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Preface

On behalf of the Technical Program Committee, we are pleased to welcome you to the
Proceedings of the 5th Edition of the Workshop on Next Generation Real-Time Embedded
Systems (NG-RES 2024), which was held on January 19, 2024 in Munich, Germany. The
NG-RES workshop series focuses on real-time embedded systems, with an emphasis on
distributed and parallel aspects. NG-RES serves as a platform for collaboration between
the networking and multicore real-time communities and promotes cross-fertilization and
multidisciplinary approaches to embedded systems design.

Key topics of interest for NG-RES 2024 included, but are not limited to:

Application of formal methods to distributed and/or parallel real-time systems
Programming models, paradigms and frameworks for real-time computation on parallel
and heterogeneous architectures
Applications of approximate computing in real-time systems
Compiler-assisted solutions for distributed and/or parallel real-time systems
Middlewares for distributed and/or parallel real-time systems
Networking protocols and services (e.g., clock synchronization) for distributed real-time
embedded systems
Scheduling and schedulability analysis for distributed and/or parallel real-time systems
System-level software and technologies (e.g. RTOSs, hypervisors, separation kernels,
virtualization) for parallel and heterogenous architectures

We express our gratitude to everyone involved in the organization of the workshop.
Our special thanks go to the General Chair Federico Terraneo, Submission and Web Chair
Daniele Cattaneo and sincere appreciation to the members of the Program Committee. Their
dedicated support was crucial in putting together the workshop program and we thank
you all.

Finally, a big thank you goes to all the authors who contributed to NG-RES 2024 with
their work. Their valuable contributions make this workshop possible. We hope you will
enjoy the event!

Patrick Meumeu Yomsi and Stefan Wildermann

Fifth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2024).
Editors: Patrick Meumeu Yomsi and Stefan Wildermann

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
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Abstract
Current homogeneous and heterogeneous computing systems reach high performance through
parallelization. Yet, parallel execution of tasks entails non-trivial latency-vs-throughput issues when
it comes to concurrent accesses to shared memory. In this respect, effective bandwidth regulation
solutions do exist, and provide a basic mechanism to control the latency of memory accesses. Such
solutions, though, are often cumbersome to deploy and to configure to guarantee both bounded
latency and high utilization of the memory bandwidth. The problem is that memory latency varies
non-linearly with the number and type of concurrent accesses, and the latter may in turn vary with
time, often unpredictably. For this reason, previous attempts at memory regulation in scheduling
solutions resulted either in poor real-time execution guarantees, or in severe underutilization of
the memory bandwidth. In this paper, we outline High Memory Bandwidth (HMB), a scheduling
solution that guarantees bounded response times to real-time task sets through memory regulation,
while also reaching a high utilization memory bandwidth. Since the complete solution is complex,
just like the problem it addresses, this preliminary work defines in full detail only the core mechanism.
This mechanism builds on the notion of memory access slowdown experienced by any processor
performing back-to-back memory operations; this slowdown is due to the interference generated
by other processors also accessing the memory at the same time. The core mechanism assumes
that each processor can tolerate a certain amount of slowdown before the timing behavior of the
task(s) it is running is compromised. Each processor has a priority assigned: the higher the priority,
the more stringent the timing requirements. The slowdown can be controlled by regulating with
precision the maximum amount of system bandwidth each processor is allowed to use, based on its
priority. The proposed mechanism finds the maximum bandwidth each processor can use such that
the highest number of processors simultaneously accessing memory is found (thus avoiding memory
bandwidth underutilization) while guaranteeing that the slowdown of each processor is kept within
the tolerated limits.
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1:2 HMB: Scheduling PREM-Like Real-Time Tasks at High Memory Bandwidth

1 Introduction

Memory contention on parallel systems

Modern systems feature multiple execution units, including CPU cores and accelerator cores,
running in parallel. These units may inherently perform memory accesses simultaneously. To
support parallelism in memory accesses, these systems are equipped with cache hierarchies.
Caches help to make memory accesses as local as possible, thereby reducing the likelihood of
accessing shared memories and interconnects. However, in many cases, conflicting accesses
to shared resources remain unavoidable. For instance, these conflicting accesses become
unavoidable when there is insufficient space in local caches to accommodate the cumulative
memory footprint of the processors (e.g. CPU cores, execution units) utilizing those caches.
Additionally, such conflicts arise when distant processors need to communicate through shared
memory. Contention arises across all shared resources along the path from the processors to
the actual memory banks, including the interconnect, shared caches, memory bus, and others.
This contention, in turn, results in a more or less significant and unpredictable inflation of
memory latency, impacting the duration of the memory access performed by the competing
processors. [10]. This is an evident problem in real-time applications. Increased memory
latencies can slow down the execution of tasks that involve memory accesses. This may make
it impossible for the tasks to meet their deadlines, thereby rendering the task set unfeasible.
Several solutions have been proposed in the scientific literature to eliminate or control this
slowdown, which can be broadly grouped into two classes: (i) exclusive memory accesses;
and (ii) limited memory accesses.

Exclusive memory access: low bandwidth and high predictability

The first type of solution is based on allowing one processor (or, very few processors) at a time
to access shared memory [20,21]. This approach either eliminates or reduces interference to
such a low level that no significant slowdown occurs. However, the available bandwidth from
shared memories is typically sized to meet the cumulative average bandwidth demand of the
set of processors connected to that memory. Consequently, the total bandwidth offered by
the memory is often higher or much higher than the bandwidth that a single processor may
request. In the end, if only one or relatively few processors access memory at the same time,
the memory bandwidth may be underutilized, potentially to a severe extent. For example,
the ratio between the memory bandwidth available to a single CPU core and the one available
to the whole system (or the CPU complex, respectively) ranges between: 5.0% (or 11%) on
an A57 core in the NXP i.MX 8QM platform, 13% (or 24%) on a Carmel core in the Nvidia
Xavier AGX, 15% (or 35%) on a A53 core in the AMD Xilinx Zynq UltraScale+ [4].

