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Abstract
Precision tuning is an increasingly common approach for exploiting the tradeoff between energy
efficiency or speedup, and accuracy. Its effectiveness is particularly strong whenever the maximum
performance must be extracted from a computing system, such as embedded platforms. In these
contexts, current engineering practice sees a dominance of memory-unsafe programming languages
such as C and C++. However, the unsafe nature of these languages has come under great scrutiny
as it leads to significant software vulnerabilities. Hence, safer programming languages which
prevent memory-related bugs by design have been proposed as a replacement. Amongst these
safer programming languages, one of the most popular has been Rust. In this work we adapt a
state-of-the-art precision tuning tool, TAFFO, to operate on Rust code. By porting the PolyBench/C
benchmark suite to Rust, we show that the effectiveness of the precision tuning is not affected by
the use of a safer programming language, and moreover the safety properties of the language can be
successfully preserved. Specifically, using TAFFO and Rust we achieved up to a 15× speedup over
the base Rust code, thanks to the use of precision tuning.
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1 Introduction

Proper memory management is crucial to ensure program stability and prevent software
vulnerabilities which can be exploited by cyber-criminals to cause unauthorised actions for
their own benefit. In fact, memory-related weaknesses remain a major concern in software
development, as highlighted in the Top 25 Most Dangerous Software Weaknesses report by
Mitre. Out-of-bounds writes held the top spot for three consecutive years, while several other
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4:2 Precision Tuning the Rust Memory-Safe Programming Language

memory-related issues, such as use-after-free and NULL pointer dereference, appear on the
list every year [6]. This is also stated by the United States National Security Agency (NSA),
which in a recent report (at the time we are writing) advocates the use of memory-safe
programming languages [10]. However, the implementation of preemptive measures to ensure
memory safety in programming languages can have an impact on performance. Specifically,
the use of garbage collection and array bounds checking, which are common in memory-safe
languages, can result in significant performance overhead. As a result, while memory-safe
languages have been available for a long time, the embedded world is still dominated by the
use of C and C++, which give no guarantee on how the programmer handles the memory.
Some memory-safety features have been added to these languages over the years, specifically
in C++ [7], however they are opt-in and not universally adopted. The reason is that the
ability of C and C++ to operate at lower (unsafe) abstraction levels is desired by programmers
in order to avoid the inefficiencies generated by memory-safety features. Indeed, some of
the first memory-safe languages such as Java and C# completely disallow the use of unsafe
concepts such as pointers. As a result, more recent language designs provide safe and unsafe
subsets that also allows their use in low-level programming tasks.

One language of this sort that has gained considerable traction in the industry [8] is
Rust1. Its goal is to allow the adoption of these languages in security-sensitive applications
such as operating system development and embedded systems. According to the 2023 Annual
Stack Overflow Survey [11], Rust is positively ranked among people who want to learn a
new programming language – 6th in the desired programming language category – but what
makes it really attractive is the experience of using it. Rust placed first in the admired
category with a score of 84% – twice as much higher than Java and C, and more than 20%
better than C#. The admired category represents the proportion of users who have used the
same technology in the past year and want to continue using it. As such, it is reasonable to
expect that the popularity of this language will continue to grow in the coming years.

In general, software development for embedded systems often requires the use of specific
optimization techniques to cope with reduced computational capabilities and memory sizes.
Among these techniques is Precision Tuning [3], which trades off result accuracy for time and
energy efficiency by reducing the bit width of an operation, or by switching from floating
point to fixed point arithmetic. Precision Tuning is part of the larger family of Approximate
Computing (AxC) [12]. Precision Tuning impacts the data width, and therefore all memory
accesses. As such, it can help to offset some of the penalties introduced by the memory
management integrated within modern programming environments like Rust. However, at
the time of writing and to the best of the authors’ knowledge, no Precision Tuning tool
supports Rust. Among the most notable recent efforts in the field of precision tuning, we
notice that TAFFO [1] is an automated Precision Tuning set of plugins that leverages the
LLVM compiler framework [9]. As such, it provides a useful baseline that could be integrated
with other compiler components based on LLVM, which is currently the industry standard
for Rust compiler development. Indeed, rustc – the reference Rust compiler implementation –
is based on this framework.

