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Abstract
Current homogeneous and heterogeneous computing systems reach high performance through
parallelization. Yet, parallel execution of tasks entails non-trivial latency-vs-throughput issues when
it comes to concurrent accesses to shared memory. In this respect, effective bandwidth regulation
solutions do exist, and provide a basic mechanism to control the latency of memory accesses. Such
solutions, though, are often cumbersome to deploy and to configure to guarantee both bounded
latency and high utilization of the memory bandwidth. The problem is that memory latency varies
non-linearly with the number and type of concurrent accesses, and the latter may in turn vary with
time, often unpredictably. For this reason, previous attempts at memory regulation in scheduling
solutions resulted either in poor real-time execution guarantees, or in severe underutilization of
the memory bandwidth. In this paper, we outline High Memory Bandwidth (HMB), a scheduling
solution that guarantees bounded response times to real-time task sets through memory regulation,
while also reaching a high utilization memory bandwidth. Since the complete solution is complex,
just like the problem it addresses, this preliminary work defines in full detail only the core mechanism.
This mechanism builds on the notion of memory access slowdown experienced by any processor
performing back-to-back memory operations; this slowdown is due to the interference generated
by other processors also accessing the memory at the same time. The core mechanism assumes
that each processor can tolerate a certain amount of slowdown before the timing behavior of the
task(s) it is running is compromised. Each processor has a priority assigned: the higher the priority,
the more stringent the timing requirements. The slowdown can be controlled by regulating with
precision the maximum amount of system bandwidth each processor is allowed to use, based on its
priority. The proposed mechanism finds the maximum bandwidth each processor can use such that
the highest number of processors simultaneously accessing memory is found (thus avoiding memory
bandwidth underutilization) while guaranteeing that the slowdown of each processor is kept within
the tolerated limits.
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1 Introduction

Memory contention on parallel systems

Modern systems feature multiple execution units, including CPU cores and accelerator cores,
running in parallel. These units may inherently perform memory accesses simultaneously. To
support parallelism in memory accesses, these systems are equipped with cache hierarchies.
Caches help to make memory accesses as local as possible, thereby reducing the likelihood of
accessing shared memories and interconnects. However, in many cases, conflicting accesses
to shared resources remain unavoidable. For instance, these conflicting accesses become
unavoidable when there is insufficient space in local caches to accommodate the cumulative
memory footprint of the processors (e.g. CPU cores, execution units) utilizing those caches.
Additionally, such conflicts arise when distant processors need to communicate through shared
memory. Contention arises across all shared resources along the path from the processors to
the actual memory banks, including the interconnect, shared caches, memory bus, and others.
This contention, in turn, results in a more or less significant and unpredictable inflation of
memory latency, impacting the duration of the memory access performed by the competing
processors. [10]. This is an evident problem in real-time applications. Increased memory
latencies can slow down the execution of tasks that involve memory accesses. This may make
it impossible for the tasks to meet their deadlines, thereby rendering the task set unfeasible.
Several solutions have been proposed in the scientific literature to eliminate or control this
slowdown, which can be broadly grouped into two classes: (i) exclusive memory accesses;
and (ii) limited memory accesses.

Exclusive memory access: low bandwidth and high predictability

The first type of solution is based on allowing one processor (or, very few processors) at a time
to access shared memory [20,21]. This approach either eliminates or reduces interference to
such a low level that no significant slowdown occurs. However, the available bandwidth from
shared memories is typically sized to meet the cumulative average bandwidth demand of the
set of processors connected to that memory. Consequently, the total bandwidth offered by
the memory is often higher or much higher than the bandwidth that a single processor may
request. In the end, if only one or relatively few processors access memory at the same time,
the memory bandwidth may be underutilized, potentially to a severe extent. For example,
the ratio between the memory bandwidth available to a single CPU core and the one available
to the whole system (or the CPU complex, respectively) ranges between: 5.0% (or 11%) on
an A57 core in the NXP i.MX 8QM platform, 13% (or 24%) on a Carmel core in the Nvidia
Xavier AGX, 15% (or 35%) on a A53 core in the AMD Xilinx Zynq UltraScale+ [4].

Limited memory access: either high bandwidth, or high predictability

The other type of solutions follows a somewhat opposite approach, as it allows multiple
processors to access memory in parallel [11, 18, 22]. In this case, slowdowns are controlled by
imposing a limit on the maximum bandwidth at which each processor can access memory.
This approach is effective as long as the sum of the per-processor bandwidths remains low
compared to the total memory bandwidth. In this particular case, memory contention is
negligible, and per-processor bandwidths add up linearly – the execution latencies of parallel
tasks are nearly identical to when executed in isolation. Consequently, the only factor
producing the slowdown is essentially the bandwidth limit itself. Therefore, in this case, the
slowdown experienced by each processor can be conveniently controlled.
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Conversely, operating at high utilization implies making memory work at or close to
bandwidth saturation. However, in this regime, memory behavior becomes non-linear. The
slowdown for a specific processor changes if other processor begin accessing memory and
varies based on the types of memory accesses and bandwidth limits of the same processor
and the competing ones. Several factors contribute to this behavior, such as varying
conflicts on different memory banks and interconnect components, or contention affecting
the cache hierarchy at the interconnect level. [4] Ultimately, slowdowns become complicated
to predict and impossible to control through any static assignment of bandwidth limits. For
these reasons, memory limitation mechanisms in real-time scenarios are typically employed
conservatively, aiming to maintain memory bandwidth well below saturation. However, in
such a configuration, memory bandwidth is once again underutilized, similar to the previous
case.