Limited memory access: either high bandwidth, or high predictability

The other type of solutions follows a somewhat opposite approach, as it allows multiple
processors to access memory in parallel [11, 18, 22]. In this case, slowdowns are controlled by
imposing a limit on the maximum bandwidth at which each processor can access memory.
This approach is effective as long as the sum of the per-processor bandwidths remains low
compared to the total memory bandwidth. In this particular case, memory contention is
negligible, and per-processor bandwidths add up linearly – the execution latencies of parallel
tasks are nearly identical to when executed in isolation. Consequently, the only factor
producing the slowdown is essentially the bandwidth limit itself. Therefore, in this case, the
slowdown experienced by each processor can be conveniently controlled.
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Conversely, operating at high utilization implies making memory work at or close to
bandwidth saturation. However, in this regime, memory behavior becomes non-linear. The
slowdown for a specific processor changes if other processor begin accessing memory and
varies based on the types of memory accesses and bandwidth limits of the same processor
and the competing ones. Several factors contribute to this behavior, such as varying
conflicts on different memory banks and interconnect components, or contention affecting
the cache hierarchy at the interconnect level. [4] Ultimately, slowdowns become complicated
to predict and impossible to control through any static assignment of bandwidth limits. For
these reasons, memory limitation mechanisms in real-time scenarios are typically employed
conservatively, aiming to maintain memory bandwidth well below saturation. However, in
such a configuration, memory bandwidth is once again underutilized, similar to the previous
case.

Closing the gap with dynamic parallel access

How can we reconcile high predictability in system behavior with efficient memory bandwidth
exploitation? In other words, how can we guarantee bounded slowdowns while fully utilizing
memory bandwidth? In this paper, we propose a general solution to achieve such a goal. It
builds on two main ingredients.

PREM task model. We adopt a PREM-like real-time task model, featuring a task set with
per-task deadlines and a processor set where tasks are to be executed, and memory limits
can be enforced. PREM-like tasks are identified by memory phases during which they
execute contiguous memory accesses. In our model, we assume that memory phases can
fall into two types: data prefetch, where only reads are executed, or data writeback, where
only writes are performed. This is similar to other models such as the Logical Execution
Time (LET) model of task execution, which distinguishes logical timing requirements
from the actual physical platform execution. In the LET model, a task is sequential code
with its own memory space and lacks internal synchronization points [8].

Dynamic memory policy. We assume to be given an execution policy that provides task
allocation and scheduling – at any time, it assigns tasks to processors of interest. We
do not introduce any further hypothesis on the execution policy, except for the fact it
has to be memory-agnostic, i.e. allocation and scheduling choices must not depend on
any memory concept like limits, contention or service times. We introduce a second
policy, called the memory policy, which is responsible for the dynamic adjustment of
the bandwidth limits of all active processors. This policy is a function of how many
processors are accessing memory at the same time, and of which memory accesses they
are performing between reads and writes. Limits are adjusted in such a way that the
slowdowns experienced by each task are low enough to let the task still meet its deadlines,
under the scheduling policy at hand.

The assumption regarding PREM-like tasks represents an important simplifying hypothesis
as it enlarges the granularity of memory regulation decisions to a tractable size. Indeed,
it costs time to detect a change in the memory access pattern of processors, compute new
limits, and initiate the enforcement of these new limits. The highest time constant in play
is the communication delay between the processors. For instance, in the case of a single
CPU, which has lower delays compared to a heterogeneous system, we can estimate the
delay to be in the order of 10 microseconds, assuming the communication is triggered by an
inter-processor interrupt [15]. For this reason, our solution is feasible only for PREM-like
tasks whose memory phases are longer than this base delay. For non-PREM tasks, it would

NG-RES 2024



1:4 HMB: Scheduling PREM-Like Real-Time Tasks at High Memory Bandwidth

be challenging or even impossible to determine the type of each generic memory access right
before it happens and to dynamically adjust bandwidth limits for each instantaneous change
in the type of memory accesses. Nevertheless, other dynamic approaches could be considered,
such as measuring per task/processor bandwidths online and adjusting limits on the fly.
However, such extensions are beyond the scope of this initial proposal.

Given the PREM task set and a system where delays make our solution feasible, the
core challenge lies in computing the bandwidth limits. All potential combinations of parallel
access patterns must be considered, and their number grows exponentially with the number of
processors and available limit values. However, only a limited set of configurations that drive
memory bandwidth close to saturation are of interest. The number of these configurations
is significantly lower than the total number of possible combinations. Therefore, a critical
feasibility aspect is defining an algorithm that discards all useless configurations, eliminating
the need to store them all and potentially avoiding their evaluation altogether.

We remark that, by construction,we structured the problem to maintain orthogonality
between the execution and memory policies. This provides complete freedom in defining
the execution policy. Specifically, one can establish either a global or a partitioned task
scheduling policy with regulated parallel accesses to memory. A partitioned scheme is likely
the preferred option for an initial solution, as it is typically characterized by simpler analysis
and implementation.

2 System Model

This work focuses on a multi-processor system featuring a shared last-level cache and shared
memory. The proposed idea in this work does not hinge on any specific task model or
scheduling policy. Nevertheless, for illustrative purposes, the following system model is
employed to present the idea. Each processor is assigned a partitioned subset of tasks. Tasks
within the system follow a sequence: they prefetch data in the Read-memory phase, perform
computations in a single computation phase, and write back the results in the Write-memory
phase. On each processor, tasks are scheduled based on a dynamic-priority, non-preemptive
policy.