In this work, we aim at filling the gap with automated Precision Tuning support in
memory-safe programming languages. To this end, we use Rust as a test-bed for a proof-of-
concept implementation that employs TAFFO as the engine for performing the analyses and
transformations required for this kind of approximate computing task. More specifically, we
integrate the TAFFO framework with rustc by providing the appropriate components that

1 https://www.rust-lang.org
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allow Rust code to have the programmer-inserted metadata and annotations required by
TAFFO to work. As a side-effect, this demonstrates the language-independence of TAFFO,
as well as its ability to optimise the code without negatively affecting memory safety.

We evaluate the effectiveness of TAFFO applied to Rust benchmarks, when compared to
its effectiveness on C versions. The results show that TAFFO provides similar performance
improvements in both C and Rust, when the rustc compiler is able to optimize away the
out-of-bound access guards. When this is not possible, the benefits of TAFFO increase.

1.1 Key contributions
The main contribution of this work is the introduction of a precision tuning framework
in the context of a memory-safe programming language. This task is non-trivial due to
Rust’s inability to classify as memory-safe some of the features required to perform precision
tuning of selected variables. We therefore show that those features, when used to convey the
information to TAFFO, do not lead to actual unsafe actions, and that the TAFFO precision
tuning process – after minor adjustments – does not harm the memory safety guarantees
enforced by Rust.

As additional contribution, we provide a new Rust port of the PolyBench suite, that is
closer in design to the original PolyBench/C, to allow a better comparison between the rustc
and Clang compilers when employing a particular optimisation, in this case precision tuning.

1.2 Structure of the paper
The rest of this paper is organised as follows. In Section 2, we cover the background on
TAFFO and Rust. In Section 3, we describe the proposed approach for precision tuning a
Rust program with TAFFO. In Section 4 we discuss the effectiveness of the integration, first
by describing the experimental setup, and then by providing an assessment of the integrated
system. Finally, in Section 5, we draw some conclusions and outline future directions.

2 Background

TAFFO and Rust are two different but complementary technologies. While Rust is a modern
programming language, TAFFO is a set of compiler passes for precision tuning. In this
section we discuss the peculiarities of these two tools in order to provide a background for
the later discussion of their integration.

2.1 Memory-Safety Properties of Rust
To achieve its memory-safety properties, the Rust language enforces strict rules to prevent
common programming errors such as NULL pointer dereferences and buffer overflows. In
particular, the rustc compiler employs a dedicated component, the borrow checker, to enforce
these rules. Among others, the borrow checker ensures that variables are initialised before
they are used. It ensures that values, whether they are held in variables or temporaries,
are not moved twice, or while borrowed. Moreover, it ensures no variable is accessed while
mutably borrowed (except through the reference), and no variable is mutated while immutably
borrowed. In general, Rust’s ownership system [5, 13] is based on the idea that if a certain
object (of type T) is owned by multiple aliases (&T), then none of them can be used to
modify it.

PARMA-DITAM 2024
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Figure 1 Architecture of TAFFO.

The borrow checker can be a severe limitation when implementing data structures and
synchronisation mechanisms, which require the ability to mutate an aliased state. To
overcome these limitation, Rust provides the unsafe keyword which allows developers to
switch to unsafe Rust. Unsafe Rust is a strict superset of Rust that enables developers to
perform actions that are normally prohibited, among which the invocation of unsafe function
will be relevant to this work. It is important to understand that the unsafe keyword does
not disable any of the other Rust safety checks, and it does not interact with the borrow
checker in any way.

The combination of strict memory safety guarantees and flexibility provided by the
unsafe code regions makes Rust a desirable target for our efforts. However, it is critical
to investigate the best approach to integrate the precision tuning process within the Rust
environment. In particular, it is in our interest to reuse the memory checks provided by
rustc and do not invalidate them. The rustc compiler internally employs three Intermediate
Representations (IRs), namely High-Level Intermediate Representation (HIR), Mid-level
Intermediate Representation (MIR), and LLVM-IR. The borrow checker works at the MIR
level. As a consequence, analyses and transformations performed at the LLVM-IR level
have no visibility on the constraints imposed by it, and may in principle thwart the safety
guarantees provided by the language if they do not strictly adhere to the semantics imposed
by the others intermediate presentation.

