15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures

13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms

PARMA-DITAM 2024, January 18, 2024, Munich, Germany

Edited by
João Bispo
Sotirios Xydis
Serena Curzel
Luís Miguel Sousa
OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
- Daniel Cremers (TU München, Germany)
- Barbara Hammer (Universität Bielefeld, Germany)
- Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
- Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics
Contents

Preface

João Bispo, Sotirios Xydis, Serena Curzel, and Luís Miguel Sousa 0:vii

List of Authors

... 0:ix

Invited Talk

High-Level Synthesis Developments in the Context of European Space Technology Research

Fabrizio Ferrandi, Michele Fiorito, Claudio Barone, Giovanni Gozzi, and Serena Curzel ... 1:1–1:12

Regular Papers

Accelerator-Driven Data Arrangement to Minimize Transformers Run-Time on Multi-Core Architectures

Alireza Amirshahi, Giovanni Ansaloni, and David Atienza 2:1–2:13

Zero-Copy, Minimal-Blackout Virtual Machine Migrations Using Disaggregated Shared Memory

Andreas Grapentin, Felix Eberhardt, Tobias Zagorni, Andreas Polze, Michele Gazzetti, and Christian Pinto 3:1–3:13

Precision Tuning the Rust Memory-Safe Programming Language

Gabriele Magnani, Lev Denisov, Daniele Cattaneo, Giovanni Agosta, and Stefano Cherubin .. 4:1–4:12

Embedded Multi-Core Code Generation with Cross-Layer Parallelization

Oliver Oey, Michael Huebner, Timo Stripf, and Juergen Becker 5:1–5:13

Accelerating Large-Scale Graph Processing with FPGAs: Lesson Learned and Future Directions

Marco Procaccini, Amin Sahebi, Marco Barbone, Wayne Luk, Georgi Gaydadjiev, and Roberto Iori 6:1–6:12
This volume collects the papers presented at the 15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures, and the 13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2024). The workshop is co-located with the 2024 edition of the HiPEAC conference and was held on the 18th of January, 2024, that took place in Munich, Germany.

The current trend towards many-core and the emerging accelerator-based architecture requires a global rethinking of software and hardware design, which turn out to be more than ever before strongly entangled.

The PARMA-DITAM workshop focuses on many-core architectures, parallel programming models, design space exploration, tools and run-time management techniques to exploit the features and boost the performance of such (possibly heterogeneous, (re-)programmable and/or (re-)configurable) many-core processor architectures from embedded to high performance computing platforms and cyber physical systems.

The scope of the PARMA-DITAM workshop include the following topics:

- T1: Parallel programming models, languages, and applications for many-core platforms
- T2: Compiler and virtualization techniques for novel computing architectures
- T3: Run-time modeling, monitoring, adaptivity, power and memory management
- T4: Design of heterogeneous and reconfigurable many-core architectures
- T5: Methodologies, design tools, and high-level synthesis for heterogeneous architectures
- T6: Hardware/software co-design and design space exploration
- T7: Case studies, success stories and applications applying T1–T6
List of Authors

Giovanni Agosta (4) DEIB – Politecnico di Milano, Italy
Alireza Amirshahi (2) École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Giovanni Ansaloni (2) École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
David Atienza (2) École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Marco Barbone (6) Imperial College London, UK
Claudio Barone (1) Pacific Northwest National Laboratory, Richland, WA, USA
Juergen Becker (5) Karlsruhe Institute of Technology, Germany
Daniele Cattaneo (4) DEIB – Politecnico di Milano, Italy
Stefano Cherubin (4) NTNU – Norwegian University of Science and Technology, Trondheim, Norway
Serena Curzel (1) Politecnico di Milano, Italy
Lev Denisov (4) DEIB – Politecnico di Milano, Italy
Felix Eberhardt (3) Operating Systems and Middleware Group, Hasso Plattner Institute, University of Potsdam, Germany
Fabrizio Ferrandi (1) Politecnico di Milano, Italy
Michele Fiorito (1) Politecnico di Milano, Italy
Georgi Gaydadjiev (6) Delft University of Technology, The Netherlands
Michele Gazzetti (3) IBM Research Europe, Dublin, Ireland
Roberto Giorgi (6) University of Siena, Italy

Giovanni Gozzi (1) Politecnico di Milano, Italy
Andreas Grapentin (3) Operating Systems and Middleware Group, Hasso Plattner Institute, University of Potsdam, Germany
Michael Huebner (5) BTU Cottbus – Senftenberg, Germany
Wayne Luk (6) Imperial College London, UK
Gabriele Magnani (4) DEIB – Politecnico di Milano, Italy
Oliver Oey (5) Karlsruhe Institute of Technology, Germany; emntrix Technologies GmbH, Karlsruhe, Germany
Christian Pinto (3) IBM Research Europe, Dublin, Ireland
Andreas Polze (3) Operating Systems and Middleware Group, Hasso Plattner Institute, University of Potsdam, Germany
Marco Procaccini (6) University of Siena, Italy
Amin Sahebi (6) University of Siena, Italy
Timo Stripf (5) emntrix Technologies GmbH, Karlsruhe, Germany
Tobias Zagorni (3) Operating Systems and Middleware Group, Hasso Plattner Institute, University of Potsdam, Germany