
History-Based Run-Time Requirement Enforcement
of Non-Functional Properties on MPSoCs
Khalil Esper #

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Jürgen Teich #

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Abstract
Embedded system applications usually have requirements regarding non-functional properties of their
execution like latency or power consumption. Enforcement of such requirements can be implemented
by a reactive control loop, where an enforcer determines based on a system response (feedback) how
to control the system, e.g., by selecting the number of active cores allocated to a program or by
scaling their voltage/frequency mode. It is of a particular interest to design enforcement strategies
for which it is possible to provide formal guarantees with respect to requirement violations, especially
under a largely varying environmental input (workload) per execution. In this paper, we consider
enforcement strategies that are modeled by a finite state machine (FSM) and the environment by
a discrete-time Markov chain. Such a formalization enables the formal verification of temporal
properties (verification goals) regarding the satisfaction of requirements of a given enforcement
strategy.

In this paper, we propose history-based enforcement FSMs which compute a reaction not just on
the current, but on a fixed history of K previously observed system responses. We then analyze the
quality of such enforcement FSMs in terms of the probability of satisfying a given set of verification
goals and compare them to enforcement FSMs that react solely on the current system response.
As experimental results, we present three use cases while considering requirements on latency and
power consumption. The results show that history-based enforcement FSMs outperform enforcement
FSMs that only consider the current system response regarding the probability of satisfying a given
set of verification goals.

2012 ACM Subject Classification Computer systems organization → Multicore architectures; Theory
of computation → Linear logic; Theory of computation → Modal and temporal logics; Hardware
→ Finite state machines; Computer systems organization → Self-organizing autonomic computing;
Theory of computation → Verification by model checking; Mathematics of computing → Probabilistic
representations

Keywords and phrases Verification, Runtime Requirement Enforcement, History, Latency

Digital Object Identifier 10.4230/OASIcs.NG-RES.2024.4

Funding This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research-
Foundation) – Project Number 146371743 – TRR 89 Invasive Computing.

1 Introduction

Embedded applications usually come with constraints on non-functional properties such
as latency, power consumption, temperature, security, etc. A major uncertainty source
that affects such properties is the varying workload of the input data1. Different run-time

1 Other uncertainties such as caused by resource sharing can be handled systematically by techniques for
isolating application programs dynamically at run-time such as invasive computing [1, 32] and therefore
not considered here.

© Khalil Esper and Jürgen Teich;
licensed under Creative Commons License CC-BY 4.0

Fifth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2024).
Editors: Patrick Meumeu Yomsi and Stefan Wildermann; Article No. 4; pp. 4:1–4:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:khalil.esper@fau.de
mailto:juergen.teich@fau.de
https://doi.org/10.4230/OASIcs.NG-RES.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 History-Based Run-Time Requirement Enforcement

management methods exist for dynamic control of program executions. However, most of
them have as disadvantages that they cannot provide formal guarantees regarding their
capability to fulfill the given requirements.

Run-time requirement enforcement (RRE) techniques [33] have been proposed to enforce
a set of non-functional properties of execution of a given application program within defined
bounds. Such techniques dynamically adapt system configurations including, e.g., the
voltage/frequency settings and/or the number of active cores in reaction to observed system
responses. Based on that, FSM-based RREs [10–13, 30] have been proposed for formally
specifying and verifying control strategies. Such approaches consider execution properties
that can be modeled by requirements [31], i.e. expressions on non-functional properties such
as permitted corridors on latency, power consumption, etc. Different verification goals can
be specified and formally verified, e.g., the probability with which program executions satisfy
a given set of requirements.

The FSM-based RRE approaches in [10–13, 30] define and use a binary requirement
response vector that specifies for each given requirement whether it has been satisfied (1)
or not (0) in the current execution. Based on such a system response, then determines the
next state, respectively configuration to be applied during the next execution. However,
it is a challenge to design enforcement FSMs that satisfy a set of verification goals with
maximized probabilities, especially if the considered requirements are conflicting with each
other like latency and power consumption. A potential for improvements is to let the enforcer
consider not only the current, but also system responses from earlier execution iterations
when deciding for the next configuration. In this regard, this paper proposes history-based
enforcement FSMs that not only consider the current system response, but also a history of
previous system responses for reaction.