2.1 Processors
The main memory is shared among m identical processors, each assigned a distinct static
priority. These priorities govern the allocated bandwidth for parallel access to the main
memory. A detailed explanation of how these priorities can be utilized to govern the parallel
memory accesses will be provided in Section 4. Processors are indexed following their
priorities, with P1 possessing the highest priority and Pm the lowest.

2.2 Tasks
This work considers a partitioned system where each task is statically assigned to a single
processor. The assignment of the i-th task to the k-th processor is denoted by the notation
τi ∈ Pk. Each task, denoted as τi exhibits a dynamic behavior by releasing an infinite
sequence of jobs sporadically. Each individual job within this sequence is subject to a
specified minimum inter-arrival time denoted as Ti. Each job of τi must be executed and
completed within a fixed time limit from its release, specified by Di, the relative deadline.
We employ a PREM-like task model to simplify governing the memory requests. This
assumption is significant because it increases the granularity of memory policing decisions to
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a manageable level. Detecting changes in memory access patterns, calculating new limits,
and enforcing these limits all take time. Due to this constraint, our solution is practical
only for tasks resembling PREM, where the duration of memory phases exceeds the base
delay. For non-PREM tasks, accurately predicting the type of each generic memory access
just before it occurs and dynamically adjusting bandwidth limits for every instantaneous
change in memory access type would be challenging, if not impossible. In this PREM-like
model, each task consists of three phases: a read-memory phase, a computation phase, and
a write-memory phase. During the read-memory phase, the task prefetches data from the
main memory. In the computation phase, the task performs computations exclusively on the
prefetched data without making any requests to access the main memory. The result is then
written back to the main memory during the write-memory phase. In both memory phase,
the tasks executes only memory accesses.

Tasks are scheduled on each processor according to a dynamic-priority non-preemptive
scheduling policy and are indexed by priority, with τ1 having the highest priority and τn the
lowest, where n is the number of tasks allocated to the processor under study.

2.3 Memory
Memory functions as a globally shared resource, accessible to all processors with identical
memory access latencies. In this model, the processors are symmetric, and they have the
potential to saturate the bandwidth, meaning their cumulative demand may exceed the total
memory bandwidth. Consequently, due to memory interferences, the duration extension of
memory phases for each processor becomes unpredictable without regulation. Additionally, we
assume that the order in which the memory controller serves memory requests simultaneously
issued by different processors is unknown.

3 The Scheduling Policy

In this section, we present a partitioned memory-centric scheduling policy and illustrate it
with an example. We will delve into the basic idea and the principal rules of the proposed
policy. Our applied scheduling policy consists of two main components: the execution policy
to distribute the task set among the processors and to schedule the execution order of each
subset of the task set on each processor, and the memory policy for regulating the bandwidth
to control access to the main memory. These two parts are explained as follows.
Execution Policy. Each task in the task set is statically assigned to a single processor, and

no migration is allowed. The task set is first sorted based on their relative deadlines.
Subsequently, tasks are assigned one by one to the processors according to their priority.
Assuming there are nT tasks in the task set and m processors in the system, the task with
the closest relative deadline is assigned to the highest priority processor, denoted as P1.
The task with the second closest relative deadline is assigned to P2, and this assignment
continues until each processor is assigned a task. Once every processor has a task, the
m + 1th closest relative deadline task is assigned to P1 again. This procedure repeats
until all tasks in the task set are assigned to processors. On each processor, tasks run
based on a non-preemptive Earliest Deadline First (EDF) algorithm. Considering that
all the required data for the execution of each task is prefetched during the read-memory
phase, using a preemptive scheduling policy may increase the response time of each task
by prefetching the same data several times. Therefore, choosing a non-preemptive policy
can be more efficient. Moreover, by applying the EDF, the system can enjoy the benefits
of dynamic task priorities.

NG-RES 2024



1:6 HMB: Scheduling PREM-Like Real-Time Tasks at High Memory Bandwidth

Memory Policy. All the memory requests are governed globally through bandwidth reg-
ulation. When a new memory request arrives, or an existing memory access finishes,
depending on the number of parallel memory accesses, and the workload on the targeted
processor and the interfering ones, the supervisor should check the corresponding cell
in the table of regulation factors(RF) to identify the amount of bandwidth allocated to
each active processor.

4 Implementing The Policy

4.1 Memory bandwidth regulation
4.1.1 Regulation mechanisms
Memory bandwidth limits are realized by memory regulation mechanisms that can be
implemented in different ways – they can be either hardware assisted, or provided by software
components, either external from, or internal to, the workload to be limited.

HW regulation. Hardware regulation is commercially available with Memory Bandwidth
Allocation, part of the Resource Director Technology by Intel [9], that is mainly featured
on higher end Xeon family processors. A similar technology is provided also by Arm with
the Memory System Resource Partitioning and Monitoring (MPAM) set of IPs [2], but we
are not aware of any commercially available chip including it. The common principle is
that CPU cores can be assigned with a given quality of service for memory transactions,
and that such limit is enforced by regulating the traffic originated from the last-level
cache or the system-level cache.

External SW regulation. Software regulation can be conveniently offered by a component of
the platform software. It can be the case of the operating system like in MemGuard [21],
the hypervisor like in MinervaSys Jailhouse [6] or some system-resident firmware like in
MemPol [22]. The underlying principle is the same – a processor is allotted a predefined
maximum number of memory accesses (budget) to execute within a fixed period. Should
the processor exhaust its budget before the period concludes, the regulation mechanism
halts the processor until the period concludes, at which point the processor receives a
new budget for the subsequent period.

