
Embedded Multi-Core Code Generation with
Cross-Layer Parallelization
Oliver Oey #

Karlsruhe Institute of Technology, Germany
emmtrix Technologies GmbH, Karlsruhe, Germany

Michael Huebner #

BTU Cottbus - Senftenberg, Germany

Timo Stripf #

emmtrix Technologies GmbH, Karlsruhe, Germany

Juergen Becker #

Karlsruhe Institute of Technology, Germany

Abstract
In this paper, we present a method for optimizing C code for embedded multi-core systems using
cross-layer parallelization. The method has two phases. The first is to develop the algorithm without
any optimization for the target platform. Then, the second step is to optimize and parallelize the
code across four defined layers which are the algorithm, code, task, and data layers, for efficient
execution on the target hardware. Each layer is focused on selected hardware characteristics. By
using an iterative approach, individual kernels and composite algorithms can be very well adapted to
execution on the hardware without further adaptation of the algorithm itself. The realization of this
cross-layer parallelization consists of algorithm recognition, code transformations, task distribution,
and insertion of synchronization and communication statements. The method is evaluated first on a
common kernel and then on a sample image processing algorithm to showcase the benefits of the
approach. Compared to other methods that only rely on two or three of these layers, 20 to 30 % of
additional performance gain can be achieved.

2012 ACM Subject Classification Software and its engineering → Source code generation; Software
and its engineering → Imperative languages; Software and its engineering → Very high level languages;
Computer systems organization → Embedded software

Keywords and phrases Parallelization, multi-core Processors, model-based Development, Code
Generation

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2024.5

1 Introduction

State-of-the-art embedded multi-core processors offer high performance with low power
consumption, but programming them efficiently presents new challenges due to a high
complexity e.g. in the partitioning of tasks on the specific multi-cores. Some of the main
challenges when developing applications for embedded multi-core are:

Developers tend to think sequentially. To take full advantage of multi-core systems,
parallel applications need to be partitioned up front. This extra work does not occur in
sequential development and distracts from the actual programming of the algorithm.
To distribute tasks across processing units, data and control dependencies have to
be considered to avoid errors like race conditions or deadlocks which cannot occur in
sequential programs.
Debugging is much more complex on multi-core systems because parallel processing with
multiple threads does not ensure determinism. If execution is interrupted at any time,
the current state of each processing unit cannot be predicted.

© Oliver Oey, Michael Huebner, Timo Stripf, and Juergen Becker;
licensed under Creative Commons License CC-BY 4.0

15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and
13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2024).
Editors: João Bispo, Sotirios Xydis, Serena Curzel, and Luís Miguel Sousa; Article No. 5; pp. 5:1–5:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oliver.oey@kit.edu
https://orcid.org/0009-0001-1603-995X
mailto:michael.huebner@b-tu.de
https://orcid.org/0000-0002-1790-3869
mailto:timo.stripf@emmtrix.com
https://orcid.org/0009-0003-9455-3385
mailto:juergen.becker@kit.edu
https://orcid.org/0000-0002-5082-5487
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2024.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

Programmers encounter challenges that divert their focus from implementing actual
functionality. This paper proposes a solution that segregates application development from
target platform optimization. The proposed solution involves commencing with a model-based
design that remains entirely platform-agnostic, followed by iterative optimization grounded
in four defined abstraction layers. Each layer progresses towards the hardware in granular
stages. This approach ensures that algorithm development is completely decoupled from
hardware platform optimization, as no code needs to be written after model implementation.
The approach is intended to be used with applications that can be analyzed statically which
means problem/data sizes are known or at least bounded so that the best performance
of the application on the target platform can be achieved. There are various possibilities
to implement the approach, including using multiple software tools within a tool flow for
layer optimizations or employing manual optimization steps that concentrate on the defined
layers only. For the remainder of this paper, we adopted a middle approach: using currently
available tools for optimization at each layer, but without a fully integrated tool flow. We
used tools developed by emmtrix Technologies1 that were originally based on results from
the ALMA research project [2]. While these existing tools provide the framework to apply
the optimizations on different abstraction layers, the concept of this proposed cross-layer
parallelization is not integrated in the usual tool flow. This novel combination of layers
allows the use of specifically optimized implementations for identified algorithms, in addition
to general optimizations such as code transformations and task distribution with optimized
communication placement. The following four abstraction layers will be used in this paper:

1.1 Definition of Algorithm Layer
The algorithm layer in this approach refers to the abstract representation of an algorithm
that has been developed independently of the target hardware platform. The choice and
implementation of the algorithm has a high impact on performance. Let’s take sorting
algorithms as an example: different algorithms vary in terms of runtime, memory requirements,
and stability. The potential for parallel execution is different with each implementation but
usually comes with a slower sequential execution or increased memory requirements. The
best selection can therefore only be made in combination with the information about how
many processing elements and how much memory is available and how big the data set to
process is. The goal of this layer is to provide a library of common algorithms or kernels
with a selection of implementations to choose from, to identify these known algorithms in
the source code and together with the decisions on later layers select the best performing
realization for the actual hardware.

1.2 Definition of Code Layer
The code layer refers to the actual representation of the algorithm as source code. How the
individual computations are represented determines how many (independent) tasks can be
generated and thus how well parallelization can work. Code transformations can be used to
change the code of the application without affecting the result of its calculations. They can
be used to take advantage of the intrinsic parallelism that is already part of the code, for
example, when processing large amounts of data. Two example transformation that are used
in the evaluation:

1 https://www.emmtrix.com

https://www.emmtrix.com

O. Oey, M. Huebner, T. Stripf, and J. Becker 5:3

Algorithm
Layer

Code
Layer

Task
Layer

Data
Layer

Figure 1 Abstraction layers used in this approach.

Loop fission: If there are multiple statements in the body of a loop that can be executed
independently, it is possible to split the statements into two or more loops over the same
index range. Since the resulting loops have no dependencies on each other, they can be
executed in parallel.
Variable splitting: Instead of having a single array variable, splitting it into multiple ones
allows parallel calculations on different regions of the original data without affecting each
other.

The most beneficial transformations are applied to loops as that has the greatest potential for
improving parallelism. But besides the loops and their number of iterations, other properties
play a role at this layer as well, e.g. data access or locality, the actual number of individual
code blocks and how well the code can be statically analyzed.

1.3 Definition of Task Layer
The task layer refers to the part of this approach at which tasks are assigned to individual
execution units of the target platform. During parallelization, both mapping and scheduling
are performed to select which core or processor a task is executed on and the order in
which the tasks are executed there. All dependencies between tasks must be taken into
account, mainly from the data flow, but also from the control flow. Depending on the target
architecture, these dependencies lead to synchronization or communication overhead. In
addition to pure data dependencies, anti and output dependencies must be considered to
ensure the correct order of execution. Also important for parallelization decisions is the
execution time of each task relative to each other and relative to the synchronization overhead.
If the granularity of the tasks is not taken into account, the overhead of communication
and synchronization may outweigh the benefit of parallel execution, resulting in a slowdown
compared to the sequential program.

1.4 Definition of Data Layer
The data layer in this paper refers to synchronization and data exchange between cores.
Without loss of generality, this work assumes hardware models with distributed memory. Any
shared memory system can also be considered and treated as a distributed memory system by
hard allocating the available memory to the cores. The goal of optimization on this layer is
to ensure data availability on each core while achieving the best runtime on the hardware and
ensuring that no errors are introduced due to false synchronization. Important aspects are the
placement of synchronization instructions and keeping the overhead of transfers to a minimum.

Figure 1 shows all used layers and their typical usage from the input source code to
the code for the platform. The remainder of this paper is organized as follows: Section 2
discusses the current state of the art and how the four layers are usually employed, Section 3
elaborates on the actual cross-layer optimization, Section 4 evaluates the approach with an
experimental case study, and Section 5 concludes this paper with an outlook.

PARMA-DITAM 2024

5:4 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

2 State of the Art

Foster[7] formulated already in 1995 a workflow to design and build parallel programs. The
main steps were partitioning, communication, agglomeration and finally mapping of tasks
and are taught at universities as a standard approach for parallelization. The approach
is comparable with the last three layers of our approach but lacks the potential of special
optimizations of known algorithms which allow more specialized implementations of known
kernels that usually make up large parts of typical embedded applications.

In [5], methods for programming parallel platforms based on algorithmic skeletons and
parallel design patterns are evaluated. While they prove useful for parallel programming, they
don’t ease the required hardware knowledge from the programmer. This kind of library-based
approach mostly focuses on the algorithm layer to provide special parallel implementations
with known functionality. Without any considerations from the task and data layers, this
kind of parallelization is limited to these functions and resources respectively an efficient
load balancing throughout the execution of the whole program cannot be achieved.

