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Abstract
Embedded system applications usually have requirements regarding non-functional properties of their
execution like latency or power consumption. Enforcement of such requirements can be implemented
by a reactive control loop, where an enforcer determines based on a system response (feedback) how
to control the system, e.g., by selecting the number of active cores allocated to a program or by
scaling their voltage/frequency mode. It is of a particular interest to design enforcement strategies
for which it is possible to provide formal guarantees with respect to requirement violations, especially
under a largely varying environmental input (workload) per execution. In this paper, we consider
enforcement strategies that are modeled by a finite state machine (FSM) and the environment by
a discrete-time Markov chain. Such a formalization enables the formal verification of temporal
properties (verification goals) regarding the satisfaction of requirements of a given enforcement
strategy.

In this paper, we propose history-based enforcement FSMs which compute a reaction not just on
the current, but on a fixed history of K previously observed system responses. We then analyze the
quality of such enforcement FSMs in terms of the probability of satisfying a given set of verification
goals and compare them to enforcement FSMs that react solely on the current system response.
As experimental results, we present three use cases while considering requirements on latency and
power consumption. The results show that history-based enforcement FSMs outperform enforcement
FSMs that only consider the current system response regarding the probability of satisfying a given
set of verification goals.
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1 Introduction

Embedded applications usually come with constraints on non-functional properties such
as latency, power consumption, temperature, security, etc. A major uncertainty source
that affects such properties is the varying workload of the input data1. Different run-time

1 Other uncertainties such as caused by resource sharing can be handled systematically by techniques for
isolating application programs dynamically at run-time such as invasive computing [1, 32] and therefore
not considered here.
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management methods exist for dynamic control of program executions. However, most of
them have as disadvantages that they cannot provide formal guarantees regarding their
capability to fulfill the given requirements.

Run-time requirement enforcement (RRE) techniques [33] have been proposed to enforce
a set of non-functional properties of execution of a given application program within defined
bounds. Such techniques dynamically adapt system configurations including, e.g., the
voltage/frequency settings and/or the number of active cores in reaction to observed system
responses. Based on that, FSM-based RREs [10–13, 30] have been proposed for formally
specifying and verifying control strategies. Such approaches consider execution properties
that can be modeled by requirements [31], i.e. expressions on non-functional properties such
as permitted corridors on latency, power consumption, etc. Different verification goals can
be specified and formally verified, e.g., the probability with which program executions satisfy
a given set of requirements.

The FSM-based RRE approaches in [10–13, 30] define and use a binary requirement
response vector that specifies for each given requirement whether it has been satisfied (1)
or not (0) in the current execution. Based on such a system response, then determines the
next state, respectively configuration to be applied during the next execution. However,
it is a challenge to design enforcement FSMs that satisfy a set of verification goals with
maximized probabilities, especially if the considered requirements are conflicting with each
other like latency and power consumption. A potential for improvements is to let the enforcer
consider not only the current, but also system responses from earlier execution iterations
when deciding for the next configuration. In this regard, this paper proposes history-based
enforcement FSMs that not only consider the current system response, but also a history of
previous system responses for reaction.

This paper is organized as follows. Section 2 discusses the related work. In Section 3,
we introduce the system model, formally specify history-based enforcement FSMs, and
propose three examples of history-based enforcement FSMs that use a history of previous
system responses for determining a reaction. Section 4 describes the evaluation of history-
based enforcement FSMs for three different use case applications and compares between
the proposed history-based enforcement FSMs and enforcement FSMs that do not consider
previous responses for reaction. Finally, Section 5 concludes this work.

2 Related Work

Approaches based on heuristics [35], online learning [4, 23–25], or statistical regression [8, 15]
are generally not able to provide any formal guarantees regarding the satisfaction or violation
of non-functional properties of program executions. Finite state machines (FSMs) have been
proposed to formally specify functional system properties [5, 14,29]. Based on the concept of
Run-time Requirement Enforcement (RRE) [33], FSMs have been proposed in [10–13,30] for
feedback-based enforcement of non-functional properties on MPSoCs.