Closing the gap with dynamic parallel access

How can we reconcile high predictability in system behavior with efficient memory bandwidth
exploitation? In other words, how can we guarantee bounded slowdowns while fully utilizing
memory bandwidth? In this paper, we propose a general solution to achieve such a goal. It
builds on two main ingredients.

PREM task model. We adopt a PREM-like real-time task model, featuring a task set with
per-task deadlines and a processor set where tasks are to be executed, and memory limits
can be enforced. PREM-like tasks are identified by memory phases during which they
execute contiguous memory accesses. In our model, we assume that memory phases can
fall into two types: data prefetch, where only reads are executed, or data writeback, where
only writes are performed. This is similar to other models such as the Logical Execution
Time (LET) model of task execution, which distinguishes logical timing requirements
from the actual physical platform execution. In the LET model, a task is sequential code
with its own memory space and lacks internal synchronization points [8].

Dynamic memory policy. We assume to be given an execution policy that provides task
allocation and scheduling – at any time, it assigns tasks to processors of interest. We
do not introduce any further hypothesis on the execution policy, except for the fact it
has to be memory-agnostic, i.e. allocation and scheduling choices must not depend on
any memory concept like limits, contention or service times. We introduce a second
policy, called the memory policy, which is responsible for the dynamic adjustment of
the bandwidth limits of all active processors. This policy is a function of how many
processors are accessing memory at the same time, and of which memory accesses they
are performing between reads and writes. Limits are adjusted in such a way that the
slowdowns experienced by each task are low enough to let the task still meet its deadlines,
under the scheduling policy at hand.

The assumption regarding PREM-like tasks represents an important simplifying hypothesis
as it enlarges the granularity of memory regulation decisions to a tractable size. Indeed,
it costs time to detect a change in the memory access pattern of processors, compute new
limits, and initiate the enforcement of these new limits. The highest time constant in play
is the communication delay between the processors. For instance, in the case of a single
CPU, which has lower delays compared to a heterogeneous system, we can estimate the
delay to be in the order of 10 microseconds, assuming the communication is triggered by an
inter-processor interrupt [15]. For this reason, our solution is feasible only for PREM-like
tasks whose memory phases are longer than this base delay. For non-PREM tasks, it would
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be challenging or even impossible to determine the type of each generic memory access right
before it happens and to dynamically adjust bandwidth limits for each instantaneous change
in the type of memory accesses. Nevertheless, other dynamic approaches could be considered,
such as measuring per task/processor bandwidths online and adjusting limits on the fly.
However, such extensions are beyond the scope of this initial proposal.

Given the PREM task set and a system where delays make our solution feasible, the
core challenge lies in computing the bandwidth limits. All potential combinations of parallel
access patterns must be considered, and their number grows exponentially with the number of
processors and available limit values. However, only a limited set of configurations that drive
memory bandwidth close to saturation are of interest. The number of these configurations
is significantly lower than the total number of possible combinations. Therefore, a critical
feasibility aspect is defining an algorithm that discards all useless configurations, eliminating
the need to store them all and potentially avoiding their evaluation altogether.

We remark that, by construction,we structured the problem to maintain orthogonality
between the execution and memory policies. This provides complete freedom in defining
the execution policy. Specifically, one can establish either a global or a partitioned task
scheduling policy with regulated parallel accesses to memory. A partitioned scheme is likely
the preferred option for an initial solution, as it is typically characterized by simpler analysis
and implementation.

2 System Model

This work focuses on a multi-processor system featuring a shared last-level cache and shared
memory. The proposed idea in this work does not hinge on any specific task model or
scheduling policy. Nevertheless, for illustrative purposes, the following system model is
employed to present the idea. Each processor is assigned a partitioned subset of tasks. Tasks
within the system follow a sequence: they prefetch data in the Read-memory phase, perform
computations in a single computation phase, and write back the results in the Write-memory
phase. On each processor, tasks are scheduled based on a dynamic-priority, non-preemptive
policy.

2.1 Processors
The main memory is shared among m identical processors, each assigned a distinct static
priority. These priorities govern the allocated bandwidth for parallel access to the main
memory. A detailed explanation of how these priorities can be utilized to govern the parallel
memory accesses will be provided in Section 4. Processors are indexed following their
priorities, with P1 possessing the highest priority and Pm the lowest.