This paper is organized as follows. Section 2 discusses the related work. In Section 3,
we introduce the system model, formally specify history-based enforcement FSMs, and
propose three examples of history-based enforcement FSMs that use a history of previous
system responses for determining a reaction. Section 4 describes the evaluation of history-
based enforcement FSMs for three different use case applications and compares between
the proposed history-based enforcement FSMs and enforcement FSMs that do not consider
previous responses for reaction. Finally, Section 5 concludes this work.

2 Related Work

Approaches based on heuristics [35], online learning [4, 23–25], or statistical regression [8, 15]
are generally not able to provide any formal guarantees regarding the satisfaction or violation
of non-functional properties of program executions. Finite state machines (FSMs) have been
proposed to formally specify functional system properties [5, 14,29]. Based on the concept of
Run-time Requirement Enforcement (RRE) [33], FSMs have been proposed in [10–13,30] for
feedback-based enforcement of non-functional properties on MPSoCs.

Such FSM-based RREs utilize a requirement response vector that abstracts the system
as a function that specifies for each requirement whether it has been fulfilled or violated in
the current execution. Based on such a system response, the enforcer reacts by determining
the configuration to be applied in the next execution iteration. However, all of the previous
approaches only consider the current system response for reaction. In our work, we take into
account a time window of K previous responses when deciding for the configuration for the
next execution.

K. Esper and J. Teich 4:3

In control theory, the principle of time-delayed feedback [18, 36] has been proposed to
increase the stability of a system. However, this concept has never been applied for controlling
software systems. In addition, similar to [6,16,26,27], approaches based on control theory can
only give guarantees regarding the control stability or convergence, but not the satisfaction
or violation of non-functional properties of program executions.

3 Method

In this section, we first present the considered system model and then formulate and propose
three different history-based enforcement FSM strategies that take multiple previous system
responses into account for taking a reaction.

3.1 System Model
Embedded systems, especially MPSoCs, often consider the execution of periodic applications,
e.g., image, video, or periodic control applications. For each individual program execution, a
set of non-functional requirements shall be respected, even under environmental changes, e.g.,
varying input. This input can be represented for each discrete execution k of an application
by an environment feature vector i(k) ∈ I, where I is called the environment space [11]. The
program utilizes a number n of cores that can be dynamically changed as well as the their
voltage/frequency setting m. Such a setting ⟨n, m⟩ is called a configuration c and the set
of available configurations a configuration space C. FSM-based RREs [11] react based on
a feedback from the system-under-control by adapting the configuration c(k + 1) for the
(k + 1)th execution accordingly. Figure 1 illustrates the considered system model which is
described more closely in the following.

Figure 1 Illustration of a feedback-based RRE. A requirement response vector r is mapped to a
binary requirement response vector ϕ that will be used by an enforcement FSM F to decide for the
next configuration c(k + 1) ∈ C. Reprinted from [11].

Depending on an input i(k) ∈ I and a system configuration c(k) ∈ C, let the k-th
execution result into a set of H observable non-functional properties, e.g., latency and power
consumption in case of H = 2 observable properties. The system-under-control can then be
described by a system response function r : I × C → RH [11]. Thus, the system response
r(i(k), c(k)) = (o1(k), . . . , oH(k)) at execution k is a vector of H execution properties of
interest, see Figure 1. Now, requirements on these properties, e.g., deadlines, must be fulfilled
for each execution, where each property oh, h = 1, . . . , H can be formulated using corridors
from which the following two propositions φLB

h and φUB
h can be derived

NG-RES 2024

4:4 History-Based Run-Time Requirement Enforcement

φLB
h (oh(k)) = (LBh ≤ oh(k)) (1)

φUB
h (oh(k)) = (oh(k) ≤ UBh) (2)

where LBh and UBh refer to the lower and the upper bound, respectively, on the execution
property oh. The information regarding which proposition is satisfied and which is violated
at the k-th execution is represented by a binary vector β named requirement response. It is
obtained from the system response r using the requirement response function ϕ [11]

β(k) := ϕ (o1(k), . . . , oH(k)) =
(
φLB(o1(k)), φUB(o1(k)), . . . ,

φLB(oH(k)), φUB(oH(k))
)

∈ {0, 1}2H . (3)

This binary requirement response vector β(k) constitutes the input to the enforcement FSM
F that determines the next configuration c(k + 1) ∈ C to enforce the given non-functional
properties for the next execution.