2.2 TAFFO: The Compiler-based Precision Tuner
TAFFO [1] is a precision tuning that operates at the level of the intermediate representation
provided by LLVM (LLVM-IR). The archiecture of TAFFO consists of five LLVM analysis
and transformation passes which cooperate in building the final precision-tuned program.
These passes are Initializer, Value Range Analysis (VRA), Data Type Allocation (DTA),
Conversion, and Feedback Estimator (FE), as depicted in Figure 1. All of these passes are
independent from each other, as they share data entirely through the metadata facilities
provided in LLVM-IR.

A programmer who wishes to use this framework should first add specific annotations
to the source code in order to tell TAFFO which variables must be involved in the tuning
process. This task is achieved through Clang annotations that can be added to any variable
declaration – including function arguments – as shown in the following example.

1 float x __attribute__((annotate("target(’init’) scalar(range(-16384, 16384) final)")));

Through annotations the user of TAFFO may also specify estimates for the range of values
that a variable can have at runtime. This hint is required for variables whose initial definition
does not depend on any other annotated variable, i.e. for input variables. As an example,
in the annotation shown above, the “target” declaration gives a name to the variable and
informs TAFFO about where to start collecting value range information. The “scalar”
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declaration contains information about the values the variable will assume at runtime: in
particular, “range” specifies their range, and “final” also adds the information that this
range is valid for the entire execution of the program. After annotating the source code, the
precision tuning operation is performed simply by invoking the “taffo” command line tool,
which is a drop-in replacement for GCC or Clang. The output will be an executable tuned
for the current build machine.

Internally, the passes of TAFFO operate by first reading the annotations inserted by
the user (the Initializer pass). Then, the VRA pass calculates the numerical intervals for
annotated variables and other variables that depend on them. At this point, the tuned data
types are selected in the DTA pass. At the time of writing, three approaches are available
within this pass. The first one is a simple greedy algorithm that always assigns the fixed-point
data type with the highest valid point position to each variable. Alternatively, the user can
manually specify a floating point format which will be used for all the annotated variables.
Finally, the third and most sophisticated option allows for a fully automated tuning based on
precision estimation through the construction and optimization of an integer programming
model of the code [2]. At the end of the pipeline, the Conversion pass modifies the LLVM-IR
using the data types picked by the previous passes. Optionally, the FE pass can provide the
user with an estimation of the error in the tuned program [4].

3 A Precision Tuner for Rust

The key challenge when it comes to perform precision tuning on Rust is the positioning
of the precision tuning action within the compilation flow of Rust code. As anticipated in
Section 2.1, the rustc compiler implements its memory checks on the code when it reaches the
MIR stage of the compilation pipeline. It follows that precision tuning – to avoid conflicting
with the rustc checks – should be performed either entirely before this stage, or entirely
after it. This situation can be compared to the dilemma of performing precision tuning
on high-level description of the code, such as on the source code, or onto a lower-level
representation of the code. As mentioned in a survey on this topic [3], fine-grained precision
tuning requires a lower-level representation of the code, and therefore we opt for introducing
the precision tuning process entirely after the rustc memory checks.

On the positive side, this challenge can easily be solved by employing precision tuning
components that are already built for this level of code representation, such as TAFFO.
However, there are also integration issue between TAFFO and the rustc compiler: one in
particular is the mechanism underlying the creation of the programmer annotations, as
required by the TAFFO Initializer pass. For C and C++, Clang annotations are employed
for this purpose, as exemplified in Section 2.2. During the generation of the LLVM-IR
code, Clang simply converts each annotation to a call to the llvm.var.annotation intrinsic
exposed by LLVM. This intrinsic function takes four parameters, representing the annotated
variable, the annotation text (a string), the source file name and line number of the annotation.
Notice that these annotations are a built-in extension provided by Clang, and their existence
is independent from TAFFO.