Such FSM-based RREs utilize a requirement response vector that abstracts the system
as a function that specifies for each requirement whether it has been fulfilled or violated in
the current execution. Based on such a system response, the enforcer reacts by determining
the configuration to be applied in the next execution iteration. However, all of the previous
approaches only consider the current system response for reaction. In our work, we take into
account a time window of K previous responses when deciding for the configuration for the
next execution.
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In control theory, the principle of time-delayed feedback [18, 36] has been proposed to
increase the stability of a system. However, this concept has never been applied for controlling
software systems. In addition, similar to [6,16,26,27], approaches based on control theory can
only give guarantees regarding the control stability or convergence, but not the satisfaction
or violation of non-functional properties of program executions.

3 Method

In this section, we first present the considered system model and then formulate and propose
three different history-based enforcement FSM strategies that take multiple previous system
responses into account for taking a reaction.

3.1 System Model
Embedded systems, especially MPSoCs, often consider the execution of periodic applications,
e.g., image, video, or periodic control applications. For each individual program execution, a
set of non-functional requirements shall be respected, even under environmental changes, e.g.,
varying input. This input can be represented for each discrete execution k of an application
by an environment feature vector i(k) ∈ I, where I is called the environment space [11]. The
program utilizes a number n of cores that can be dynamically changed as well as the their
voltage/frequency setting m. Such a setting ⟨n, m⟩ is called a configuration c and the set
of available configurations a configuration space C. FSM-based RREs [11] react based on
a feedback from the system-under-control by adapting the configuration c(k + 1) for the
(k + 1)th execution accordingly. Figure 1 illustrates the considered system model which is
described more closely in the following.

Figure 1 Illustration of a feedback-based RRE. A requirement response vector r is mapped to a
binary requirement response vector ϕ that will be used by an enforcement FSM F to decide for the
next configuration c(k + 1) ∈ C. Reprinted from [11].

Depending on an input i(k) ∈ I and a system configuration c(k) ∈ C, let the k-th
execution result into a set of H observable non-functional properties, e.g., latency and power
consumption in case of H = 2 observable properties. The system-under-control can then be
described by a system response function r : I × C → RH [11]. Thus, the system response
r(i(k), c(k)) = (o1(k), . . . , oH(k)) at execution k is a vector of H execution properties of
interest, see Figure 1. Now, requirements on these properties, e.g., deadlines, must be fulfilled
for each execution, where each property oh, h = 1, . . . , H can be formulated using corridors
from which the following two propositions φLB

h and φUB
h can be derived
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φLB
h (oh(k)) = (LBh ≤ oh(k)) (1)

φUB
h (oh(k)) = (oh(k) ≤ UBh) (2)

where LBh and UBh refer to the lower and the upper bound, respectively, on the execution
property oh. The information regarding which proposition is satisfied and which is violated
at the k-th execution is represented by a binary vector β named requirement response. It is
obtained from the system response r using the requirement response function ϕ [11]

β(k) := ϕ (o1(k), . . . , oH(k)) =
(
φLB(o1(k)), φUB(o1(k)), . . . ,

φLB(oH(k)), φUB(oH(k))
)

∈ {0, 1}2H . (3)

This binary requirement response vector β(k) constitutes the input to the enforcement FSM
F that determines the next configuration c(k + 1) ∈ C to enforce the given non-functional
properties for the next execution.

An enforcement FSM (F ) can be formally modeled by a deterministic finite state machine
(Moore machine) which is described by a 6-tuple (Z, z0, B, δ, C, γ) [11]:

Z is a finite set of states.
z0 ∈ Z is the initial state.
B is the input alphabet.
δ is the transition relation: δ ⊆ B × Z × Z with (β, z, z′) representing a transition from z

to z′ under input β.
C is the output alphabet, also called configuration space.
γ is the output function that maps each state to an output (i.e., a configuration):
γ : Z → C.