Internal SW regulation. This method, also called Voluntary Throttling (VolT), entails
augmenting the code of the memory phases of the PREM tasks so to introduce a number
of NOPs (No Operation instructions) periodically during its memory phase(s) [4]. The
number of NOPs is externally configurable and provides the mean to regulate the throttling
length (or frequency) of throttling. The code augmentation can be inserted at compile
time, which is especially convenient when code PREMization is already automated [7].

4.1.2 Regulation factors
In order of us to abstract from the implementation details, we define the notion of regulation
factor, that acts as a knob to adjust the bandwidth allocation for a process. A regulation
factor of 0% indicates that no bandwidth is allocated for the service, while a factor of 100%
implies that the entire available bandwidth is dedicated to the service.

▶ Definition 1 (Regulation Factor (RF )). For each processor configured with a memory limit,
we define its regulation factor (RF ) as the ratio between the limited memory bandwidth
measured in isolation by performing back-to-back Reads (or Writes) operations, and the
(unlimited) memory bandwidth measured in the same conditions while removing the memory
limitation on the processor. For the sake of simplicity, we assume RFs to range among
percentage integers between 0 (no bandwidth) to 100 (full bandwidth).
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We remark that the target measurement is performed in isolation because the attainable
bandwidth is, in general, influenced by the number of processors operating in parallel, and
the workload on both the affected processor and any interfering processors. Consequently,
let us also stress that the actual bandwidth experienced by a processor is influenced, not
entirely determined, by its regulation factor.

Observe that the regulation primitives greatly differ among the various memory regulation
mechanisms. A concrete manner is thus needed to compute the function that maps any
configuration of the mechanisms-specific knobs to its corresponding regulation factors. In
most cases, only an experimental method enables to obtain a precise definition, as the one
provided in Subsubsection 4.1.3 for VolT.

4.1.3 Example: VOLT regulation factors
In a VolT system the only available knob is the number of NOPs injected in the code.
To compute the RFs, we need to experimentally find, for each workload, for each kind of
processor, and for each regulation factor, the number of NOPs that produce the limited
bandwidth of our interest. For instance, when the regulation factor is 10%, it means that the
number of NOPs is such that if the processor executes this specific workload (Read or Write)
in isolation, it receives 10% of the unlimited bandwidth. This table can be constructed
experimentally following the algorithm outlined in Algorithm 1.

For each memory access type, the algorithm initializes two counters: Nold and Nnew,
representing the initial and current number of NOPs, respectively. Then, it sweeps through
a range of RF values from 100 to 0 with a step of −10, representing increasing regulation
levels. At each RF iteration, a Match flag is set to false, indicating that a precise match

Algorithm 1 Construct the translating table between regulation factors and limited
bandwidth values.

Input : Unlimited bandwidth values UnBR, UnBW for Read and Write memory
accesses

Output : Translating table RF2BW between regulation factors and actual
bandwidth values:

1 foreach TMR ∈ {R, W } do
2 Nold = 1
3 Nnew = 2
4 for RF = 100 to 0 with step −10 do
5 Match = False
6 while !Match do
7 BWold = measure the bandwidth with Nold NOPs
8 BWnew = measure the bandwidth with Nnew NOPs
9 if |BWnew − RF

100 × UnBT MR| < |BWold − RF
100 × UnBT MR| then

10 Nold + +
11 Nnew + +
12 else
13 N(TMR, RF ) = Nold

14 Match = True

15 return Result
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between RF and bandwidth has not yet been established. The algorithm then enters a
loop that repeatedly measures bandwidth using two different NOP configurations. The first
measurement (BWold) reflects the current NOP count (Nold), while the second measurement
(BWnew) employs Nold incremented by one (Nnew = Nold + 1).

The algorithm compares the absolute differences between the measured bandwidth values
and the expected bandwidth value for each RF , calculated by multiplying RF by the
unlimited bandwidth for the corresponding memory access type (UnBT MR). If the difference
for the newer NOP setting (|BWnew − RF

100 × UnBT MR|) is smaller than that for the older
setting (|BWold − RF

100 × UnBT MR|), it suggests that the newer NOP configuration provides
a more accurate bandwidth estimation for that particular RF . In such a case, the algorithm
increments both counters (Nold + +, Nnew + +), effectively refining the bandwidth estimation
resolution. The algorithm continues iterating within this loop until the Match flag is set
to true, indicating that the optimal match between RF and bandwidth has been identified.
Upon reaching this point, the algorithm stores the corresponding NOP count (Nold) in
the translating table RF2BW for the specified memory access type (TMR) and RF value.
This process is repeated for both R and W memory access types to construct the complete
translating table.

It’s crucial to recognize that since the number of NOPs is limited to integer values, the
bandwidth values derived from regulation factors are not entirely precise – they represent
the closest approximation of the true bandwidth achievable with a specific regulation level.

4.2 Construct the table of slowdown measurements
The table of regulation factors (RF) comprises factors for regulating memory accesses
corresponding to each workload pattern. To fill in the cells of this table, a series of slowdown
measurements must be conducted for every conceivable set of regulation factors on active
processors. This enables us to deduce the factors that more effectively align with our timing
constraints.

As these slowdown measurements merely pertain to the specifications of the hardware
in use, rather than the actual task set, we optimize system performance by employing
a separate table, designated as the table of slowdown measurements (SM), to store the
recorded slowdown values for each scenario of memory accesses and a specific set of regulation
factors on the active processors. The construction of the slowdown measurements table is a
one-time necessity. Subsequently, based on the task set specifications, we can then select the
set of suitable factors.

In the remainder of this section, we systematically introduce the algorithms for construct-
ing the aforementioned tables, step by step. But first, we shall define some preliminary
concepts.