Automatic parallelization by the compiler is still a research topic in works like [9] and [8].
They focus on pattern recognition of common programming patterns with more recent work
also on the usage of machine learning for the detection. This pattern recognition covers the
optimizations on the algorithm layer and should achieve good results for programs that make
great use of these patterns. However, programs usually also have parts that don’t fit into
patterns and might need some other optimization steps which could e.g. be applied on the
code layer. [1] uses source-to-source compilation to optimize the source code for automatic
parallelization using OpenMP. Together, this covers the code, task and data layers as defined
in this work but does not use the benefits that optimizations on the algorithm layer could
bring to known algorithms.

The Daedalus framework [14] is a more recent approach for the design of multi-processor
system-on-chips. By approaching the issue together with system level synthesis, a synchronous
development of software and hardware is performed. To optimize the software for parallel
execution, the tool PNgen is used to apply polyhedral optimization techniques which result
in loop transformations according to mathematical equations. This approach together with
the design space exploration covers the two middle layers of our approach: the code and the
task layer. By adding the algorithm layer, specific optimizations can improve the results
while the data layer allows for more efficient execution of the parallel program on the target
platforms.

A summary of popular parallelization techniques can be found in [13]. Comparing it to
this approach it shows that they mostly focus on the code and data layers by optimizing
loops and communication.

[12] shows how concepts from high performance computing (HPC) can be applied to
embedded systems. HPC is originally more focused on achieving the best performance with
the available hardware without taking the potential worst case into account. While this is
not the case for typical embedded applications, the need to get the best performance out of
multi or many-core processors is getting higher. The work described relies on OpenMP with
task scheduling and does not take optimizations on algorithm or data layer into account.

Looking at heterogeneous systems, [11] compares different programming frameworks like
OpenMP, OpenCL and CUDA regarding programming productivity, performance and energy.
One major result here is that the human factor significantly impacts the fraction of lines of
code used to parallelize the code. Reducing this human impact should therefore be the goal.
The methodology proposed in this paper covers this aspect by only letting the programmer
develop the model and no further changes to source code.

O. Oey, M. Huebner, T. Stripf, and J. Becker 5:5

[16] introduces a compiler-based optimization specialized for machine learning. The
compilation applies various parallelization techniques controlled by the user through source
code annotations. This approach is sophisticated in the sense that the user does not necessarily
need in-depth hardware knowledge. All four layers are addressed, with reference to the
algorithm layer done through the limited applications that mainly relies on library calls. The
code and task layers, along with the data layer, are automatically processed, utilizing user
annotations as guidance for specific components.

Examining techniques that utilize multiple abstraction layers, studies such as [10] expand
the LLVM intermediate representation using domain-specific languages (DSL) that can reuse
the same compiler passes across numerous levels of abstraction. Although the initial aim
was to use transformations to lower abstraction, research such as [4] can be utilized to raise
the abstraction level and back-propagate information to higher levels. While this approach
optimizes all abstraction layers used in this work iteratively, it lacks flexibility compared to
the model-based approach used here due to its focus on DSLs.

Functional development is decoupled from optimization for the target platform in studies
such as [15]. Functional development is conducted in the high-level general-purpose program-
ming language Python 3 and the mapping process is carried out in Artisan meta-programs.
This decoupling allows different experts to handle these developments, eliminating the need
for understanding both the algorithm and the optimal implementation for the heterogeneous
hardware. Compared to our approach, the presented work relies on downstream processing by
OpenMP or high-level synthesis for optimal performance. Our work, on the other hand, op-
timizes program scheduling and data transfer directly on the task and data layers, eliminating
the need for downstream tools or operating systems.

3 Cross-layer Optimization

While independent execution of the layers is possible, the combined approach provides distinct
advantages. Progressing through the layers reduces the level of abstraction from the hardware
at each stage, necessitating more information with each subsequent layer. When switching
to a different hardware platform that has at least some similarity with the previous one, e.g.
the same numer of processing elements, some optimizations can be re-used. To demonstrate
the optimizations achieved at each layer and their potential interactions, we will employ the
Fast Fourier Transform (FFT) as an exemplar kernel. It was selected as it is a well-known
algorithm and shows good optimization potential on each defined layer.