Finally, in order to quantitatively compare different enforcement strategies, verification
goals can be formulated in temporal logic [7]. The two types of temporal logic are linear
temporal logic and branching time logic. Linear temporal logic (LTL) describes events over
a single time path in the FSM. Branching time logic such as computation tree logic (CTL)
quantifies the possible paths from a given state in the FSM. Different levels of strictness of
requirement enforcement can be differentiated, see [34]. Accordingly, different verification
goals can be defined. For example, the CTL formula AG(φh) for strict enforcement indicates
that φ holds for every path and at every state on the path. For loose enforcement, AF (φh)
specifies that for every possible path there exists a state at which φ holds, see [11].

Probabilistic verification goals, based on PCTL [2], can also be formulated to specify
stochastic verification goals for loose enforcement. We utilize probabilistic verification goals
that are based on steady-state probabilities in Markov chains as they are helpful for obtaining
requirement satisfaction probabilities of long execution runs of an application regardless
of the initial state. The operator S is used in PRISM [20] to reason about the steady-
state probability of a model [3]. We define the verification goal S=?[φ] as the steady-state
probability of being in a satisfying state for the requirement φ. Finally, we refer to the set of
all considered verification goals by V G.

3.2 History-based Enforcement FSMs
In this work, we propose enforcement strategies that not only react based on the current
response vector β(k), but additionally on a history of system responses (β(k−1), . . . , β(k−K))
belonging to the previous K execution iterations. Note that the case of K = 0 represents
the case of enforcement FSMs that are not history-based, i.e., they only react on β(k) and
do not consider previous system responses for reaction.
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In this section, we introduce exemplarily three multi-requirement history-based enforce-
ment FSMs F1, F2, F3 that consider current response β(k) and the previous response β(k − 1)
(K = 1) to calculate a proper reaction. These FSMs execute on an MPSoC given with n = 4
available cores that can operate in m = 20 different power modes (voltage/frequency states).
Thus, the size of the configuration space C available for enforcement is |C| = 4 · 20 = 80.
We also assume these configurations to be power-ascending so that the configuration cj

associated with ⟨nj , mj⟩ has a higher power consumption than that of configuration cj−1
where 0 ≤ j < |C|.

Let us consider the latency oL and the power consumption oP as properties of execution
to be enforced, thus H = 2. For simplicity, we only utilize one-sided requirements so that the
lower bounds are LBoL

= 0 and LBoP
= 0. Additionally, let the set of states Z be |Z| = |C|

such that the output function is a bijection γ : Z ↔ C of sets Z and C. Thus, there is a
one-to-one relation between enforcer states and configurations, such that each enforcer state
z ∈ Z uniquely outputs one configuration c ∈ C. Based on that, each enforcement FSM has as
many states as |Z| = |C| = 80, thus, Z = {z0, · · · , z79}, the input β ∈ B = {0, 1}H = {0, 1}2

with β = ϕ(r′(s, c)) = ϕ(oL, oP ) = ((oL ≤ UBoL
), (oP ≤ UBoP

)), an assumed initial state
z0 = 0. Finally, we assume both the latency requirement φL(k) and the power requirement
φP (k) are satisfied for executions k < 0.

3.2.1 Latency Violation-Oriented History-Based Enforcement FSM
This enforcement FSM decreases the current state by exactly one step in case of a violation of
a power requirement in both the current execution (φP (k)) and the previous one (φP (k − 1))
only when the latency requirement in both the current execution (φL(k)) and the previous one
(φL(k −1)) is satisfied. It stays in the same configuration for the other cases when the latency
requirement is satisfied in both executions (φL(k)) and (φL(k − 1)). It increases by one step
in case of a violation of an latency requirement in either the current execution (φL(k)) or the
previous one (φL(k − 1)). Finally, it increases by two steps in case of a violation of an latency
requirement in both the current execution (φL(k)) and the previous one (φL(k − 1)). A
corresponding enforcement FSM F1 = (Z, z0, I, γ, C, δ1) has the transition relation δ1 shown
in Table 1.