2.2 Tasks
This work considers a partitioned system where each task is statically assigned to a single
processor. The assignment of the i-th task to the k-th processor is denoted by the notation
τi ∈ Pk. Each task, denoted as τi exhibits a dynamic behavior by releasing an infinite
sequence of jobs sporadically. Each individual job within this sequence is subject to a
specified minimum inter-arrival time denoted as Ti. Each job of τi must be executed and
completed within a fixed time limit from its release, specified by Di, the relative deadline.
We employ a PREM-like task model to simplify governing the memory requests. This
assumption is significant because it increases the granularity of memory policing decisions to
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a manageable level. Detecting changes in memory access patterns, calculating new limits,
and enforcing these limits all take time. Due to this constraint, our solution is practical
only for tasks resembling PREM, where the duration of memory phases exceeds the base
delay. For non-PREM tasks, accurately predicting the type of each generic memory access
just before it occurs and dynamically adjusting bandwidth limits for every instantaneous
change in memory access type would be challenging, if not impossible. In this PREM-like
model, each task consists of three phases: a read-memory phase, a computation phase, and
a write-memory phase. During the read-memory phase, the task prefetches data from the
main memory. In the computation phase, the task performs computations exclusively on the
prefetched data without making any requests to access the main memory. The result is then
written back to the main memory during the write-memory phase. In both memory phase,
the tasks executes only memory accesses.

Tasks are scheduled on each processor according to a dynamic-priority non-preemptive
scheduling policy and are indexed by priority, with τ1 having the highest priority and τn the
lowest, where n is the number of tasks allocated to the processor under study.

2.3 Memory
Memory functions as a globally shared resource, accessible to all processors with identical
memory access latencies. In this model, the processors are symmetric, and they have the
potential to saturate the bandwidth, meaning their cumulative demand may exceed the total
memory bandwidth. Consequently, due to memory interferences, the duration extension of
memory phases for each processor becomes unpredictable without regulation. Additionally, we
assume that the order in which the memory controller serves memory requests simultaneously
issued by different processors is unknown.

3 The Scheduling Policy

In this section, we present a partitioned memory-centric scheduling policy and illustrate it
with an example. We will delve into the basic idea and the principal rules of the proposed
policy. Our applied scheduling policy consists of two main components: the execution policy
to distribute the task set among the processors and to schedule the execution order of each
subset of the task set on each processor, and the memory policy for regulating the bandwidth
to control access to the main memory. These two parts are explained as follows.
Execution Policy. Each task in the task set is statically assigned to a single processor, and

no migration is allowed. The task set is first sorted based on their relative deadlines.
Subsequently, tasks are assigned one by one to the processors according to their priority.
Assuming there are nT tasks in the task set and m processors in the system, the task with
the closest relative deadline is assigned to the highest priority processor, denoted as P1.
The task with the second closest relative deadline is assigned to P2, and this assignment
continues until each processor is assigned a task. Once every processor has a task, the
m + 1th closest relative deadline task is assigned to P1 again. This procedure repeats
until all tasks in the task set are assigned to processors. On each processor, tasks run
based on a non-preemptive Earliest Deadline First (EDF) algorithm. Considering that
all the required data for the execution of each task is prefetched during the read-memory
phase, using a preemptive scheduling policy may increase the response time of each task
by prefetching the same data several times. Therefore, choosing a non-preemptive policy
can be more efficient. Moreover, by applying the EDF, the system can enjoy the benefits
of dynamic task priorities.

NG-RES 2024
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Memory Policy. All the memory requests are governed globally through bandwidth reg-
ulation. When a new memory request arrives, or an existing memory access finishes,
depending on the number of parallel memory accesses, and the workload on the targeted
processor and the interfering ones, the supervisor should check the corresponding cell
in the table of regulation factors(RF) to identify the amount of bandwidth allocated to
each active processor.

4 Implementing The Policy

4.1 Memory bandwidth regulation
4.1.1 Regulation mechanisms
Memory bandwidth limits are realized by memory regulation mechanisms that can be
implemented in different ways – they can be either hardware assisted, or provided by software
components, either external from, or internal to, the workload to be limited.

HW regulation. Hardware regulation is commercially available with Memory Bandwidth
Allocation, part of the Resource Director Technology by Intel [9], that is mainly featured
on higher end Xeon family processors. A similar technology is provided also by Arm with
the Memory System Resource Partitioning and Monitoring (MPAM) set of IPs [2], but we
are not aware of any commercially available chip including it. The common principle is
that CPU cores can be assigned with a given quality of service for memory transactions,
and that such limit is enforced by regulating the traffic originated from the last-level
cache or the system-level cache.

External SW regulation. Software regulation can be conveniently offered by a component of
the platform software. It can be the case of the operating system like in MemGuard [21],
the hypervisor like in MinervaSys Jailhouse [6] or some system-resident firmware like in
MemPol [22]. The underlying principle is the same – a processor is allotted a predefined
maximum number of memory accesses (budget) to execute within a fixed period. Should
the processor exhaust its budget before the period concludes, the regulation mechanism
halts the processor until the period concludes, at which point the processor receives a
new budget for the subsequent period.

Internal SW regulation. This method, also called Voluntary Throttling (VolT), entails
augmenting the code of the memory phases of the PREM tasks so to introduce a number
of NOPs (No Operation instructions) periodically during its memory phase(s) [4]. The
number of NOPs is externally configurable and provides the mean to regulate the throttling
length (or frequency) of throttling. The code augmentation can be inserted at compile
time, which is especially convenient when code PREMization is already automated [7].

4.1.2 Regulation factors
In order of us to abstract from the implementation details, we define the notion of regulation
factor, that acts as a knob to adjust the bandwidth allocation for a process. A regulation
factor of 0% indicates that no bandwidth is allocated for the service, while a factor of 100%
implies that the entire available bandwidth is dedicated to the service.