4.2.1 Formal definitions
The set of notations used is briefly explained in the Table 1.

To determine the appropriate set of throttling factors for effective bandwidth regulation,
it is essential to undertake a series of slowdown measurements encompassing all possible
combinations of throttling factors for active processors. In this section, we aim to outline
a systematic approach for conducting these measurements while avoiding redundant cases.
But before presenting the algorithm a few concepts should be clarified.
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Table 1 The table of notations.

Notation Definition

C(j, Si, RF(j)) a generic configuration consists of a set of regulation factors,RF(j), its corresponding
slowdown measurementSD(j, Si, RF(j)), and the actual bandwidth of processors, or UB

j number of processors accessing the memory in parallel
m total number of processors in the system

N(T MR, RF ) number of NOPs to achieve a specific regulation factor

RFk
the regulation factor assigned to the k − th highest priority processor among those

accessing the memory at the same time
RF a generic regulation factor to regulate the bandwidth

RF(j) a generic vector of regulation factors used to measure the slowdown values in case of j

parallel memory accesses following Si scenario corresponding to s measured slowdown value
RF2BW the translating table between regulation factors and actual bandwidth values

Si each scenario of parallel memory requests
S(j) set of all possible scenarios of parallel memory accesses for each value of j

SD(j, Si, RF(j)) the vector of measured slowdown values corresponding to j parallel memory accesses
following Si scenario using RF(j)

SM table of slowdown measurements

SM[Si(j), C(j, Si), RF(j)] sub-table of slowdown measurements corresponding to j parallel
memory accesses following Si scenario

UB the vector of actual bandwidth of the processors
ε a very small positive value

▶ Definition 2 (Slowdown Measurement). Processor slowdown measurement involves quan-
tifying the reduction in the speed of a processor as it performs tasks. This measurement is
typically expressed as a percentage decrease in processing speed compared to the processor’s
original performance. In the context of this discussion, slowdown measurements refer to the
decrease in speed of processors when accessing the memory as a consequence of throttling the
bandwidth.

In practical scenarios, the memory phases of different processors may partially overlap.
However, to consider the worst-case scenario, these measurements involve executing all
conceivable combinations of memory phases in parallel continuously. In this scenario, the
system encounters the most severe slowdown due to memory interference.

▶ Definition 3 (Set of workload combinations(S(j))). For any given number j of parallel
memory accesses, the set of all the scenarios of memory accesses, or in other words, the
different patterns of Reads and Writes coming from different processors in parallel, is called
the set of workload combinations and is denoted by S(j). Each scenario within this set is
denoted by Si.

For example, in the case of two parallel memory requests, there will be four distinct
scenarios of memory accesses: RhRl, RhWl, WhRl, WhWl, where ’h’ refers to the memory
access of the higher-priority processor and ’l’ to the lower-priority one. Therefore, S(2) will
have, 22 elements. Following the same reasoning, in general S(j) includes 2j elements.

▶ Definition 4 (Configuration of parallel memory accesses(C)). For any given number j

of parallel memory accesses, and any scenario of memory accesses Si, a configuration of
parallel memory accesses is a vector that concatenates a vector of regulation factors for the
corresponding active processors RF, its corresponding measured slowdown SD(j, Si, RF),
and the vector of actual bandwidth of the active processors UB(j, Si, RF). Or

C(j, Si, RF(j)) = [RF(j); SD(j, Si, RF(j)); UB(j, Si, RF(j))]
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▶ Definition 5 (Slowdown measurements table(SM)). Slowdown measurements table is a
table of subtables, each denoted by SM[Si(j), C(j, Si), RF(j)], corresponding to each number
of parallel memory accesses (j) and each scenario of memory access (Si). Each subtable
is represented as a two-dimensional array, where the rows represent different scenarios of
memory accesses(Si), and the columns represent different valid configurations of parallel
memory accesses.

4.2.2 Slowdown interplay
When employing each set of regulation factors, the amount of slowdown experienced by
each processor may vary depending on the specific combination of processors concurrently
accessing memory, the overall number of active processors, and the type of memory access
(read or write) on both the targeted processor and its competitors. Since this study operates
under the assumption of a homogeneous system, the identity of the processors simultaneously
requesting memory is irrelevant; the only relevant factors are their relative priorities, and
their total number, represented by j.

4.2.3 Algorithm core ideas
The algorithm to construct the slowdown measurement table receives the number of processors
in the system as the input and outputs the table of slowdown measurements. For each
number of parallel memory requests and each scenario, Si ∈ S(j), the algorithm commences
by measuring the slowdown values and the actual bandwidth of all the active processors for
the full-throttling case. Subsequently, starting from the processor with the lowest priority
and progressing to the higher-priority ones, the throttling factor of each processor is reduced
by 10 percent, and the measurements are then repeated to track every possible configuration
of parallel memory accesses.

The main objective is to maximize bandwidth utilization, therefore we need to maintain
bandwidth as close to saturation as possible avoiding over-allocation.

Within the saturation zone, the relationship between utilized bandwidth and throttling
factors is non-linear. Counter-intuitively, adjusting the throttling factor of one processor
can lead to fluctuations in the actual bandwidth values of other processors. For instance,
decreasing the throttling factor of one processor might increase the actual bandwidth of
other processors. On the opposite end, in the underutilization zone, the bandwidth is out
of saturation. Therefore, the behavior of the system becomes essentially linear. In this
zone, decreasing the regulation factors of one processor will either decrease or maintain the
bandwidth of that processor without affecting the bandwidth of other processors. Considering
this behavior, we can develop a discarding technique to improve the efficiency of the algorithm
for storing slowdown measurements. This technique involves retaining only configurations
close to saturation.

