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Preface

This volume collects the papers presented at the 15th Workshop on Parallel Programming
and Run-Time Management Techniques for Many-core Architectures, and the 13th Workshop
on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-
DITAM 2024). The workshop is co-located with the 2024 edition of the HiPEAC conference
and was held on the 18th of January, 2024, that took place in Munich, Germany.

The current trend towards many-core and the emerging accelerator-based architecture
requires a global rethinking of software and hardware design, which turn out to be more
than ever before strongly entangled.

The PARMA-DITAM workshop focuses on many-core architectures, parallel programming
models, design space exploration, tools and run-time management techniques to exploit the
features and boost the performance of such (possibly heterogeneous, (re-)programmable
and/or (re-)configurable) many-core processor architectures from embedded to high perform-
ance computing platforms and cyber physical systems.

The scope of the PARMA-DITAM workshop include the following topics:

T1: Parallel programming models, languages, and applications for many-core platforms
T2: Compiler and virtualization techniques for novel computing architectures
T3: Run-time modeling, monitoring, adaptivity, power and memory management
T4: Design of heterogeneous and reconfigurable many-core architectures
T5: Methodologies, design tools, and high-level synthesis for heterogeneous architectures
T6: Hardware/software co-design and design space exploration
T7: Case studies, success stories and applications applying T1–T6

15th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and
13th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
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Abstract
European efforts to boost competitiveness in the space services sector promote the research and
development of advanced software and hardware solutions. The EU-funded HERMES project
contributes to the effort by qualifying radiation-hardened, high-performance programmable micropro-
cessors and developing a software ecosystem that facilitates the deployment of complex applications
on such platforms. The main objectives of the project include reaching a technology readiness
level of 6 (i.e., validated and demonstrated in relevant environment) for the rad-hard NG-ULTRA
FPGA with its ceramic hermetic package CGA 1752, developed within projects of the European
Space Agency, French National Centre for Space Studies and the European Union. An equally
important share of the project is dedicated to the development and validation of tools that support
multicore software programming and FPGA acceleration. The HERMES project selected the Bambu
High-Level Synthesis tool to integrate capabilities to translate C/C++ code into Verilog/VHDL in
its development ecosystem. In HERMES, Bambu has been and will be extended to support new
FPGA targets, architectural models, model-based design, and input applications. The increased
performance offered by FPGAs is thus made available also to software developers who do not have
hardware design expertise.

2012 ACM Subject Classification Hardware → Methodologies for EDA; Hardware → High-level
and register-transfer level synthesis; Computer systems organization → Architectures; Hardware →
Very large scale integration design; Hardware → Reconfigurable logic and FPGAs

Keywords and phrases High-Level Synthesis, rad-hard FPGAs

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2024.1

Category Invited Talk

Funding This research has received funding from the EU Horizon 2020 Programme under grant
agreement No 101004203.

1 Introduction

In space applications, the computational requirements for onboard computing are rapidly
approaching the limits of what space-grade processors and microcontrollers can offer, mainly
because radiation-hardened components are inherently slower than general-purpose CPUs.
Hybrid platforms based on a mix of CPU and FPGA logic have become increasingly important.
European institutions such as ESA, CNES, and the EU funded several efforts to develop
a new generation of rad-hard FPGA platforms, including projects such as BRAVE [8],
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1:2 HLS Developments in EU Space Research

VEGAS [13], OPERA [15], DAHLIA [14], and HERMES [12]. These platforms provide
improved performance with acceptable overhead in size, power consumption, and cost.
However, designing such systems is a challenging task.

High-level synthesis is a process that automatically generates an optimized hardware
implementation from a high-level software description. HLS tools have changed the way we
think about FPGA design by automating the most complex and time-consuming aspects
of the development process: by eliminating the need for manual coding in VHDL/Verilog,
users can now focus on providing a program written in a well-known software language
such as C/C++ along with timing and resource utilization constraints that the final design
must satisfy. This approach has become increasingly popular in the design of hybrid CPU-
FPGA systems. It allows designers to explore different hardware/software partitionings and
optimizations quickly and to generate efficient hardware implementations that meet stringent
requirements. So, HLS in the design of hybrid CPU-FPGA systems for space applications
has become a powerful tool for designers to optimize the performance of their systems while
meeting the strict constraints imposed by space missions. As such, it is a crucial enabling
technology for developing the next generation of rad-hard FPGAs for space applications.

The High-Level Synthesis flow begins with a compilation step to analyze data dependencies
and loops in the input program, optimize the code, and generate a Control and Data Flow
Graph (CDFG). The CDFG is then subjected to three core steps - resource allocation,
scheduling, and binding - to define the structure of the output hardware. These steps
involve assembling functional, storage, and communication units taken from a library of
RTL components. Further optimization and analysis passes are carried out in the front-end,
middle-end, and back-end of the tool to generate efficient accelerator designs. The result is
HDL code ready to be used in a downstream FPGA or ASIC design tool for further analysis,
logic synthesis, and deployment. In the past, the shorter development time offered by HLS
tools used to come at the cost of reduced efficiency in the generated designs. However, with
the availability of several commercial and open-source tools today, that is no longer the case.
These tools can generate efficient designs that are competitive in terms of speed and resource
utilization with hand-optimized RTL code.

This paper shows how the Bambu HLS tool [3] has been extended in the context of the
HERMES project [12] (Qualification of High-pErformance pRogrammable Microprocessor
and dEvelopment of Software ecosystem). The integration of the capabilities of Bambu in the
space development ecosystem allows space application developers with no hardware design
expertise to exploit the performance offered by FPGAs. The paper is divided into three
additional sections. The first section presents Bambu, an open-source HLS tool adopted by
the HERMES project. The second section discusses our most recent extensions to Bambu,
which aim to enhance the tool’s usability in an industrial context for space applications.
The third section provides an overview of representative applications and corresponding
experimental results, followed by the paper’s conclusion.

2 The Bambu Open-Source High-level Synthesis tool

Bambu is a command-line tool developed at Politecnico di Milano providing support to
designers for the HLS of complex applications. Most C/C++ constructs are supported,
including function calls, access to arrays and structs, parameters passed by reference or
copy, pointer arithmetic, dynamic resolution of memory accesses, and module sharing. The
flow resembles a software compilation process: it begins with a high-level specification and
generates low-level code through a series of analysis and optimization steps. Like a standard
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Figure 1 Bambu high-level synthesis flow.

software compilation flow, Bambu has three phases (Figure 1): front-end, middle-end, and
back-end. In the front-end, the input code is parsed and translated into an intermediate
representation (IR) that is used in the following parts of the flow. In the middle-end, target-
independent analyses and optimizations are performed. The back-end performs the actual
synthesis of Verilog/VHDL code ready for simulation, logic synthesis, and implementation
through external tools.

Bambu front-end. Within Bambu, the user can choose several different front-end compilers,
such as GCC and Clang. If GCC is selected, a plugin extracts the call graph and the Control
Data Flow Graph of the functions under analysis from GCC’s internal IR. Similarly, a Clang
plugin extracts the same information from the input and serializes it into a textual format
that is easy to parse. Bambu then parses all the compiler serialized information plus all the
annotations to build a Static Single Assignment in-memory IR. This approach decouples the
compiler front-end code from the rest of the HLS process. Localizing all the changes in a
GCC or LLVM/Clang plugin allows rapid and easy integration of many different versions of
the compilers. Bambu supports GCC versions from 4.9 to 8, and LLVM/CLANG versions
from 4.0 to 16.

Bambu middle-end. Starting from the GCC/Clang IR, Bambu rebuilds data structures,
such as the Call Graph and the Control Data Flow Graphs, and builds additional data
structures, such as the Program Dependence Graphs. Next, it applies a set of device-
independent analyses and transformations. Some of these steps are commonly used in a
software compilation flow (e.g., data flow analysis, loop recognition, dead code elimination,
constant propagation, LUT expression insertion, etc.). Multiplications and divisions by
constant values are transformed into expressions that use only shifts and adders to reduce
area utilization and improve timing. The resulting expression structure depends on the
target device and technology since adders and multipliers may have different performances
on different devices. Differently from general-purpose software compilers, designed to target
a processor with a fixed-sized data-path (usually 32 or 64 bits), a HLS compiler can exploit
custom-sized operators (e.g., a multiplier with the minimum number of I/O bits) and registers.
Consequently, we can select the minimal number of bits required for the specific algorithm’s
operations and value storage, which leads to less area, less power, and shorter critical
paths. At this stage, Bambu also performs Bitwidth and Range Analysis, aiming at reducing
the number of bits required by data-path operators. This analysis is crucial during the
optimization process because it impacts all non-functional requirements (e.g., performance,
area, power) of a design without affecting its behavior.

PARMA-DITAM 2024



1:4 HLS Developments in EU Space Research

Bambu synthesis back-end. In this phase, Bambu performs the actual architectural
synthesis of the specification. The synthesis process works on each function separately,
and the resulting architecture reflects the structure of the call graph. A single function is
implemented through at least two sub-modules: the control logic and the data-path. Control
logic modeled as a Finite State Machine handles the routing of the data values and the
temporal execution of the operations. The data-path is a custom mux-based architecture
with optimized data types to reduce the number of flip-flops and bit-level multiplexers,
implementing all the operations and memories required during the function execution. The
following paragraphs describe the sequence of steps that Bambu follows to generate control
and data-path modules.

Function Allocation. Function Allocation associates the high-level functions with specific
resources available in the technology library associated with the target device. The technology
library coming with Bambu integrates standard functions described in Verilog or VHDL,
standard system libraries such as libc and libm, and designer-defined components written
in Verilog or VHDL. Bambu supports function pointers and sharing of (sub)modules across
module boundaries [7]. Sharing of functions is achieved using function proxies that act as
intermediaries between function calls in the original specification and shared modules. This
method of sharing results in significant area savings when dealing with complex call graphs,
without any notable impact on execution delays.

Memory Allocation. Memory Allocation refers to the storage of aggregate variables such
as arrays and structures, global variables, and the implementation of dynamic memory
allocation. Bambu adopts an architecture for memory accesses that supports a wide range
of cases. Statically analyzing the memory accesses, Bambu builds a hierarchical data-path
where memories can be classified as read-only, local, with aligned or unaligned memory
accesses, or those requiring dynamic resolutions. The memory interconnection defines multiple
buses connecting load/store components to their respective memories. Dual-port BRAMs
or memory controllers with complex parallel channels are supported by replicating such
memory interconnections as needed. The same memory infrastructure can connect to external
components (e.g., scratchpads, caches, and DRAMs) or directly to the bus to access off-chip
memory. Supporting protocol-based accesses (e.g., FIFO or stream-based access) is obtained
by generating specific components that replace load/store units.

Resource Allocation. Resource allocation associates operations not mapped on a function
to resource units (RU) available in the resource library. During the middle-end phase, the
specification is inspected to identify the characteristics of the operations: these include the
type of the operation (e.g., addition, multiplication, etc.) and the types of the operands
(e.g., integer, float, etc.). Floating-point operations are supported through the HLS of a
soft-float library containing basic soft-float operators [4] or alternatively by exploiting the
FloPoCo software [2], a generator of arithmetic Floating-Point Cores. The allocation step
maps operations on the set of available RUs; their characterization includes latency, area,
and the number of pipeline stages. Usually, more operation/RU matchings are feasible; in
this case, selecting a proper RU is driven by design constraints. The library of RUs used
by Bambu is quite rich and may include several implementations for the same operation.
Furthermore, the library includes RUs that are provided as templates in a standard hardware
description language, such as Verilog or VHDL. These templates can be customized and
retargeted in accordance with the characteristics of the target technology. In this case,
the underlying logic synthesis tool will determine the best architecture to implement each
operation (for example, multipliers can be mapped on dedicated DSP blocks or implemented
with LUTs). To perform aggressive optimizations, each library component is annotated
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with helpful information during the entire HLS process, such as resource occupation and
latency. Bambu adopts a pre-characterization approach through a tool called Eucalyptus to
synthesize different configurations of library components and collect their resulting latency
and resource consumption metrics as XML files in the Bambu library. The configurations are
obtained by specializing a generic template of the resource component, such as a multiplier
or an adder, according to the bit widths of its input and output arguments and the number
of pipeline stages.

Scheduling. By default, Bambu employs a list-based scheduling algorithm. In its basic
formulation, list-based scheduling associates each operation with a priority according to
particular metrics. Scheduling proceeds iteratively, associating a set of operations to be
executed with each control step. Ready operations (i.e., whose dependencies have been
satisfied in previous iterations of the algorithm) can be scheduled in the current control
step, considering the availability of the resources. If multiple ready operations compete for a
resource, then the one having a higher priority is scheduled. In addition to this old but efficient
algorithm, Bambu also features a more aggressive scheduling algorithm, the speculative
scheduling algorithm based on System of Difference Constraints [6]. This algorithm builds
an integer linear programming formulation of the scheduling problem, allowing code motion
and speculation of operations that belong to different basic blocks.

Module Binding. Within the computed schedule, operations that execute concurrently
are not allowed to share the same resource instance. In Bambu, binding of operations to
resources is performed through a clique covering algorithm on a weighted compatibility
graph [11]. The compatibility graph is built by analyzing the schedule: operations scheduled
on different control steps are marked as compatible. Weights express how valuable it is
for two operations to share the same hardware resource. They are computed considering
area/delay trade-offs caused by sharing; for example, RUs that occupy a large area will be
more likely shared. Weights computation also considers the cost of interconnections required
by the steering logic. Bambu also offers several other algorithms for solving the covering
problem on compatibility/conflict graphs.

Register Binding. Register binding associates storage values to registers and requires
a preliminary analysis step, the liveness analysis [11]. Liveness analysis starts from the
schedule to identify each variable’s life intervals, i.e., the sequence of control steps in which a
temporary value needs to be stored. Variables with non-overlapping life intervals may share
the same register.

Interconnection Binding. Interconnections are bound according to the outcome of the
previous steps: if a functional or memory resource is shared, then the algorithm introduces
steering logic on its inputs. It also identifies the set of control signals that will be driven by
the controller.

Netlist Generation. The final architecture is then generated and represented through
a hyper-graph, highlighting the interconnection between modules. The netlist generation
step translates such representation in a register transfer-level (RTL) description in Verilog or
VHDL. The process accesses the resource library, which embeds the RTL implementation of
each resource. This process is target-dependent, and the hardware descriptions may differ
for different technologies (e.g., ASIC or FPGA) or target devices.

Generation of Synthesis and Simulation Scripts. Bambu automatically generates synthesis
and simulation scripts that can be customized via XML configuration files. The RTL-
synthesis tools currently supported are AMD/Xilinx ISE, AMD/Xilinx Vivado, Yosis-Vivado,
Intel/Altera Quartus, Lattice Diamond, NanoXplore, and OpenRoad. Supported simulators
are Mentor Modelsim, Xilinx XSIM, and Verilator.
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Figure 2 NanoXplore Impulse design flow.

3 New HLS Features

3.1 NanoXplore Logic Synthesis Integration

The first step in the integration of Bambu into the HERMES design flow for space applications
was to add support for the NanoXplore synthesis tool Impulse (Figure 2). The Impulse design
suite translates HDL code into a device-specific bitstream for NanoXplore radiation-hardened
FPGAs through logic synthesis, place-and-route compilation steps, and static timing analysis
tools for performance estimation. Seamless integration of Bambu and Impulse is achieved by
automatically generating backend synthesis scripts after the generation of the RTL code.

During the HLS process, Bambu applies optimizations that are specific to a target, and
therefore, its backend has been customized to support three new types of space-grade FPGAs:
NG-MEDIUM, NG-LARGE, and NG-ULTRA. Before integrating the logic synthesis backend
based on Impulse and running characterization through Eucalyptus, it was necessary to map
Bambu library components correctly to the actual DSPs and True Dual Port RAMs available
on the NG-ULTRA fabric. Since the mapping occurs through behavioral HDL templates,
the components used by Bambu for arithmetic operations and storage modules have been
customized to comply with the Impulse synthesis guidelines.
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3.2 AXI Protocol Interfaces
The NG-ULTRA board’s ARM processor uses the AXI4 protocol interfaces to communicate
with the rest of the system. AXI4 is a standard that includes AXI4, AXI4-stream, and
AXI4-Lite protocols. These are used to access memory banks, streaming channels, and
memory-mapped registers.

Bambu was therefore extended to offer the possibility to access data outside of the
accelerator over an AXI4 bus, which is the standard also for other on-chip communications
(e.g., to communicate with HBM on AMD/Xilinx FPGAs). This can be used to connect
modules created with Bambu with modules created by other sources, or with external
memories. AXI4 is a master/slave protocol that defines a series of channels, i.e., independent
groups of signals exchanged between the master and slave devices. As shown in figure 3,
AXI4 defines five channels: Address read, Read data, Address write, Write data and Write
response, and collects them into bundles associated with different parameters. Each channel
contains a set of information signals and two handshake signals, xVALID and xREADY,
where x depends on the actual channel. These signals indicate the availability of one of the
endpoints to exchange the channel information. In particular, the xVALID signal indicates
that the source of the information on the bus has provided valid data, and the xREADY
signal indicates that the recipient is ready to accept the information. The handshake can only
be completed once both signals are active simultaneously. The address read/write channels
contain the signals needed to define the transaction, such as the data address, the burst
type that should be used, the length of the burst, and more. The read channel contains
the data requested by the transaction and a read response, indicating whether the request
was successful. The write channel contains the data that must be passed to the slave device
and a write strobe signal, specifying which data bytes are valid. The write response channel
contains a signal indicating whether the write transaction was successful. AXI supports
unaligned operations: it can exchange data even if the requested value has a size different
from the bus or its address is not a multiple of the bus size. The AXI protocol is burst-based,
which means the master must only specify the initial address and the burst information.
The slave will then compute the correct addresses for each subsequent data transfer, or beat,
autonomously based on the information passed when the burst was defined. Using pragmas,
Bambu can add an AXI4 controller module inside the hardware design linked to a specific
memory parameter or a set. Each master module is responsible for the communications on
a bundle of AXI4 channels and can act independently from the others. When a memory
operation is issued, the finite state machine activates only the AXI master module related
to the requested memory parameter. This allows the execution of parallel memory accesses
when there are multiple AXI bundles.

Bambu can also create a testbench that includes the AXI4 slave counterparts of the
master interfaces. This enables users to simulate data exchange and verify its correctness.
Users can configure memory delay estimates to assess the application’s performance, taking
into account an estimated latency for data transfers.

3.3 AXI Caches
When requesting an AXI interface, Bambu offers the possibility to add a customizable cache
that can intercept or forward memory access requests coming from the memory controller to
the AXI slave. These caches can help reduce the average memory access latency by accessing
the data present in the cache rather than performing the full transaction over the AXI bus.
Caches are requested by the user through pragma annotations, and several different options
can be specified to generate caches with e.g., different write policies, replacement policies,
and cache line sizes.
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Figure 3 AXI4 channels descriptions: on the left the Write address, Write data and Write
response channels, while on the right the Read address and Read data channels.