An enforcement FSM (F) can be formally modeled by a deterministic finite state machine
(Moore machine) which is described by a 6-tuple (Z, z0, B, δ, C, γ) [11]:

Z is a finite set of states.
z0 ∈ Z is the initial state.
B is the input alphabet.
δ is the transition relation: δ ⊆ B × Z × Z with (β, z, z′) representing a transition from z

to z′ under input β.
C is the output alphabet, also called configuration space.
γ is the output function that maps each state to an output (i.e., a configuration):
γ : Z → C.

Finally, in order to quantitatively compare different enforcement strategies, verification
goals can be formulated in temporal logic [7]. The two types of temporal logic are linear
temporal logic and branching time logic. Linear temporal logic (LTL) describes events over
a single time path in the FSM. Branching time logic such as computation tree logic (CTL)
quantifies the possible paths from a given state in the FSM. Different levels of strictness of
requirement enforcement can be differentiated, see [34]. Accordingly, different verification
goals can be defined. For example, the CTL formula AG(φh) for strict enforcement indicates
that φ holds for every path and at every state on the path. For loose enforcement, AF (φh)
specifies that for every possible path there exists a state at which φ holds, see [11].

Probabilistic verification goals, based on PCTL [2], can also be formulated to specify
stochastic verification goals for loose enforcement. We utilize probabilistic verification goals
that are based on steady-state probabilities in Markov chains as they are helpful for obtaining
requirement satisfaction probabilities of long execution runs of an application regardless
of the initial state. The operator S is used in PRISM [20] to reason about the steady-
state probability of a model [3]. We define the verification goal S=?[φ] as the steady-state
probability of being in a satisfying state for the requirement φ. Finally, we refer to the set of
all considered verification goals by V G.

3.2 History-based Enforcement FSMs
In this work, we propose enforcement strategies that not only react based on the current
response vector β(k), but additionally on a history of system responses (β(k−1), . . . , β(k−K))
belonging to the previous K execution iterations. Note that the case of K = 0 represents
the case of enforcement FSMs that are not history-based, i.e., they only react on β(k) and
do not consider previous system responses for reaction.

K. Esper and J. Teich 4:5

In this section, we introduce exemplarily three multi-requirement history-based enforce-
ment FSMs F1, F2, F3 that consider current response β(k) and the previous response β(k − 1)
(K = 1) to calculate a proper reaction. These FSMs execute on an MPSoC given with n = 4
available cores that can operate in m = 20 different power modes (voltage/frequency states).
Thus, the size of the configuration space C available for enforcement is |C| = 4 · 20 = 80.
We also assume these configurations to be power-ascending so that the configuration cj

associated with ⟨nj , mj⟩ has a higher power consumption than that of configuration cj−1
where 0 ≤ j < |C|.

Let us consider the latency oL and the power consumption oP as properties of execution
to be enforced, thus H = 2. For simplicity, we only utilize one-sided requirements so that the
lower bounds are LBoL

= 0 and LBoP
= 0. Additionally, let the set of states Z be |Z| = |C|

such that the output function is a bijection γ : Z ↔ C of sets Z and C. Thus, there is a
one-to-one relation between enforcer states and configurations, such that each enforcer state
z ∈ Z uniquely outputs one configuration c ∈ C. Based on that, each enforcement FSM has as
many states as |Z| = |C| = 80, thus, Z = {z0, · · · , z79}, the input β ∈ B = {0, 1}H = {0, 1}2

with β = ϕ(r′(s, c)) = ϕ(oL, oP) = ((oL ≤ UBoL
), (oP ≤ UBoP

)), an assumed initial state
z0 = 0. Finally, we assume both the latency requirement φL(k) and the power requirement
φP (k) are satisfied for executions k < 0.