Ideally, the same approach could be replicated with rustc. Unfortunately, this is not
possible since Rust does not have an equivalent annotation syntax, hence we must design
a dedicated solution. To solve this problem, we propose a Rust-native variable annotation
mechanism. This annotation mechanism leverages the metaprogramming features offered by
Rust procedural macros. The peculiarity of this kind of macros is that they can manipulate
the program’s token stream. We introduce the annotate! procedural macro, which takes

PARMA-DITAM 2024
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two parameters: the annotated code and the annotation string. This last string supports the
same syntax as TAFFO annotations for C and C++. As an example, consider the following
fragment of Rust code:

1 annotate!(let mut tmp = [0_f32 ; I * J],
2 "target(’init’) scalar(range(-16384, 16384) final)");

In this snippet, the tmp variable is associated with a value range of [−16384, 16384]. The
procedural macro annotate! translates the variable declaration into the following Rust code:

1 static mut range: &’static str = "target(’init’) scalar(range(-16384, 16384) final)";
2 static mut name: &’static str = "2mm.rs";
3 let mut tmp = [0_f32; I * J];
4 unsafe {
5 var_annotation(
6 &mut tmp as *mut _ as *mut i8,
7 &mut range as *mut _ as *mut i8,
8 &mut name as *mut _ as *mut i8,
9 2,

10 );
11 };

The original variable declaration is preserved, while two new variables – range and name
– are declared to hold the annotation string and the name of the source file respectively.
Finally, the expanded body of the macro calls the var_annotation function with the same
four parameters as the llvm.var.annotation LLVM intrinsic in the original Clang TAFFO
interface. var_annotation is indeed a call to the LLVM intrinsic, which is exposed through a
feature of the Rust compiler that exposes all the LLVM intrinsics as a set of foreign functions,
employing the foreign function interface for C calls (FFI).

It is worth noting that the FFI call to var_annotation is wrapped in an unsafe construct.
Indeed, FFI calls in Rust are considered unsafe actions in general, and must always be wrapped
in an unsafe block guard.

3.1 Soundness of unsafe

Since the annotate! procedural macro introduces an unsafe region in the code for each
variable involved in the precision tuning, we need to assess the impact of these regions
in terms of memory safety. As mentioned before, the unsafe region is added because of
the presence of a compiler intrinsic – that is, a function defined and handled directly by
the compiler. Intrinsics are typically provided by compiler implementations to allow the
use of non-standard functionalities or extensions that heavily depend on specific machine
instructions to be implemented in the most optimised way. The most common application
of intrinsics is for exploiting vectorisation primitives when the language does not provide a
machine-independent way to access them.

In terms of memory safety, it is useful to partition intrinsics between code-generating
and non-code-generating ones. Code-generating intrinsics in LLVM include, for instance,
llvm.log10.* and llvm.sin.*, which generate machine-optimised code. Non-code-
generating intrinsics, instead, are used only for internal purposes by the compiler, and
are ignored by the code generator. Code-generating intrinsics may be memory-unsafe, espe-
cially if the code they generate involves memory operations, whereas non-code-generating
intrinsics are safe, unless the compiler uses the information they carry to otherwise affect
which memory accesses are made.

In our specific case, llvm.var.annotation belongs to the non-code-generating class. It is
only handled in the middle-end of LLVM by keeping the annotation content tied to its variable
declaration, while it is ignored by the back-end code generation. These annotations do not
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prevent neither enable additional transformation steps in LLVM. Thus, we can conclude that
our unsafe block is safe for the final binary since it does not generate any code, as long as
TAFFO itself is safe – which we will informally prove in the following section. Furthermore,
to prevent compiler crashes, TAFFO checks each argument to confirm that it is of the correct
type before it is used. If an incorrect annotation is used, the compilation emits a warning,
discarding the wrong annotation. Finally, TAFFO also deletes all annotation intrinsics it is
able to read at the end of its transformation, adding another layer of safety.