The caches provided by Bambu are largely based on the work done in [10], with some
modifications that allowed it to be integrated into our tool and to improve its performance
and customization. The basic element of the Bambu cache is a single datum of the same size
as the data type of the kernel argument being stored. These are grouped in cache lines, i.e.,
a sequence of elements that are contiguous in memory. When there is a cache miss, the cache
reads an entire line from memory, so whenever a datum is requested all the content of the
line is immediately available for future requests. Cache lines can also be grouped in ways.
Unlike elements in a line, lines in a way are not necessarily contiguous. Inside each way, a
cache line can only be stored in a single position, depending on the starting address of the
line. When more than one way is present, each of them provides a position to hold the line.
Multiple memory areas are mapped to the same cache lines, so while populating the cache it
is common that new data must be placed in an already populated line. In this case, the line
is simply overwritten and requests regarding the old data will need to go through the main
memory again.

While caches typically have the same behavior with read operations, different policies are
available when performing writes. Bambu caches offer two different policies: write through no
allocate and write back allocate. When using the first policy, the cache always immediately
forwards the write operation to the main memory. If the address that was written is already
present in the cache it is updated in the internal memory too, otherwise, no other action
is performed. When the write back policy is selected, the data is not transferred to the
main memory: only the internal state of the cache is updated. In case the element that was
written was not already present in the cache the line in which it is contained is first read
from memory, then the data is updated. The write policy also impacts what happens when
a cache line needs to be replaced: in the case of write through policy, the data in the main
memory and the cache are always consistent, so no action is needed when replacing lines.
However, write back caches need to keep track of modified lines using a dirty bit that is set
whenever any element of the line is modified. When a line must be replaced, if the dirty bit
is set, the entire line is first written to the main memory, then it can be replaced. Otherwise,
no action is needed, and the line can immediately be overwritten. Finally, another difference
is that at the end of the computation write back caches need to write all their dirty lines
back to main memory, while write though caches do not need this operation. In general,
write through policies perform better when the time between two write operations is greater
than the latency of the memory because by the time the second write is received, the cache
is already done with the previous operation and its state is consistent with the main memory.
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On the other hand, write back caches are more useful when performing a lot of writes to
the same cache lines in a small period, because the whole line is then transferred in a single
memory transaction either when it is replaced or at the end of the computation.

One of the modules used internally by the caches is the write buffer. This is a data
structure that holds write transactions to main memory that must be performed but have
not yet been completed. It is similar to a circular buffer and is handled by three indexes:
a write index, indicating the next slot where data can be written, a read index, indicating
the next write transaction that must be initiated, and a backup index, indicating the first
transaction that has been started but has not yet completed. The write index is increased
whenever a new item is inserted in the buffer, i.e., when a cache line should be written to
memory. As long as the buffer is not empty and the AXI bus is available, the controller
handling the bus will pick up the element marked by the read index and increase it, while
beginning the write transaction on the bus. The controller also monitors the write responses
of the AXI slave device and forwards them to the queue. The response indicates whether the
transaction was successful or not. In the first case, the write operation has been completed
and is no longer needed in the buffer, so the backup index in the write buffer is increased.
In case the write response indicated an error, the transaction must be repeated. This is
done by reading the element in the buffer marked by the backup index and writing it at the
next available position in the buffer. Both the backup index and the write index are then
increased. By using this buffer, it is possible to perform pipelined write transactions to the
main memory, exploiting the AXI bus more efficiently. While waiting for the response of a
transaction (if the buffer is not full), new write operations can be performed without stalling
the entire cache. Increasing the size of the buffer is especially useful for write through caches
since they typically perform a higher number of smaller data transfers with respect to write
back caches, which perform a smaller number of larger transfers. While it can be useful even
in this case, it should be noted that while write through caches transfer data one element at
a time, write back caches transfer entire lines, so the buffer will use more resources when
using the same size parameter.

Caches can be classified as direct-mapped, n-way set-associative, and fully associative.
All three types of caches are made available by Bambu by selecting appropriate values for
the n_ways and way_size parameters in the pragmas that instruct the tool to generate a
cache. Greater associativity can improve the effectiveness of the cache, as it provides more
options for storing cache lines. However, associativity has a great cost in terms of resource
usage, so it should only be used as needed.

Associative caches can have multiple positions in which a cache line can be located. For
this reason, a policy must be enacted that decides which way will store data whenever a new
line is read from memory. Bambu offers two different replacement policies: least recently
used (LRU) and a tree-structure-based pseudo-LRU.

4 Applications

In the context of the HERMES project, Bambu has been used to automate the design
of space-related applications. In particular, the project use cases cover image and vision
processing algorithms, software-defined algorithms, and artificial intelligence applications. In
this section, as an example of the results achievable with Bambu, we provide some simple
benchmarks showcasing the features described in this paper. All the benchmarks have been
synthesized using Bambu to create the hardware description and NXmap to map it on the
FPGA.
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Table 1 Comparison between different Boards for the Sparse Matrix-Vector Multiplication
benchmark.

Target Latency(µs) Cycles Frequency LUTs Registers DSPs
nx1h35S 2109 75586 35.85 MHz 1453 1669 10
nx1h140tsp 2083 85960 41.28 MHz 1508 1603 10
nx2h540tsc 1190 81020 68.11 MHz 1664 1642 10

Table 2 Effect of caches on Matrix-Matrix Multiplication benchmark.

Target Latency(µs) Cycles Frequency MEM LUTs Registers DSPs
nx2h540tsc 5945 302160 50.82 MHz 0 2719 3312 6
nx2h540tsc Cache 3415 129706 37.98 MHz 112 5806 3832 6

4.1 Sparse Matrix-Vector Multiplication
The first benchmark is an implementation of a double precision sparse matrix-vector multi-
plication (SPMV) from the MachSuite benchmark suite [9]. The results are reported in Table
1 and focus on comparing three boards from Nanoexplore: the first one is the NG-MEDIUM
(nx1h35S), the second one the NG-LARGE (nx1h140tsp), and the last one the NG-ULTRA
(nx2h540tsc). The considered application implements a sparse matrix-vector multiplication
using fixed-size neighbour lists: the matrix has 494 rows and columns, but only 10 elements
are assumed to differ from zero for each row vector multiplication.

As shown in the table, there is almost no difference in the number of resources used on
the different boards: the number of LUTs, Registers and DSPs is approximately the same
on all the proposed designs. This is also true for the number of cycles, as there is only a
tiny difference between the fastest and slowest board. However, using larger boards has an
advantage: the frequency that NXmap can achieve on nx2h540tsc is two times faster than
the one achieved on nx1h35S.

4.2 Matrix-Matrix Multiplication
The second benchmark is an implementation of a single precision dense matrix-matrix
multiplication with tiling to increase the locality of the requested data. The results are
reported in Table 2 and focus on comparing the effect of the introduction of caches around
a kernel synthesized from a regular application. We assumed a memory delay of 20 cycles
for both read and write operations to simulate the delay of an external memory. The
matrices used in the computations have 32 rows and columns for a total of 1024 elements.
In this benchmark, we used AXI4 to exchange data between the external memory and the
accelerator; we used Bambu to create three different AXI4 bundles, one for each input matrix
and one for the output, to parallelize the memory operations. The difference between the
two configurations is that in the one with the caches, we added a 16 elements line cache for
each bundle, which allows burst operations and reduces the latency of the external memory.

This benchmark shows the effect of the caches on the performance of kernels synthesized by
Bambu. In this application, which is highly regular and with data locality, the configuration
with caches can achieve a 2.5 times speed-up while only using 2.1 times LUTs, which is an
efficient trade-off. Another critical factor when evaluating the performances of the caches is
that the number of physical resources used does not depend on the specific design but is
constant. This means that the cost of the caches proportionally decreases with larger and
more complex designs as the area used by the kernel increases.
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Table 3 High-level synthesis of the quantized digit classifier.

Target Latency(µs) Cycles Frequency MEM LUTs Registers DSPs
NG-ULTRA Embedded 3712 169649 45.7 MHz 34 4627 5714 54

4.3 Quantized Digit Classifier Synthesis
In the third example, we consider a simple MNIST model for digit classification taken from
one of the TensorFlow tutorials [16], demonstrating how to convert a TensorFlow model
from 32-bit floating-point to the nearest 8-bit fixed-point model using post-training integer
quantization. The aim of this process is to encode the model weights with fewer bits, thereby
increasing the inference speed. This is particularly useful for low-power devices such as
microcontrollers or edge devices, and the same is true for FPGA-equipped space missions.

The process followed to synthesize the quantized model into an FPGA accelerator is
the MLIR-based SODA methodology, which is described in detail in [1]. The Multi-Level
Intermediate Representation (MLIR) [5] is a flexible and reusable infrastructure available
within the LLVM project for building domain-specific compilers. MLIR allows the creation
of specialized intermediate representations (IRs), known as dialects, which can implement
analysis and transformation passes at different levels of abstraction. It can interface with
multiple software programming frameworks, including the ones used for implementing deep
learning algorithms.

The MNIST model is first described in Python, trained, and then quantized using
the tutorial directives. Instead of running the TensorFlowLite model using the standard
TensorFlowLite runtime, we output the MLIR description with the quantized weights and
activations. Then, we follow a slightly modified SODA flow that translates the MLIR
representation into a low-level IR that is understood by Clang/LLVM and, consequently, by
Bambu, which is used to generate a corresponding hardware accelerator. Performance and
area consumption metrics are shown in Table 3.

5 Conclusions

The HERMES project has extended an open-source High-Level Synthesis tool to suit the
specific needs of space applications, as described in this paper. FPGAs are highly versatile
and can be used in many different applications, including the space market, where HLS
can help reduce the burden of developing hardware accelerators for radiation-hardened
FPGAs by raising the level of abstraction required. The HERMES project has many use
cases, including machine learning models, and the paper demonstrates how dedicated design
methodologies can be integrated into the hardware acceleration process to improve the
quality of results of the resulting FPGA design. Future developments will focus on more
optimization techniques and architectural templates that can address the specific needs and
requirements of aerospace applications, including both general computational demand and
artificial intelligence applications.
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Abstract
The increasing complexity of transformer models in artificial intelligence expands their computa-
tional costs, memory usage, and energy consumption. Hardware acceleration tackles the ensuing
challenges by designing processors and accelerators tailored for transformer models, supporting their
computation hotspots with high efficiency. However, memory bandwidth can hinder improvements in
hardware accelerators. Against this backdrop, in this paper we propose a novel memory arrangement
strategy, governed by the hardware accelerator’s kernel size, which effectively minimizes off-chip
data access. This arrangement is particularly beneficial for end-to-end transformer model inference,
where most of the computation is based on general matrix multiplication (GEMM) operations.
Additionally, we address the overhead of non-GEMM operations in transformer models within the
scope of this memory data arrangement. Our study explores the implementation and effectiveness of
the proposed accelerator-driven data arrangement approach in both single- and multi-core systems.
Our evaluation demonstrates that our approach can achieve up to a 2.7x speed increase when
executing inferences employing state-of-the-art transformers.
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1 Introduction

In recent years, the rise of transformer models has significantly impacted the field of artificial
intelligence, being used in various domains such as natural language processing, machine
translation, speech recognition, and computer vision [2, 3, 7]. As a result, the demand for
ever more powerful transformers has emerged, leading to the development of increasingly
large and complex architectures.

The substantial size and complexity of transformers have raised new challenges in the
ability to cope with their computational costs, memory usage, and energy requirements. In
fact, the increasing complexity of these models must be carefully managed to contain the
ensuing processing needs, which can lead to unacceptable operating costs [22].
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2:2 Data Arrangement for Transformers

Several works have addressed these challenges [10]. The first notable avenue is that of
hardware acceleration, that is, the design of processors and accelerators specifically tailored
for transformer models [15, 21, 12]. Such specialized hardware aims to significantly reduce
computation time by distributing the calculations across multiple smaller processing units
within the accelerators.

The second strategy to optimize the execution of the transformer model is the enhancement
of the locality of the data. This approach involves maximizing the reuse of data already
fetched from slow and energy-hungry off-chip memory. Given the bandwidth limitations of
accessing off-chip memory, reducing reliance on this memory and improving data locality
can significantly enhance performance in terms of energy and time efficiency. Methods to
improve data locality include employing cache hierarchies as on-chip memory, using loop
tiling to divide computational workloads into smaller segments [11], and adopting in-memory
or near-memory computation techniques [9, 4].

Although reusing data fetched from memory can considerably improve transformer
inference efficiency [1], the sequence in which the data are retrieved remains crucial, especially
when using a hardware accelerator. This issue forms the basis of our research focus. In
this context, all multi-dimensional data structures, e.g., matrices, must be converted into
one-dimensional arrays for storage, a process we term data arrangement. The arrangement of
data is essential in systems with hardware accelerators and memory hierarchies. In this paper,
we propose for such systems a memory-data arrangement that aligns with the processing unit
size of hardware accelerators. In this data arrangement, when a data block is loaded into
the accelerator, a contiguous block can simultaneously be pre-fetched from off-chip memory
because the data arrangement is synchronized with the processing sequence. This approach
leads to faster data retrieval for subsequent accelerator loads by handling as many contiguous
memory accesses as possible.

Key contributions of this paper include the following:

The introduction of a memory data arrangement that coordinates with the size of the
hardware accelerator, facilitating synchronized data access and storage.

A comprehensive analysis of implementing this memory data arrangement in an end-
to-end transformer model, highlighting its advantages in general matrix multiplication
(GEMM) operations with minimal added overhead for non-GEMM processes.

The demonstration of the feasibility of deploying this memory data arrangement in both
single- and multi-core hardware accelerators.

Extensive full-system evaluations, revealing that our proposed memory data arrangement
can greatly speed-up inference in transformer models, e.g. by up to 2.7x in a single-core
system.

The remainder of this paper is structured as follows. Section 2 explains the background and
related work, providing key information on transformers, hardware accelerators, and existing
studies on memory data arrangements. Section 3 describes our methodology, introducing the
accelerator-driven data arrangement and its impact on transformer models. In Section 4,
we present our experimental setup and results, showcasing the effectiveness of the proposed
memory data arrangement in enhancing the performance of the transformer model. Finally,
Section 5 concludes the paper, summarizing our findings and contributions.
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Figure 1 (a) Overall structure of a transformer encoder layer, and (b) detailed representation of
a single attention head with its components. The GEMM-based components within the encoder
layer and attention head are shaded in grey. Components corresponding to non-GEMM operations
have dashed frames.

2 Background and Related Works

2.1 Transformers
Transformer models consist of multiple interconnected components that generate outputs
based on weighted inputs according to a self-attention technique. The self-attention mechan-
ism enables the model to dynamically adjust the weights of different inputs, thus allowing it to
capture dependencies between features (e.g., words in case of machine translation), even when
distant within the input data. The original version of the transformer model [17] presents
an encoder-decoder structure that has proven effective for tasks that require sequence-to-
sequence transformations. Several derivatives have been developed, primarily utilizing the
encoder portion of the model. The encoder itself has the ability to learn robust high-level rep-
resentations from input data, which makes these models particularly effective in a wide range
of tasks, such as sentiment analysis, question answering, image recognition, and more [2, 3].
In encoder-focused models, the encoder part maintains a structure similar to [17], while the
decoder part is often simplified to a single- or two-layer linear component. Consequently, in
these applications, optimizations focus on the encoder layers, which comprise the majority of
the computational workload. We follow the same approach, aiming to minimize the run-time
for encoder-focus transformer models.

The architecture of an encoder layer within a transformer model is depicted in Figure 1a.
The Multi-head Attention component takes as input a matrix X with a number of rows
equivalent to the sequence length and a number of columns corresponding to the model
dimension. This input matrix is applied to h distinct heads, each having a unique set of
weight matrices, which generates unique output values from the same input. In more detail,
the input matrix X is multiplied by W Q

i , W K
i , and W V

i , where i ∈ 0, .., h − 1 represents the
head index. The resultant matrices are Qi, Ki, and Vi, which correspond to Query, Key, and
Value matrices, respectively. These multiplications are illustrated in Figure 1b as GEMM
operations.

Subsequently, the next component involves transposing Ki and multiplying it by Qi.
Following this, a non-linear Softmax operation is applied to the results, and the output is
multiplied by V i. Overall, the output of this single-head attention component is computed
as follows:
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Figure 2 GEMM acceleration using (a) Systolic Arrays and (b) SIMD architectures.

Hi = Softmax(Qi × KT
i√

dq

) × Vi i ∈ {0, 1, . . . , h − 1}. (1)

In the above equation, dq denotes the dimension of the Query, Key, and Value matrices.
The softmax operation subsequently scales the matrix values within the range [0, 1]. Hi

represents the output of the i-th head and, along with the outputs of all other attention
heads, serves as input for the projection component.

As illustrated in Figure 1a, the outputs from the heads are concatenated and then
subjected to a projection. The projection result is then routed to the Add/Norm component,
which performs a non-linear operation. Following this, the output is passed through two
feed-forward components. The final stage in the process involves a second Add/Norm
operation.

In summary, the core of a transformer encoder layer is predominantly composed of General
Matrix Multiply (GEMM) operations. Thus, enhancing the efficiency of GEMM operations
is key to accelerating transformer run-time. The proposed method for GEMM acceleration
using the data arrangement and the overhead associated with non-linear operations are
discussed in detail in Section 3.

2.2 Hardware Accelerators
2.2.1 Accelerators for GEMM Operations
This paper focuses on two predominant categories of accelerators used in GEMM operations:
Systolic Arrays (SA) and Single Instruction Multiple Data (SIMD) architectures. Both types
are characterized by their integration of data storage registers and processing elements for
computation. SA accelerators are widely used in systems such as Tensor Processing Units
(TPUs) [8]. Typically, SIMD and TPU systems have competitive performance compared with
traditional Graphics Processing Units (GPUs) while enabling tighter integration, requiring
less resources [18, 19].

Systolic Arrays consist of a network of Processing Elements (PEs) arranged to process input
streams into output streams. Each PE is equipped with arithmetic and storage units, namely
an adder, a multiplier, and three registers. Figure 2a shows a 4x4 SA architecture. In this
configuration, input and output data propagate through the array in orthogonal directions
(for instance, inputs moving left-to-right and outputs top-to-bottom). Weights are preloaded
into the PEs before computation begins. During operation, the inputs shift unaltered from
one PE to the next with each clock cycle, while the outputs accumulate results from the
multiplications of the inputs and weights.
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A B C

Figure 3 Tiled matrix multiplication A × B = C, considering tiles of size 4x4 elements.

SIMD architectures, as shown in Figure 2b, comprise multiple computing lanes that simul-
taneously execute the same operation on different data. Each lane performs a dot-product
operation. To execute dot-product operations in parallel, the SIMD system loads weights
into each lane’s registers and processes the input matrix through these lanes to compute the
output.

In both SA and SIMD architectures, the configuration of processing elements or lane arrays
can be referred to as the accelerator kernel. The term kernel size denotes the number of PEs
in each row or lane. Our research aims to optimize the memory data arrangement aligning
with this kernel size to enhance the efficiency of GEMM operations in these accelerators for
a transformer application.

2.2.2 Tiling for GEMM Operations
The size of the matrices involved in transformer models greatly exceeds the accelerator kernel
size. Hence, to use the accelerators when computing large GEMMs, matrices must be tiled;
that is, partitioned into smaller submatrices. Partial GEMMs are then performed on tiles,
increasing locality and data reuse in accelerator kernels. Finally, the results are aggregated
with element-wise additions.

Figure 3 illustrates this concept with matrices A and B undergoing multiplication to
produce matrix C. Within each of the three matrices, a 4x4 tile is highlighted. Multiplying
the highlighted tiles into matrices A and B gives a partial result in the corresponding area of
matrix C. For example, the black-marked value in matrix C is partially derived by multiplying
the black row in A by the corresponding black column in B. Note that the tiling yields only
partial values; however, by sliding the tiles and accumulating these partial results through
element-wise addition, the final values in the output matrix C can be derived.