3.2.2 Power Violation-Oriented History-Based Enforcement FSM
This enforcement FSM increases the current state by exactly one step in case of a violation of
a latency requirement in both the current execution (φL(k)) and the previous one (φL(k − 1))
only when the power requirement in both the current execution (φP (k)) and the previous one
(φP (k − 1)) is satisfied. It stays in the same configuration for the other cases when the power
requirement is satisfied in both executions (φP (k)) and (φP (k − 1)). It decreases by one step
in case of a violation of a power requirement in either the current execution (φP (k)) or the
previous one (φP (k − 1)). Finally, it decreases by two steps in case of a violation of a power
requirement in both the current execution (φP (k)) and the previous one (φP (k − 1)). A
corresponding enforcement FSM F2 = (Z, z0, I, γ, C, δ2) has the transition relation δ2 shown
in Table 2.

3.2.3 Multi-Requirement History-Based Enforcement FSM
This enforcement FSM does not favor any requirement when transitioning between enforcer
states. A corresponding enforcement FSM F3 = (Z, z0, I, γ, C, δ3) has the transition relation
δ3 shown in Table 3.

NG-RES 2024
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Table 1 The transition relation δ1 of the latency-oriented history-based enforcement FSM F1.

z(k) β(k − 1) β(k) z(k + 1)

zj true true true true zj

zj true false true true zj

zj true true true false zj

zj true false true false zj−1

zj false true true true zj+1

zj false false true true zj+1

zj false true true false zj+1

zj false false true false zj+1

zj true true false true zj+1

zj true false false true zj+1

zj true true false false zj+1

zj true false false false zj+1

zj false true false true zj+2

zj false false false true zj+2

zj false true false false zj+2

zj false false false false zj+2

Table 2 The transition relation δ2 of the power-oriented history-based enforcement FSM F2.

z(k) β(k − 1) β(k) z(k + 1)

zj true true true true zj

zj true false true true zj−1

zj true true true false zj−1

zj true false true false zj−2

zj false true true true zj

zj false false true true zj−1

zj false true true false zj−1

zj false false true false zj−2

zj true true false true zj

zj true false false true zj−1

zj true true false false zj−1

zj true false false false zj−2

zj false true false true zj+1

zj false false false true zj

zj false true false false zj−1

zj false false false false zj−2

4 Experimental Results

In this section, we introduce three applications for evaluating the proposed enforcement
FSMs in Section 3.2. For comparison, we also perform a design space exploration (DSE)
method from [13] to generate optimized enforcement FSMs for a given set of verification goals
V G for each application, where these enforcement FSMs do not consider previous system
responses for reaction. To perform the DSE, the NSGA-II [9] multi-objective evolutionary
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Table 3 The transition relation δ3 of the multi-requirement history-based enforcement FSM F3.

z(k) β(k − 1) β(k) z(k + 1)

zj true true true true zj

zj true false true true zj−1

zj true true true false zj−1

zj true false true false zj−2

zj false true true true zj+1

zj false false true true zj

zj false true true false zj

zj false false true false zj−1

zj true true false true zj+1

zj true false false true zj

zj true true false false zj

zj true false false false zj−1

zj false true false true zj+2

zj false false false true zj+1

zj false true false false zj+1

zj false false false false zj

algorithm provided by the optimization framework Opt4J [22] is used. Each run of the
DSE features 100 iterations with a population size of 20 enforcement FSMs with a crossover
probability of 0.9 and a mutation probability of 0.01. Each experiment was repeated three
times to compensate for the randomness of the exploration.

4.1 Applications
We consider three applications for evaluation. Each application is modeled by a graph
of actors, where each actor processes an input i(k) in each iteration k. The applications
execute on a tiled many-core system that consists of a set of processing cores, peripherals
like memories, and a network adapter, which are interconnected via a tile-local bus system.
For this matter, a simulation framework called InvadeSIM [28], a many-core simulator for
parallel applications is used.