3.2 Soundness of TAFFO
To ensure TAFFO’s transformations do not affect Rust’s runtime guarantees on memory
accesses, we need to demonstrate that it does not interfere with the methods used by Rust
to ensure these guarantees. Memory-safety depends on the fact that memory accesses occur
at addresses that fall within the bounds of allocated memory. For scalar variables, this
requirement only implies forcing all accesses to happen through references to the variable –
i.e., avoiding explicit pointer arithmetics. However, for array accesses, the situation is more
complex, since pointer arithmetics is induced by the use of indices. The rustc compiler
first attempts to prove at compile time that all memory accesses occur within bounds.
This attempt may fail, because the values of indices may not be entirely predictable at
compile-time. In this case, rustc introduces a guarding conditional statement before the
access operation, which checks whether the index is actually within the array bounds. To
ensure the safety guarantees of Rust are always mantained, TAFFO’s handling of memory
allocations was modified in order to disable the following operations:
1. Increasing the size of the elements of an array.
2. Changing the size of a dynamic memory allocation.
With the introduction of these two additional constraints, we can ensure that TAFFO never
modifies Rust’s code in a way that violates memory access bound checks.

In our informal proof we are going to consider both the compile-time and the runtime
scenarios. In the first scenario, rustc generates an LLVM-IR equivalent to the one generated
by Clang for the equivalent C code. More in detail, the generated code consists of a sequence
of two instructions: a getelementptr instruction which computes the correct address of an
element given a base pointer and an index, and a store or load instruction that actually
performs the access at that address. When TAFFO needs to generate a new getelementptr
instruction to index a fixed-point array, it copies the original getelementptr used to index the
corresponding float arrays, and modifies only the returned datatype. The returned datatype,
however, must be consistent with the one employed at the time of buffer allocation. As a
result TAFFO must also modify the buffer allocation code, whose location is unfortunately
not always detectable nor modifiable at LLVM-IR level. In case the buffer allocation cannot
be modified, TAFFO mantains safety by only allowing datatypes that are smaller than the
original one, therefore employing only part of the allocated buffer and preventing any buffer
overflow. In the second scenario, Rust introduces a guarding conditional by means of a
branch in LLVM-IR. The branch employs a condition obtained by comparing integer data,
which are not modified by TAFFO and therefore reflect the array element size employed
in the Rust code before precision tuning. In order to maintain the validity of the guard
condition at all times, TAFFO must not modify the size of the memory allocation being
guarded. With this additional constraint alone, the Rust code will keep its memory-safety
properties. However when TAFFO increases the element size the program will stop working,
as array accesses to correct indices in the non-tuned program become locations outside of
the buffer bounds. Therefore the first condition (not changing the size of the array elements)

PARMA-DITAM 2024
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needs to be applied for runtime-checked arrays as well. Clearly, the goal of reducing the
precision of a program is better achieved with smaller data types rather than with larger
ones. As a result we expect a minimal impact to Precision Tuning from these restrictions.

4 Experimental Evaluation

A key feature of Rust is its high performance, which enables its use as a C or C++ replacement
in embedded systems. The ability to combine the guarantees provided by this language with
the even greater speedups obtainable through precision tuning makes the combination of
TAFFO and Rust the ideal platform for development of high-performance applications. In
this section, we perform an experimental assessment of the impact of TAFFO on the Rust
compiled code, employing a new port of the PolyBench benchmark suite to Rust.

4.1 Experimental Setup
All the experiments were performed on an STM32F207ZG microcontroller chip that features
an ARM® Cortex®-M3 32-bit RISC core operating at 120 MHz. This chip includes a region of
Flash memory for code of 1 Mbyte, and 128 KBytes of working RAM. The ARM Cortex-M3
core does not have a hardware floating-point unit, hence all floating-point operations are
executed in software emulation. We generated the board setup code using STMCubeMX,
compiled it with Clang, and linked it with each benchmark as a separate compile unit for
both C and Rust.

For C benchmarks, the Precision Tuning process was done through the unmodified “taffo”
command line tool. Instead, for Rust benchmarks, we modified the “taffo” tool to accept
Rust code. In order to introduce Rust within the TAFFO compilation pipeline, invocations to
Clang were replaced with invocations to rustc used as a front-end to generate LLVM-IR code.
The rest of the pipeline is identical to the one employed for C code. This method ensures that
both C and Rust codes are processed in the same way, applying the same optimization levels
in the middle- and back-end. Additionally, we take into account that rustc is able to perform
some optimizations at the internal IR level (MIR, discussed previously in Section 2.1), by
passing the option “-Z mir-opt-level” to the rustc frontend. This is not the case and is
not required for Clang. The baseline non-tuned benchmarks were compiled using the rustc
and Clang tools. The version of LLVM and Clang employed was 15.0.7, while the version of
rustc was 1.64.0. The optimization level used in opt for Rust and C was -O3.