3.1 Realization of Algorithm Layer
Recognition of known algorithms cannot simply be achieved by extracting them from source
code, as illustrated by the halting problem, where determining a specific behavior for generic
programs is impossible. Our solution is to use MATLAB® as the programming language
for a model-based approach. It offers several built-in versions of common algorithms, with
clear descriptions of the results. So instead of attempting to identify established algorithms,
the specific algorithm can be identified through a straightforward function call and precise
behavior specification within the MATLAB® description. To transfer the algorithm to
the embedded device, it was converted from MATLAB® to C code, as this enables more
targeted optimizations customized for the designated hardware. The code generation tool
developed includes support for basic arithmetic operations. For example, when adding two
arrays, the tool will convert them to arrays in C, which are then summed up with for-loops.
Library functions are utilized to customize function conversions, implementing the requisite

PARMA-DITAM 2024

5:6 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

functionality in MATLAB® scripts, subsequently generating the pertinent C code. Data type
and range analysis ensure the employment of only the most efficient data types in the C code.
Furthermore, this approach can offer unique realizations of established functions that can
be chosen with custom pragmas within the scripts. This permits additional enhancements
of the produced C code by returning to the code generation phase from later stages. To
achieve efficient implementation on the embedded target platform, a conversion of code must
be undertaken due to the inefficiency of executing MATLAB® scripts. Utilizing C code on
embedded platforms provides greater convenience and enables precise control of hardware
resources. The conversion step also facilitates the selection of an algorithm realization and
the generation of C code optimized for later layer simplifications.

The algorithm layer only uses the number of available cores as information about the
target platform. This information can be used to select an implementation that is optimized
for that number of cores.

Now, looking at the FFT, we can see that it is an in-built function of MATLAB® that
has a clear specification about its behavior and accuracy. Knowledge about the algorithm
allows us to provide an option for later layers of the flow: a N -point FFT may be substituted
with two N/2-point FFTs, which can be computed independently, as illustrated in Figure 2.
In other words, a simple option for the code generation can be used to specify the number of
times the FFT should be split up into. With the additional information about the number
of processing cores available, this can also be used as an upper boundary as splitting the
FFT up into more parts is usually not useful.

1024-point FFT

512-point FFT

256-point FFT256-point FFT 256-point FFT 256-point FFT

512-point FFT

Figure 2 Splitting FFTs.

3.2 Realization of Code Layer
The code layer focuses on transforming the C code for task level parallelization. It is
implemented as a source-to-source compiler that reads the input C code, applies selectable
code or loop transformations to the desired parts of the code, and then outputs the transformed
C code. While these steps are not new in themselves, the importance lies in their interaction
with the other layers: Transformations in the code layer rely heavily on input from the
algorithm layer. E.g. an increased number of loops increases the potential for beneficial loop
transformations. The granularity of the transformations ensures that independent tasks can
be generated very well at this point for parallelization at the task layer. However, the number
of tasks should be determined together, since too many interdependent tasks only increase
the complexity of the scheduling algorithm without offering more optimization potential. All

O. Oey, M. Huebner, T. Stripf, and J. Becker 5:7

transformations that can change the access to the data also have the potential to reduce the
overhead at the data layer. At this layer, more information about the hardware can be used
for all decisions. Besides the actual number of processing elements, the type is relevant to
address available accelerators. Optimizations that improve data locality require information
about memory layout and cache availability to be useful.

For the FFT example, code transformations may be applied to the main loops of the
kernel by using variable splitting and loop fission to generate independent loops. Considering
the splitting option at the algorithm layer, this provides several options for dividing the code
execution. However, the best options will be selected with the assistance of the next layers.

3.3 Realization of Task Layer
After the enabling optimizations on the previous layers, the main part of the coarse-grain
parallelization takes place on this layer. As a pure optimization algorithm on a graph
representation, it takes into account all dependencies that are crucial for the allocation to the
individual cores. This is important for maintaining correctness, but sometimes overestimates
the actual performance. Since the placement and optimization of the communication takes
place later at the data layer and is based on a different representation, the synchronization
and duplication of the data cannot yet be fully considered and can only be passed as hints
to the next layer.