3.2.1 Latency Violation-Oriented History-Based Enforcement FSM
This enforcement FSM decreases the current state by exactly one step in case of a violation of
a power requirement in both the current execution (φP (k)) and the previous one (φP (k − 1))
only when the latency requirement in both the current execution (φL(k)) and the previous one
(φL(k −1)) is satisfied. It stays in the same configuration for the other cases when the latency
requirement is satisfied in both executions (φL(k)) and (φL(k − 1)). It increases by one step
in case of a violation of an latency requirement in either the current execution (φL(k)) or the
previous one (φL(k − 1)). Finally, it increases by two steps in case of a violation of an latency
requirement in both the current execution (φL(k)) and the previous one (φL(k − 1)). A
corresponding enforcement FSM F1 = (Z, z0, I, γ, C, δ1) has the transition relation δ1 shown
in Table 1.

3.2.2 Power Violation-Oriented History-Based Enforcement FSM
This enforcement FSM increases the current state by exactly one step in case of a violation of
a latency requirement in both the current execution (φL(k)) and the previous one (φL(k − 1))
only when the power requirement in both the current execution (φP (k)) and the previous one
(φP (k − 1)) is satisfied. It stays in the same configuration for the other cases when the power
requirement is satisfied in both executions (φP (k)) and (φP (k − 1)). It decreases by one step
in case of a violation of a power requirement in either the current execution (φP (k)) or the
previous one (φP (k − 1)). Finally, it decreases by two steps in case of a violation of a power
requirement in both the current execution (φP (k)) and the previous one (φP (k − 1)). A
corresponding enforcement FSM F2 = (Z, z0, I, γ, C, δ2) has the transition relation δ2 shown
in Table 2.

3.2.3 Multi-Requirement History-Based Enforcement FSM
This enforcement FSM does not favor any requirement when transitioning between enforcer
states. A corresponding enforcement FSM F3 = (Z, z0, I, γ, C, δ3) has the transition relation
δ3 shown in Table 3.

NG-RES 2024

4:6 History-Based Run-Time Requirement Enforcement

Table 1 The transition relation δ1 of the latency-oriented history-based enforcement FSM F1.

z(k) β(k − 1) β(k) z(k + 1)

zj true true true true zj

zj true false true true zj

zj true true true false zj

zj true false true false zj−1

zj false true true true zj+1

zj false false true true zj+1

zj false true true false zj+1

zj false false true false zj+1

zj true true false true zj+1

zj true false false true zj+1

zj true true false false zj+1

zj true false false false zj+1

zj false true false true zj+2

zj false false false true zj+2

zj false true false false zj+2

zj false false false false zj+2

Table 2 The transition relation δ2 of the power-oriented history-based enforcement FSM F2.

z(k) β(k − 1) β(k) z(k + 1)

zj true true true true zj

zj true false true true zj−1

zj true true true false zj−1

zj true false true false zj−2

zj false true true true zj

zj false false true true zj−1

zj false true true false zj−1

zj false false true false zj−2

zj true true false true zj

zj true false false true zj−1

zj true true false false zj−1

zj true false false false zj−2

zj false true false true zj+1

zj false false false true zj

zj false true false false zj−1

zj false false false false zj−2

4 Experimental Results

In this section, we introduce three applications for evaluating the proposed enforcement
FSMs in Section 3.2. For comparison, we also perform a design space exploration (DSE)
method from [13] to generate optimized enforcement FSMs for a given set of verification goals
V G for each application, where these enforcement FSMs do not consider previous system
responses for reaction. To perform the DSE, the NSGA-II [9] multi-objective evolutionary

K. Esper and J. Teich 4:7

Table 3 The transition relation δ3 of the multi-requirement history-based enforcement FSM F3.

z(k) β(k − 1) β(k) z(k + 1)

zj true true true true zj

zj true false true true zj−1

zj true true true false zj−1

zj true false true false zj−2

zj false true true true zj+1

zj false false true true zj

zj false true true false zj

zj false false true false zj−1

zj true true false true zj+1

zj true false false true zj

zj true true false false zj

zj true false false false zj−1

zj false true false true zj+2

zj false false false true zj+1

zj false true false false zj+1

zj false false false false zj

algorithm provided by the optimization framework Opt4J [22] is used. Each run of the
DSE features 100 iterations with a population size of 20 enforcement FSMs with a crossover
probability of 0.9 and a mutation probability of 0.01. Each experiment was repeated three
times to compensate for the randomness of the exploration.

