo-polynomial in the input size.

5 Conclusions and Future Research

We consider the capacitated resupply problem (CRP) where locations with a given demand
rate should be resupplied to avoid a stock-out. We show the CRP to be intractable and
consider the homogeneous variant (HCRP) for which we present several policies. We conclude
with a greedy policy that can be used to find the optimal solution in pseudo-polynomial time.

The insights provided form the basis for extending the analysis to problems with more
realistic characteristics, such as multi-commodity resupply, locations with differing capacity
and (time-varying) demand, vehicles with different payloads, and travel times that may
not be insignificant compared to the resupply time. We believe these extensions provide
interesting opportunities for future research.

References
1 Edgar Arribas, Vicent Cholvi, and Vincenzo Mancuso. Optimizing uav resupply scheduling

for heterogeneous and persistent aerial service. IEEE Transactions on Robotics, 2023.
2 Amotz Bar-Noy and Richard E Ladner. Windows scheduling problems for broadcast systems.

SIAM Journal on Computing, 32(4):1091–1113, 2003.
3 Sofie Coene, Frits C. R. Spieksma, and Gerhard J. Woeginger. Charlemagne’s challenge: The

periodic latency problem. Operations Research, 59(3):674–683, 2011.
4 Robert Holte, Al Mok, Louis Rosier, Igor Tulchinsky, and Donald Varvel. The pinwheel:

A real-time scheduling problem. In Proceedings of the 22th Annual Hawaii International
Conference on System Sciences, volume 2, pages 693–702, 1989.

5 Tobias Jacobs and Salvatore Longo. A new perspective on the windows scheduling problem.
arXiv preprint arXiv:1410.7237, 2014.

	p000-Frontmatter
	Preface
	Committees

	p001-Kohler
	1 Motivation
	2 Basic Model and Properties
	2.1 Basic Model
	2.2 Basic Properties

	3 Hardness Results
	4 Algorithmic Results
	5 Conclusion

	p002-Heinrich
	1 Introduction
	2 Preliminaries
	3 Spanners
	4 Generalized optimum requirement graphs
	4.1 Parametric cities
	4.2 Symmetric generalized optimum requirement graphs

	5 IP formulation for (GORG)
	6 Experimental evaluation
	7 Conclusion and further research

	p003-Borndorfer
	1 Introduction
	2 The Free Flight Trajectory Optimization Problem
	3 Numerical Results
	3.1 Size of the Convergence Radius
	3.2 Relevance of the Error Terms
	3.3 Algorithmic Improvement

	4 Conclusion

	p004-Heinrich
	1 Introduction
	2 Preliminaries
	3 Line planning is FPT
	3.1 Path operations and path patterns
	3.2 Assembly algorithm
	3.3 ILP construction
	3.4 Solving the ILP

	4 Experiments
	5 Conclusion and outlook
	A Assembly algorithm analysis
	B Correctness of the ILP

	p005-Masing
	1 Introduction
	1.1 Motivation
	1.2 Literature Overview

	2 A Model for Integrated Line Planning and Periodic Timetabling with Track Choice
	2.1 Input Description
	2.2 Extended Turn-Sensitive event-activity Network
	2.3 Operational Duration Requirements
	2.4 Integrated Line Planning with Timetabling Model (LPTT)
	2.5 Application to Construction Sites

	3 Computational Experiments
	3.1 Construction Site Instances
	3.2 Results
	3.3 Conclusions

	A Appendix

	p006-Engels
	1 Introduction
	2 Block Signaling in ETCS HL3
	2.1 Background
	2.2 Placing Virtual Subsections under ETCS HL3

	3 Symbolic Formulation
	3.1 Base Model
	3.2 Train Dynamics
	3.3 Braking Curves
	3.4 Fixed Routes

	4 Case Study
	4.1 Setup
	4.2 Results

	5 Conclusions & Outlook
	A Benchmarks

	p007-Bortoletto
	1 Introduction
	2 The Periodic Event Scheduling Problem
	3 The Infrastructure-Aware Periodic Event Scheduling Problem
	3.1 Infrastructure Awareness
	3.2 Cyclic Orders
	3.3 Propagating Cyclic Orders and Chronological Constraints
	3.3.1 Identifying Maximal Infrastructure Elements
	3.3.2 Chronological Constraints

	4 Computational Results
	4.1 Instances
	4.2 Maximal Infrastructure Elements
	4.3 Experiments
	4.4 Interpretation of Results

	5 Future Work
	A Appendix – Tables

	p008-CorreiaDuarte
	1 Introduction
	2 Passenger-Oriented Timetabling in the Literature
	3 Problem Definition
	3.1 Problem input and problem parameters
	3.2 Event-Activity Network
	3.3 Perceived Passenger Travel Time