The most important function of this layer is to identify parts of the code that can be
executed independently by analyzing the data and control dependencies, and then to assign
these extracted tasks to the available cores so that the overall runtime is minimized. This
requires information about the actual runtime on each core to model the optimization problem
and the cost of the overhead of parallelization. The actual parallelization at this layer of
abstraction can be done with many different optimization algorithms. In this work, the
well-known Heterogeneous Earliest Finish Time (HEFT)[8] is used. As a greedy heuristic
algorithm, it usually does not reach the optimal runtime, but it has been extended to respect
user constraints like fixing tasks on certain cores in order to guide the optimization process
in the right direction. The parallelization on the task layer distributes all tasks onto the
available cores taking into account the communication overhead required to synchronize the
data. To minimize this overhead and ensure the correct execution, the actual placement and
optimization of the communication is handled on the next layer.

For the FFT example, partitioning of the code on both the algorithm and code layers is
decided at the task layer. It is only through the utilization of a more precise task runtime cost
model on the actual hardware and overhead costs for parallel execution that the overhead of
the two approaches can be accurately calculated. A performed test on an ARM Cortex A-76
processor with four cores demonstrated that dividing the FFT by four in the algorithm layer
gets the best use of the available cores. Code transformation are useful on the parts where
the data is partitioned, but as more involved also increases the required data transfers, an
optimization for two cores on the code layer achieves the best runtime.

3.4 Realization of Data Layer
The main function of this layer is to resolve all data dependencies that cross core boundaries
by inserting send and receive instructions for data transfers. Done correctly, this ensures that
the two most common errors in parallelization cannot occur: race conditions and deadlocks.
Race conditions occur when the result of one operation depends on the timing of another
operation. This can often happen when shared resources are accessed by multiple cores at

PARMA-DITAM 2024

5:8 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

the same time. By modeling these accesses through data dependencies, synchronization
instructions can be inserted whenever the resource is accessed, enforcing a predetermined
order across all cores that need to access the resource. This ensures the absence of race
conditions with the added overhead of synchronization whenever resources are shared. A
deadlock is an error state that occurs when the program waits indefinitely for data or signals
that never arrive. The program is stuck and cannot continue its execution. One way to
avoid this is to duplicate the control flow for all cores involved. That is, if a signal is sent
within an if-block only when a certain condition is met, the receiving core executes a copy of
the if-block that evaluates the same condition. This guarantees that send and receive are
always executed under the same conditions and that a receive is never called without an
associated send. The data layer requires the most details about the target platform. It needs
information about the communication infrastructure with all the data buffers, access to the
interface code, and information about what the C code should ideally look like for the target
platform’s compiler.

For the FFT example, the data layer is crucial for achieving the expected performance as
calculated at the task layer. To minimize core wait times, it is necessary to have a better
understanding of the actual interconnections between the cores and to manage data transfers
efficiently. This depends heavily on the volume of data being processed. As FFT is typically
utilized for larger amounts of data and requires minimal synchronization between the cores,
achieving high throughput is critical for optimizing the runtime on the hardware.

3.5 Interactions Between the Layers

With each layer, the optimization takes into account additional information about the
hardware specification. Figure 3 depicts which main features are utilized by each layer. The
arrows at the bottom of the figure show the typical process of cross-layer optimization: the
order of the layers is the algorithm, code, task, and data layer. From the code layer to the
algorithm layer, transitions occur when there is a need to implement a modified algorithm
or prepare for a specific number of cores. Likewise, the task and data layers transition
to the code layer when the code’s representation makes it difficult to efficiently allocate
tasks among the cores, either due to the volume of tasks or the resulting communication
overhead. From the data layer back to the task, reevaluation is necessary when scheduling
proposes parallelization that would create excessive communication overhead in the data
layer. Considering a change made on a previous layer would be advantageous, going back
more than one step is also an option.

Algorithm
Layer

Processing
Type

Communications
Cost

Communication
Model

Number
of Cores

CMATLAB Code
Layer

Task
Layer

Data
Layer

Hardware Specification

Figure 3 Interactions between the different layers.

O. Oey, M. Huebner, T. Stripf, and J. Becker 5:9

4 Evaluation of the Method

For the evaluation, a streak detection algorithm as utilized for space debris detection is used.
It was selected as it best shows the potential of the approach on all the layers. The algorithm
consists of two main steps:

1. The input image is converted to grayscale and a Canny edge detector is used to extract
all edges in the image. The Canny edge detector is a well known algorithm [3] that is
still quite popular due to its low error rate and high accuracy. It is applied on an image
that is usually denoised with a Gaussian blur filter to find the edges identified with the
highest gradient change.