4.1 Applications
We consider three applications for evaluation. Each application is modeled by a graph
of actors, where each actor processes an input i(k) in each iteration k. The applications
execute on a tiled many-core system that consists of a set of processing cores, peripherals
like memories, and a network adapter, which are interconnected via a tile-local bus system.
For this matter, a simulation framework called InvadeSIM [28], a many-core simulator for
parallel applications is used.

4.1.1 Object Detection Application
An image processing application that detects a given object in each image frame by applying
a scale-invariant feature transform (SIFT) matching algorithm. We use a driving car image
sequence R of the KITTI-360 dataset [21] with |R| = 100 frames, a latency lower bound
LBoL

= 0 ms and an upper bound (deadline) UBoL
= 65 W, an power lower bound LBoP

= 0
mJ and an upper bound UBoP

= 5 W.

4.1.2 String Search Application
This application stems from the ParMiBench benchmark suite [17] that searches in a given
input text k with i(k) lines for a given pattern. For this use case, we create a trace of
|R| = 100 randomly generated texts, each having i(k) lines. We use the bounds LBoL

= 0
ms, UBoL

= 15 ms, LBoP
= 0 W and UBoP

= 1.5 W.

NG-RES 2024

4:8 History-Based Run-Time Requirement Enforcement

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

S=?[φL]

S
=

?[
φ

P
]

Race-to-idle
Pace-to-idle

DSE
F1
F2
F3

(a) Object detection.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

S=?[φL]

S
=

?[
φ

P
]

Race-to-idle
Pace-to-idle

DSE
F1
F2
F3

(b) String search.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

S=?[φL]

S
=

?[
φ

P
]

Race-to-idle
Pace-to-idle

DSE
F1
F2
F3

(c) SHA.

Figure 2 Verification results for the proposed history-based enforcement FSMs F1, F2, F3 for a
history of K = 1, compared to DSE-optimized enforcement FSMs that do not consider the response
history [13], and the heuristic techniques race-to-idle and pace-to-idle [19].

4.1.3 Secure Hash Application
Another application from the ParMiBench benchmark suite [17]. This security application
computes the hash for the input k that consists of i(k) messages. For this use case, we
create a trace of |R| = 100 randomly generated inputs k, with LBoL

= 0 ms, UBoL
= 9 ms,

LBoP
= 0 W, and UBoP

= 3 W.

4.2 Results
Figure 2 shows the verification results of the proposed history-based enforcers F1, F2, F3 that
consider the previous response β(k − 1) together with enforcement FSMs that are obtained
from the DSE method in [13] and do not consider any previous response for reaction, as
well as race-to-idle (i.e., running with the highest configuration c79) and pace-to-idle (i.e.,
running with the slowest configuration c0) [19].

We notice in Figure 2 that the history-based enforcement FSMs F1 and F2 are not
dominated by any other enforcement FSM in all of the three applications. Also, the
history-based enforcement FSM F3 is not dominated in the case of string search application.
This shows that reacting based on a history of previous system responses can enhance the
probability of satisfying the considered verification goals. The reason is the larger design
space of transition possibilities in the enforcement FSM.

Table 4 shows the average verification time, number of states, and transitions for 10
randomly-generated enforcement FSMs with different history options. Enforcement FSMs
with K = 0 indicates that they only react on the current system response β(k). History-based
enforcement FSMs with K = 1 implies that they include the previous system response β(k−1)
for reaction as well as β(k). Finally, history-based enforcement FSMs with K = 2 consider
the system responses β(k − 2), β(k − 1), and β(k) for reaction. We notice that reacting based
on previous system responses leads to a substantial increase in verification times. This is
explained by the increase of number of states and transitions of the resulting enforcement
FSM. We also notice that this increase is proportional to the length of the time window K

of previously considered responses.

5 Conclusion

In this paper, we proposed to integrate a history of previous system responses into the design
of enforcement strategies. The evaluation shows that such history-based enforcement FSMs
have the potential to have higher probabilities of satisfying a given set of verification goals

K. Esper and J. Teich 4:9

Table 4 Average verification time, number of states, and transitions for 10 randomly-generated
enforcement FSMs with different history options.