2.3 Related Works
2.3.1 Memory Data Arrangements
Rearranging the layout of the matrix elements can greatly speed up GEMMs, as shown
in [6]. This research focused on the execution of a singular General Matrix Multiply (GEMM)
operation, where the matrices were arranged in a square block format where the matrices are
stored as square submatrices column by column. Building on this concept, the authors in [5]
applied the block matrix layout to operations beyond GEMM, such as single convolution and
Gaussian blur. Their research demonstrated that with the implementation of an optimized
memory layout, they were able to fully utilize the memory capacity.

Our proposed method diverges from the approaches in [6] and [5] by employing block-
wise memory arrangement in the context of hardware accelerators. We strategically align
this kernel size with the blocks used for data storage in memory. Furthermore, we extend
the application of this memory arrangement to a complete transformer application, which
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comprises heterogeneous layers, as opposed to a single operation among matrices. This
approach allows us to explore the potential benefits and efficiencies of aligning the memory
arrangement with the hardware accelerator size in realistic computational scenarios.

2.3.2 Hardware Accelerators for Transformer Models
A comprehensive survey of hardware accelerator implementations for transformer models is
provided by [10], discussing state-of-the-art hardware accelerator frameworks and potential
research directions in transformer hardware acceleration. One notable accelerator design,
proposed by [14], introduces an accelerator on FPGAs, which achieves lower latency and
higher energy efficiency compared to CPU, GPU, and prior FPGA-based accelerators. [20]
presents a hardware accelerator architecture that utilizes a configurable matrix computing
array and on-chip buffers on the FPGA. However, these two papers study accelerators in
isolation, as opposed to considering them as part of an overall computing system. On the
contrary, here we adopt a system-level view, investigating the interplay between memory
hierarchy, accelerator design, and system performance and proposing strategies to minimize
data access at lower memory levels.

Our approach is related to [1], which also addresses the challenge of minimizing data
transfers by introducing tightly coupled small-scale systolic arrays. These are integrated as
custom functional units and are governed by dedicated ISA extensions. The ensuing data
reuse results in significant application-wide speed-ups. However, the work in [1] does not
consider optimization of the memory data arrangement as a hardware-friendly optimization
strategy.

3 Methodology

3.1 Aligning memory arrangement with the accelerator kernel size
Our proposed technique, called Block-Wise Memory Arrangement (BWMA), further en-
hances the benefits of tiling by optimizing the data arrangement in the off-chip memory.
Before illustrating BWMA, we contrast it with a conventional approach [1] for storing
two-dimensional matrices in (linear) memory, which is named herein Row-Wise Memory
Arrangement (RWMA).

3.1.1 Row-Wise Memory Arrangement (RWMA)
Figure 4a illustrates an 8x8 matrix containing various patterns as rows and different colors
in the columns. To store this matrix in memory, it must be converted to a one-dimensional
array. As demonstrated in Figure 4c, RWMA stores the matrix row by row in memory,
treating them as 1-D arrays. When this matrix is incorporated into a GEMM operation via
the tiling technique, irregular non-sequential sections of the 1-D memory are accessed to
retrieve the tile. Following the GEMM operation, storing the resultant tile back into memory
also necessitates access to non-sequential memory regions.

3.1.2 Block-Wise Memory Arrangement (BWMA)
As shown in Figure 4b, our proposed approach partitions weights, input, and output matrices
into smaller blocks. The size of the blocks in this partitioning is as large as the size of the
kernel in the hardware accelerator. As discussed in Section 2.2 and shown in Figure 2, the
size of the kernel is defined as the number of PEs in each row (in SAs) or lane (in SIMDs).
The blocks, as opposed to rows, are then stored in sequence as 1-D arrays in memory (see
Figure 4d).
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(c)
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Kernel size

Figure 4 Comparison of conventional row-based memory arrangement (a, c) and the proposed
block-wise memory arrangement (b, d) for an 8x8 matrix.

BWMA ensures that GEMM operations fetch data from sequential sections of the 1-D
array, as stored in memory. This arrangement is particularly advantageous for systems having
a multi-level memory hierarchy, i.e., having a large/slow main memory and multiple layers of
progressively faster/smaller caches. In these systems, BWMA allows the expected contiguous
data to be pre-fetched correctly into caches and, ultimately, in the hardware accelerator. In
fact, BWMA allows for a higher degree of data reuse across the entire memory hierarchy,
reducing costly accesses to lower memory levels.

3.2 Impact of BWMA in transformer models
In practical applications, even if the input matrix for a transformer model is structured using
RWMA, the transition to-from RWMA and BWMA, is only necessary at the start and at
the end of the entire transformer computation process for the input and output matrices.
Importantly, there is no necessity to rearrange all the intermediate matrices produced by the
GEMM operations, as these can be supplied to the subsequent layer in a block-wise fashion.

Given the multi-layered structure of the transformer and the composition of several
components within each transformer layer, as discussed in Section 2, the overhead associated
with the RWMA ↔ BWMA transitions of input and matrices is insignificant in comparison
to the overall transformer computation. We observed that they consume only 0.1% of the
total execution time for an entire 12-layer transformer model.

Through the transformer model, non-GEMM functions are also influenced by BWMA.
The transpose and activation functions are similar, from a computational perspective, in
conventional RWMA and block-based BWMA. Softmax and Normalization require proper
indexing of blocks in the BWMA case, which has an impact on their run-time. However,
this effect is negligible with respect to the run-time of GEMM operation, as overall non-
GEMM operations take at most 13.5% of the execution time (even when GEMM is hardware
accelerated), as shown in Section 4.2. The impact of BWMA on non-GEMM functions are
explained as follows:

Softmax. The softmax layer computes the exponential function for each element in a matrix
row and normalizes the result, producing probabilities. The access pattern to elements in
a row differs between RWMA and BWMA. Figure 5a illustrates the first eight elements
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Figure 5 Non-GEMM operation access pattern in RWMA and BWMA for (a) Softmax/Normaliz-
ation and (b) Transpose layers. The first accessed eight elements are represented in each experiment.

accessed during reading in RWMA and BWMA. As shown, the data is read consequently in
RWMA, whereas in BWMA the reading is a non-sequential pattern, introducing overhead
in this data arrangement. The processed data is written back to the same matrix position,
leading to additional overhead in BWMA compared to RWMA for the write-back operation.

Normalization. This process involves computing a row’s element sum, and then calculating
the average. Subsequently, the variance is determined using the calculated average and its
square root yields the standard deviation. Each row element is normalized by subtracting
the average and dividing by the standard deviation. The memory access pattern of the
normalization function is identical to the softmax function, as both operate on a row-by-row
basis. Therefore, as demonstrated in Figure 5a, this function presents a slight overhead for
BWMA compared to RWMA.

Transpose. This operation requires swapping elements in the matrix to change its orientation.
The access pattern in this operation differs notably between RWMA and BWMA. Figure 5b
shows the initial eight elements accessed in this function for both arrangements. During data
reads, neither method accesses the data sequentially; however, BWMA exhibits better data
locality. Note that this figure only represents data accessed during reading. Writing back
the data in the memory after transpose is sequential for both data arrangements.

Activation. This function is an element-wise operation. Therefore, the change in data
arrangement has no effect on the memory access pattern in the activation function. Note
that this function is only used in the first feed-forward component of the transformer encoder
layer. Due to its element-wise characteristics, it is integrated directly into the feed-forward
layer immediately prior to saving the computed values back into the memory. As a result,
this particular activation function does not require separate data retrieval from memory.
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(a) (b)

Figure 6 Execution time comparison on BERT model: BWMA demonstrates reduced execution
time for transformer models across various (a) hardware accelerators and (b) number of cores.

4 Experimental Setup and Results

4.1 Experimental Setup
We consider BERT-base model [2], as a case study. The input matrix for this model has
dimensions of 512x768, where 512 represents the sequence length. The Query, Key, and Value
matrices for each of the model’s 12 heads have dimensions of 768x64, while the feed-forward
matrices have a size of 3072.

We used the gem5-X system simulation framework [16] to explore various performance
indicators, including execution time and accesses / failures at different levels of the memory
hierarchy. gem5-X is an open-source environment extending gem5 [13] and adding advanced
features such as shared guest / host spaces and fine-grained checkpointing. The behavioral
models of the accelerators, including the functionality of each defined instruction, are modeled
in C++.

Across experiments, we targeted a hardware system that included a single-, dual-, or
quad-core processor. The system features 32 KB of L1 cache for instructions and 32 KB of
L1 cache for data for each core, 1 MB of L2 cache shared among the cores, and 4 GB of
off-chip memory. Its CPU operates at a frequency of 2.3 GHz. Transformer applications run
in full-system mode on the Ubuntu 16.04 operating system.

We considered two classes of accelerators: systolic arrays with a kernel size of 16 and 8
elements and SIMD functional units with a kernel size of 16 elements. In more detail, we
employ the gem5-X systolic matrix model from [1], integrated as a custom functional unit as
an example of a systolic array. In contrast, we focus on the ARM NEON model, included as
part of the gem5 framework, as a SIMD accelerator.

4.2 Impact of BWMA on inference run-time
Figure 6 presents the execution time of a BERT transformer layer when employing various
hardware accelerators, such as Systolic Array with a block size of 8x8 (SA8x8), SA16x16,
and SIMD on a single-core CPU. As depicted in the figure, BWMA considerably reduces the
execution time of the transformer model by up to 2.7x in the SA8x8 case in comparison to
RWMA proposed by [1].

In cases where the accelerator has multi-core processing units, BWMA is still very effective
in accelerating the transformer model execution. Figure 6b shows the inference run-time for
a single-, dual-, quad-core system, where each core embeds dedicated 16x16 SAs. As shown
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(a) RWMA. (b) BWMA.

Figure 7 Execution Time Distribution in SA16x16 in RWMA and BWMA on a single-core system.
The area of the pie charts is proportional to the measured inference times (2.3x smaller for BWMA).
The run-time of GEMM operation is the majority, even in the presence of hardware acceleration.

in the results, BWMA can decrease the run-time compared to RWMA irrespectively of the
number of cores. Furthermore, this figure shows that the inference run-time for a single-core
BWMA is even less than that of a dual-core RWMA, highlighting that optimizing the memory
arrangement (which has no hardware cost) can be more effective than duplicating the system
resources.

A more detailed view of the run-time of RWMA inference for a SA16x16 case with a
single-core system is provided in Figure 7a. The figure depicts the proportion of execution
time for each individual component. It can be noticed that the non-GEMM components
(Transpose, Softmax, and Add/Norm) add up to only 4.2% of the execution time of a whole
transformer layer. As discussed in Section 3.2, GEMM operations within these components
benefit from memory arrangement, while the non-GEMM components are subject to overhead.

Figure 7b similarly displays the proportion of execution time in a similar way for the
BWMA case. In BWMA, the proportion of GEMMs execution time decreases, while the
non-GEMM components’ run-time increases. Despite this last effect, non-GEMMs only
account for 13.5% of the execution time, with the GEMM portion still comprising the
majority. Hence, as the decrease in GEMM execution time largely overcompensates for the
increased overhead in the non-GEMM components, ultimately resulting in large performance
improvements at the application level.

4.3 Impact on memory accesses

The speed-up outlined above is caused by the better use of the memory hierarchy of BWMA
with respect to RWMA when performing tiled GEMMs. To further illustrate this aspect, we
show the memory accesses in detail for a single- and quad-core system.

Figure 8 displays memory accesses and memory misses for both RWMA and BWMA for
a single-core SA16x16. The data are on a logarithmic scale and encompass cache levels as
well as the main memory. For both methods, the number of data accesses requested by the
processor is almost the same. Thus, the number of L1 data cache (D-cache) accesses remains
nearly constant. In contrast, L1 instruction cache (I-cache) accesses are higher in the case of
RWMA, because the data in each tile have to be explicitly indexed. This is not the case for
BWMA, where the values belonging to each tile are stored in contiguous memory locations.
However, although the I-cache accesses for the RWMA are higher, these are well served by
the L1 I-cache, with comparatively few misses. In contrast, the number of L2 cache accesses
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Figure 8 Memory access comparison in a single-core system equipped with SA16x16: BWMA
results in significantly reduced L2 cache accesses and cache misses compared to RWMA, showcasing
improved data reutilization and performance.

Figure 9 Memory access comparison in a quad-core system equipped with SA16x16. The number
of accesses and misses are shown for each core of the target architecture.

is significantly different in RWMA compared to BWMA. Indeed, BWMA leads to a higher
data reuse in L1 with 12.3 times fewer L1 D-cache misses and, therefore, much fewer L2
accesses. Given the difference in access latency between L1 (2 cycles) and L2 (20 cycles)
caches, the BWMA approach results in much better overall performance.

In Figure 9, we observe a similar memory access and miss pattern during transformer
execution on a quad-core system utilizing SA16x16. In this figure, the logarithmic-scale
plot illustrates the count of accesses and misses at different levels of the memory hierarchy.
As shown in this figure, similar to Figure 8, BWMA exhibits fewer memory accesses and
misses compared to RWMA across each core. Additionally, the first core experiences a
higher number of D-cache and I-cache accesses and misses compared to the other cores. This
discrepancy arises from the fact that, in our study, where GEMM operations are parallelized,
only the first core handles non-GEMM operations in this quad-core setup. Nevertheless,
the overhead associated with non-GEMM operations is negligible in relation to the overall
speedup achieved in the complete execution time of the transformer.

5 Conclusion

This paper has demonstrated the effectiveness of aligning memory data arrangements with
hardware accelerators to enhance the performance of transformer models. Our proposed
arrangement technique, called BWMA, significantly optimizes memory access patterns,
which leads to substantial improvements in processing speed and efficiency. In particular,
implementing BWMA in transformer models has shown up to a 2.7x increase in speed for
single-core accelerator systems. Also, we have shown that while there is a slight increase
in runtime for non-GEMM components due to BWMA, this is negligible compared to the
overall computational benefits. The BWMA method is scalable and applicable to various
hardware architectures and can be effectively utilized in multi-core systems, hence providing
a versatile solution for memory data arrangement in diverse computational environments.
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Abstract
We propose a new live-migration paradigm for virtual machines called zero-copy migration. By making
the working set of the virtual machine available on the destination host through transparently byte-
addressable disaggregated memory, we remove the need for a pre-copy phase while simultaneously
reducing the performance impact of the post-copy phase. We describe an open-source implementation
of the proposed paradigm based on QEMU-KVM and libvirt, and we evaluate the efficiency of the
approach with a deployment on a functional hardware prototype of a memory disaggregation system
realized using ThymesisFlow. Using a series of configurable benchmarks, we show that the lead time
and blackout time of the migration are equal to best-case scenarios of traditional pre-copy, post-copy
and hybrid approaches. Key performance metrics from the perspective of applications running in
the virtual machine, such as memory latency and throughput, are improved by up to three orders of
magnitude, increasing both flexibility and responsiveness of live-migrations in the datacenter.
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1 Introduction & Motivation

Flexibility of deployment and serviceability of the infrastructure are key features of the
cloud datacenter. Workloads are contained in Virtual Machine (VM) instances as a unit of
deployment with diverse resource footprints. This results in an unbalanced allocation of server
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resources that creates fragmentation over time. VM migration is a useful tool to rearrange
workloads, and both mitigate resource fragmentation as well as respond dynamically to
deployment challenges without losing availability. However, live-migrating a virtual machine
between physical machines incurs a severe penalty on the service quality of the contained
workload. Both in literature and in practice it has been established that the performance
implications of migrating VM instances with large memory footprints and write-intensive
guest workloads can be so substantantial as to render the instance un-migratable [17].

However, modern applications such as graph analytics, in-memory databases and artificial
intelligence oriented applications require increasingly large amounts of memory, in the order
of hundreds of Gigabytes[21]. Migrating VMs hosting such workloads and transferring such
large amounts of data over the network saturates the available network bandwidth, interfering
with applications running on the infrastructure, and further exacerbating the performance
issues of traditional live-migration approaches.

Techniques exist that are aimed at mitigating these issues, such as using Remote DMAs
(RDMA) [9]. While these solutions are indeed effective, they don’t completely mitigate the
latency degradation during post-copy transfers, and consequently don’t solve the problem of
migrating very large VM instances.

The advent of Composable Disaggregated Infrastructures (CDI) [3], and in particular
the ability of accessing remote memory over a standard PCIe 5.0 fabric thanks to Computer
Express Link (CXL) [5] fabric interconnect standard, opens new avenues for improving
virtual machine migration techniques. In a CDI, the physical boundaries of a server become
indistinct. Memory and compute resources are broken into disaggregated components over
a dedicated network fabric and can be composed via software. Existing prototypes show
that in the near future, systems may become commercially available that have the ability
of transparently accessing memory from a shared pool or from neighboring nodes with a
load/store semantic. CXL also shows promise of breaking the bandwidth bottleneck of
modern x86 based server processors [2] in a similar manner that the introduction of the
Open Memory Interface (OMI) allowed on POWER10™ systems. CXL over ethernet is also
being explored [20], both with the possibility of forming memory pools, but also for allowing
disaggregated access to a nodes private memory.

In this paper we present the first implementation of virtual machine live-migration based
on disaggregated memory. To evaluate the approach on real hardware, we utilize the open-
source disaggregated memory prototype, ThymesisFlow [18] that enables borrowing memory
from a neighboring machine. Although ThymesisFlow relies on the OpenCAPI [14] coherent
interconnect and is targeting IBM POWER9™ based server systems, the approaches outlined
in this paper are independent of the choice of disaggregated memory interconnect and are
applicable to similar architectures created on the basis of CXL or other technologies. We
investigate how traditional live-migrations of virtual machines can utilize disaggregated
memory as a medium for memory access and transfer, in order to improve the performance
metrics from the perspective of both the hypervisor and the guest workload during the
migration.

2 State of the Art

VM live migration was first presented as a response to the necessity for more flexible
workload distribution in the datacenter by Clark et al. and Nelson et al. on both the
Xen and VMWare VSphere virtualization platforms [1][4][12]. Virtual machine instances
present the opportunity of migrating self-contained units of work, mutually independent
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Figure 1 The phases of virtual machine migration, highlighting the duration in which the machine
is paused and thus the service unavailable (blackout time) as well as the duration in which the
service is degraded (brownout time).

and decoupled from the operating system, as opposed to previous work which focused on
the migration of individual processes. Later approaches extended the scope of live virtual
machine migration to new transfer media such as wide area networks [7] and RDMA [19]. To
further mitigate the performance impact of live-migrations, the pre-copy paradigm heavily
utilized in traditional VM migrations has been steadily improved [8, 11] and the post-copy
paradigm was introduced [6], enabling hybrid migrations that combine the benefits of pre-
and post-copy. In 2018, Ruprecht et al. have described the application of VM migration in
Google datacenters and outlined the necessity for an improved deployment flexibility with
minimal application downtime. They have also shown that using state-of-the-art migration
technologies, the performance impact on guest systems is still a relevant concern [16].

2.1 Sequence of a Traditional Hybrid VM Live-Migration

Figure 1 outlines the sequence of a standard virtual machine live-migration utilizing both a
pre- and post-copy phase and summarizes their associated impact on the guest. First is a
pre-copy phase, in which memory pages are transferred concurrently from the source to the
destination host. The degradation of the guest system due to the introduced contention on
the memory subsystem is described as a pre-copy brownout.