2. A Hough transform is applied to the resulting image, which is used to detect the peaks
with the highest contrast and to mark the found lines in the image. The Hough transform
is a formerly patented method [6] that is used to find geometric shapes such as straight
lines in binary black and white representations.

The source code of the algorithm is shown in Listing 1. The most relevant parts of the
program are directly available in MATLAB® so that calling the inbuilt functions is sufficient.
Only for the function to extract a line, a new custom function needed to be developed.

Listing 1 MATLAB® code of streak detection.
function [point1Arrays , point2Arrays] = st r eak_detec t i on (img)

%conver t to g raysca l e , a v a i l a b l e in MATLAB
gray = rgb2gray (img) ;
%e x t r a c t edges from image , a v a i l a b l e in MATLAB
[E, thresh] = edge (double (gray) , ’Canny ’) ;
%app ly Hough transform , a v a i l a b l e in MATLAB
[H,T,R] = hough (E) ;
%e x t r a c t peaks in Hough repre s en ta i t on , a v a i l a b l e in MATLAB
P = houghpeaks (H, 5 0) ;
%draw a l i n e to connect po ints , implemented manually
[point1Arrays , point2Arrays] = custom_houghlines (E,T,R,P) ;

end

The target system is an NXP P4080 DS with 8 PowerPC e500mc cores.

4.1 Evaluation of Algorithm Layer
Since the Canny edge detector algorithm is directly available in MATLAB® a call to the
function can be used as an entry point for the optimization at the algorithm layer. This offers
the potential for a few different optimizations: fixing the threshold for the edge detection
maintains the same results while reducing the runtime by 6%. Switching to single precision
data types with 32-bit floats still has enough accuracy, but reduces the runtime by another
28%. Finally, optimizing the memory allocation allows a further optimization of 19%, for
a total gain of 45% on the algorithm layer alone. The optimizations were applied without
any specific hardware knowledge, and the reduced complexity provides more options in later
layers of the flow. The performance gains were determined on the development PC using an
Intel Core i5-4570 with 16 GB DDR3 RAM with 1600 MHz. Measured was the execution time
of the C program generated from the MATLAB® code and the initial 259 ms were reduced
to 140 ms.

PARMA-DITAM 2024

5:10 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

Most functions in the source code 1 are part of the MATLAB® language scope, so that
specially optimized versions can be used during code generation. By using parameters to
guide the code generation, the generated C code can be prepared for later transformations.
In order to be able to apply the beneficial variable splitting and loop fission transformations
on the functions rgb2gray, edge and hough, the number of generated loops and variables
can be changed according to the input from the code layer.

4.2 Evaluation of Code Layer
The main task of the code layer is to provide the task layer with as many independently
computable tasks as possible. This is best achieved from the combination of variable splitting
and loop fission. The C code prepared at the algorithm layer now allows easy exploration of
the various options. The best results are achieved when the load between cores is balanced
over time with as little data exchange as possible. For the hypot, hough, and rgb2gray
functions, which each perform only a few calculations on a single matrix, the best solution
is to split them among eight, i.e., all available cores of the target system. For the Canny
Edge algorithm, which is executed independently in the X and Y directions, splitting for
four cores at a time has been shown to give the best results. By executing the two directions
in parallel, all eight cores can be utilized and limiting them to four cores each reduces the
communication overhead. While the actual splitting of the variables and loops is done on
this code layer, the decision about the splitting factors is decided by the later task and data
layers.

4.3 Evaluation of Task Layer
The previously generated independent tasks ensure that parallelization at the task layer can
be solved largely automatically. Only for tasks that split or collect data is there room for
optimization in the allocation by selecting cores in a way that minimizes communication.
This is done in conjunction with the data layer, since it is there that the final placement of
the communication instructions is made.