K = 0 K = 1 K = 2
Application time (ms) states transitions time (ms) states transitions time (ms) states transitions

Object detection 133.0 262.7 710.7 357.0 1,193.3 3,176.3 6,460.1 4,064.3 10,786.6
String Search 416.1 1,299.4 5,166.7 24,786.9 10,354.9 41,301.9 840,498.1 41,477.8 166,058.5

SHA 179.3 453.9 1,513.5 2,894.3 2,800.1 9,303.8 63,172.1 9,726.3 32,336.3

than enforcement FSMs that do not consider any system response history. This offers system
designers with a trade-off between complexity and performance. In the future, we aim to
automatically optimize history-based enforcement FSMs for a given set of verification goals.

References

1 Nidhi Anantharajaiah, Tamim Asfour, Michael Bader, Lars Bauer, Jürgen Becker, Simon
Bischof, Marcel Brand, Hans-Joachim Bungartz, Christian Eichler, Khalil Esper, Joachim
Falk, Nael Fasfous, Felix Freiling, Andreas Fried, Michael Gerndt, Michael Glaß, Jeferson
Gonzalez, Frank Hannig, Christian Heidorn, Jörg Henkel, Andreas Herkersdorf, Benedict
Herzog, Jophin John, Timo Hönig, Felix Hundhausen, Heba Khdr, Tobias Langer, Oliver Lenke,
Fabian Lesniak, Alexander Lindermayr, Alexandra Listl, Sebastian Maier, Nicole Megow,
Marcel Mettler, Daniel Müller-Gritschneder, Hassan Nassar, Fabian Paus, Alexander Pöppl,
Behnaz Pourmohseni, Jonas Rabenstein, Phillip Raffeck, Martin Rapp, Santiago Narváez Rivas,
Mark Sagi, Franziska Schirrmacher, Ulf Schlichtmann, Florian Schmaus, Wolfgang Schröder-
Preikschat, Tobias Schwarzer, Mohammed Bakr Sikal, Bertrand Simon, Gregor Snelting, Jan
Spieck, Akshay Srivatsa, Walter Stechele, Jürgen Teich, Isaías A. Comprés Ureña, Ingrid
Verbauwhede, Dominik Walter, Thomas Wild, Stefan Wildermann, Mario Wille, Michael
Witterauf, and Li Zhang. Invasive Computing. FAU University Press, 2022.

2 Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. On
the Logical Characterisation of Performability Properties. In Automata, Languages and
Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15,
2000, Proceedings, volume 1853 of Lecture Notes in Computer Science, pages 780–792. Springer,
2000.

3 Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate symbolic model
checking of continuous-time markov chains. In CONCUR ’99: Concurrency Theory, 10th
International Conference, Eindhoven, The Netherlands, August 24-27, 1999, Proceedings,
volume 1664 of Lecture Notes in Computer Science, pages 146–161. Springer, 1999.

4 Dwaipayan Biswas, Vibishna Balagopal, Rishad A. Shafik, Bashir M. Al-Hashimi, and Geoff V.
Merrett. Machine learning for run-time energy optimisation in many-core systems. In David
Atienza and Giorgio Di Natale, editors, Design, Automation & Test in Europe Conference &
Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017, pages 1588–1592. IEEE,
2017.

5 Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. Shield synthesis:
Runtime Enforcement for Reactive Systems. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 9035 of Lecture Notes in Computer Science, pages 533–548.
Springer, 2015.

6 Sophie Cerf, Raphaël Bleuse, Valentin Reis, Swann Perarnau, and Eric Rutten. Sustaining
performance while reducing energy consumption: a control theory approach. In Euro-Par 2021:
Parallel Processing: 27th International Conference on Parallel and Distributed Computing,
Lisbon, Portugal, September 1–3, 2021, Proceedings 27, pages 334–349. Springer, 2021.

NG-RES 2024

4:10 History-Based Run-Time Requirement Enforcement

7 Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Dexter Kozen, editor, Logics of Programs, Workshop,
Yorktown Heights, New York, USA, May 1981, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981.

8 Junio Cezar Ribeiro Da Silva, Lorena Leão, Vinicius Petrucci, Abdoulaye Gamatié, and
Fernando Magno Quintão Pereira. Mapping computations in heterogeneous multicore systems
with statistical regression on program inputs. ACM Transactions on Embedded Computing
Systems (TECS), 20(6):1–35, 2021.