4.2 Polybench/Rust
For our experimental work we selected the PolyBench suite Version 4.2.1, as its intended
purpose is indeed to evaluate novel compiler optimizations, and as such it has been widely
adopted in the literature. It consists of several numerically-intensive kernels which natively
rely on floating point arithmetics, making it a good target for Precision Tuning. Moreover,
its C implementation is already supported by TAFFO [1], which we will employ as-is.

For our comparison, we must employ a port of PolyBench to Rust which is as similar
as possible to the baseline C code, in order to reduce any confounding factor determined
by implementation differences between the benchmarks. To this end we evaluated the
existing rewrite of PolyBench in Rust, PolyBench-rs2. However, after careful consideration

2 https://github.com/JRF63/polybench-rs
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we deemed this port not suitable for a direct comparison with PolyBench/C, as it heavily
modifies the original benchmarks by adopting a functional programming style. While the
choice is legitimate per-se, analysis of the resulting LLVM-IR code evidenced several non-
functional differences with PolyBench/C, which result in very different execution time and
memory consumption patterns between the two. For this reason, we developed a new port of
PolyBench/C, named PolyBench/Rust, which aims to be as close as possible to PolyBench/C
while still avoiding any unsafe block. In all the following experimentations, we have used the
SMALL_DATASET as the array size. A comparison between the baseline PolyBench/C and
PolyBench/Rust is provided in Figure 2.
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Figure 2 The ratio of the execution time between PolyBench/Rust and PolyBench/C as a
speedup. The behavior of the two benchmarks is very similar, with exceptions for heat_3d, correlation,
covariance, nussinov and trmm. The geometric means of the speedup of all benchmarks is represented
in the last entry under “Geometric Mean”.

Indeed, we get very similar execution times to PolyBench/C. In 15 benchmarks out
of 28 the speedup is between 0.9 and 1, and in 8 benchmarks the speedup is between 1
and 1.1. One benchmark has a speedup greater than 1.1, heat_3d, while 4 benchmarks
have a speedup lesser than 0.9 (covariance, correlation, nussinov and trmm). Overall, we
notice PolyBench/Rust is slightly slower than PolyBench/C, due to the additional runtime
checks introduced by the language. For the specific case of heat_3d, the rustc compiler
applies – at the LLVM-IR level – an aggressive loop unrolling strategy enabled by better
alias disambiguation offered by Rust. Speedups lower than 0.9 are instead caused by a
combination of a greater amount of runtime checks and less efficient code generation from
rustc. While for trisolv and trmm the main cause of the slowdown are the bound checks, for
correlation and covariance the main cause is a greater number of memory accesses around
floating point emulation calls that could be optimized away by Clang but not by rustc. We
expect most of these differences to be smoothed over and disappear as rustc matures as a
compiler.

4.3 Experimental Results
Figure 3 displays the speedups of each benchmark in PolyBench/C and PolyBench/Rust
achieved through the Precision Tuning process of TAFFO (blue and orange bars). The
baseline is always the same benchmark, for the same language (Rust or C), but compiled
without TAFFO. After Precision Tuning, PolyBench/Rust is faster than PolyBench/C in 9

PARMA-DITAM 2024



4:10 Precision Tuning the Rust Memory-Safe Programming Language

2m
m

3m
m ad

i

at
ax

bi
cg

ch
ol

es
ky

co
rre

la
tio

n

co
va

ria
nc

e

de
ric

he

do
itg

en

fd
td

_2
d

flo
yd

_w
ar

sh
al

l

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

_3
d

ja
co

bi
_1

d

ja
co

bi
_2

d

lu
dc

m
p lu

m
vt

nu
ss

in
ov

se
id

el
_2

d

sy
m

m

sy
r2

k

sy
rk

tri
so

lv

trm
m

Ge
om

et
ric

 M
ea

n

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Sp

ee
du

p
Speedup of TAFFO applied to C and Rust

PolyBench/C
PolyBench/Rust
PolyBench/Rust (full bound checks)

Figure 3 Comparison of the speedup achieved by TAFFO on PolyBench/C and PolyBench/Rust.
Rust results are also shown with additional bound checking. The geometric means of the speedup of
all benchmarks grouped by their configuration is represented in the last entry under “Geometric
Mean”.

out of 28 benchmarks, but aside from a few outliers, TAFFO performs in a similar way in
both languages. The speedup for Rust ranges between 2.3 and 15.0, while the speedup for C
ranges between 2.5 and 13.4.