	4 Formulating the Passenger-Oriented Timetabling Problem as a Mixed-Integer Linear Program
	4.1 Flexible Line Frequencies in the PESP
	4.2 Perceived Travel Time with Flexible Frequencies
	4.3 Passenger-Oriented Timetabling Model with Flexible Frequencies

	5 Experiments
	5.1 Instances
	5.2 Results

	6 Conclusion
	A Notation
	B Lower Bound for Non-Scheduled Train Penalty in Route Length Computation
	C Linearisation of the Mixed Integer Linear Program
	C.1 Linearisation of the Minimum Time Difference Between Two Routes
	C.2 Linearisation of the Objective Function
	C.3 Linearisation of the Minimum Perceived Travel Time

	D Empirical Experiment Parameters
	D.1 Event Activity Network Parameters
	D.2 Origin-Destination Matrices

	p009-Grafe
	1 Introduction
	2 Preliminaries
	3 Periodic Timetabling in an Aperiodic Network
	4 Recoverable Robust Models
	5 Computational Experiments
	6 Conclusion
	A Proofs
	B Figures

	p010-Suriya
	1 Introduction
	1.1 Our Contributions
	1.2 Paper Organization

	2 Preliminaries
	2.1 Problem Definition
	2.2 Maximum Flow and Flow Decomposition
	2.3 Submodularity of Functions flow _t

	3 Proof for Submodularity Property
	4 Experimental Results
	4.1 Data
	4.2 Data Extraction
	4.3 Results
	4.3.1 Experiment Results for Problem 1
	4.3.2 Experiment Result for Problem 2

	5 Concluding Remarks

	p011-Ziemke
	1 Introduction
	2 Long-term behavior of dynamic equilibira in fluid queuing networks with spillback
	2.1 Flows over time with spillback
	2.2 Periodic long-term behavior of Nash flows over time with spillback

	3 Long-term behavior of equilibria in a discrete, co-evolutionary transport simulation
	3.1 The multi-agent transport simulation MATSim
	3.2 Long-term behavior of equilibria in MATSim

	4 Conclusion and outlook

	p012-Matsubayashi
	1 Introduction
	2 Preliminaries
	2.1 Graphs and Paths
	2.2 Two-terminal graphs and Route-Induced Subgraphs
	2.3 Series-Parallel Graphs
	2.4 Nash Flows and Braess's Paradox

	3 Algorithm for Directed Graphs
	3.1 Series Decomposition
	3.1.1 Idea and Definition of Series Decomposition Algorithm
	3.1.2 Analysis of Series_Decomposition

	3.2 Parallel Decomposition
	3.2.1 Idea and Definition of Parallel Decomposition Algorithm
	3.2.2 Analysis of Parallel_Decomposition
	3.2.3 Implementation for Linear Time Parallel Decomposition

	3.3 Main Procedure

	4 Conclusion

	p013-Grimm
	1 Introduction
	2 Solving the RSRP with Maintenance Paths
	2.1 A Path-Based Integer Linear Programming Model to the RSRP

	3 Column Generation Approaches to the Path-Based ILP Formulation
	3.1 Coarsening Projections for the RSRP Hypergraph
	3.2 Generating Maintenance Feasible Paths Using Coarsened Hypergraphs
	3.3 Assignment Based Resource Constrained Path Generation Algorithm
	3.4 Improving the IP by Using Subpaths

	4 Computational Results
	5 Conclusion and Outlook

	p014-DeBruin
	1 Introduction
	2 Literature Overview
	3 Problem Description
	4 The Hybrid Algorithm
	5 Robustness
	5.1 Simulating Driving Times
	5.2 Simulating Energy Consumption

	6 Experiments and Results
	6.1 General results
	6.2 Recombination
	6.3 Lateness
	6.4 Depth of Discharge

	7 Conclusion
	7.1 Future Research

	References
	A Driving Time Analysis
	A.1 Variables
	A.1.1 Time of Day
	A.1.2 Weather
	A.1.3 Number of Passengers

	A.2 Distributions

	p015-Lobel
	1 Introduction and Problem Overview
	2 Recharging a Battery
	3 Recharge Modeling with Dynamic Rates

	p016-Saken
	1 Introduction
	2 Vehicle routing problem with local congestion
	3 Problem formulation
	4 Logic-based Benders' decomposition for VRPLC
	5 Subproblem separation
	6 New Benders' cuts
	7 Computational experiments
	8 Conclusion

	p017-VanRossum
	1 Introduction
	2 The Online Assignment Problem with Fairness over Time
	2.1 Problem Description
	2.2 Complexity of the Problem
	2.3 A Simple Online Assignment Policy

	3 Case Study: Capacitated Vehicle Routing Problem
	4 Future Research

	p018-Wagenvoort
	1 Introduction
	2 Problem Description and Complexity
	3 Resupply policies
	4 A Greedy Policy
	5 Conclusions and Future Research