4.2.4 Discarding configurations
There are two primary reasons for discarding a configuration: either when we have already
identified a better configuration in terms of bandwidth utilization in the saturation zone, or
when the current configuration results in under-utilization of the available bandwidth.

If reducing the regulation factor results in negligible changes to the measured slowdown, it
implies that the previous configuration was saturating the bandwidth. Consequently, we can
discard the previous configuration and retain the current one. Given the uniform decrease of
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the regulation factors, this comparison can be conducted for every two consecutive measure-
ments to eliminate configurations that result in over-allocation of bandwidth. Conversely,
if a regulation requires less bandwidth than an already existing configuration for the same
workload combination, it indicates that this configuration does not provide us with a better
solution and there is no need to retain it. Considering the gradual reduction of regulation
factors, this can be examined by comparing the actual bandwidth of all the processors in
two consecutive measurements. If none of the processors gain a better bandwidth, it means
this configuration under-utilizes the bandwidth. Therefore, we should discard it.

4.2.5 Termination
By the following termination rule, we can determine whether continuing the measurement
will yield beneficial results or if we can terminate it. If modifying a single regulation factor
solely affects the bandwidth of the corresponding processor, while the bandwidth of all other
processors remains unchanged, it indicates that there is no interference between memory
accesses, and the system is operating in the under-utilization zone. Therefore, we can
terminate the current loop and proceed to the next outer loop. This nested table structure
provides a concise and organized representation of the system’s slowdown values, enabling
efficient retrieval and analysis of the impact of regulation factors.

4.3 Construct the table of regulation factors
Given that slowdown values are influenced by the selected regulation factors, we can control
slowdown values by adjusting these factors. With a predefined maximum tolerable slowdown
value, aligned with the timing constraints of the task set, we can choose regulation factors
to facilitate parallel memory accesses. This concept can be implemented through a table,
which provides the appropriate set of Regulation factors for each scenario of parallel memory
accesses under predefined slowdown constraints.

▶ Definition 6 (Table of Regulation factors (RF)). The table RF is structured as a collection
of sub-tables. For each number of parallel memory accesses, denoted as j, there exists a sub-
table. Within each sub-table, for every possible scenario of memory accesses, it encapsulates
the set of Regulation factors for active processors, tailored to meet the slowdown constraints
imposed by the task set.

To present the algorithm to construct this table, we should clarify a few notations.

▶ Definition 7 (Possible Configurations (PC)). The set of candidate configurations corres-
ponding to j parallel memory accesses with workload combination Si is shown by PC(j, Si).

▶ Definition 8 (Maximum Bandwidth Utilization (MBU)). The set of regulation factors’
vectors with the same maximum bandwidth utilization by MBU(j, Si).

This algorithm receives as inputs: the table of slowdown measurements(SM), and the
set of maximum tolerable values for slowdowns in line with the timing constraints of the task
set, denoted by MT S. It provides as output the regulation factors table RF . Alongside
this algorithm, for each number of parallel memory accesses, first, the set of all possible
scenarios of parallel memory requests, or S(j), is generated. Then for each scenario, all the
configurations stored at sub-table SM[Si(j), C(j, Si)] are compared to their corresponding
maximum tolerable value in MT S. If the measured slowdown value is smaller or slightly
larger than the maximum tolerable value, the algorithm appends this configuration to
PC(j, Si).
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Algorithm 2 Construct the slowdown measurements table.

Input : number m of processors
Output : table SM of slowdown measurements

1 for j = 2 : m do
2 Generate: S(j)
3 foreach Si ∈ S(j) do
4 RFold = [100, 100, . . . , 100]
5 Perform slowdown and used bandwidth measurements for unlimited

bandwidth case SD(j, Si, RFold), UB
6 SDold = SD(j, Si, RFold)
7 UBold = UB
8 for RF1 = 100 to 0 with step −10 do
9 for RF2 = RF1 to 0 with step −10 do

10 . . .

11 for RFj−1 = RFj−2 to 0 with step −10 do
12 UnderUtilization = False
13 RFj = RFj−1
14 while !UnderUtilization do
15 RFnew = [RF1, RF2, . . . , RFj ]
16 Perform measurements SD(j, Si, RFnew), UB
17 SDnew = SD(j, Si, RFnew)
18 UBnew = UB

// over-utilization check:
19 if SDnew ≈ SDold then
20 C(j, Si, RFold) = C(j, Si, RFnew)
21 RFold = RFnew
22 SDold = SDnew
23 UBold = UBnew

// non-optimal solution check:
24 if UBnew ≤ UBold then
25 Discard the new configuration

// termination condition:
26 if (UBnew[1 : j − 1] ≈ UBold[1 : j − 1] && UBnew[j] ≤

UBold[j]) ∥ RFj == 0 then
27 UnderUtilization = True
28 else
29 RFj− = 10

30 return Result

Whenever PC(j, Si) is empty, the algorithm reports: “Not enough bandwidth”, which
means we should suspend the memory access coming from the lowest priority processor to
make sure this case will not happen. However, if PC(j, Si) is not empty, the algorithm looks
for the configuration that yields the maximum used bandwidth(or UB). If this solution is
not unique, among them, this algorithm picks the one with the maximum regulation factors.
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Algorithm 3 Construct the table of regulation factors.