The parallelization on task layer uses a simple cost model for the actual timing: each time
data is accessed by multiple cores, a cost is added to reflect the overhead. The algorithm
then attempts to reduce the overall runtime while minimizing the communication overhead.
This model can be used to determine the best split factors for the code layer. The results of
the scheduling on the task layer can be seen in Fig. 4. It shows the load on the eight cores
of the target platform over time. During the first half of the execution, the edge detection
in both directions can very well utilize all available cores. While there is still some parallel
processing left afterwards at the 350 ms mark, the end is dominated by functions that don’t
benefit much from the parallelization on either layer. For the actual Canny edge algorithm, a
speedup of 6.28 is estimated while for the complete application, a speedup of 3.02 is estimated.
A more accurate estimate of performance, including core wait times for data, is handled on
the data layer.

4.4 Evaluation of Data Layer
Due to the nature of the algorithm, placement at the data layer is very straightforward: data
is always sent after it has been split or computed in the previous step, and it is received
immediately before further processing. It is important to transfer data between the cores
as quickly as possible to minimize waiting times. To determine the best positions for the

O. Oey, M. Huebner, T. Stripf, and J. Becker 5:11

Figure 4 Scheduling result of the task layer.

synchronization between the cores, the control flow of the application is used to find the
blocks that have the lowest number of executions while also minimizing any latency on the
receiving cores. The communication overhead is relatively large so that some of the gains
from the task layer cannot be implemented in the actual code for the hardware. Without
any further changes on the data layer, a speedup of 2.4 was achieved. Further optimizations
to reduce the communication overhead by implementing functions that directly access the
shared memory regions gained an additional 19 % for a final speedup of 2.86.

5 Conclusion and Outlook

The runtime of the streak detection algorithm was reduced by 65 %, from an initial runtime
of 2720 ms to 952 ms. Most of the optimization was done at the algorithm and code layer, but
parallelization at the task layer was critical to map the prepared tasks to the available cores.
Finally, the optimizations at the data layer were necessary to get most of the performance
gains from the task layer to the actual hardware. This short evaluation shows the potential
of this cross-layer approach and how the interaction between optimizations on different
hierarchies can achieve better results compared to focusing only on two or three layers.
However, more evaluations will be necessary to further analyze the benefits of this approach.

While the evaluation presented here was performed with a data-driven algorithm, the
approach is not limited to it: further tests with more control-flow-driven algorithms also
showed promising performance gains. Differences could be observed in the actual optimiza-
tions to be applied on the different layers. The examples used were of low complexity on
the algorithmic side, so the task layer had little impact on the selection of the most efficient
versions. The code layer still proved to be very valuable, but instead of ensuring that enough
independent tasks were available for the task layer, smart clustering of the many tasks to
reduce the actual number for the scheduling was the way to go. The task layer then had
to find the most efficient distribution over the available cores, while the focus of the data
layer is to minimize the amount of communication, since the cost per transfer is much higher
when only few bytes need to be transferred.

It is also possible to extend the approach to support heterogeneous systems: the most
relevant layers are then the algorithm layer and the code layer. The algorithm layer allows
the use of optimized functions from existing libraries, while the code layer and its code
transformations can be used to generate source code for accelerators such as CUDA or
OpenCL.

PARMA-DITAM 2024

5:12 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

References
1 Hamid Arabnejad, João Bispo, João M. P. Cardoso, and Jorge G. Barbosa. Source-to-source

compilation targeting OpenMP-based automatic parallelization of C applications. The Journal
of Supercomputing, 76(9):6753–6785, December 2019. doi:10.1007/s11227-019-03109-9.

2 Jürgen Becker, Thomas Bruckschloegl, Oliver Oey, Timo Stripf, George Goulas, Nick Raptis,
Christos Valouxis, Panayiotis Alefragis, Nikolaos Voros, and Christos Gogos. Profile-Guided
Compilation of Scilab Algorithms for Multiprocessor Systems. In Reconfigurable Computing:
Architectures, Tools, and Applications: 10th International Symposium, ARC 2014, Vilamoura,
Portugal, April 14-16, 2014. Proceedings 10, pages 330–336. Springer, 2014.

3 John Canny. A Computational Approach to Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-8(6):679–698, November 1986. doi:10.1109/tpami.
1986.4767851.

4 Lorenzo Chelini, Andi Drebes, Oleksandr Zinenko, Albert Cohen, Nicolas Vasilache, Tobias
Grosser, and Henk Corporaal. Progressive Raising in Multi-level IR. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, February 2021.
doi:10.1109/cgo51591.2021.9370332.