▶ Definition 1 (Regulation Factor (RF )). For each processor configured with a memory limit,
we define its regulation factor (RF ) as the ratio between the limited memory bandwidth
measured in isolation by performing back-to-back Reads (or Writes) operations, and the
(unlimited) memory bandwidth measured in the same conditions while removing the memory
limitation on the processor. For the sake of simplicity, we assume RFs to range among
percentage integers between 0 (no bandwidth) to 100 (full bandwidth).
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We remark that the target measurement is performed in isolation because the attainable
bandwidth is, in general, influenced by the number of processors operating in parallel, and
the workload on both the affected processor and any interfering processors. Consequently,
let us also stress that the actual bandwidth experienced by a processor is influenced, not
entirely determined, by its regulation factor.

Observe that the regulation primitives greatly differ among the various memory regulation
mechanisms. A concrete manner is thus needed to compute the function that maps any
configuration of the mechanisms-specific knobs to its corresponding regulation factors. In
most cases, only an experimental method enables to obtain a precise definition, as the one
provided in Subsubsection 4.1.3 for VolT.

4.1.3 Example: VOLT regulation factors
In a VolT system the only available knob is the number of NOPs injected in the code.
To compute the RFs, we need to experimentally find, for each workload, for each kind of
processor, and for each regulation factor, the number of NOPs that produce the limited
bandwidth of our interest. For instance, when the regulation factor is 10%, it means that the
number of NOPs is such that if the processor executes this specific workload (Read or Write)
in isolation, it receives 10% of the unlimited bandwidth. This table can be constructed
experimentally following the algorithm outlined in Algorithm 1.

For each memory access type, the algorithm initializes two counters: Nold and Nnew,
representing the initial and current number of NOPs, respectively. Then, it sweeps through
a range of RF values from 100 to 0 with a step of −10, representing increasing regulation
levels. At each RF iteration, a Match flag is set to false, indicating that a precise match

Algorithm 1 Construct the translating table between regulation factors and limited
bandwidth values.

Input : Unlimited bandwidth values UnBR, UnBW for Read and Write memory
accesses

Output : Translating table RF2BW between regulation factors and actual
bandwidth values:

1 foreach TMR ∈ {R, W} do
2 Nold = 1
3 Nnew = 2
4 for RF = 100 to 0 with step −10 do
5 Match = False
6 while !Match do
7 BWold = measure the bandwidth with Nold NOPs
8 BWnew = measure the bandwidth with Nnew NOPs
9 if |BWnew − RF

100 × UnBT MR| < |BWold − RF
100 × UnBT MR| then

10 Nold + +
11 Nnew + +
12 else
13 N(TMR, RF ) = Nold

14 Match = True

15 return Result

NG-RES 2024
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between RF and bandwidth has not yet been established. The algorithm then enters a
loop that repeatedly measures bandwidth using two different NOP configurations. The first
measurement (BWold) reflects the current NOP count (Nold), while the second measurement
(BWnew) employs Nold incremented by one (Nnew = Nold + 1).

The algorithm compares the absolute differences between the measured bandwidth values
and the expected bandwidth value for each RF , calculated by multiplying RF by the
unlimited bandwidth for the corresponding memory access type (UnBT MR). If the difference
for the newer NOP setting (|BWnew − RF

100 × UnBT MR|) is smaller than that for the older
setting (|BWold − RF

100 × UnBT MR|), it suggests that the newer NOP configuration provides
a more accurate bandwidth estimation for that particular RF . In such a case, the algorithm
increments both counters (Nold + +, Nnew + +), effectively refining the bandwidth estimation
resolution. The algorithm continues iterating within this loop until the Match flag is set
to true, indicating that the optimal match between RF and bandwidth has been identified.
Upon reaching this point, the algorithm stores the corresponding NOP count (Nold) in
the translating table RF2BW for the specified memory access type (TMR) and RF value.
This process is repeated for both R and W memory access types to construct the complete
translating table.

It’s crucial to recognize that since the number of NOPs is limited to integer values, the
bandwidth values derived from regulation factors are not entirely precise – they represent
the closest approximation of the true bandwidth achievable with a specific regulation level.

4.2 Construct the table of slowdown measurements
The table of regulation factors (RF) comprises factors for regulating memory accesses
corresponding to each workload pattern. To fill in the cells of this table, a series of slowdown
measurements must be conducted for every conceivable set of regulation factors on active
processors. This enables us to deduce the factors that more effectively align with our timing
constraints.

As these slowdown measurements merely pertain to the specifications of the hardware
in use, rather than the actual task set, we optimize system performance by employing
a separate table, designated as the table of slowdown measurements (SM), to store the
recorded slowdown values for each scenario of memory accesses and a specific set of regulation
factors on the active processors. The construction of the slowdown measurements table is a
one-time necessity. Subsequently, based on the task set specifications, we can then select the
set of suitable factors.

In the remainder of this section, we systematically introduce the algorithms for construct-
ing the aforementioned tables, step by step. But first, we shall define some preliminary
concepts.

4.2.1 Formal definitions
The set of notations used is briefly explained in the Table 1.

To determine the appropriate set of throttling factors for effective bandwidth regulation,
it is essential to undertake a series of slowdown measurements encompassing all possible
combinations of throttling factors for active processors. In this section, we aim to outline
a systematic approach for conducting these measurements while avoiding redundant cases.
But before presenting the algorithm a few concepts should be clarified.
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Table 1 The table of notations.