Input : Number m of processors, set MT S of maximum tolerable values for
slowdowns in line with the timing constraints of the task set, table SM of
slowdown measurements

Output : Table RF of regulation factors
1 for j = 2 : m do
2 Generate: S(j)
3 for ∀ Si ∈ S(j) do
4 Move to sub-table SM[Si(j), C(j, Si)] in SM
5 for ∀ C ∈ SM[Si(j), C(j, Si)] do
6 if SD ≤ (MT S(j, Si) + ε) then
7 Append C to PC(j, Si)

8 if PC(j, Si) ̸= ∅ then
9 MBU(j, Si) = maxC∈PC(j,Si) UB

10 MBU(j, Si) = {C ∈ PC(j, Si)|UB ≈ MBU(j, Si)}
11 if MBU(j, Si) ̸= ∅ then
12 RF(j, Si) = maxC∈MBU(j,Si) RF

13 if PC(j, Si) = ∅ then
14 Report: “Not enough bandwidth”

15 return Result

4.4 An illustrative example
To illustrate the policy, the following example can provide clarity. Let’s consider a task
set as described in the table below. All tasks in this set are activated synchronously. Our
objective is to efficiently schedule this task set on a system with three processors. These
tasks are prioritized based on their periods and scheduled accordingly. We also assume that
no preemption is allowed. In table Table 2 the duration of the read memory phase, write
memory phase, computation time, period(or minimum inter-arrival time), and the relative
deadline of task τi are denoted by, rmi, wmi, ci, Ti, and Di, respectively. All the values are
measured in microseconds:

Table 2 Task Set Characteristics.

τi rmi(×10µs) ci(×10µs) wmi(×10µs) Ti(×10µs) Di(×10µs)
τ1 3 4 2 20 10
τ2 2 3 1 25 15
τ3 2 2 1 30 20
τ4 1 1 1 35 25
τ5 1 4 1 40 30

Following the partitioning policy, τ1, and τ4 are assigned to P1, τ2, and τ5 to P2, and τ3 is
assigned to P3. In Gantt charts, red, grey, and blue blocks represent the read-memory phase,
the computation phase, and the write-memory phase, respectively. Initially, we assume
no parallel memory access is allowed, limiting each processor to accessing memory one at
a time according to their priorities. Tasks are partitioned using the same policy, and on
each processor, tasks are executed using a non-preemptive Earliest Deadline First (EDF)
scheduling algorithm.
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Figure 1 Partitioned scheduling algorithm, no parallel memory access.

Next, we aim to schedule the identical task set employing our policy. Broadly speaking,
the asynchronous execution capability of the write memory phase renders it faster than the
read memory phase. Therefore, we consider distinct values for unlimited bandwidth in read
and write operations. As an illustrative numerical example, let’s assume the system has an
unlimited bandwidth of 2.5 GB/s for read-memory phases and 8 GB/s for write-memory
phases. The regulation factors for two and three parallel memory accesses are outlined
in Table 3 and Table 4, respectively. In practice, these tables must be filled following the
algorithms.

Table 3 Table of regulation factors for two parallel memory accesses.

Workload pattern Regulation factors for Ph Regulation factors for Pl

RR 100 100
RW 90 70
WR 80 60
WW 60 40

Table 4 Table of regulation factors for three parallel memory accesses.

Workload
pattern

Regulation
factors for
P1

Regulation
factors for
P2

Regulation
factors for
P3

RRR 100 100 100
RRW 90 70 50
RWR 80 60 40
WRR 70 50 40
RWW 80 40 30
WRW 60 30 30
WWR 60 30 30
WWW 60 30 10

According to the tables of regulation factors, the Gann chart will be:
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Figure 2 Partitioned scheduling algorithm, using HMB.

As illustrated in the example, three read-memory phases can be executed in parallel
with negligible extension of the memory phase duration. However, when two write-memory
phases access the memory in parallel (as is the case with w4 and w5), according to the table,
60% of the unlimited bandwidth of the processor will be allocated to the higher priority
processor, and 40% to the lower priority one. Consequently, the duration of these memory
phases will be extended accordingly. Nevertheless, upon comparing the Gantt charts, there
is a remarkable improvement in the overall time-span of the task set following our proposed
policy.

5 Related Works

The impact of memory contention in contemporary systems has been extensively explored in
prior scientific literature. [10] Previous studies have focused on investigating the decline in
Worst-Case Execution Time (WCET) for applications contending for memory, particularly
in multi-core embedded systems [13]. Proposals for memory-bandwidth partitioning schemes
aimed at ensuring temporal isolation have been introduced [12]. In [21], the authors introduced
a memory bandwidth reservation system named MemGuard. This system was proposed,
designed, and implemented with the primary aim of providing bandwidth reservation to
ensure temporal isolation, and maximizing the utilization of the reserved bandwidth. In
[14], the memory utilization is periodically sampled, While using standard MemGuard’s
interrupts – and associated overheads – to regulate cores and to trigger the sampling. While
partitioning represents a straightforward and robust solution, it encounters challenges related
to underutilizing the bandwidth. Moreover, it offers less refined control over task execution
compared to the PREM approach. Similar challenges are observed in alternative hardware-
level partitioning solutions and mechanisms for enforcing bandwidth allocation documented
in existing literature [5, 18]. As an example in [22], known as MemPol, in introduced that
operates a regulation mechanism from outside the cores, monitoring performance counters
for the application core’s activity in main memory at a microsecond scale. In contrast,
our work adopts an internal mechanism to regulate the bandwidth offering a more flexible
scheme to maximize bandwidth utilization. A substantial body of literature addresses the
application of PREM model to multi-core systems [1,3,17,19]. However, a primary limitation
of these studies is their restriction to permitting only one memory access at a time, leading to
bandwidth underutilization. In [20], the authors extended PREM by accommodating more
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than one task to access memory in parallel. Through experimentation, they demonstrated
that the latency of main-memory accesses increases at a rate less than linear when multiple
cores simultaneously access memory. Their model supports k parallel memory accesses,
where k is a statically configurable number determined based on hardware specifications.
The primary drawback of this model lies in its rigidity. As shown in [4], allowing k cores
to utilize bandwidth without constraint, whether needed or not, may lead to bandwidth
overutilization while selecting k − 1 could result in bandwidth underutilization. Addressing
this issue, the main advantage of our model lies in the dynamic allocation of bandwidth to
processors based on workload patterns. This allows for the adaptive selection of the number
of parallel memory accesses, optimizing resource utilization. Despite differences in scope,
a comparable work to ours is [16], which introduces the Envelope-aWare Predictive model,
abbreviated as E-WarP. It aims to provide both the technological foundations and theoretical
bases for a workload-aware analysis of real-time systems.