9 Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6(2):182–197, 2002.

10 Khalil Esper, Jan Spieck, Pierre-Louis Sixdenier, Stefan Wildermann, and Jürgen Teich.
RAVEN: reinforcement learning for generating verifiable run-time requirement enforcers for
MPSoCs. In Fourth Workshop on Next Generation Real-Time Embedded Systems, NG-RES
2023, January 18, 2023, Toulouse, France, volume 108 of OASIcs, pages 7:1–7:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

11 Khalil Esper, Stefan Wildermann, and Jürgen Teich. Enforcement FSMs: specification and
verification of non-functional properties of program executions on MPSoCs. In MEMOCODE
’21: 19th ACM-IEEE International Conference on Formal Methods and Models for System
Design, Virtual Event, China, November 20–22, 2021, pages 21–31. ACM, 2021.

12 Khalil Esper, Stefan Wildermann, and Jürgen Teich. Multi-requirement enforcement of non-
functional properties on MPSoCs using enforcement FSMs – A case study. In Third Workshop
on Next Generation Real-Time Embedded Systems, NG-RES@HiPEAC 2022, June 22, 2022,
Budapest, Hungary, volume 98 of OASIcs, pages 2:1–2:13. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

13 Khalil Stefan Wildermann Esper and Jürgen Teich. Automatic synthesis of FSMs for enforcing
non-functional requirements on MPSoCs using multi-objective evolutionary algorithms. ACM
Trans. Des. Autom. Electron. Syst., August 2023.

14 Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier. Runtime
enforcement monitors: composition, synthesis, and enforcement abilities. Formal Methods in
System Design, 38(3):223–262, 2011.

15 Xinwei Fang, Sinem Getir Yaman, Radu Calinescu, Julie Wilson, and Colin Paterson. Pre-
dicting nonfunctional requirement violations in autonomous systems. ACM Transactions on
Autonomous and Adaptive Systems, 2023.

16 Connor Imes, David HK Kim, Martina Maggio, and Henry Hoffmann. POET: a portable
approach to minimizing energy under soft real-time constraints. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 75–86. IEEE Computer Society,
2015.

17 Syed Muhammad Zeeshan Iqbal, Yuchen Liang, and Håkan Grahn. Parmibench – An
open-source benchmark for embedded multiprocessor systems. IEEE Comput. Archit. Lett.,
9(2):45–48, 2010.

18 Wolfram Just, Thomas Bernard, Matthias Ostheimer, Ekkehard Reibold, and Hartmut Benner.
Mechanism of time-delayed feedback control. Physical Review Letters, 78(2):203, 1997.

19 David H. K. Kim, Connor Imes, and Henry Hoffmann. Racing and pacing to idle: Theoretical
and empirical analysis of energy optimization heuristics. In 2015 IEEE 3rd International
Conference on Cyber-Physical Systems, Networks, and Applications, CPSNA 2015, Kowloon,
Hong Kong, China, August 19-21, 2015, pages 78–85. IEEE Computer Society, 2015.

20 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
Probabilistic Real-Time Systems. In Computer Aided Verification – 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of
Lecture Notes in Computer Science, pages 585–591. Springer, 2011.

21 Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360: A novel dataset and benchmarks for
urban scene understanding in 2d and 3d. CoRR, abs/2109.13410, 2021.

K. Esper and J. Teich 4:11

22 Martin Lukasiewycz, Michael Glaß, Felix Reimann, and Jürgen Teich. Opt4j: a modular
framework for meta-heuristic optimization. In Proceedings of the 13th annual conference on
Genetic and evolutionary computation, pages 1723–1730, 2011.

23 Sumit K. Mandal, Ganapati Bhat, Janardhan Rao Doppa, Partha Pratim Pande, and Ümit Y.
Ogras. An energy-aware online learning framework for resource management in heterogeneous
platforms. ACM Trans. Design Autom. Electr. Syst., 25(3):28:1–28:26, 2020.

24 Sumit K. Mandal, Ganapati Bhat, Chetan Arvind Patil, Janardhan Rao Doppa, Partha Pratim
Pande, and Ümit Y. Ogras. Dynamic resource management of heterogeneous mobile platforms
via imitation learning. IEEE Trans. Very Large Scale Integr. Syst., 27(12):2842–2854, 2019.