Notation Definition

C(j, Si, RF(j)) a generic configuration consists of a set of regulation factors,RF(j), its corresponding
slowdown measurementSD(j, Si, RF(j)), and the actual bandwidth of processors, or UB

j number of processors accessing the memory in parallel
m total number of processors in the system

N(T MR, RF ) number of NOPs to achieve a specific regulation factor

RFk
the regulation factor assigned to the k − th highest priority processor among those

accessing the memory at the same time
RF a generic regulation factor to regulate the bandwidth

RF(j) a generic vector of regulation factors used to measure the slowdown values in case of j

parallel memory accesses following Si scenario corresponding to s measured slowdown value
RF2BW the translating table between regulation factors and actual bandwidth values

Si each scenario of parallel memory requests
S(j) set of all possible scenarios of parallel memory accesses for each value of j

SD(j, Si, RF(j)) the vector of measured slowdown values corresponding to j parallel memory accesses
following Si scenario using RF(j)

SM table of slowdown measurements

SM[Si(j), C(j, Si), RF(j)] sub-table of slowdown measurements corresponding to j parallel
memory accesses following Si scenario

UB the vector of actual bandwidth of the processors
ε a very small positive value

▶ Definition 2 (Slowdown Measurement). Processor slowdown measurement involves quan-
tifying the reduction in the speed of a processor as it performs tasks. This measurement is
typically expressed as a percentage decrease in processing speed compared to the processor’s
original performance. In the context of this discussion, slowdown measurements refer to the
decrease in speed of processors when accessing the memory as a consequence of throttling the
bandwidth.

In practical scenarios, the memory phases of different processors may partially overlap.
However, to consider the worst-case scenario, these measurements involve executing all
conceivable combinations of memory phases in parallel continuously. In this scenario, the
system encounters the most severe slowdown due to memory interference.

▶ Definition 3 (Set of workload combinations(S(j))). For any given number j of parallel
memory accesses, the set of all the scenarios of memory accesses, or in other words, the
different patterns of Reads and Writes coming from different processors in parallel, is called
the set of workload combinations and is denoted by S(j). Each scenario within this set is
denoted by Si.

For example, in the case of two parallel memory requests, there will be four distinct
scenarios of memory accesses: RhRl, RhWl, WhRl, WhWl, where ’h’ refers to the memory
access of the higher-priority processor and ’l’ to the lower-priority one. Therefore, S(2) will
have, 22 elements. Following the same reasoning, in general S(j) includes 2j elements.

▶ Definition 4 (Configuration of parallel memory accesses(C)). For any given number j

of parallel memory accesses, and any scenario of memory accesses Si, a configuration of
parallel memory accesses is a vector that concatenates a vector of regulation factors for the
corresponding active processors RF, its corresponding measured slowdown SD(j, Si, RF),
and the vector of actual bandwidth of the active processors UB(j, Si, RF). Or

C(j, Si, RF(j)) = [RF(j); SD(j, Si, RF(j)); UB(j, Si, RF(j))]

NG-RES 2024
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▶ Definition 5 (Slowdown measurements table(SM)). Slowdown measurements table is a
table of subtables, each denoted by SM[Si(j), C(j, Si), RF(j)], corresponding to each number
of parallel memory accesses (j) and each scenario of memory access (Si). Each subtable
is represented as a two-dimensional array, where the rows represent different scenarios of
memory accesses(Si), and the columns represent different valid configurations of parallel
memory accesses.

4.2.2 Slowdown interplay
When employing each set of regulation factors, the amount of slowdown experienced by
each processor may vary depending on the specific combination of processors concurrently
accessing memory, the overall number of active processors, and the type of memory access
(read or write) on both the targeted processor and its competitors. Since this study operates
under the assumption of a homogeneous system, the identity of the processors simultaneously
requesting memory is irrelevant; the only relevant factors are their relative priorities, and
their total number, represented by j.

4.2.3 Algorithm core ideas
The algorithm to construct the slowdown measurement table receives the number of processors
in the system as the input and outputs the table of slowdown measurements. For each
number of parallel memory requests and each scenario, Si ∈ S(j), the algorithm commences
by measuring the slowdown values and the actual bandwidth of all the active processors for
the full-throttling case. Subsequently, starting from the processor with the lowest priority
and progressing to the higher-priority ones, the throttling factor of each processor is reduced
by 10 percent, and the measurements are then repeated to track every possible configuration
of parallel memory accesses.

The main objective is to maximize bandwidth utilization, therefore we need to maintain
bandwidth as close to saturation as possible avoiding over-allocation.

Within the saturation zone, the relationship between utilized bandwidth and throttling
factors is non-linear. Counter-intuitively, adjusting the throttling factor of one processor
can lead to fluctuations in the actual bandwidth values of other processors. For instance,
decreasing the throttling factor of one processor might increase the actual bandwidth of
other processors. On the opposite end, in the underutilization zone, the bandwidth is out
of saturation. Therefore, the behavior of the system becomes essentially linear. In this
zone, decreasing the regulation factors of one processor will either decrease or maintain the
bandwidth of that processor without affecting the bandwidth of other processors. Considering
this behavior, we can develop a discarding technique to improve the efficiency of the algorithm
for storing slowdown measurements. This technique involves retaining only configurations
close to saturation.