5 Marco Danelutto, Gabriele Mencagli, Massimo Torquati, Horacio González–Vélez, and Peter
Kilpatrick. Algorithmic Skeletons and Parallel Design Patterns in Mainstream Parallel
Programming. International Journal of Parallel Programming, 49(2):177–198, November 2020.
doi:10.1007/s10766-020-00684-w.

6 Richard O. Duda and Peter E. Hart. Use of the Hough transformation to detect lines and
curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

7 Ian Foster. Designing and building parallel programs: concepts and tools for parallel software
engineering. Addison-Wesley Longman Publishing Co., Inc., 1995.

8 Saiyedul Islam, Sundar Balasubramaniam, Shruti Gupta, Shikhar Brajesh, Rohan Badlani,
Nitin Labhishetty, Abhinav Baid, Poonam Goyal, and Navneet Goyal. Pattern-Based Auto-
matic Parallelization of Representative-Based Clustering Algorithms. In 2018 IEEE 5th
International Conference on Data Science and Advanced Analytics (DSAA). IEEE, October
2018. doi:10.1109/dsaa.2018.00020.

9 Nikita Kataev. Interactive Parallelization of C Programs in SAPFOR. In SSI, pages 139–148,
2020.

10 Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. MLIR: Scaling
Compiler Infrastructure for Domain Specific Computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, February 2021. doi:10.
1109/cgo51591.2021.9370308.

11 Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph Kessler. Benchmarking
OpenCL, OpenACC, OpenMP, and CUDA. In Proceedings of the 2017 Workshop on Adaptive
Resource Management and Scheduling for Cloud Computing. ACM, July 2017. doi:10.1145/
3110355.3110356.

12 Luís Miguel Pinho, Eduardo Quinones, and Andrea Marongiu. High-performance and time-
predictable embedded computing. River Publishers, 2018.

13 Sabri Pllana and Fatos Xhafa, editors. Programming multi-core and many-core computing
systems. John Wiley & Sons, Inc., January 2017. doi:10.1002/9781119332015.

14 Todor Stefanov, Hristo Nikolov, Lubomir Bogdanov, and Angel Popov. DAEDALUS framework
for high-level synthesis: Past, present and future. In 2021 25th International Conference
Electronics. IEEE, June 2021. doi:10.1109/ieeeconf52705.2021.9467445.

15 Jessica Vandebon, Jose G. F. Coutinho, Wayne Luk, Eriko Nurvitadhi, and Tim Todman.
Artisan: a Meta-Programming Approach For Codifying Optimisation Strategies. In 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 177–185, 2020. doi:10.1109/FCCM48280.2020.00032.

https://doi.org/10.1007/s11227-019-03109-9
https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1109/cgo51591.2021.9370332
https://doi.org/10.1007/s10766-020-00684-w
https://doi.org/10.1109/dsaa.2018.00020
https://doi.org/10.1109/cgo51591.2021.9370308
https://doi.org/10.1109/cgo51591.2021.9370308
https://doi.org/10.1145/3110355.3110356
https://doi.org/10.1145/3110355.3110356
https://doi.org/10.1002/9781119332015
https://doi.org/10.1109/ieeeconf52705.2021.9467445
https://doi.org/10.1109/FCCM48280.2020.00032

O. Oey, M. Huebner, T. Stripf, and J. Becker 5:13

16 Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang, Rahul Joshi,
Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni, Ruoming Pang, Noam Shazeer,
Shibo Wang, Tao Wang, Yonghui Wu, and Zhifeng Chen. GSPMD: General and Scalable
Parallelization for ML Computation Graphs, 2021. doi:10.48550/arXiv.2105.04663.

PARMA-DITAM 2024

https://doi.org/10.48550/arXiv.2105.04663

	1 Introduction
	1.1 Definition of Algorithm Layer
	1.2 Definition of Code Layer
	1.3 Definition of Task Layer
	1.4 Definition of Data Layer

	2 State of the Art
	3 Cross-layer Optimization
	3.1 Realization of Algorithm Layer
	3.2 Realization of Code Layer
	3.3 Realization of Task Layer
	3.4 Realization of Data Layer
	3.5 Interactions Between the Layers

	4 Evaluation of the Method
	4.1 Evaluation of Algorithm Layer
	4.2 Evaluation of Code Layer
	4.3 Evaluation of Task Layer
	4.4 Evaluation of Data Layer

	5 Conclusion and Outlook