After concluding the pre-copy phase, the virtual machine is paused on the source and the
state of the runtime is transferred to the destination to be resumed there. In the blackout
time between pausing and resuming the virtual machine, the services provided by the guest
are unavailable.

Lastly, when the guest has been successfully resumed on the destination, the remaining
memory pages are transferred in a post-copy phase. During this phase the guest performance
can be degraded significantly if memory pages are accessed that are not yet locally available
on the destination, leading to a post-copy brownout where the application must wait for the
memory to be transferred from the source before execution can continue.
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2.2 Beyond State of the Art
While both post-copy and pre-copy phases of the virtual machine migration have been shown
to be useful techniques to reduce the duration of the blackout time and increase service
availability, both techniques have disadvantages. During the pre-copy phase, pages that are
overwritten (dirtied) by the guest after successful transfer to the destination will need to be
invalidated, and eventually re-transferred. As a consequence, workloads that produce frequent
write accesses drastically reduce the effectiveness of a pre-copy phase[10]. Conceptually, the
pre-copy phase also introduces a lead-time delay between initiating the migration and the
release of the compute resources on the source, which may be undesirable when the migration
needs to be performed quickly, for example to reduce thermal load.

Similarly, the post-copy phase can cause severe performance issues if the guest frequently
needs to wait for the remote memory to become available. Access to pages not yet migrated
would require the generation of traffic on the network, a physical link characterized by much
higher latency compared to the memory bus. As a consequence, applications that exhibit
unfavorable memory access patterns can become unresponsive during traditional migrations,
leading to service downtime much longer than the machines apparent blackout time.

The introduction of disaggregated memory with the paradigm of zero-copy live-migrations
allows the migration of virtual machines unimpeded by these issues. Zero-copy live-migration
means that the memory of the guest can be made immediately and transparently byte-
addressable on the destination without the need to pre-copy any memory, and without
incurring expensive page-faults when accessing remote memory. The virtual machine can be
paused on the source and immediately resumed on the destination, eliminating the lead-time
delay and minimizing the blackout time. Coupled with a modified post-copy phase also
utilizing the disaggregated memory to efficiently copy and re-map the memory from the
source to the destination, the virtual machine can be migrated completely with greatly
reduced performance degradation during the post-copy brownout phase when compared to
traditional live-migrations.

Very recently, first steps have been made to design a virtual machine migration over
CXL by the nil-migration project [13], utilizing CXL 3.0 to create a shared disaggregated
memory pool device. To perform the migration, the working set of the virtual machine on
the source will be transferred to pooled memory, and then transferred back to local memory
on the destination. However, no concrete implementation and evaluation of the technique is
available at the time of writing this article. In our prototype, we don’t use a memory pool
and instead directly promote the private memory of the source machine that contains the
working set of the virtual machine instance to shared memory. However, the same approach
could be used in case of a pooled memory system.

3 Architecture of the Memory Disaggregation Prototype

This work is based on a real hardware-based disaggregated shared memory system, im-
plemented thanks to the ThymesisFlow [15] [18] open-source project. ThymesisFlow is a
HW/SW framework that uses OpenCAPI [14] attached FPGAs to enable memory disaggre-
gation across IBM POWER9™ servers via the memory borrowing template (Figure 2). The
minimum working system is composed of two nodes: a lender and a borrower. The lender
node is capable of reserving a portion of its local main memory for access from a remote
machine. The borrower accesses memory from a remote lender using load/store semantics, as
if the memory was physically attached to it. The remote memory is attached to the lender
machine using either the abstraction of an additional, CPU-less, NUMA node or as a memory
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Figure 2 Abstract representation of the ThymesisFlow HW/SW prototype.

mapped file. On the hardware side, each node part of a ThymesisFlow deployment must
support OpenCAPI and be equipped with a supported FPGA card. In the case of this paper,
we used IBM IC922 POWER9™ servers and AlphaData 9V3 FGPAs.

On the software side, ThymesisFlow offers libthymesisflow which consists of a set of
user-space applications that are used for controlling the configuration of the FPGAs and
the actual attachment of memory to the borrower OS memory subsystem. Memory in
ThymesisFlow can be assigned in exclusive mode to the borrower or shared between borrower
and lender machine. In the exclusive mode, the borrower can decide to hotplug the memory
to the OS or to access it via a custom mmap and Linux character device (useful for assigning
memory to a specific application/process). In the shared case, instead, both parties can
either use the shared memory library (libtfshmem) provided as part of the ThymesisFlow
suite or have the memory exposed as a memory mapped file. In this paper we leverage the
shared memory via memory mapped file.

Logically this disaggregated memory architecture is what we call a peer-to-peer approach,
where every node in the system is able to map every other nodes memory. In contrast, there
is the pool architecture with a separate memory pool, which nodes with private memory
can map and share. While we require the former architecture, it is possible to adapt our
prototype to the latter as well. Additionally, even though the underlying technology is
OpenCAPI, which has been merged with the CXL Consortium in 2022, our techniques can
be applied to CXL as well. That said, the integration of CXL in Thymesisflow is beyond the
scope of this work.

4 Design of the VM Migration

We implemented the disaggregated zero-copy virtual machine migration by extending the
open-source virtualization and system emulation software QEMU-KVM 1. QEMU-KVM is a
type 1 hypervisor in Linux, capable of supporting both hardware accelerated virtualization
backends, as well as advanced platform and orchestration abstractions such as libvirt. For
the live-migration of virtual machines, QEMU already natively supports the pre- and post-
copy paradigms. The existing advanced migration capabilities of QEMU, coupled with the
well-documented and active open-source codebase and community made it an ideal testbed
for implementing the zero-copy live migration. To implement our prototype, we extended
QEMU to enable a migration from the disaggregated memory lender to the borrower.

1 Our modifications to QEMU are also open source and available via https://github.com/disaggr/
qemu/tree/thymesisflow
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Figure 3 A conceptual visualization of the page table mappings provided to QEMU during the
zero-copy migration.

To enable the disaggregated live-migration, we replace the live-migration memory moving
behavior of QEMU both on the source and the destination by supplying the relevant function
tables with custom implementations. We disable the pre-migration handling of all RAM
blocks, so no pre-copy phase can occur on the source, and install a custom handler for the
post-copy phase.

4.1 Organizing the Memory Backing Store
In order to make the disaggregated memory available to the virtual machine on both the
source and destination, we utilize the file-mapped memory backends implemented in QEMU
to provide the VM with the same view of its memory on both the borrower and lender
side. To achieve this, we create a shared memory segment of sufficient size on the lender
side and supply its path to QEMU. This memory segment is shared with the ThymesisFlow
Agent that communicates with the FPGA and that owns the memory that is lent to the
borrower. By using a shared memory segment for this lent memory, we can make sure that
the memory presented on the lender side is consistent with the memory on the borrower side
after migration.

On the borrower, the system is configured with a custom kernel module to interface with
the FPGA and present the remote memory as a special character device that supports the
mmap system call. We configure QEMU to use this character device as mapping file for the
VM memory. This ensures that the order of the memory pages is preserved from lender to
borrower side, making the view on the physical address space from the perspective of the
guest identical on both source and destination. The layout of the addresses and translations
is visualized in Figure 3. This way, with one exception outlined below, all memory remains
transparently accessible to the guest machine at all times, even while the memory is being
copied during the post-copy phase.

4.2 Disaggregated Post-Copy Transfers
To implement a disaggregated post-copy transfer, we start a concurrent thread that incremen-
tally moves the VM memory from the source to the destination by copying and immediately
remapping pages of memory as outlined in Figure 4.
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Figure 4 A conceptual visualization of the RAM transfer in QEMU during the disaggregated
post-copy phase.

Each page is transferred in three steps. Firstly, to avoid data loss during the small time
window of transfer, the page is briefly locked for writing, such that no VM thread may be
modifying a page that is currently being moved from source to destination. This lock causes
an access violation to occur in case the guest does write to the locked memory, upon which
the failed memory access is deferred and retried. Secondly, the page is transferred from the
lender to the borrower. Finally, the page is used to replace the mapping of the corresponding
page of remote memory in the VMs working set, and the write lock is lifted, completing the
page transfer.

4.3 Finishing the Migration
The remainder of the virtual machine state, such as the CPU registers and the device
configurations, are transferred via the network using the existing implementation in QEMU.
If the disaggregated post-copy phase is enabled, all memory of the VM will be local on
the destination after the migration completes. Otherwise, in cpu-only mode, the live-
migration completes with all memory remaining remotely but still entirely transparently
byte-addressable on the borrower machine.

5 Performance Evaluation

In the evaluation of the performance characteristics of the different types of VM migration,
we distinguish between two types of performance metrics that we can observe in our testbed.

Macro-properties of the migration are performance characteristics observable by the host
system and the virtual machine process, including the total time of migration, total ram
transferred and the blackout and pre- and post-brownout times of the guest.
Micro-properties of the migration are performance characteristics that are internal to
the VM and are observable by the guest workload processes. These metrics include the
memory latency and the application throughput during the migration.

To evaluate the performance characteristics of the zero-copy virtual machine migration, we
compare our approach against state-of-the-art hybrid live-migration and analyze individual
migration runs to gain insight on the behavior of the guest in order to determine the impact
of a migration.
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5.1 Infrastructure setup and orchestration
The testbed used for this evaluation is described in Section 3. A third machine on the same
network was used to host the evaluation orchestrator and remotely collect the performance
data of the migration.

We use ansible playbooks and libvirt2 to automate repeatable runs of the benchmarks, as
well as orchestrate the virtual machines and make the required hypervisor calls. The virtual
machine subjected to the live-migration is a Debian bullseye GNU/Linux installation with 2
virtual CPUs, 20GiB of RAM, and configured with an unmodified kernel and firmware3.

5.2 Description of the Benchmarks
One of the most influential factors on the migration of a virtual machine is the memory
behavior of the guest. In particular, the rate at which the guest machine produces dirtied
pages of memory can influence both the macro and micro performance characteristics of
the migration. A second important factor to consider is the memory access pattern of the
guest workload. For this reason, we implemented the SMOG microbenchmark suite4 capable
of producing dirtied pages in the guest at a configurable rate. We also extended SMOG
to be capable of accessing memory at configurable access patterns, such as a randomized
pointer-chaser workload. These configurable workloads are a useful tool to examine the micro
performance characteristics of the guest during migration, in particular memory latency and
throughput.

5.3 Memory Latency Degradation during the VM Migration
In this work, we try to investigate the detailed performance characteristics of the guest under
the stress of the migration, where certain areas of the memory may still be unavailable, or
only available at high latency costs.

Figure 5 visualizes the average latency in nanoseconds of the randomized pointer-chasing
workload of SMOG over a 16GiB memory region over the course of the migration. The
graphs show that before the migration starts and after it concludes, the memory latency
rests at a consistent low average of 80 nanoseconds, which is in alignment with the local
memory latency of the machines in our testbed.

During the migration, the impact of the remote memory on the workloads average latency
can be separated into two phases. With the start of the migration at a time of 0.0 seconds, the
measurements show a sharp increase in latency. This is due to the high latency of the memory,
which at this point resides entirely in the remote memory of the lending machine. Since the
caches on the borrowing machine are cold and the page tables of the guest machine, which
are required by the guest to make memory accesses are also not prefetched, the first accesses
to the remote memory are expensive. Through the caching of the page table structures in the
L3 cache as well as the beginning transfer of the physical memory region of the VM, we can
observe a sharp decrease of the memory latency during the first few seconds of the migration.
Once the majority of the page tables used by the benchmark have been transferred or cached,

2 The playbooks and scripts used to create the performance measurements used in this evaluation are
available on github: https://github.com/disaggr/vm-migration-public

3 The scripts used to bootstrap and configure the guest systems is available on github via https:
//github.com/disaggr/qemu-image-factory

4 the SMOG benchmark suite is open-source and available on github via https://github.com/disaggr/
smog

https://github.com/disaggr/vm-migration-public
https://github.com/disaggr/qemu-image-factory
https://github.com/disaggr/qemu-image-factory
https://github.com/disaggr/smog
https://github.com/disaggr/smog
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(a) Memory latency degradation during a disaggre-
gated post-copy migration.

(b) Memory latency degradation during a tradi-
tional hybrid migration.

Figure 5 The memory latency as measured by a randomized pointer-chasing workload during
both state-of-the-art hybrid and disaggregated zero-copy migrations.

the memory latency decrement levels out into the second phase, in which the amount of
transferred working set pages of the pointer chasing workload determines the average latency,
which decreases linearly with the remaining portion of remote pages.

In total, approximately 10 percent of the memory has to be transferred more than once
during the migration. This corresponds to cache lines that are requested by the guest
MMU and provided by ThymesisFlow before the pages are transferred by the RAM mover
thread in qemu. When compared to the hybrid migration, it becomes evident that the
average memory latency of the guest workload during the zero-copy migration is up to 3
orders of magnitude lower than for the state-of-the-art approach. There are two reasons
for this dramatic difference. Firstly, the post-copy migration relies on expensive page-fault
mechanisms to make the remote memory locally available. Secondly, the disaggregated
memory benefits from a finer granularity of the transferred memory, since only cache-lines of
128 Bytes are transferred for each remote memory request, whereas traditional post-copy
transfers entire pages of 4 KiB of memory, which further impacts the average memory latency.

5.4 Memory Throughput Degradation during the VM Migration

The second metric we investigated is the throughput of SMOG processing a sequential
combined read/write workload with strides equal to the memory page size. For this benchmark,
SMOG was configured to a nominal throughput of 16 GiB/s of memory pages every second,
and we measured the actual throughput during migration and visualized the results in
Figure 6.

Similarly to the compared memory latency metrics, the throughput of the benchmark
running in the disaggregated post-copy phase consistently outperforms the benchmark running
in the traditional post-copy phase. It is noteworthy that the pre-copy phase of the hybrid
migration provides little benefit to both latency and throughput due to the write-heavy
workload configuration.
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(a) Memory throughput degradation during a dis-
aggregated post-copy migration.

(b) Memory throughput degradation during a tra-
ditional hybrid migration.

Figure 6 The memory throughput as measured sequential memory read/write workload during
both state-of-the-art hybrid and disaggregated zero-copy migrations.

5.5 Analysis of Migration Times and Transferred Ram
We additionally compared two types of performance metrics of the virtual machine migration
from the perspective of the hypervisor. Firstly, the total amount of memory transferred
as an indicator of increased contention on the network, which may be shared between the
implementation of the migration and services running on the same network. In this context,
the following times are particularly of interest.

Total Time of Migration – The time between initiating the migration until it is completed.
Blackout Time – The time in which the guest is paused, and no CPU cycles are allocated
to applications and services running in the guest.
Pre- and Post-Copy Brownout Time – The time in which the performance of the appli-
cations and services running in the guest are degraded because of an active pre-copy or
post-copy transfer.
Migration Delay – The time between initiating the migration until the execution of the
guest is paused and the last CPU cycle is allocated to the guest and its applications and
services running on the source machine.

Some of these metrics are independent of the differences between a zero-copy and a
traditional live-migration. For instance, the blackout time of zero-copy live-migrations is
guaranteed to be equal to the best case of traditional migrations. Also, the total time of
migration as well as the duration of the brownouts will only depend on the size of the VM
working set and the bandwidth of the transfer medium. However, by using a dedicated
medium for the disaggregated memory transfer, we reduce resource contention on the network,
which may be relevant to some applications. A comparison of the total time of migration, and
the related metric of total amount of ram transferred are outlined in Figure 7 for different
amounts of memory dirtying rate by the guest workload, as well as different types of VM
migration.

Our measurements reaffirmed the known issue that pure pre-copy migrations can become
unable to meet the threshold of valid pages on the destination for higher rates of dirtied
memory in the guest. Because these are academic edge-cases, we are not showing the full
extent of these effects on the plots. In real world scenarios, typically a hybrid live-migration
approach is used, which limits the number of passes during the pre-copy phase, but still uses
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(a) The total time of migration. (b) The total amount of ram transferred.

Figure 7 A comparison of the total time of migration and total transferred memory during both
traditional and disaggregated virtual machine migrations.

a pre-copy phase to help mitigate the performance impact of the post-copy phase. In our
experiments, the hybrid migration introduced a maximum overhead of the size of the memory
region used by the benchmark. The disaggregated migrations also incur a slight overhead in
transferred ram due to memory that is being accessed remotely by the application before
being transferred to the borrower. This overhead is also visible in the total time of migration,
but this comparison is dominated by a difference in the throughput between our hardware
prototype and the network. We expect that future hardware for disaggregated memory will
show even more impressive results and easily bridge that gap in throughput.

In consequence, the zero-copy virtual machine migration paradigm is capable of migrating
virtual machine instances regardless of working set size or workload behavior with both a
greatly reduced performance impact on the guest, as well as a more predictable runtime
behavior than traditional virtual machine migration techniques, pushing the boundaries for
datacenter workload placement flexibility and transparency of deployment.

6 Conclusions and Future Direction

In this paper, we have introduced the concept of a disaggregated zero-copy virtual machine
migration utilizing byte-addressable, disaggregated shared memory, for which we have used
the ThymesisFlow prototype technology. We have shown that using disaggregated memory
for the resource sharing and transfer during a virtual machine migration is beneficial in
two ways. Firstly, from the perspective of the hypervisor it shows potential to improve the
flexibility of migrating resources through reduced delays, and to mitigate problems with
write-intensive guests. Secondly, from the perspective of the application the degradation of
memory latency and throughput are greatly reduced when compared to traditional post-copy
migrations. In conclusion, we believe that resource migration, and in particular virtual
machine migrations in cloud datacenters are a good use-case for newly emerging memory
disaggregation technologies. In future work, it needs to be evaluated whether memory
pools could also be utilized in a similar manner, and how CXL shared resources as defined
in the recently released CXL 3.0 standard could be utilized to that regard, to make the
concept outlined in this work more widely available. In the future, fully disaggregated virtual
machine working sets could become possible, where the migration could be reduced to merely
reallocating the compute resources of the virtual machine instances inside the datacenter.
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Abstract
Precision tuning is an increasingly common approach for exploiting the tradeoff between energy
efficiency or speedup, and accuracy. Its effectiveness is particularly strong whenever the maximum
performance must be extracted from a computing system, such as embedded platforms. In these
contexts, current engineering practice sees a dominance of memory-unsafe programming languages
such as C and C++. However, the unsafe nature of these languages has come under great scrutiny
as it leads to significant software vulnerabilities. Hence, safer programming languages which
prevent memory-related bugs by design have been proposed as a replacement. Amongst these
safer programming languages, one of the most popular has been Rust. In this work we adapt a
state-of-the-art precision tuning tool, TAFFO, to operate on Rust code. By porting the PolyBench/C
benchmark suite to Rust, we show that the effectiveness of the precision tuning is not affected by
the use of a safer programming language, and moreover the safety properties of the language can be
successfully preserved. Specifically, using TAFFO and Rust we achieved up to a 15× speedup over
the base Rust code, thanks to the use of precision tuning.
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1 Introduction

Proper memory management is crucial to ensure program stability and prevent software
vulnerabilities which can be exploited by cyber-criminals to cause unauthorised actions for
their own benefit. In fact, memory-related weaknesses remain a major concern in software
development, as highlighted in the Top 25 Most Dangerous Software Weaknesses report by
Mitre. Out-of-bounds writes held the top spot for three consecutive years, while several other
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memory-related issues, such as use-after-free and NULL pointer dereference, appear on the
list every year [6]. This is also stated by the United States National Security Agency (NSA),
which in a recent report (at the time we are writing) advocates the use of memory-safe
programming languages [10]. However, the implementation of preemptive measures to ensure
memory safety in programming languages can have an impact on performance. Specifically,
the use of garbage collection and array bounds checking, which are common in memory-safe
languages, can result in significant performance overhead. As a result, while memory-safe
languages have been available for a long time, the embedded world is still dominated by the
use of C and C++, which give no guarantee on how the programmer handles the memory.
Some memory-safety features have been added to these languages over the years, specifically
in C++ [7], however they are opt-in and not universally adopted. The reason is that the
ability of C and C++ to operate at lower (unsafe) abstraction levels is desired by programmers
in order to avoid the inefficiencies generated by memory-safety features. Indeed, some of
the first memory-safe languages such as Java and C# completely disallow the use of unsafe
concepts such as pointers. As a result, more recent language designs provide safe and unsafe
subsets that also allows their use in low-level programming tasks.