4.2.4 Discarding configurations
There are two primary reasons for discarding a configuration: either when we have already
identified a better configuration in terms of bandwidth utilization in the saturation zone, or
when the current configuration results in under-utilization of the available bandwidth.

If reducing the regulation factor results in negligible changes to the measured slowdown, it
implies that the previous configuration was saturating the bandwidth. Consequently, we can
discard the previous configuration and retain the current one. Given the uniform decrease of
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the regulation factors, this comparison can be conducted for every two consecutive measure-
ments to eliminate configurations that result in over-allocation of bandwidth. Conversely,
if a regulation requires less bandwidth than an already existing configuration for the same
workload combination, it indicates that this configuration does not provide us with a better
solution and there is no need to retain it. Considering the gradual reduction of regulation
factors, this can be examined by comparing the actual bandwidth of all the processors in
two consecutive measurements. If none of the processors gain a better bandwidth, it means
this configuration under-utilizes the bandwidth. Therefore, we should discard it.

4.2.5 Termination
By the following termination rule, we can determine whether continuing the measurement
will yield beneficial results or if we can terminate it. If modifying a single regulation factor
solely affects the bandwidth of the corresponding processor, while the bandwidth of all other
processors remains unchanged, it indicates that there is no interference between memory
accesses, and the system is operating in the under-utilization zone. Therefore, we can
terminate the current loop and proceed to the next outer loop. This nested table structure
provides a concise and organized representation of the system’s slowdown values, enabling
efficient retrieval and analysis of the impact of regulation factors.

4.3 Construct the table of regulation factors
Given that slowdown values are influenced by the selected regulation factors, we can control
slowdown values by adjusting these factors. With a predefined maximum tolerable slowdown
value, aligned with the timing constraints of the task set, we can choose regulation factors
to facilitate parallel memory accesses. This concept can be implemented through a table,
which provides the appropriate set of Regulation factors for each scenario of parallel memory
accesses under predefined slowdown constraints.

▶ Definition 6 (Table of Regulation factors (RF)). The table RF is structured as a collection
of sub-tables. For each number of parallel memory accesses, denoted as j, there exists a sub-
table. Within each sub-table, for every possible scenario of memory accesses, it encapsulates
the set of Regulation factors for active processors, tailored to meet the slowdown constraints
imposed by the task set.

To present the algorithm to construct this table, we should clarify a few notations.

▶ Definition 7 (Possible Configurations (PC)). The set of candidate configurations corres-
ponding to j parallel memory accesses with workload combination Si is shown by PC(j, Si).

▶ Definition 8 (Maximum Bandwidth Utilization (MBU)). The set of regulation factors’
vectors with the same maximum bandwidth utilization by MBU(j, Si).

This algorithm receives as inputs: the table of slowdown measurements(SM), and the
set of maximum tolerable values for slowdowns in line with the timing constraints of the task
set, denoted by MT S. It provides as output the regulation factors table RF . Alongside
this algorithm, for each number of parallel memory accesses, first, the set of all possible
scenarios of parallel memory requests, or S(j), is generated. Then for each scenario, all the
configurations stored at sub-table SM[Si(j), C(j, Si)] are compared to their corresponding
maximum tolerable value in MT S. If the measured slowdown value is smaller or slightly
larger than the maximum tolerable value, the algorithm appends this configuration to
PC(j, Si).
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Algorithm 2 Construct the slowdown measurements table.

Input : number m of processors
Output : table SM of slowdown measurements

1 for j = 2 : m do
2 Generate: S(j)
3 foreach Si ∈ S(j) do
4 RFold = [100, 100, . . . , 100]
5 Perform slowdown and used bandwidth measurements for unlimited

bandwidth case SD(j, Si, RFold), UB
6 SDold = SD(j, Si, RFold)
7 UBold = UB
8 for RF1 = 100 to 0 with step −10 do
9 for RF2 = RF1 to 0 with step −10 do

10 . . .

11 for RFj−1 = RFj−2 to 0 with step −10 do
12 UnderUtilization = False
13 RFj = RFj−1
14 while !UnderUtilization do
15 RFnew = [RF1, RF2, . . . , RFj ]
16 Perform measurements SD(j, Si, RFnew), UB
17 SDnew = SD(j, Si, RFnew)
18 UBnew = UB

// over-utilization check:
19 if SDnew ≈ SDold then
20 C(j, Si, RFold) = C(j, Si, RFnew)
21 RFold = RFnew
22 SDold = SDnew
23 UBold = UBnew

// non-optimal solution check:
24 if UBnew ≤ UBold then
25 Discard the new configuration

// termination condition:
26 if (UBnew[1 : j − 1] ≈ UBold[1 : j − 1] && UBnew[j] ≤

UBold[j]) ∥ RFj == 0 then
27 UnderUtilization = True
28 else
29 RFj− = 10

30 return Result

Whenever PC(j, Si) is empty, the algorithm reports: “Not enough bandwidth”, which
means we should suspend the memory access coming from the lowest priority processor to
make sure this case will not happen. However, if PC(j, Si) is not empty, the algorithm looks
for the configuration that yields the maximum used bandwidth(or UB). If this solution is
not unique, among them, this algorithm picks the one with the maximum regulation factors.
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Algorithm 3 Construct the table of regulation factors.