Looking at individual benchmarks, covariance and correlation get a much higher speedup
in Rust than in C. This is due to the aforementioned fact that rustc sometimes generates
suboptimal code around calls to floating point emulation functions. After the Precision
Tuning passes performed by TAFFO, the floating point emulation code gets replaced with
integer fixed-point primitives, lessening the register allocation constraints for the backend,
which then manages to eliminate redundant memory accesses. Benchmark heat_3d is another
example where Rust code achieves a higher speedup with respect to the C one. In this
case, the speedup is due to constant propagation optimisations enabled by the reordering of
instructions performed by rustc, which further improves with the aggressive loop unrolling
mentioned in Section 4.2 and is amplified by the TAFFO precision tuning transformations.

Overall, the difference in the speedup introduced by TAFFO on Rust and C is mainly due
to the fact that rustc generates code that more closely represents the actual data flow within
the program. While the PolyBench/C code relies on re-using existing arrays for storing
intermediate computation results, Rust is able to remove these superfluous array accesses
by using temporaries instead. Indeed, Rust guarantees that accessing memory through a
mutable reference cannot be aliased, hence the compiler can prove that the re-use of an array
in such a way does not have side-effects. This transformation makes the overall data flow
more visible to the analyses and transformations of TAFFO (especially the Value Range
Analysis), allowing for more performant code in the end.

Since most Polybench kernels are written to work with fixed-size arrays, only a few require
extensive bound checks in the code for ensuring safety. Real-world applications, though, may
exhibit more arrays with size dependent on input data, thus leading rustc to be less effective
when optimizing bound checks than it would appear from benchmarking. In order to show
how TAFFO is affected when the code contains more extensive bound checks, in Figure 3 we
also show the speedups obtained when disabling bound check optimization (orange bars).
The speedups are extremely similar to the ones obtained with the bound check optimization
enabled, so we can state that TAFFO is not significantly affected by it.
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Figure 4 The graph displays the relative error of TAFFO C and TAFFO Rust as compared to
the C version. The plain C version and the plain Rust version generate identical values.

Finally, we compute the relative errors resulting from the Precision Tuning approximation
for both programming languages, which are shown in Figure 4. These figures do not depend
on the amount of bound checks performed by the code. First of all, we observe that in most
cases the relative error introduced is the same both for Rust benchmarks and C ones. The
largest relative error was found to be approximately 0.45%, which occurred in the case of
ludcmp of PolyBench/C. We can conclude that TAFFO introduces errors of similar magnitude
regardless of the source language.

5 Conclusions

We provide the first automated Precision Tuning framework supporting the Rust programming
language. We employ TAFFO to provide the analyses and transformation required for
Precision Tuning, and we integrate it with the Rust compiler rustc by introducing the
appropriate macros that allow for passing the programmer annotations required by TAFFO
from Rust. As these macros use the unsafe features of Rust, we demonstrate that they do
not actually affect the actual memory-safety of the code. Then, we evaluate our approach
by developing and annotating a Rust version of the PolyBench suite for use with TAFFO.
We see that Precision Tuning in Rust is just as effective as Precision Tuning in C, within
a margin of error that can be fully attributed to differences in the compiler front-end, and
further, Precision Tuning can help in offsetting the penalties imposed by the introduction
of runtime checks. Rust is just one of the several memory-safe programming languages
available for use in embedded systems, therefore a natural extension of this work includes
support for languages such as Go and Swift. A further research direction is the design and
implementation of Rust language extensions that allow the integration of precision tuning
without the need for potentially-unsafe macros for generating compiler intrinsics.
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