One language of this sort that has gained considerable traction in the industry [8] is
Rust1. Its goal is to allow the adoption of these languages in security-sensitive applications
such as operating system development and embedded systems. According to the 2023 Annual
Stack Overflow Survey [11], Rust is positively ranked among people who want to learn a
new programming language – 6th in the desired programming language category – but what
makes it really attractive is the experience of using it. Rust placed first in the admired
category with a score of 84% – twice as much higher than Java and C, and more than 20%
better than C#. The admired category represents the proportion of users who have used the
same technology in the past year and want to continue using it. As such, it is reasonable to
expect that the popularity of this language will continue to grow in the coming years.

In general, software development for embedded systems often requires the use of specific
optimization techniques to cope with reduced computational capabilities and memory sizes.
Among these techniques is Precision Tuning [3], which trades off result accuracy for time and
energy efficiency by reducing the bit width of an operation, or by switching from floating
point to fixed point arithmetic. Precision Tuning is part of the larger family of Approximate
Computing (AxC) [12]. Precision Tuning impacts the data width, and therefore all memory
accesses. As such, it can help to offset some of the penalties introduced by the memory
management integrated within modern programming environments like Rust. However, at
the time of writing and to the best of the authors’ knowledge, no Precision Tuning tool
supports Rust. Among the most notable recent efforts in the field of precision tuning, we
notice that TAFFO [1] is an automated Precision Tuning set of plugins that leverages the
LLVM compiler framework [9]. As such, it provides a useful baseline that could be integrated
with other compiler components based on LLVM, which is currently the industry standard
for Rust compiler development. Indeed, rustc – the reference Rust compiler implementation –
is based on this framework.

In this work, we aim at filling the gap with automated Precision Tuning support in
memory-safe programming languages. To this end, we use Rust as a test-bed for a proof-of-
concept implementation that employs TAFFO as the engine for performing the analyses and
transformations required for this kind of approximate computing task. More specifically, we
integrate the TAFFO framework with rustc by providing the appropriate components that

1 https://www.rust-lang.org

https://www.rust-lang.org
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allow Rust code to have the programmer-inserted metadata and annotations required by
TAFFO to work. As a side-effect, this demonstrates the language-independence of TAFFO,
as well as its ability to optimise the code without negatively affecting memory safety.

We evaluate the effectiveness of TAFFO applied to Rust benchmarks, when compared to
its effectiveness on C versions. The results show that TAFFO provides similar performance
improvements in both C and Rust, when the rustc compiler is able to optimize away the
out-of-bound access guards. When this is not possible, the benefits of TAFFO increase.

1.1 Key contributions
The main contribution of this work is the introduction of a precision tuning framework
in the context of a memory-safe programming language. This task is non-trivial due to
Rust’s inability to classify as memory-safe some of the features required to perform precision
tuning of selected variables. We therefore show that those features, when used to convey the
information to TAFFO, do not lead to actual unsafe actions, and that the TAFFO precision
tuning process – after minor adjustments – does not harm the memory safety guarantees
enforced by Rust.

As additional contribution, we provide a new Rust port of the PolyBench suite, that is
closer in design to the original PolyBench/C, to allow a better comparison between the rustc
and Clang compilers when employing a particular optimisation, in this case precision tuning.

1.2 Structure of the paper
The rest of this paper is organised as follows. In Section 2, we cover the background on
TAFFO and Rust. In Section 3, we describe the proposed approach for precision tuning a
Rust program with TAFFO. In Section 4 we discuss the effectiveness of the integration, first
by describing the experimental setup, and then by providing an assessment of the integrated
system. Finally, in Section 5, we draw some conclusions and outline future directions.

2 Background

TAFFO and Rust are two different but complementary technologies. While Rust is a modern
programming language, TAFFO is a set of compiler passes for precision tuning. In this
section we discuss the peculiarities of these two tools in order to provide a background for
the later discussion of their integration.

2.1 Memory-Safety Properties of Rust
To achieve its memory-safety properties, the Rust language enforces strict rules to prevent
common programming errors such as NULL pointer dereferences and buffer overflows. In
particular, the rustc compiler employs a dedicated component, the borrow checker, to enforce
these rules. Among others, the borrow checker ensures that variables are initialised before
they are used. It ensures that values, whether they are held in variables or temporaries,
are not moved twice, or while borrowed. Moreover, it ensures no variable is accessed while
mutably borrowed (except through the reference), and no variable is mutated while immutably
borrowed. In general, Rust’s ownership system [5, 13] is based on the idea that if a certain
object (of type T) is owned by multiple aliases (&T), then none of them can be used to
modify it.
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Figure 1 Architecture of TAFFO.

The borrow checker can be a severe limitation when implementing data structures and
synchronisation mechanisms, which require the ability to mutate an aliased state. To
overcome these limitation, Rust provides the unsafe keyword which allows developers to
switch to unsafe Rust. Unsafe Rust is a strict superset of Rust that enables developers to
perform actions that are normally prohibited, among which the invocation of unsafe function
will be relevant to this work. It is important to understand that the unsafe keyword does
not disable any of the other Rust safety checks, and it does not interact with the borrow
checker in any way.

The combination of strict memory safety guarantees and flexibility provided by the
unsafe code regions makes Rust a desirable target for our efforts. However, it is critical
to investigate the best approach to integrate the precision tuning process within the Rust
environment. In particular, it is in our interest to reuse the memory checks provided by
rustc and do not invalidate them. The rustc compiler internally employs three Intermediate
Representations (IRs), namely High-Level Intermediate Representation (HIR), Mid-level
Intermediate Representation (MIR), and LLVM-IR. The borrow checker works at the MIR
level. As a consequence, analyses and transformations performed at the LLVM-IR level
have no visibility on the constraints imposed by it, and may in principle thwart the safety
guarantees provided by the language if they do not strictly adhere to the semantics imposed
by the others intermediate presentation.

2.2 TAFFO: The Compiler-based Precision Tuner
TAFFO [1] is a precision tuning that operates at the level of the intermediate representation
provided by LLVM (LLVM-IR). The archiecture of TAFFO consists of five LLVM analysis
and transformation passes which cooperate in building the final precision-tuned program.
These passes are Initializer, Value Range Analysis (VRA), Data Type Allocation (DTA),
Conversion, and Feedback Estimator (FE), as depicted in Figure 1. All of these passes are
independent from each other, as they share data entirely through the metadata facilities
provided in LLVM-IR.

A programmer who wishes to use this framework should first add specific annotations
to the source code in order to tell TAFFO which variables must be involved in the tuning
process. This task is achieved through Clang annotations that can be added to any variable
declaration – including function arguments – as shown in the following example.

1 float x __attribute__((annotate("target(’init’) scalar(range(-16384, 16384) final)")));

Through annotations the user of TAFFO may also specify estimates for the range of values
that a variable can have at runtime. This hint is required for variables whose initial definition
does not depend on any other annotated variable, i.e. for input variables. As an example,
in the annotation shown above, the “target” declaration gives a name to the variable and
informs TAFFO about where to start collecting value range information. The “scalar”
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declaration contains information about the values the variable will assume at runtime: in
particular, “range” specifies their range, and “final” also adds the information that this
range is valid for the entire execution of the program. After annotating the source code, the
precision tuning operation is performed simply by invoking the “taffo” command line tool,
which is a drop-in replacement for GCC or Clang. The output will be an executable tuned
for the current build machine.

Internally, the passes of TAFFO operate by first reading the annotations inserted by
the user (the Initializer pass). Then, the VRA pass calculates the numerical intervals for
annotated variables and other variables that depend on them. At this point, the tuned data
types are selected in the DTA pass. At the time of writing, three approaches are available
within this pass. The first one is a simple greedy algorithm that always assigns the fixed-point
data type with the highest valid point position to each variable. Alternatively, the user can
manually specify a floating point format which will be used for all the annotated variables.
Finally, the third and most sophisticated option allows for a fully automated tuning based on
precision estimation through the construction and optimization of an integer programming
model of the code [2]. At the end of the pipeline, the Conversion pass modifies the LLVM-IR
using the data types picked by the previous passes. Optionally, the FE pass can provide the
user with an estimation of the error in the tuned program [4].

3 A Precision Tuner for Rust

The key challenge when it comes to perform precision tuning on Rust is the positioning
of the precision tuning action within the compilation flow of Rust code. As anticipated in
Section 2.1, the rustc compiler implements its memory checks on the code when it reaches the
MIR stage of the compilation pipeline. It follows that precision tuning – to avoid conflicting
with the rustc checks – should be performed either entirely before this stage, or entirely
after it. This situation can be compared to the dilemma of performing precision tuning
on high-level description of the code, such as on the source code, or onto a lower-level
representation of the code. As mentioned in a survey on this topic [3], fine-grained precision
tuning requires a lower-level representation of the code, and therefore we opt for introducing
the precision tuning process entirely after the rustc memory checks.

On the positive side, this challenge can easily be solved by employing precision tuning
components that are already built for this level of code representation, such as TAFFO.
However, there are also integration issue between TAFFO and the rustc compiler: one in
particular is the mechanism underlying the creation of the programmer annotations, as
required by the TAFFO Initializer pass. For C and C++, Clang annotations are employed
for this purpose, as exemplified in Section 2.2. During the generation of the LLVM-IR
code, Clang simply converts each annotation to a call to the llvm.var.annotation intrinsic
exposed by LLVM. This intrinsic function takes four parameters, representing the annotated
variable, the annotation text (a string), the source file name and line number of the annotation.
Notice that these annotations are a built-in extension provided by Clang, and their existence
is independent from TAFFO.

Ideally, the same approach could be replicated with rustc. Unfortunately, this is not
possible since Rust does not have an equivalent annotation syntax, hence we must design
a dedicated solution. To solve this problem, we propose a Rust-native variable annotation
mechanism. This annotation mechanism leverages the metaprogramming features offered by
Rust procedural macros. The peculiarity of this kind of macros is that they can manipulate
the program’s token stream. We introduce the annotate! procedural macro, which takes
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two parameters: the annotated code and the annotation string. This last string supports the
same syntax as TAFFO annotations for C and C++. As an example, consider the following
fragment of Rust code:

1 annotate!(let mut tmp = [0_f32 ; I * J],
2 "target(’init’) scalar(range(-16384, 16384) final)");

In this snippet, the tmp variable is associated with a value range of [−16384, 16384]. The
procedural macro annotate! translates the variable declaration into the following Rust code:

1 static mut range: &’static str = "target(’init’) scalar(range(-16384, 16384) final)";
2 static mut name: &’static str = "2mm.rs";
3 let mut tmp = [0_f32; I * J];
4 unsafe {
5 var_annotation(
6 &mut tmp as *mut _ as *mut i8,
7 &mut range as *mut _ as *mut i8,
8 &mut name as *mut _ as *mut i8,
9 2,

10 );
11 };

The original variable declaration is preserved, while two new variables – range and name
– are declared to hold the annotation string and the name of the source file respectively.
Finally, the expanded body of the macro calls the var_annotation function with the same
four parameters as the llvm.var.annotation LLVM intrinsic in the original Clang TAFFO
interface. var_annotation is indeed a call to the LLVM intrinsic, which is exposed through a
feature of the Rust compiler that exposes all the LLVM intrinsics as a set of foreign functions,
employing the foreign function interface for C calls (FFI).

It is worth noting that the FFI call to var_annotation is wrapped in an unsafe construct.
Indeed, FFI calls in Rust are considered unsafe actions in general, and must always be wrapped
in an unsafe block guard.

3.1 Soundness of unsafe

Since the annotate! procedural macro introduces an unsafe region in the code for each
variable involved in the precision tuning, we need to assess the impact of these regions
in terms of memory safety. As mentioned before, the unsafe region is added because of
the presence of a compiler intrinsic – that is, a function defined and handled directly by
the compiler. Intrinsics are typically provided by compiler implementations to allow the
use of non-standard functionalities or extensions that heavily depend on specific machine
instructions to be implemented in the most optimised way. The most common application
of intrinsics is for exploiting vectorisation primitives when the language does not provide a
machine-independent way to access them.

In terms of memory safety, it is useful to partition intrinsics between code-generating
and non-code-generating ones. Code-generating intrinsics in LLVM include, for instance,
llvm.log10.* and llvm.sin.*, which generate machine-optimised code. Non-code-
generating intrinsics, instead, are used only for internal purposes by the compiler, and
are ignored by the code generator. Code-generating intrinsics may be memory-unsafe, espe-
cially if the code they generate involves memory operations, whereas non-code-generating
intrinsics are safe, unless the compiler uses the information they carry to otherwise affect
which memory accesses are made.

In our specific case, llvm.var.annotation belongs to the non-code-generating class. It is
only handled in the middle-end of LLVM by keeping the annotation content tied to its variable
declaration, while it is ignored by the back-end code generation. These annotations do not
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prevent neither enable additional transformation steps in LLVM. Thus, we can conclude that
our unsafe block is safe for the final binary since it does not generate any code, as long as
TAFFO itself is safe – which we will informally prove in the following section. Furthermore,
to prevent compiler crashes, TAFFO checks each argument to confirm that it is of the correct
type before it is used. If an incorrect annotation is used, the compilation emits a warning,
discarding the wrong annotation. Finally, TAFFO also deletes all annotation intrinsics it is
able to read at the end of its transformation, adding another layer of safety.

3.2 Soundness of TAFFO
To ensure TAFFO’s transformations do not affect Rust’s runtime guarantees on memory
accesses, we need to demonstrate that it does not interfere with the methods used by Rust
to ensure these guarantees. Memory-safety depends on the fact that memory accesses occur
at addresses that fall within the bounds of allocated memory. For scalar variables, this
requirement only implies forcing all accesses to happen through references to the variable –
i.e., avoiding explicit pointer arithmetics. However, for array accesses, the situation is more
complex, since pointer arithmetics is induced by the use of indices. The rustc compiler
first attempts to prove at compile time that all memory accesses occur within bounds.
This attempt may fail, because the values of indices may not be entirely predictable at
compile-time. In this case, rustc introduces a guarding conditional statement before the
access operation, which checks whether the index is actually within the array bounds. To
ensure the safety guarantees of Rust are always mantained, TAFFO’s handling of memory
allocations was modified in order to disable the following operations:
1. Increasing the size of the elements of an array.
2. Changing the size of a dynamic memory allocation.
With the introduction of these two additional constraints, we can ensure that TAFFO never
modifies Rust’s code in a way that violates memory access bound checks.

In our informal proof we are going to consider both the compile-time and the runtime
scenarios. In the first scenario, rustc generates an LLVM-IR equivalent to the one generated
by Clang for the equivalent C code. More in detail, the generated code consists of a sequence
of two instructions: a getelementptr instruction which computes the correct address of an
element given a base pointer and an index, and a store or load instruction that actually
performs the access at that address. When TAFFO needs to generate a new getelementptr
instruction to index a fixed-point array, it copies the original getelementptr used to index the
corresponding float arrays, and modifies only the returned datatype. The returned datatype,
however, must be consistent with the one employed at the time of buffer allocation. As a
result TAFFO must also modify the buffer allocation code, whose location is unfortunately
not always detectable nor modifiable at LLVM-IR level. In case the buffer allocation cannot
be modified, TAFFO mantains safety by only allowing datatypes that are smaller than the
original one, therefore employing only part of the allocated buffer and preventing any buffer
overflow. In the second scenario, Rust introduces a guarding conditional by means of a
branch in LLVM-IR. The branch employs a condition obtained by comparing integer data,
which are not modified by TAFFO and therefore reflect the array element size employed
in the Rust code before precision tuning. In order to maintain the validity of the guard
condition at all times, TAFFO must not modify the size of the memory allocation being
guarded. With this additional constraint alone, the Rust code will keep its memory-safety
properties. However when TAFFO increases the element size the program will stop working,
as array accesses to correct indices in the non-tuned program become locations outside of
the buffer bounds. Therefore the first condition (not changing the size of the array elements)
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needs to be applied for runtime-checked arrays as well. Clearly, the goal of reducing the
precision of a program is better achieved with smaller data types rather than with larger
ones. As a result we expect a minimal impact to Precision Tuning from these restrictions.

4 Experimental Evaluation

A key feature of Rust is its high performance, which enables its use as a C or C++ replacement
in embedded systems. The ability to combine the guarantees provided by this language with
the even greater speedups obtainable through precision tuning makes the combination of
TAFFO and Rust the ideal platform for development of high-performance applications. In
this section, we perform an experimental assessment of the impact of TAFFO on the Rust
compiled code, employing a new port of the PolyBench benchmark suite to Rust.

4.1 Experimental Setup
All the experiments were performed on an STM32F207ZG microcontroller chip that features
an ARM® Cortex®-M3 32-bit RISC core operating at 120 MHz. This chip includes a region of
Flash memory for code of 1 Mbyte, and 128 KBytes of working RAM. The ARM Cortex-M3
core does not have a hardware floating-point unit, hence all floating-point operations are
executed in software emulation. We generated the board setup code using STMCubeMX,
compiled it with Clang, and linked it with each benchmark as a separate compile unit for
both C and Rust.

For C benchmarks, the Precision Tuning process was done through the unmodified “taffo”
command line tool. Instead, for Rust benchmarks, we modified the “taffo” tool to accept
Rust code. In order to introduce Rust within the TAFFO compilation pipeline, invocations to
Clang were replaced with invocations to rustc used as a front-end to generate LLVM-IR code.
The rest of the pipeline is identical to the one employed for C code. This method ensures that
both C and Rust codes are processed in the same way, applying the same optimization levels
in the middle- and back-end. Additionally, we take into account that rustc is able to perform
some optimizations at the internal IR level (MIR, discussed previously in Section 2.1), by
passing the option “-Z mir-opt-level” to the rustc frontend. This is not the case and is
not required for Clang. The baseline non-tuned benchmarks were compiled using the rustc
and Clang tools. The version of LLVM and Clang employed was 15.0.7, while the version of
rustc was 1.64.0. The optimization level used in opt for Rust and C was -O3.

4.2 Polybench/Rust
For our experimental work we selected the PolyBench suite Version 4.2.1, as its intended
purpose is indeed to evaluate novel compiler optimizations, and as such it has been widely
adopted in the literature. It consists of several numerically-intensive kernels which natively
rely on floating point arithmetics, making it a good target for Precision Tuning. Moreover,
its C implementation is already supported by TAFFO [1], which we will employ as-is.