Input : Number m of processors, set MT S of maximum tolerable values for
slowdowns in line with the timing constraints of the task set, table SM of
slowdown measurements

Output : Table RF of regulation factors
1 for j = 2 : m do
2 Generate: S(j)
3 for ∀ Si ∈ S(j) do
4 Move to sub-table SM[Si(j), C(j, Si)] in SM
5 for ∀ C ∈ SM[Si(j), C(j, Si)] do
6 if SD ≤ (MT S(j, Si) + ε) then
7 Append C to PC(j, Si)

8 if PC(j, Si) ̸= ∅ then
9 MBU(j, Si) = maxC∈PC(j,Si) UB

10 MBU(j, Si) = {C ∈ PC(j, Si)|UB ≈ MBU(j, Si)}
11 if MBU(j, Si) ̸= ∅ then
12 RF(j, Si) = maxC∈MBU(j,Si) RF

13 if PC(j, Si) = ∅ then
14 Report: “Not enough bandwidth”

15 return Result

4.4 An illustrative example
To illustrate the policy, the following example can provide clarity. Let’s consider a task
set as described in the table below. All tasks in this set are activated synchronously. Our
objective is to efficiently schedule this task set on a system with three processors. These
tasks are prioritized based on their periods and scheduled accordingly. We also assume that
no preemption is allowed. In table Table 2 the duration of the read memory phase, write
memory phase, computation time, period(or minimum inter-arrival time), and the relative
deadline of task τi are denoted by, rmi, wmi, ci, Ti, and Di, respectively. All the values are
measured in microseconds:

Table 2 Task Set Characteristics.

τi rmi(×10µs) ci(×10µs) wmi(×10µs) Ti(×10µs) Di(×10µs)
τ1 3 4 2 20 10
τ2 2 3 1 25 15
τ3 2 2 1 30 20
τ4 1 1 1 35 25
τ5 1 4 1 40 30

Following the partitioning policy, τ1, and τ4 are assigned to P1, τ2, and τ5 to P2, and τ3 is
assigned to P3. In Gantt charts, red, grey, and blue blocks represent the read-memory phase,
the computation phase, and the write-memory phase, respectively. Initially, we assume
no parallel memory access is allowed, limiting each processor to accessing memory one at
a time according to their priorities. Tasks are partitioned using the same policy, and on
each processor, tasks are executed using a non-preemptive Earliest Deadline First (EDF)
scheduling algorithm.
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Figure 1 Partitioned scheduling algorithm, no parallel memory access.

Next, we aim to schedule the identical task set employing our policy. Broadly speaking,
the asynchronous execution capability of the write memory phase renders it faster than the
read memory phase. Therefore, we consider distinct values for unlimited bandwidth in read
and write operations. As an illustrative numerical example, let’s assume the system has an
unlimited bandwidth of 2.5 GB/s for read-memory phases and 8 GB/s for write-memory
phases. The regulation factors for two and three parallel memory accesses are outlined
in Table 3 and Table 4, respectively. In practice, these tables must be filled following the
algorithms.

Table 3 Table of regulation factors for two parallel memory accesses.

Workload pattern Regulation factors for Ph Regulation factors for Pl

RR 100 100
RW 90 70
WR 80 60
WW 60 40

Table 4 Table of regulation factors for three parallel memory accesses.

Workload
pattern

Regulation
factors for
P1

Regulation
factors for
P2

Regulation
factors for
P3

RRR 100 100 100
RRW 90 70 50
RWR 80 60 40
WRR 70 50 40
RWW 80 40 30
WRW 60 30 30
WWR 60 30 30
WWW 60 30 10

According to the tables of regulation factors, the Gann chart will be:
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Figure 2 Partitioned scheduling algorithm, using HMB.

As illustrated in the example, three read-memory phases can be executed in parallel
with negligible extension of the memory phase duration. However, when two write-memory
phases access the memory in parallel (as is the case with w4 and w5), according to the table,
60% of the unlimited bandwidth of the processor will be allocated to the higher priority
processor, and 40% to the lower priority one. Consequently, the duration of these memory
phases will be extended accordingly. Nevertheless, upon comparing the Gantt charts, there
is a remarkable improvement in the overall time-span of the task set following our proposed
policy.