25 Maxime Mirka, Gilles Sassatelli, and Abdoulaye Gamatié. Online learning for dynamic control
of openmp workloads. In 9th International Conference on Modern Circuits and Systems
Technologies, MOCAST 2020, Bremen, Germany, September 7-9, 2020, pages 1–6. IEEE,
2020.

26 Anway Mukherjee and Thidapat Chantem. Energy management of applications with varying
resource usage on smartphones. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
37(11):2416–2427, 2018.

27 Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchinathan Venkataramani, Tulika
Mitra, and Sanjay Vishin. Hierarchical power management for asymmetric multi-core in dark
silicon era. In The 50th Annual Design Automation Conference 2013, DAC ’13, Austin, TX,
USA, May 29 – June 07, 2013, pages 174:1–174:9. ACM, 2013.

28 Sascha Roloff, Frank Hannig, and Jürgen Teich. Modeling and Simulation of Invasive Ap-
plications and Architectures. Computer Architecture and Design Methodologies. Springer,
2019.

29 Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC), 3(1):30–50, 2000.

30 Jan Spieck, Pierre-Louis Sixdenier, Khalil Esper, Stefan Wildermann, and Jürgen Teich.
Hybrid genetic reinforcement learning for generating run-time requirement enforcers. In 2023
21st ACM-IEEE International Symposium on Formal Methods and Models for System Design
(MEMOCODE), pages 23–35, 2023.

31 Jürgen Teich, Michael Glaß, Sascha Roloff, Wolfgang Schröder-Preikschat, Gregor Snelting,
Andreas Weichslgartner, and Stefan Wildermann. Language and Compilation of Parallel
Programs for *-Predictable MPSoC Execution Using Invasive Computing. In 10th IEEE
International Symposium on Embedded Multicore/Many-core Systems-on-Chip, MCSOC 2016,
Lyon, France, September 21-23, 2016, pages 313–320. IEEE Computer Society, 2016.

32 Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang Schröder-
Preikschat, and Gregor Snelting. Invasive computing: An overview. In Multiprocessor
System-on-Chip – Hardware Design and Tool Integration, pages 241–268. Springer, 2011.

33 Jürgen Teich, Pouya Mahmoody, Behnaz Pourmohseni, Sascha Roloff, Wolfgang Schröder-
Preikschat, and Stefan Wildermann. Run-Time Enforcement of Non-functional Program
Properties on MPSoCs. In A Journey of Embedded and Cyber-Physical Systems, pages 125–149.
Springer, 2021.

34 Jürgen Teich, Behnaz Pourmohseni, Oliver Keszöcze, Jan Spieck, and Stefan Wildermann.
Run-Time Enforcement of Non-Functional Application Requirements in Heterogeneous Many-
Core Systems. In 25th Asia and South Pacific Design Automation Conference, ASP-DAC
2020, Beijing, China, January 13-16, 2020, pages 629–636. IEEE, 2020.

35 Xiaohang Wang, Amit Kumar Singh, Bing Li, Yang Yang, Hong Li, and Terrence S. T.
Mak. Bubble budgeting: Throughput optimization for dynamic workloads by exploiting
dark cores in many core systems. IEEE Trans. Computers, 67(2):178–192, 2018. doi:
10.1109/TC.2017.2735967.

36 Dong Yue and Qing-Long Han. Delayed feedback control of uncertain systems with time-varying
input delay. Automatica, 41(2):233–240, 2005.

NG-RES 2024

https://doi.org/10.1109/TC.2017.2735967
https://doi.org/10.1109/TC.2017.2735967

	1 Introduction
	2 Related Work
	3 Method
	3.1 System Model
	3.2 History-based Enforcement FSMs
	3.2.1 Latency Violation-Oriented History-Based Enforcement FSM
	3.2.2 Power Violation-Oriented History-Based Enforcement FSM
	3.2.3 Multi-Requirement History-Based Enforcement FSM

	4 Experimental Results
	4.1 Applications
	4.1.1 Object Detection Application
	4.1.2 String Search Application
	4.1.3 Secure Hash Application

	4.2 Results

	5 Conclusion