For our comparison, we must employ a port of PolyBench to Rust which is as similar
as possible to the baseline C code, in order to reduce any confounding factor determined
by implementation differences between the benchmarks. To this end we evaluated the
existing rewrite of PolyBench in Rust, PolyBench-rs2. However, after careful consideration

2 https://github.com/JRF63/polybench-rs

https://github.com/JRF63/polybench-rs
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we deemed this port not suitable for a direct comparison with PolyBench/C, as it heavily
modifies the original benchmarks by adopting a functional programming style. While the
choice is legitimate per-se, analysis of the resulting LLVM-IR code evidenced several non-
functional differences with PolyBench/C, which result in very different execution time and
memory consumption patterns between the two. For this reason, we developed a new port of
PolyBench/C, named PolyBench/Rust, which aims to be as close as possible to PolyBench/C
while still avoiding any unsafe block. In all the following experimentations, we have used the
SMALL_DATASET as the array size. A comparison between the baseline PolyBench/C and
PolyBench/Rust is provided in Figure 2.
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Figure 2 The ratio of the execution time between PolyBench/Rust and PolyBench/C as a
speedup. The behavior of the two benchmarks is very similar, with exceptions for heat_3d, correlation,
covariance, nussinov and trmm. The geometric means of the speedup of all benchmarks is represented
in the last entry under “Geometric Mean”.

Indeed, we get very similar execution times to PolyBench/C. In 15 benchmarks out
of 28 the speedup is between 0.9 and 1, and in 8 benchmarks the speedup is between 1
and 1.1. One benchmark has a speedup greater than 1.1, heat_3d, while 4 benchmarks
have a speedup lesser than 0.9 (covariance, correlation, nussinov and trmm). Overall, we
notice PolyBench/Rust is slightly slower than PolyBench/C, due to the additional runtime
checks introduced by the language. For the specific case of heat_3d, the rustc compiler
applies – at the LLVM-IR level – an aggressive loop unrolling strategy enabled by better
alias disambiguation offered by Rust. Speedups lower than 0.9 are instead caused by a
combination of a greater amount of runtime checks and less efficient code generation from
rustc. While for trisolv and trmm the main cause of the slowdown are the bound checks, for
correlation and covariance the main cause is a greater number of memory accesses around
floating point emulation calls that could be optimized away by Clang but not by rustc. We
expect most of these differences to be smoothed over and disappear as rustc matures as a
compiler.

4.3 Experimental Results
Figure 3 displays the speedups of each benchmark in PolyBench/C and PolyBench/Rust
achieved through the Precision Tuning process of TAFFO (blue and orange bars). The
baseline is always the same benchmark, for the same language (Rust or C), but compiled
without TAFFO. After Precision Tuning, PolyBench/Rust is faster than PolyBench/C in 9
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Figure 3 Comparison of the speedup achieved by TAFFO on PolyBench/C and PolyBench/Rust.
Rust results are also shown with additional bound checking. The geometric means of the speedup of
all benchmarks grouped by their configuration is represented in the last entry under “Geometric
Mean”.

out of 28 benchmarks, but aside from a few outliers, TAFFO performs in a similar way in
both languages. The speedup for Rust ranges between 2.3 and 15.0, while the speedup for C
ranges between 2.5 and 13.4.

Looking at individual benchmarks, covariance and correlation get a much higher speedup
in Rust than in C. This is due to the aforementioned fact that rustc sometimes generates
suboptimal code around calls to floating point emulation functions. After the Precision
Tuning passes performed by TAFFO, the floating point emulation code gets replaced with
integer fixed-point primitives, lessening the register allocation constraints for the backend,
which then manages to eliminate redundant memory accesses. Benchmark heat_3d is another
example where Rust code achieves a higher speedup with respect to the C one. In this
case, the speedup is due to constant propagation optimisations enabled by the reordering of
instructions performed by rustc, which further improves with the aggressive loop unrolling
mentioned in Section 4.2 and is amplified by the TAFFO precision tuning transformations.

Overall, the difference in the speedup introduced by TAFFO on Rust and C is mainly due
to the fact that rustc generates code that more closely represents the actual data flow within
the program. While the PolyBench/C code relies on re-using existing arrays for storing
intermediate computation results, Rust is able to remove these superfluous array accesses
by using temporaries instead. Indeed, Rust guarantees that accessing memory through a
mutable reference cannot be aliased, hence the compiler can prove that the re-use of an array
in such a way does not have side-effects. This transformation makes the overall data flow
more visible to the analyses and transformations of TAFFO (especially the Value Range
Analysis), allowing for more performant code in the end.

Since most Polybench kernels are written to work with fixed-size arrays, only a few require
extensive bound checks in the code for ensuring safety. Real-world applications, though, may
exhibit more arrays with size dependent on input data, thus leading rustc to be less effective
when optimizing bound checks than it would appear from benchmarking. In order to show
how TAFFO is affected when the code contains more extensive bound checks, in Figure 3 we
also show the speedups obtained when disabling bound check optimization (orange bars).
The speedups are extremely similar to the ones obtained with the bound check optimization
enabled, so we can state that TAFFO is not significantly affected by it.
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Figure 4 The graph displays the relative error of TAFFO C and TAFFO Rust as compared to
the C version. The plain C version and the plain Rust version generate identical values.

Finally, we compute the relative errors resulting from the Precision Tuning approximation
for both programming languages, which are shown in Figure 4. These figures do not depend
on the amount of bound checks performed by the code. First of all, we observe that in most
cases the relative error introduced is the same both for Rust benchmarks and C ones. The
largest relative error was found to be approximately 0.45%, which occurred in the case of
ludcmp of PolyBench/C. We can conclude that TAFFO introduces errors of similar magnitude
regardless of the source language.

5 Conclusions

We provide the first automated Precision Tuning framework supporting the Rust programming
language. We employ TAFFO to provide the analyses and transformation required for
Precision Tuning, and we integrate it with the Rust compiler rustc by introducing the
appropriate macros that allow for passing the programmer annotations required by TAFFO
from Rust. As these macros use the unsafe features of Rust, we demonstrate that they do
not actually affect the actual memory-safety of the code. Then, we evaluate our approach
by developing and annotating a Rust version of the PolyBench suite for use with TAFFO.
We see that Precision Tuning in Rust is just as effective as Precision Tuning in C, within
a margin of error that can be fully attributed to differences in the compiler front-end, and
further, Precision Tuning can help in offsetting the penalties imposed by the introduction
of runtime checks. Rust is just one of the several memory-safe programming languages
available for use in embedded systems, therefore a natural extension of this work includes
support for languages such as Go and Swift. A further research direction is the design and
implementation of Rust language extensions that allow the integration of precision tuning
without the need for potentially-unsafe macros for generating compiler intrinsics.
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Abstract
In this paper, we present a method for optimizing C code for embedded multi-core systems using
cross-layer parallelization. The method has two phases. The first is to develop the algorithm without
any optimization for the target platform. Then, the second step is to optimize and parallelize the
code across four defined layers which are the algorithm, code, task, and data layers, for efficient
execution on the target hardware. Each layer is focused on selected hardware characteristics. By
using an iterative approach, individual kernels and composite algorithms can be very well adapted to
execution on the hardware without further adaptation of the algorithm itself. The realization of this
cross-layer parallelization consists of algorithm recognition, code transformations, task distribution,
and insertion of synchronization and communication statements. The method is evaluated first on a
common kernel and then on a sample image processing algorithm to showcase the benefits of the
approach. Compared to other methods that only rely on two or three of these layers, 20 to 30 % of
additional performance gain can be achieved.
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Computer systems organization → Embedded software

Keywords and phrases Parallelization, multi-core Processors, model-based Development, Code
Generation
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1 Introduction

State-of-the-art embedded multi-core processors offer high performance with low power
consumption, but programming them efficiently presents new challenges due to a high
complexity e.g. in the partitioning of tasks on the specific multi-cores. Some of the main
challenges when developing applications for embedded multi-core are:

Developers tend to think sequentially. To take full advantage of multi-core systems,
parallel applications need to be partitioned up front. This extra work does not occur in
sequential development and distracts from the actual programming of the algorithm.
To distribute tasks across processing units, data and control dependencies have to
be considered to avoid errors like race conditions or deadlocks which cannot occur in
sequential programs.
Debugging is much more complex on multi-core systems because parallel processing with
multiple threads does not ensure determinism. If execution is interrupted at any time,
the current state of each processing unit cannot be predicted.
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Programmers encounter challenges that divert their focus from implementing actual
functionality. This paper proposes a solution that segregates application development from
target platform optimization. The proposed solution involves commencing with a model-based
design that remains entirely platform-agnostic, followed by iterative optimization grounded
in four defined abstraction layers. Each layer progresses towards the hardware in granular
stages. This approach ensures that algorithm development is completely decoupled from
hardware platform optimization, as no code needs to be written after model implementation.
The approach is intended to be used with applications that can be analyzed statically which
means problem/data sizes are known or at least bounded so that the best performance
of the application on the target platform can be achieved. There are various possibilities
to implement the approach, including using multiple software tools within a tool flow for
layer optimizations or employing manual optimization steps that concentrate on the defined
layers only. For the remainder of this paper, we adopted a middle approach: using currently
available tools for optimization at each layer, but without a fully integrated tool flow. We
used tools developed by emmtrix Technologies1 that were originally based on results from
the ALMA research project [2]. While these existing tools provide the framework to apply
the optimizations on different abstraction layers, the concept of this proposed cross-layer
parallelization is not integrated in the usual tool flow. This novel combination of layers
allows the use of specifically optimized implementations for identified algorithms, in addition
to general optimizations such as code transformations and task distribution with optimized
communication placement. The following four abstraction layers will be used in this paper:

1.1 Definition of Algorithm Layer
The algorithm layer in this approach refers to the abstract representation of an algorithm
that has been developed independently of the target hardware platform. The choice and
implementation of the algorithm has a high impact on performance. Let’s take sorting
algorithms as an example: different algorithms vary in terms of runtime, memory requirements,
and stability. The potential for parallel execution is different with each implementation but
usually comes with a slower sequential execution or increased memory requirements. The
best selection can therefore only be made in combination with the information about how
many processing elements and how much memory is available and how big the data set to
process is. The goal of this layer is to provide a library of common algorithms or kernels
with a selection of implementations to choose from, to identify these known algorithms in
the source code and together with the decisions on later layers select the best performing
realization for the actual hardware.

1.2 Definition of Code Layer
The code layer refers to the actual representation of the algorithm as source code. How the
individual computations are represented determines how many (independent) tasks can be
generated and thus how well parallelization can work. Code transformations can be used to
change the code of the application without affecting the result of its calculations. They can
be used to take advantage of the intrinsic parallelism that is already part of the code, for
example, when processing large amounts of data. Two example transformation that are used
in the evaluation:

1 https://www.emmtrix.com

https://www.emmtrix.com
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Algorithm
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Figure 1 Abstraction layers used in this approach.

Loop fission: If there are multiple statements in the body of a loop that can be executed
independently, it is possible to split the statements into two or more loops over the same
index range. Since the resulting loops have no dependencies on each other, they can be
executed in parallel.
Variable splitting: Instead of having a single array variable, splitting it into multiple ones
allows parallel calculations on different regions of the original data without affecting each
other.

The most beneficial transformations are applied to loops as that has the greatest potential for
improving parallelism. But besides the loops and their number of iterations, other properties
play a role at this layer as well, e.g. data access or locality, the actual number of individual
code blocks and how well the code can be statically analyzed.

1.3 Definition of Task Layer
The task layer refers to the part of this approach at which tasks are assigned to individual
execution units of the target platform. During parallelization, both mapping and scheduling
are performed to select which core or processor a task is executed on and the order in
which the tasks are executed there. All dependencies between tasks must be taken into
account, mainly from the data flow, but also from the control flow. Depending on the target
architecture, these dependencies lead to synchronization or communication overhead. In
addition to pure data dependencies, anti and output dependencies must be considered to
ensure the correct order of execution. Also important for parallelization decisions is the
execution time of each task relative to each other and relative to the synchronization overhead.
If the granularity of the tasks is not taken into account, the overhead of communication
and synchronization may outweigh the benefit of parallel execution, resulting in a slowdown
compared to the sequential program.

1.4 Definition of Data Layer
The data layer in this paper refers to synchronization and data exchange between cores.
Without loss of generality, this work assumes hardware models with distributed memory. Any
shared memory system can also be considered and treated as a distributed memory system by
hard allocating the available memory to the cores. The goal of optimization on this layer is
to ensure data availability on each core while achieving the best runtime on the hardware and
ensuring that no errors are introduced due to false synchronization. Important aspects are the
placement of synchronization instructions and keeping the overhead of transfers to a minimum.

Figure 1 shows all used layers and their typical usage from the input source code to
the code for the platform. The remainder of this paper is organized as follows: Section 2
discusses the current state of the art and how the four layers are usually employed, Section 3
elaborates on the actual cross-layer optimization, Section 4 evaluates the approach with an
experimental case study, and Section 5 concludes this paper with an outlook.
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2 State of the Art

Foster[7] formulated already in 1995 a workflow to design and build parallel programs. The
main steps were partitioning, communication, agglomeration and finally mapping of tasks
and are taught at universities as a standard approach for parallelization. The approach
is comparable with the last three layers of our approach but lacks the potential of special
optimizations of known algorithms which allow more specialized implementations of known
kernels that usually make up large parts of typical embedded applications.

In [5], methods for programming parallel platforms based on algorithmic skeletons and
parallel design patterns are evaluated. While they prove useful for parallel programming, they
don’t ease the required hardware knowledge from the programmer. This kind of library-based
approach mostly focuses on the algorithm layer to provide special parallel implementations
with known functionality. Without any considerations from the task and data layers, this
kind of parallelization is limited to these functions and resources respectively an efficient
load balancing throughout the execution of the whole program cannot be achieved.

Automatic parallelization by the compiler is still a research topic in works like [9] and [8].
They focus on pattern recognition of common programming patterns with more recent work
also on the usage of machine learning for the detection. This pattern recognition covers the
optimizations on the algorithm layer and should achieve good results for programs that make
great use of these patterns. However, programs usually also have parts that don’t fit into
patterns and might need some other optimization steps which could e.g. be applied on the
code layer. [1] uses source-to-source compilation to optimize the source code for automatic
parallelization using OpenMP. Together, this covers the code, task and data layers as defined
in this work but does not use the benefits that optimizations on the algorithm layer could
bring to known algorithms.

The Daedalus framework [14] is a more recent approach for the design of multi-processor
system-on-chips. By approaching the issue together with system level synthesis, a synchronous
development of software and hardware is performed. To optimize the software for parallel
execution, the tool PNgen is used to apply polyhedral optimization techniques which result
in loop transformations according to mathematical equations. This approach together with
the design space exploration covers the two middle layers of our approach: the code and the
task layer. By adding the algorithm layer, specific optimizations can improve the results
while the data layer allows for more efficient execution of the parallel program on the target
platforms.

A summary of popular parallelization techniques can be found in [13]. Comparing it to
this approach it shows that they mostly focus on the code and data layers by optimizing
loops and communication.

[12] shows how concepts from high performance computing (HPC) can be applied to
embedded systems. HPC is originally more focused on achieving the best performance with
the available hardware without taking the potential worst case into account. While this is
not the case for typical embedded applications, the need to get the best performance out of
multi or many-core processors is getting higher. The work described relies on OpenMP with
task scheduling and does not take optimizations on algorithm or data layer into account.

Looking at heterogeneous systems, [11] compares different programming frameworks like
OpenMP, OpenCL and CUDA regarding programming productivity, performance and energy.
One major result here is that the human factor significantly impacts the fraction of lines of
code used to parallelize the code. Reducing this human impact should therefore be the goal.
The methodology proposed in this paper covers this aspect by only letting the programmer
develop the model and no further changes to source code.
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[16] introduces a compiler-based optimization specialized for machine learning. The
compilation applies various parallelization techniques controlled by the user through source
code annotations. This approach is sophisticated in the sense that the user does not necessarily
need in-depth hardware knowledge. All four layers are addressed, with reference to the
algorithm layer done through the limited applications that mainly relies on library calls. The
code and task layers, along with the data layer, are automatically processed, utilizing user
annotations as guidance for specific components.

Examining techniques that utilize multiple abstraction layers, studies such as [10] expand
the LLVM intermediate representation using domain-specific languages (DSL) that can reuse
the same compiler passes across numerous levels of abstraction. Although the initial aim
was to use transformations to lower abstraction, research such as [4] can be utilized to raise
the abstraction level and back-propagate information to higher levels. While this approach
optimizes all abstraction layers used in this work iteratively, it lacks flexibility compared to
the model-based approach used here due to its focus on DSLs.

Functional development is decoupled from optimization for the target platform in studies
such as [15]. Functional development is conducted in the high-level general-purpose program-
ming language Python 3 and the mapping process is carried out in Artisan meta-programs.
This decoupling allows different experts to handle these developments, eliminating the need
for understanding both the algorithm and the optimal implementation for the heterogeneous
hardware. Compared to our approach, the presented work relies on downstream processing by
OpenMP or high-level synthesis for optimal performance. Our work, on the other hand, op-
timizes program scheduling and data transfer directly on the task and data layers, eliminating
the need for downstream tools or operating systems.

3 Cross-layer Optimization

While independent execution of the layers is possible, the combined approach provides distinct
advantages. Progressing through the layers reduces the level of abstraction from the hardware
at each stage, necessitating more information with each subsequent layer. When switching
to a different hardware platform that has at least some similarity with the previous one, e.g.
the same numer of processing elements, some optimizations can be re-used. To demonstrate
the optimizations achieved at each layer and their potential interactions, we will employ the
Fast Fourier Transform (FFT) as an exemplar kernel. It was selected as it is a well-known
algorithm and shows good optimization potential on each defined layer.

3.1 Realization of Algorithm Layer
Recognition of known algorithms cannot simply be achieved by extracting them from source
code, as illustrated by the halting problem, where determining a specific behavior for generic
programs is impossible. Our solution is to use MATLAB® as the programming language
for a model-based approach. It offers several built-in versions of common algorithms, with
clear descriptions of the results. So instead of attempting to identify established algorithms,
the specific algorithm can be identified through a straightforward function call and precise
behavior specification within the MATLAB® description. To transfer the algorithm to
the embedded device, it was converted from MATLAB® to C code, as this enables more
targeted optimizations customized for the designated hardware. The code generation tool
developed includes support for basic arithmetic operations. For example, when adding two
arrays, the tool will convert them to arrays in C, which are then summed up with for-loops.
Library functions are utilized to customize function conversions, implementing the requisite
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functionality in MATLAB® scripts, subsequently generating the pertinent C code. Data type
and range analysis ensure the employment of only the most efficient data types in the C code.
Furthermore, this approach can offer unique realizations of established functions that can
be chosen with custom pragmas within the scripts. This permits additional enhancements
of the produced C code by returning to the code generation phase from later stages. To
achieve efficient implementation on the embedded target platform, a conversion of code must
be undertaken due to the inefficiency of executing MATLAB® scripts. Utilizing C code on
embedded platforms provides greater convenience and enables precise control of hardware
resources. The conversion step also facilitates the selection of an algorithm realization and
the generation of C code optimized for later layer simplifications.