4.1.1 Object Detection Application
An image processing application that detects a given object in each image frame by applying
a scale-invariant feature transform (SIFT) matching algorithm. We use a driving car image
sequence R of the KITTI-360 dataset [21] with |R| = 100 frames, a latency lower bound
LBoL

= 0 ms and an upper bound (deadline) UBoL
= 65 W, an power lower bound LBoP

= 0
mJ and an upper bound UBoP

= 5 W.

4.1.2 String Search Application
This application stems from the ParMiBench benchmark suite [17] that searches in a given
input text k with i(k) lines for a given pattern. For this use case, we create a trace of
|R| = 100 randomly generated texts, each having i(k) lines. We use the bounds LBoL

= 0
ms, UBoL

= 15 ms, LBoP
= 0 W and UBoP

= 1.5 W.

NG-RES 2024
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(a) Object detection.
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(b) String search.
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(c) SHA.

Figure 2 Verification results for the proposed history-based enforcement FSMs F1, F2, F3 for a
history of K = 1, compared to DSE-optimized enforcement FSMs that do not consider the response
history [13], and the heuristic techniques race-to-idle and pace-to-idle [19].

4.1.3 Secure Hash Application
Another application from the ParMiBench benchmark suite [17]. This security application
computes the hash for the input k that consists of i(k) messages. For this use case, we
create a trace of |R| = 100 randomly generated inputs k, with LBoL

= 0 ms, UBoL
= 9 ms,

LBoP
= 0 W, and UBoP

= 3 W.

4.2 Results
Figure 2 shows the verification results of the proposed history-based enforcers F1, F2, F3 that
consider the previous response β(k − 1) together with enforcement FSMs that are obtained
from the DSE method in [13] and do not consider any previous response for reaction, as
well as race-to-idle (i.e., running with the highest configuration c79) and pace-to-idle (i.e.,
running with the slowest configuration c0) [19].

We notice in Figure 2 that the history-based enforcement FSMs F1 and F2 are not
dominated by any other enforcement FSM in all of the three applications. Also, the
history-based enforcement FSM F3 is not dominated in the case of string search application.
This shows that reacting based on a history of previous system responses can enhance the
probability of satisfying the considered verification goals. The reason is the larger design
space of transition possibilities in the enforcement FSM.

Table 4 shows the average verification time, number of states, and transitions for 10
randomly-generated enforcement FSMs with different history options. Enforcement FSMs
with K = 0 indicates that they only react on the current system response β(k). History-based
enforcement FSMs with K = 1 implies that they include the previous system response β(k−1)
for reaction as well as β(k). Finally, history-based enforcement FSMs with K = 2 consider
the system responses β(k − 2), β(k − 1), and β(k) for reaction. We notice that reacting based
on previous system responses leads to a substantial increase in verification times. This is
explained by the increase of number of states and transitions of the resulting enforcement
FSM. We also notice that this increase is proportional to the length of the time window K

of previously considered responses.

5 Conclusion

In this paper, we proposed to integrate a history of previous system responses into the design
of enforcement strategies. The evaluation shows that such history-based enforcement FSMs
have the potential to have higher probabilities of satisfying a given set of verification goals
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Table 4 Average verification time, number of states, and transitions for 10 randomly-generated
enforcement FSMs with different history options.

K = 0 K = 1 K = 2
Application time (ms) states transitions time (ms) states transitions time (ms) states transitions

Object detection 133.0 262.7 710.7 357.0 1,193.3 3,176.3 6,460.1 4,064.3 10,786.6
String Search 416.1 1,299.4 5,166.7 24,786.9 10,354.9 41,301.9 840,498.1 41,477.8 166,058.5

SHA 179.3 453.9 1,513.5 2,894.3 2,800.1 9,303.8 63,172.1 9,726.3 32,336.3

than enforcement FSMs that do not consider any system response history. This offers system
designers with a trade-off between complexity and performance. In the future, we aim to
automatically optimize history-based enforcement FSMs for a given set of verification goals.
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