5 Related Works

The impact of memory contention in contemporary systems has been extensively explored in
prior scientific literature. [10] Previous studies have focused on investigating the decline in
Worst-Case Execution Time (WCET) for applications contending for memory, particularly
in multi-core embedded systems [13]. Proposals for memory-bandwidth partitioning schemes
aimed at ensuring temporal isolation have been introduced [12]. In [21], the authors introduced
a memory bandwidth reservation system named MemGuard. This system was proposed,
designed, and implemented with the primary aim of providing bandwidth reservation to
ensure temporal isolation, and maximizing the utilization of the reserved bandwidth. In
[14], the memory utilization is periodically sampled, While using standard MemGuard’s
interrupts – and associated overheads – to regulate cores and to trigger the sampling. While
partitioning represents a straightforward and robust solution, it encounters challenges related
to underutilizing the bandwidth. Moreover, it offers less refined control over task execution
compared to the PREM approach. Similar challenges are observed in alternative hardware-
level partitioning solutions and mechanisms for enforcing bandwidth allocation documented
in existing literature [5,18]. As an example in [22], known as MemPol, in introduced that
operates a regulation mechanism from outside the cores, monitoring performance counters
for the application core’s activity in main memory at a microsecond scale. In contrast,
our work adopts an internal mechanism to regulate the bandwidth offering a more flexible
scheme to maximize bandwidth utilization. A substantial body of literature addresses the
application of PREM model to multi-core systems [1,3,17,19]. However, a primary limitation
of these studies is their restriction to permitting only one memory access at a time, leading to
bandwidth underutilization. In [20], the authors extended PREM by accommodating more
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than one task to access memory in parallel. Through experimentation, they demonstrated
that the latency of main-memory accesses increases at a rate less than linear when multiple
cores simultaneously access memory. Their model supports k parallel memory accesses,
where k is a statically configurable number determined based on hardware specifications.
The primary drawback of this model lies in its rigidity. As shown in [4], allowing k cores
to utilize bandwidth without constraint, whether needed or not, may lead to bandwidth
overutilization while selecting k − 1 could result in bandwidth underutilization. Addressing
this issue, the main advantage of our model lies in the dynamic allocation of bandwidth to
processors based on workload patterns. This allows for the adaptive selection of the number
of parallel memory accesses, optimizing resource utilization. Despite differences in scope,
a comparable work to ours is [16], which introduces the Envelope-aWare Predictive model,
abbreviated as E-WarP. It aims to provide both the technological foundations and theoretical
bases for a workload-aware analysis of real-time systems.

6 Conclusion

6.1 Discussion
Contemporary homogeneous and heterogeneous computing systems attain enhanced per-
formance levels through parallelization. However, the parallel execution of tasks introduces
complex trade-offs between latency and throughput, particularly in the context of simultan-
eous accesses to shared memory. Numerous approaches aim to mitigate memory interference
issues, with bandwidth regulation being popular. In the literature, various viable solutions
for bandwidth provide basic mechanisms to address the latency of memory accesses. However,
their primary drawbacks include the complexity of deployment and rigidity. It has been
observed that existing solutions may lead to underutilization of the available bandwidth.

The challenge lies in the non-linear behavior of memory latency based on the number and
type of concurrent accesses, which can fluctuate over time in an unpredictable manner. Past
attempts to integrate memory regulation into scheduling solutions have, as a consequence,
either failed to provide guarantees for real-time execution or led to significant underutilization
of memory bandwidth.

In this paper, we introduce High Memory Bandwidth (HMB), a scheduling solution
designed to guarantee bounded response times of real-time task sets through memory
regulation while ensuring a high utilization of memory bandwidth. The intricate nature of
both the problem and its potential solution necessitates a comprehensive approach, one that
this preliminary work only begins to unfold. In this first step, we focus on the core mechanism
of HMB, providing a detailed explanation of its inner workings and how it addresses the
challenges posed by real-time task sets. Our goal is to lay a solid foundation for future
research and development, paving the way toward a scheduling solution that seamlessly
integrates the demands of real-time systems with the efficient utilization of memory resources.

The core concept of this work lies on the notion memory slowdown, a phenomenon
that occurs when a processor’s memory access performance is hindered by the concurrent
memory access patterns of other processors. This slowdown, particularly during bursts of
back-to-back memory accesses, can significantly impact the execution time of real-time tasks,
potentially violating their timing constraints. To address this challenge, HMB employs a
novel mechanism that dynamically allocates memory bandwidth among processors based
on their priority levels. By carefully balancing the needs of high-priority processors, which
typically have stricter timing requirements, HMB ensures that their memory accesses are
prioritized, minimizing slowdown and maintaining their responsiveness.
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HMB’s efficiency stems from its ability to optimize memory bandwidth utilization while
adhering to the priority-based allocation scheme. It continuously evaluates the system’s
memory access patterns and dynamically adjusts bandwidth caps to accommodate the
demands of high-priority processors without compromising overall efficiency. This intricate
balance enables HMB to achieve both bounded response times for real-time tasks and high
memory bandwidth utilization, a remarkable feat in the context of resource-constrained
real-time systems.

6.2 Further works
In this short work-in-progress paper, our primary focus has been on expounding the core
concept of HMB and its underlying mechanism for bandwidth regulation. The next crucial
step involves conducting a comprehensive series of experiments to rigorously validate the
feasibility and evaluate the efficiency of this proposed mechanism in real-world scenarios.

During the implementation phase, potential overheads can arise at multiple levels, de-
manding careful consideration and optimization. At the hardware level, we must carefully
evaluate the size of tables required to effectively implement HMB and ensure that data trans-
fer speeds are sufficient to support the proposed bandwidth allocation scheme. Additionally,
we need to analyze the overhead introduced by the algorithm and the dispatcher at the
execution level. To ensure feasibility, it is imperative that the overall overhead remains lower
than the shortest memory phase.

To objectively assess the effectiveness of HMB, we can compare its performance to similar
works in this domain, such as [20] and [16]. By comparing against these established solutions,
we can gain valuable insights into the relative strengths and weaknesses of HMB, paving the
way for further refinements and improvements.
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