The algorithm layer only uses the number of available cores as information about the
target platform. This information can be used to select an implementation that is optimized
for that number of cores.

Now, looking at the FFT, we can see that it is an in-built function of MATLAB® that
has a clear specification about its behavior and accuracy. Knowledge about the algorithm
allows us to provide an option for later layers of the flow: a N -point FFT may be substituted
with two N/2-point FFTs, which can be computed independently, as illustrated in Figure 2.
In other words, a simple option for the code generation can be used to specify the number of
times the FFT should be split up into. With the additional information about the number
of processing cores available, this can also be used as an upper boundary as splitting the
FFT up into more parts is usually not useful.

1024-point FFT

512-point FFT

256-point FFT256-point FFT 256-point FFT 256-point FFT

512-point FFT

Figure 2 Splitting FFTs.

3.2 Realization of Code Layer
The code layer focuses on transforming the C code for task level parallelization. It is
implemented as a source-to-source compiler that reads the input C code, applies selectable
code or loop transformations to the desired parts of the code, and then outputs the transformed
C code. While these steps are not new in themselves, the importance lies in their interaction
with the other layers: Transformations in the code layer rely heavily on input from the
algorithm layer. E.g. an increased number of loops increases the potential for beneficial loop
transformations. The granularity of the transformations ensures that independent tasks can
be generated very well at this point for parallelization at the task layer. However, the number
of tasks should be determined together, since too many interdependent tasks only increase
the complexity of the scheduling algorithm without offering more optimization potential. All
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transformations that can change the access to the data also have the potential to reduce the
overhead at the data layer. At this layer, more information about the hardware can be used
for all decisions. Besides the actual number of processing elements, the type is relevant to
address available accelerators. Optimizations that improve data locality require information
about memory layout and cache availability to be useful.

For the FFT example, code transformations may be applied to the main loops of the
kernel by using variable splitting and loop fission to generate independent loops. Considering
the splitting option at the algorithm layer, this provides several options for dividing the code
execution. However, the best options will be selected with the assistance of the next layers.

3.3 Realization of Task Layer
After the enabling optimizations on the previous layers, the main part of the coarse-grain
parallelization takes place on this layer. As a pure optimization algorithm on a graph
representation, it takes into account all dependencies that are crucial for the allocation to the
individual cores. This is important for maintaining correctness, but sometimes overestimates
the actual performance. Since the placement and optimization of the communication takes
place later at the data layer and is based on a different representation, the synchronization
and duplication of the data cannot yet be fully considered and can only be passed as hints
to the next layer.

The most important function of this layer is to identify parts of the code that can be
executed independently by analyzing the data and control dependencies, and then to assign
these extracted tasks to the available cores so that the overall runtime is minimized. This
requires information about the actual runtime on each core to model the optimization problem
and the cost of the overhead of parallelization. The actual parallelization at this layer of
abstraction can be done with many different optimization algorithms. In this work, the
well-known Heterogeneous Earliest Finish Time (HEFT)[8] is used. As a greedy heuristic
algorithm, it usually does not reach the optimal runtime, but it has been extended to respect
user constraints like fixing tasks on certain cores in order to guide the optimization process
in the right direction. The parallelization on the task layer distributes all tasks onto the
available cores taking into account the communication overhead required to synchronize the
data. To minimize this overhead and ensure the correct execution, the actual placement and
optimization of the communication is handled on the next layer.

For the FFT example, partitioning of the code on both the algorithm and code layers is
decided at the task layer. It is only through the utilization of a more precise task runtime cost
model on the actual hardware and overhead costs for parallel execution that the overhead of
the two approaches can be accurately calculated. A performed test on an ARM Cortex A-76
processor with four cores demonstrated that dividing the FFT by four in the algorithm layer
gets the best use of the available cores. Code transformation are useful on the parts where
the data is partitioned, but as more involved also increases the required data transfers, an
optimization for two cores on the code layer achieves the best runtime.

3.4 Realization of Data Layer
The main function of this layer is to resolve all data dependencies that cross core boundaries
by inserting send and receive instructions for data transfers. Done correctly, this ensures that
the two most common errors in parallelization cannot occur: race conditions and deadlocks.
Race conditions occur when the result of one operation depends on the timing of another
operation. This can often happen when shared resources are accessed by multiple cores at
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the same time. By modeling these accesses through data dependencies, synchronization
instructions can be inserted whenever the resource is accessed, enforcing a predetermined
order across all cores that need to access the resource. This ensures the absence of race
conditions with the added overhead of synchronization whenever resources are shared. A
deadlock is an error state that occurs when the program waits indefinitely for data or signals
that never arrive. The program is stuck and cannot continue its execution. One way to
avoid this is to duplicate the control flow for all cores involved. That is, if a signal is sent
within an if-block only when a certain condition is met, the receiving core executes a copy of
the if-block that evaluates the same condition. This guarantees that send and receive are
always executed under the same conditions and that a receive is never called without an
associated send. The data layer requires the most details about the target platform. It needs
information about the communication infrastructure with all the data buffers, access to the
interface code, and information about what the C code should ideally look like for the target
platform’s compiler.

For the FFT example, the data layer is crucial for achieving the expected performance as
calculated at the task layer. To minimize core wait times, it is necessary to have a better
understanding of the actual interconnections between the cores and to manage data transfers
efficiently. This depends heavily on the volume of data being processed. As FFT is typically
utilized for larger amounts of data and requires minimal synchronization between the cores,
achieving high throughput is critical for optimizing the runtime on the hardware.

3.5 Interactions Between the Layers

With each layer, the optimization takes into account additional information about the
hardware specification. Figure 3 depicts which main features are utilized by each layer. The
arrows at the bottom of the figure show the typical process of cross-layer optimization: the
order of the layers is the algorithm, code, task, and data layer. From the code layer to the
algorithm layer, transitions occur when there is a need to implement a modified algorithm
or prepare for a specific number of cores. Likewise, the task and data layers transition
to the code layer when the code’s representation makes it difficult to efficiently allocate
tasks among the cores, either due to the volume of tasks or the resulting communication
overhead. From the data layer back to the task, reevaluation is necessary when scheduling
proposes parallelization that would create excessive communication overhead in the data
layer. Considering a change made on a previous layer would be advantageous, going back
more than one step is also an option.

Algorithm
Layer

Processing
Type

Communications
Cost

Communication
Model

Number
of Cores

CMATLAB Code
Layer

Task
Layer

Data
Layer

Hardware Specification

Figure 3 Interactions between the different layers.
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4 Evaluation of the Method

For the evaluation, a streak detection algorithm as utilized for space debris detection is used.
It was selected as it best shows the potential of the approach on all the layers. The algorithm
consists of two main steps:

1. The input image is converted to grayscale and a Canny edge detector is used to extract
all edges in the image. The Canny edge detector is a well known algorithm [3] that is
still quite popular due to its low error rate and high accuracy. It is applied on an image
that is usually denoised with a Gaussian blur filter to find the edges identified with the
highest gradient change.

2. A Hough transform is applied to the resulting image, which is used to detect the peaks
with the highest contrast and to mark the found lines in the image. The Hough transform
is a formerly patented method [6] that is used to find geometric shapes such as straight
lines in binary black and white representations.

The source code of the algorithm is shown in Listing 1. The most relevant parts of the
program are directly available in MATLAB® so that calling the inbuilt functions is sufficient.
Only for the function to extract a line, a new custom function needed to be developed.

Listing 1 MATLAB® code of streak detection.
function [ point1Arrays , point2Arrays ] = st r eak_detec t i on ( img )

%conver t to g raysca l e , a v a i l a b l e in MATLAB
gray = rgb2gray ( img ) ;
%e x t r a c t edges from image , a v a i l a b l e in MATLAB
[E, thresh ] = edge ( double ( gray ) , ’Canny ’ ) ;
%app ly Hough transform , a v a i l a b l e in MATLAB
[H,T,R] = hough (E ) ;
%e x t r a c t peaks in Hough repre s en ta i t on , a v a i l a b l e in MATLAB
P = houghpeaks (H, 5 0 ) ;
%draw a l i n e to connect po ints , implemented manually
[ point1Arrays , point2Arrays ] = custom_houghlines (E,T,R,P ) ;

end

The target system is an NXP P4080 DS with 8 PowerPC e500mc cores.

4.1 Evaluation of Algorithm Layer
Since the Canny edge detector algorithm is directly available in MATLAB® a call to the
function can be used as an entry point for the optimization at the algorithm layer. This offers
the potential for a few different optimizations: fixing the threshold for the edge detection
maintains the same results while reducing the runtime by 6%. Switching to single precision
data types with 32-bit floats still has enough accuracy, but reduces the runtime by another
28%. Finally, optimizing the memory allocation allows a further optimization of 19%, for
a total gain of 45% on the algorithm layer alone. The optimizations were applied without
any specific hardware knowledge, and the reduced complexity provides more options in later
layers of the flow. The performance gains were determined on the development PC using an
Intel Core i5-4570 with 16 GB DDR3 RAM with 1600 MHz. Measured was the execution time
of the C program generated from the MATLAB® code and the initial 259 ms were reduced
to 140 ms.

PARMA-DITAM 2024



5:10 Embedded Multi-Core Code Generation with Cross-Layer Parallelization

Most functions in the source code 1 are part of the MATLAB® language scope, so that
specially optimized versions can be used during code generation. By using parameters to
guide the code generation, the generated C code can be prepared for later transformations.
In order to be able to apply the beneficial variable splitting and loop fission transformations
on the functions rgb2gray, edge and hough, the number of generated loops and variables
can be changed according to the input from the code layer.

4.2 Evaluation of Code Layer
The main task of the code layer is to provide the task layer with as many independently
computable tasks as possible. This is best achieved from the combination of variable splitting
and loop fission. The C code prepared at the algorithm layer now allows easy exploration of
the various options. The best results are achieved when the load between cores is balanced
over time with as little data exchange as possible. For the hypot, hough, and rgb2gray
functions, which each perform only a few calculations on a single matrix, the best solution
is to split them among eight, i.e., all available cores of the target system. For the Canny
Edge algorithm, which is executed independently in the X and Y directions, splitting for
four cores at a time has been shown to give the best results. By executing the two directions
in parallel, all eight cores can be utilized and limiting them to four cores each reduces the
communication overhead. While the actual splitting of the variables and loops is done on
this code layer, the decision about the splitting factors is decided by the later task and data
layers.

4.3 Evaluation of Task Layer
The previously generated independent tasks ensure that parallelization at the task layer can
be solved largely automatically. Only for tasks that split or collect data is there room for
optimization in the allocation by selecting cores in a way that minimizes communication.
This is done in conjunction with the data layer, since it is there that the final placement of
the communication instructions is made.

The parallelization on task layer uses a simple cost model for the actual timing: each time
data is accessed by multiple cores, a cost is added to reflect the overhead. The algorithm
then attempts to reduce the overall runtime while minimizing the communication overhead.
This model can be used to determine the best split factors for the code layer. The results of
the scheduling on the task layer can be seen in Fig. 4. It shows the load on the eight cores
of the target platform over time. During the first half of the execution, the edge detection
in both directions can very well utilize all available cores. While there is still some parallel
processing left afterwards at the 350 ms mark, the end is dominated by functions that don’t
benefit much from the parallelization on either layer. For the actual Canny edge algorithm, a
speedup of 6.28 is estimated while for the complete application, a speedup of 3.02 is estimated.
A more accurate estimate of performance, including core wait times for data, is handled on
the data layer.

4.4 Evaluation of Data Layer
Due to the nature of the algorithm, placement at the data layer is very straightforward: data
is always sent after it has been split or computed in the previous step, and it is received
immediately before further processing. It is important to transfer data between the cores
as quickly as possible to minimize waiting times. To determine the best positions for the
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Figure 4 Scheduling result of the task layer.

synchronization between the cores, the control flow of the application is used to find the
blocks that have the lowest number of executions while also minimizing any latency on the
receiving cores. The communication overhead is relatively large so that some of the gains
from the task layer cannot be implemented in the actual code for the hardware. Without
any further changes on the data layer, a speedup of 2.4 was achieved. Further optimizations
to reduce the communication overhead by implementing functions that directly access the
shared memory regions gained an additional 19 % for a final speedup of 2.86.

5 Conclusion and Outlook

The runtime of the streak detection algorithm was reduced by 65 %, from an initial runtime
of 2720 ms to 952 ms. Most of the optimization was done at the algorithm and code layer, but
parallelization at the task layer was critical to map the prepared tasks to the available cores.
Finally, the optimizations at the data layer were necessary to get most of the performance
gains from the task layer to the actual hardware. This short evaluation shows the potential
of this cross-layer approach and how the interaction between optimizations on different
hierarchies can achieve better results compared to focusing only on two or three layers.
However, more evaluations will be necessary to further analyze the benefits of this approach.

While the evaluation presented here was performed with a data-driven algorithm, the
approach is not limited to it: further tests with more control-flow-driven algorithms also
showed promising performance gains. Differences could be observed in the actual optimiza-
tions to be applied on the different layers. The examples used were of low complexity on
the algorithmic side, so the task layer had little impact on the selection of the most efficient
versions. The code layer still proved to be very valuable, but instead of ensuring that enough
independent tasks were available for the task layer, smart clustering of the many tasks to
reduce the actual number for the scheduling was the way to go. The task layer then had
to find the most efficient distribution over the available cores, while the focus of the data
layer is to minimize the amount of communication, since the cost per transfer is much higher
when only few bytes need to be transferred.

It is also possible to extend the approach to support heterogeneous systems: the most
relevant layers are then the algorithm layer and the code layer. The algorithm layer allows
the use of optimized functions from existing libraries, while the code layer and its code
transformations can be used to generate source code for accelerators such as CUDA or
OpenCL.
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Abstract
Processing graphs on a large scale presents a range of difficulties, including irregular memory access
patterns, device memory limitations, and the need for effective partitioning in distributed systems,
all of which can lead to performance problems on traditional architectures such as CPUs and
GPUs. To address these challenges, recent research emphasizes the use of Field-Programmable Gate
Arrays (FPGAs) within distributed frameworks, harnessing the power of FPGAs in a distributed
environment for accelerated graph processing. This paper examines the effectiveness of a multi-FPGA
distributed architecture in combination with a partitioning system to improve data locality and
reduce inter-partition communication. Utilizing Hadoop at a higher level, the framework maps the
graph to the hardware, efficiently distributing pre-processed data to FPGAs. The FPGA processing
engine, integrated into a cluster framework, optimizes data transfers, using offline partitioning for
large-scale graph distribution. A first evaluation of the framework is based on the popular PageRank
algorithm, which assigns a value to each node in a graph based on its importance. In the realm of
large-scale graphs, the single FPGA solution outperformed the GPU solution that were restricted
by memory capacity and surpassing CPU speedup by 26x compared to 12x. Moreover, when a
single FPGA device was limited due to the size of the graph, our performance model showed that a
distributed system with multiple FPGAs could increase performance by around 12x. This highlights
the effectiveness of our solution for handling large datasets that surpass on-chip memory restrictions.
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such as social networks, biology, and transportation [22, 21]. The use of graph structures
improves the extraction of valuable information, contributing to better decision-making and
system improvement.

The emergence of big data has caused an increase in the size of models, datasets, and
graphs, which are known as large-scale graphs. The volume of data organized in graph
structures is expanding rapidly, necessitating efficient and scalable techniques for processing
these large-scale graphs [18]. The difficulties arise from dealing with the large amount of data
and the complex structure of the graphs. When dealing with large-scale graphs that contain
billions of nodes and edges, the demand extends beyond the raw computing power. A single
node is not capable of handling such large graphs, so distributed large-scale graph computing
is a beneficial solution. Furthermore, specialized methods, such as graph partitioning or
optimizing random memory access, are crucial for improving efficiency and scalability in
managing these complex datasets.

Field Programmable Gate Arrays (FPGAs) are becoming increasingly popular for graph
processing, offering an attractive alternative to conventional CPUs and GPUs [6, 9]. Indeed,
GPUs are optimized for massively parallel workloads, such as those seen in Deep Neural
Networks. However, their efficiency decreases when faced with applications that involve highly
memory-sparse operations and issues related to data races[17]. On the other hand, CPUs,
while more general-purpose, face limitations in large-scale graph processing due to their
intrinsic architecture, which is not inherently optimized for the intricate and parallel nature
of graph-related computations. Unlike conventional architectures, FPGAs are remarkable for
their high level of customization, providing optimized performance for specialized tasks [5,
12, 10, 11].

This work outlines the challenges and insights associated with large-scale graph processing
encountered during the evaluation of our framework presented in [19]. The main objective is
to evaluate and suggest improvements based on the initial examination of a structure that
uses large-scale graph processing with FPGAs in a distributed system based on Hadoop.

The rest of this paper is structured as follows: In Section 2 we present the motivation
and challenges in dealing with large-scale graph computing. In Section 2.1, we introduce our
framework for accelerating large-scale graph computing with FPGAs. In Sections 3 and 4
we discuss the methodology of design implementation and its evaluation. Finally, Section 5
presents our conclusion and provides a brief overview of potential future directions.

2 Motivation and Challenges

Recent research on graph processing using FPGAs [5] has been conducted mainly on medium-
sized data sets, rather than large-scale ones. Sakr et al. [20] have shown that these medium-
sized graphs can be managed by desktop CPUs. This could reduce the attractiveness of
using hardware accelerators such as FPGAs or GPUs, as they are more expensive and less
user-friendly than general-purpose CPUs.

Motivations

The emergence of big data technologies has changed the landscape, making it easier to collect,
store, and process large amounts of data. This has led to an abundance of data, often in the
form of graphs, which have grown to the point of reaching PetaBytes [20], surpassing the
memory capacity of current CPUs or GPUs. For instance, when the graph size exceeds GPU
memory limits, unified memory becomes essential. This requires frequent data transfers
between host memory and GPU on-chip memory, incurring additional overhead and leading
to performance degradation [16].
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Our second motivation is to integrate a high-level interface for the deployment of a
distributed platform on the underlying hardware. Hadoop is a valuable solution for large-
scale graph processing, providing powerful tools for storing, processing, and analyzing
extensive graph datasets in a distributed manner. The Hadoop Distributed File System
(HDFS) allows for the storage of large datasets across a cluster of machines, making it possible
to process graphs that are too large for a single machine. Hadoop’s scalability allows for the
flexible adaptation of the cluster by adding or removing machines, making it cost-effective to
process large graphs. Using the map-reduce programming model inherent in Hadoop enables
distributed computing, significantly improving the efficiency of graph processing algorithms.

Challenges

When designing large-scale graph processing on FPGAs, it is essential to make critical
design decisions. To begin with, it is necessary to divide the graph into small, equal-sized
parts due to the limited on-chip memory in modern FPGAs. This partitioning technique
is essential since FPGAs do not have the capability to do dynamic memory allocations. It
is of utmost importance to reduce external memory accesses, as data transfers can cause
considerable overhead and have a negative effect on performance. The design of a processing
kernel is critical as it should have a memory access pattern that is compatible with the
partitioning scheme mentioned above. This decision is made to reduce communication
overhead, particularly when reading host computer memory from the accelerator or between
different accelerators. The processing kernel should be as efficient as possible, taking advantage
of the parallelism that can be achieved on FPGAs. Multiple instances of computational units
can be created to increase parallelism and improve performance.

2.1 Proposed Solution
In this section, we will delve into the structure of the framework, exploring the partitioning
techniques employed, the single-FPGA architecture and its adaptation for the multi-FPGA
distributed system.

Graph Partitioning

Graph partitioning is a well-discussed challenge in the graph computing literature, with
numerous works proposing innovative techniques and algorithms [23].

This framework utilizes the GridGraph partitioning technique to divide the edges of a
graph into smaller, self-contained chunks, each of which is assigned to a particular vertex.
These chunks, along with the associated vertex data, are stored on the host computer’s
file system. This design ensures that the chunks are independent and compatible with the
Block RAM (BRAM) size of the target FPGA. During the processing, the kernel reads the
chunks in sequence from the host memory, updating the values, which are then written back.
GridGraph is a partitioning technique that is selected for FPGA acceleration due to its
advantageous tradeoffs. It is especially beneficial for large-scale graph processing scenarios,
as it divides the graph into smaller grids for independent processing, resulting in high data
locality and avoiding data conflicts [23]. Furthermore, the ability to map grids onto on-chip
FPGA resources increases performance scalability. An illustration of graph partitioning with
GridGraph is shown in Fig. 1, which divides the vertex set into grid subsets. Each partition
represents outgoing edges for a specific range of vertices, facilitating an efficient iterative
processing sequence. The process loads and processes edges from each partition in sequence,
computing vertex values until a specific termination condition for the algorithm is met.

PARMA-DITAM 2024



6:4 Accel. Large-Scale Graph Proc. with FPGAs

1 2

5
34

1 1

2 2

3
3

4

4

5

2 3

1 5

1
2

3

5

3

1

2

3

4

(a) (b)

6 6 3

4 6

Figure 1 (a) A given sample graph. (b) Produced edge blocks using GridGraph partitioning.
The number of partitions is P=2, producing P 2 edge blocks.

PCIe Lanes

Port A Port B

O
n

-C
h

ip
 M

e
m

o
ry

 

18Kb

18 bits

1024

51 Blocks for 1024 
width of memory port

18K 18K 18K 18K 18K. . .

18K 18K 18K 18K 18K. . .

. .
 .

18K

18K

18K

18K

HLS Kernels

FPGA Global Memory

LMEMLMEMOff-chip Memory

On-chip Memory 
B/URAM Edge Blocks

Memory Controller

PEPEPE

Compute

Ed
ge

 B
u

ff
e

r

Sr
c 

b
u

ff
er

D
st

 b
u

ff
er

Vertex data

Update Output

Configurations/
Parameters

FPGA Accelerator

Host CPU

X
R

T 
R

u
n

ti
m

e

Host DDR Memory

Memory Controller

PCIe 
Controller

HLS Kernels

FPGA Global Memory

LMEMLMEMOff-chip Memory

On-chip Memory 
B/URAM Edge Blocks

Memory Controller

PEPEPE

Compute

Ed
ge

 B
u

ff
e

r

Sr
c 

b
u

ff
er

D
st

 b
u

ff
e

r

Vertex data

Update Output

Configurations/
Parameters

FPGA Accelerator

PCIe 
Controller

Figure 2 An overview block diagram of the proposed hardware design [19].

FPGA Architecture

In a single FPGA process, the graph data is pre-processed using the partitioning technique
described in Section 2.1. The resulting edge blocks are then stored on the host file system.
Given that the overall size of these graph blocks may reach terabytes, the host memory
must be large enough to accommodate the reading of all edge blocks from the file system.
Subsequently, the data is loaded into the FPGA on-chip memory before processing. Fig. 2
provides an overview of the single FPGA graph processing unit. In this representation, the
on-chip memory is configured to optimize the memory bandwidth while maintaining the
system frequency at its peak. Dedicated FPGA kernels are responsible for reading the data
from the stream input provided by the host and directing them to the computational units
within the FPGA. The units execute the graph algorithm, such as PageRank, afterwards.
Upon completion of the computation, the aggregated results are written back to the host
memory and stored in its file system.
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Distributed Architecture

Graph datasets that are too large to be processed on a single machine can be handled in
distributed computing. This involves distributing the data across multiple machines, allowing
for the processing of graphs that would be too large for a single machine to handle. A
distributed system is made up of multiple machines that work together as one virtual system.
Each machine or node is responsible for processing a portion of the data. These systems
can be managed manually with custom software, such as popular message passing interfaces
(MPI). This manual management allows for precise application optimization, leading to high
performance. However, this approach requires a lot of engineering effort and knowledge,
especially in the field of distributed computing. Various distributed computing frameworks
are available that automate and tackle many of the issues discussed earlier. Hadoop, a
popular open source framework created by the Apache Software Foundation in 2005, is a
widely used technology for large-scale data processing in machine clusters [2]. It is based
on the map-reduce programming model and enables parallel processing of large amounts
of data across a distributed platform, due to the integration of the Hadoop Distributed
File System (HDFS). Data are usually stored in a distributed file system, such as HDFS or
ZFS, and processed through a distributed computing framework, such as Apache Hadoop.
Graph algorithms, including PageRank, can be implemented in these frameworks for graph
processing and analysis [8]. Recently, the integration of FPGAs with Hadoop for large
graph processing has gained attention [3]. This combination allows one to take advantage
of Hadoop’s scalability and fault tolerance while taking advantage of the high performance
of FPGAs for graph processing tasks. Although the use of FPGAs with Hadoop is still in
its early stages, further research is needed to evaluate the feasibility of using FPGAs in
combination with Hadoop to speed up graph processing and optimize system performance.

Data processing within the map-reduce architecture involves two main phases. In the
initial “Map” phase, the data are divided into smaller chunks known as input splits. Each
split is processed by a separate node in the cluster, utilizing user-defined functions called
Mappers to transform the input data into intermediate key-value pairs. The subsequent
“Reduce” phase processes these intermediate key-value pairs using user-defined functions
called Reducers, which merge the input data into the final output. In a map-reduce system,
a user application initiates a root controller and a set of mappers and reducers distributed
across various compute nodes. The root node coordinates the generation of mappers and
reducers and monitors their progress. The overall system overview of the Hadoop map-reduce
design is depicted in Fig. 3.

In our scenario, nodes with multiple FPGA accelerators are configured to appear as
multiple nodes with a single FPGA to Hadoop. For instance, a node with four FPGAs executes
four distinct instances of Hadoop, each FPGA being mapped one-to-one to an instance. This
design simplifies the distribution of workload across multiple FPGAs, eliminating the need
for manual splitting. Moreover, it allows for the use of Hadoop scheduling for load balancing
and fault tolerance. The Hadoop scheduler can handle single FPGA failures without taking
the entire node offline. The framework for large-scale graph processing involves three primary
phases (see Fig. 3). During the initial stage, the graph is divided into smaller sections,
named edge-blocks, using the GridGraph partitioning technique. This initial step serves as
pre-processing, enabling the parallel processing of sub-graphs through a single scan. The
second phase constitutes the core processing stage, where a customized Map function executes
the graph processing algorithm on the previously computed subgraphs (e.g., PageRank). The
third and final phase involves the integration of partial results generated by different workers
using a custom Reduce function. This step is optional and can be utilized to merge results
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Figure 3 The Hadoop framework for distributed graph processing [19].

saved in different files by Mappers. However, the necessity of consolidating results into a
single monolithic file may vary depending on the specific use case. For iterative algorithms,
such as PageRank, it is necessary to repeat phases 2 and 3 until the algorithm converges.

3 Methodology

In this section, our aim is to provide insight into the methodology employed in developing
the graph processing framework. This framework is implemented using the Vivado HLS
toolchain (version 2022.2) on the Xilinx Alveo U250 board, featuring the Xilinx VU13P
FPGA. Xilinx Alveo boards serve as Data Center accelerator cards tailored for diverse tasks
such as machine learning inference, video transcoding, and database search and analytics.
The design utilizes the Vivado design suite (Vitis version 2022.2) and is divided into two
parts: implementation of the kernel and host program. The host program, executed on
the CPU, comprises two main stages. The initial stage involves receiving and preparing
pre-processed graph data (see Section 2.1) and parameters, while the subsequent step creates
buffers for optimal memory alignment to enhance performance. The bridge between the host
and the kernels is established through runtime buffers and commands to program the FPGA
device with the bitstream. Data exchange between host memory and kernel local memory,
like BRAM, is facilitated by using OpenCL functions and specific FPGA kernels.

On the contrary, the kernel implementation, executed on the FPGA, is written in HLS
and structured to optimally utilize accelerator resources. Efficient FPGA implementation
is influenced by structures such as local arrays, which require careful resource allocation in
terms of Lookup Tables (LUTs), Block RAM (BRAM), and registers. Strategies such as
partitioning and streaming data through small and fast FIFOs are employed to minimize
resource utilization and accommodate large local arrays on FPGAs. To enhance performance,
the proposed design incorporates tuning at the kernel link stage, allowing a single kernel to
instantiate multiple hardware compute units (CUs). The host program initiates overlapping
kernel calls, executing kernels concurrently by running independent CUs.

In this paper, we present the performance evaluation of our framework in the single FPGA
configuration, extracting the execution time of the FPGA kernel. For distributed execution,
since there is no access to a Hadoop cluster, we employed a mathematical model to estimate
performance. The map-reduce programming model has been extensively explored in the
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Table 1 The XACC server is used to evaluate the real implementation.

Instance Name CPU CPU Freq Cores Memory FPGA
board

alveo1.ethz.ch 2× Intel Xeon Gold
6234

3.30 GHz 16 376 GiB Alveo
U250

literature, allowing for predictable performance modeling [7, 13]. Consequently, this study
relies on performance forecasts drawn from previous analyses of algorithm efficiency in map-
reduce implementations. Before delving into the analysis, it is crucial to underline specific
assumptions. First, the graph is stored in the Hadoop Distributed File System (HDFS), and
second, graph partitioning occurs in parallel through a MapReduce job or custom partitioner.
The first assumption remains valid, given the focus on large-scale graphs, which are too
extensive for a single node, making it likely that they are stored in a distributed file system.
The second assumption is valid as long as the first holds. Once the graph is situated in the file
system, any necessary pre-processing can be directly executed in MapReduce. Given these
assumptions, the graph scale necessitates analysis in a distributed system, as attempting
such an analysis on a single parallel node would require an impractical amount of time. In
the distributed framework, FPGA accelerators are exclusive to mappers for computing a
partial state. The Eq. (1) provided is essential for assessing how a faster mapper would
impact the overall computation time.

T = Tsplit−input + Toverhead + N(Tscatter + max(Tmap) + Ttransfer + Treduce) (1)

where:
Tsplit−input time needed to partition the graph in sub-graphs;
N is the number of iterations of the iterative algorithm;
Toverhead is the overhead introduced by map-reduce;
Tscatter is the time needed to distribute the state vector to all the workers;
max(Tmap) is the time needed by the slowest mapper;
Ttransfer is the time needed to transfer the state vector to the reducers (account for
shuffle and sort);
Treduce is the time needed to aggregate the partial state vectors.

4 Evaluation

This section presents the first evaluation of the framework using an optimized version of the
PageRank algorithm. PageRank is often used as a standard for evaluating the performance
of large graph processing. It is one of the most computationally intensive graph algorithms
and requires the processing of a large number of vertices and edges. This algorithm is used
to assess the importance of each node in a graph, which was initially used by search engines
to rank webpages based on their relevance. PageRank assigns a score, referred to as the
PageRank score, to each vertex, based on the number and importance of the vertices pointing
to it. Vertices with higher PageRank scores are considered more significant than those with
lower scores. Using PageRank as a measure allows for the assessment of the proposed model’s
effectiveness in dealing with large graph data efficiently.

PARMA-DITAM 2024
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Table 2 The datasets for evaluating our proposed study. We choose them based on the size and
the structure of the datasets to be comparable with other works.

Graph dataset Vertices Edges Size (GB) Type

LiveJournal [15] 4.8M 0.069 B 1.1 Social Web

Web-UK-2005 [4] 39M 0.994 B 16 Web Graph

Twitter [14] 41.6 M 1.47 B 23 Web Graph

Friendster [15] 68.3M 2.58 B 43 Social Web

The implementation of the framework described in section 2.1 has been evaluated against
CPU, GPU, and FPGA architectures. The hardware implementation was carried out on a
Xilinx Alveo U250, which was integrated into Xilinx Adaptive Compute Clusters (XACC) [1].
The XACC servers distributed resources evenly across multiple Virtual Machines (VMs),
guaranteeing that each VM had access to its own FPGA card. The software environment
within the VM is based on Ubuntu 20.04 and incorporates FPGA accelerator deployment
frameworks such as Vitis and Vivado HLS. Table 1 provides detailed specifications for the
server and the hardware accelerator.

In the context of PageRank comparisons with the CPU, we used both a sequential
version, an OpenMP multicore version, and the GridGraph library, recognized as one of the
most efficient graph processing frameworks for CPUs. The OpenMP version used in this
assessment is version 4.0.3, and the software is compiled using GCC version 9.4.0. In the
case of GPU implementation, we used the cuGraph library for comparison, using the CUDA
toolkit version 11.7. “cuGraph” is an open source GPU graph analysis library integrated into
the RAPIDS ecosystem, offering a high-performance, user-friendly, and extensible framework
for GPU-based graph analysis. Our experiments used the NVIDIA V100 GPU, renowned for
its high performance based on the Volta architecture. The cugraph library was chosen not
only for its capabilities in single-GPU execution, but also for its potential in running multi-
GPU executions to facilitate a comprehensive comparison with our distributed execution.
Nevertheless, it is important to mention that our attempts to execute the multi-GPU function
with our extensive dataset were unsuccessful, indicating the need for additional effort to
resolve the issue. To evaluate our optimized PageRank algorithm, we selected graphs of
various sizes from the datasets listed in Table 2, ranging from a small graph (LiveJournal) to
a large graph (Friendster). These datasets were intentionally chosen to assess performance
as the graph size exceeds the memory capacities of the CPU or GPU devices.

Fig. 4 shows that the FPGA-based PageRank implementation outperforms sequential
and OpenMP execution on a CPU for all datasets. The speedup achieved ranges from
approximately 9.7x for the smallest dataset to about 26x for the Twitter dataset. Compared
to the GridGraph library, which employs a grid partition schema similar to ours and uses
OpenMP for parallel execution, the framework shows a performance improvement with a
speedup up to 1.5x (Twitter). Our FPGA implementation not only overcomes CPU solutions
but also achieved a speedup of up to 4.5x compared to the cuGraph library (Web-UK-2005).
In particular, the Web-UK-2005 data set, exceeding GPU on-chip memory, requires the use
of Unified Memory, incurring additional overhead and degrading performance due to data
transfers between host memory and GPU on-chip memory. Larger datasets (Twitter and
Friendster) cause GPU experiments to fail due to insufficient memory on the GPU board.
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Table 3 Alveo U250 platform experimental results in comparison to a software baseline and
state-of-the-art FPGA works. Reported numbers are all in Seconds.

Dataset Sequential
CPU1)

OpenMP
CPU1)

GridGraph
CPU1)

cuGraph
GPU2)

Vitis Library
FPGA

Our work
FPGA

LiveJournal 27.01 5.49 3.54 5.28 79.79 2.78

Web-UK-2005 275.44 185.4 34.9 90.73 N/A3) 20.6

Twitter 1443 658.5 88.5 Failed 4) N/A3) 55.6

Friendster 2258 950 141 Failed 4) N/A3) 95.4

1) CPU details are described in Table 1.
2) The GPU used for the experiments is a NVIDIA Volta V100.
3) N/A indicates that the aforementioned study did not report this dataset evaluation.
4) The experiment hit the GPU memory limit.

These results underscore the advantages of employing FPGA for graph processing tasks,
especially with large datasets. Furthermore, the framework surpasses the PageRank algorithm
available in the Vitis Library, achieving a speedup of about 28x. This emphasizes the benefits
of custom FPGA implementations for graph processing tasks, particularly with large datasets
that surpass on-chip memory capacity. The findings position our FPGA implementation as a
suitable solution for accelerating graph processing tasks.

It is noteworthy that the framework’s speedup nearly doubles from Web-UK-2005 to
Twitter, despite Twitter’s size being approximately 1.5 times larger than Web-UK-2005 (see
Table 2). However, the performance boost diminishes with the larger Friendster dataset,
prompting an exploration of whether a multi-FPGA solution in a distributed system, like
Hadoop, could enhance FPGA usage for large-scale graph processing.

Graphs larger than Friendster exceed the computing capabilities of contemporary machines.
To address this, a potential solution involves distributing these large graphs across multiple
machines through distributed computing. Fig. 5 presents forecasts for the integration of
FPGA acceleration in a Hadoop-distributed cluster for large-scale graph processing. Profiling
the code and using the results to evaluate Eq. (1) indicates that FPGA utilization is most
effective when a significant amount of time is spent in the mapping phase. In the forecasts, it
is assumed that the majority of time (51% of the total time) is spent in the mapping phase.
Under these conditions and considering a worst-case scenario in which FPGA-accelerated
nodes achieve only a 20x speedup compared to CPU-only nodes, the forecasts show a potential
54% reduction in total time. In a more realistic scenario where 80% of the time is spent in
the mapping phase (a common assumption with partition methods such as GridGraph to
minimize data transfer), the time reduction achieved by a hybrid CPU-FPGA Hadoop cluster
can increase to 84% compared to a CPU-only cluster. Fig. 5 summarizes these forecasts and
illustrates the best-case scenario (although unlikely) where 90% of the total execution time
is spent in the mapping phase, showing a potential over 90% time reduction under optimal
conditions.

This initial evaluation has revealed the current performance of the framework, as well
as providing useful knowledge that can be used to improve it. Examining the results has
exposed areas where the framework can be improved and optimized. We investigated the
graph partitioning technique and discovered that the first possible enhancements can be
achieved by refining the graph partitioning approach described in Section 2.1. As observed
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GridGraph method.

in Fig. 1, the partitions are unevenly balanced in the grid, with partition 4 being larger than
the others. Our investigation extended to the LiveJournal dataset, where the execution of
the grid graph partitioning exhibited a similar imbalance, as illustrated in Fig. 6. The output
of the grid graph resulted in one substantial partition (block 0) and several smaller partitions.
This lack of balance in workload could lead to notable performance declines. Addressing this
issue requires the development of an improved version of the graph partitioning method to
ensure a more balanced workload, which can significantly improve overall performance.

5 Conclusions

The field of large graph processing is growing in importance as the amount of data generated
by applications such as social networks, web graphs, and biological networks continues to
increase. To handle this increase in graph sizes, efficient and scalable processing methods
must be developed. The integration of Field Programmable Gate Arrays (FPGAs) with
the open source Hadoop framework is becoming increasingly popular for the purpose of
managing large graph datasets. FPGAs, which are integrated circuits designed for specific
tasks, are highly efficient when it comes to executing graph processing algorithms. Hadoop,
on the other hand, is a widely used platform for distributed processing of large datasets.
The first evaluation of our framework has been shown to be more effective than existing
implementations for the PageRank algorithm. This highlights the usefulness of FPGA-based
solutions for large datasets. Additionally, the combination of FPGAs and Hadoop can
potentially improve performance when dealing with large datasets. This initial evaluation
highlights the potential improvements of the framework, stressing the importance of taking
into account factors such as graph partitioning. Further research is needed to broaden the
benchmark set for a more comprehensive evaluation and to look into other essential aspects
such as the host-FPGA communication and the FPGA memory usage.
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