6 Conclusion

6.1 Discussion
Contemporary homogeneous and heterogeneous computing systems attain enhanced per-
formance levels through parallelization. However, the parallel execution of tasks introduces
complex trade-offs between latency and throughput, particularly in the context of simultan-
eous accesses to shared memory. Numerous approaches aim to mitigate memory interference
issues, with bandwidth regulation being popular. In the literature, various viable solutions
for bandwidth provide basic mechanisms to address the latency of memory accesses. However,
their primary drawbacks include the complexity of deployment and rigidity. It has been
observed that existing solutions may lead to underutilization of the available bandwidth.

The challenge lies in the non-linear behavior of memory latency based on the number and
type of concurrent accesses, which can fluctuate over time in an unpredictable manner. Past
attempts to integrate memory regulation into scheduling solutions have, as a consequence,
either failed to provide guarantees for real-time execution or led to significant underutilization
of memory bandwidth.

In this paper, we introduce High Memory Bandwidth (HMB), a scheduling solution
designed to guarantee bounded response times of real-time task sets through memory
regulation while ensuring a high utilization of memory bandwidth. The intricate nature of
both the problem and its potential solution necessitates a comprehensive approach, one that
this preliminary work only begins to unfold. In this first step, we focus on the core mechanism
of HMB, providing a detailed explanation of its inner workings and how it addresses the
challenges posed by real-time task sets. Our goal is to lay a solid foundation for future
research and development, paving the way toward a scheduling solution that seamlessly
integrates the demands of real-time systems with the efficient utilization of memory resources.

The core concept of this work lies on the notion memory slowdown, a phenomenon
that occurs when a processor’s memory access performance is hindered by the concurrent
memory access patterns of other processors. This slowdown, particularly during bursts of
back-to-back memory accesses, can significantly impact the execution time of real-time tasks,
potentially violating their timing constraints. To address this challenge, HMB employs a
novel mechanism that dynamically allocates memory bandwidth among processors based
on their priority levels. By carefully balancing the needs of high-priority processors, which
typically have stricter timing requirements, HMB ensures that their memory accesses are
prioritized, minimizing slowdown and maintaining their responsiveness.
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HMB’s efficiency stems from its ability to optimize memory bandwidth utilization while
adhering to the priority-based allocation scheme. It continuously evaluates the system’s
memory access patterns and dynamically adjusts bandwidth caps to accommodate the
demands of high-priority processors without compromising overall efficiency. This intricate
balance enables HMB to achieve both bounded response times for real-time tasks and high
memory bandwidth utilization, a remarkable feat in the context of resource-constrained
real-time systems.

6.2 Further works
In this short work-in-progress paper, our primary focus has been on expounding the core
concept of HMB and its underlying mechanism for bandwidth regulation. The next crucial
step involves conducting a comprehensive series of experiments to rigorously validate the
feasibility and evaluate the efficiency of this proposed mechanism in real-world scenarios.

During the implementation phase, potential overheads can arise at multiple levels, de-
manding careful consideration and optimization. At the hardware level, we must carefully
evaluate the size of tables required to effectively implement HMB and ensure that data trans-
fer speeds are sufficient to support the proposed bandwidth allocation scheme. Additionally,
we need to analyze the overhead introduced by the algorithm and the dispatcher at the
execution level. To ensure feasibility, it is imperative that the overall overhead remains lower
than the shortest memory phase.

To objectively assess the effectiveness of HMB, we can compare its performance to similar
works in this domain, such as [20] and [16]. By comparing against these established solutions,
we can gain valuable insights into the relative strengths and weaknesses of HMB, paving the
way for further refinements and improvements.
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Abstract
Traffic congestion is one of the growing urban problem with associated problems like fuel wastage,
loss of lives, and slow productivity. The existing traffic system uses programming logic control (PLC)
with round-robin scheduling algorithm. Recent works have proposed IoT-based frameworks that use
traffic density of each lane to control traffic movement, but they suffer from low accuracy due to lack
of emergency vehicle image datasets for training deep neural networks. In this paper, we propose a
novel distributed IoT framework that is based on two observations. The first observation is major
structural changes to road are rare. This observation is exploited by proposing a novel two stage
vehicle detector that is able to achieve 77% vehicle detection accuracy on UA-DETRAC dataset.
The second observation is emergency vehicle have distinct siren sound that is detected using a novel
acoustic detection algorithm on an edge device. The proposed system is able to detect emergency
vehicles with an average accuracy of 99.4%.
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1 Introduction

One of the major problems plaguing urban cities is traffic congestion. This problem stems
from lopsided growth in road infrastructure in comparison to traffic volume. The visible
devastating effects on travelers and urban cities in general are increased global carbon
footprint, low productivity, fuel wastage; resource depletion, loss of lives, and economic
downfall. To address this pressing issue, governments have invested heavily in infrastructure
upgradation with complex civil construction of bridges, roads, and new lanes addition.
However, this solution has further complicated the issue. Big cities like London that have
been implementing this solution are currently reeling under issues like urban sprawl, pollution,
and stalling [8]. As the number of on-road vehicles is projected to increase manifold, this
problem is going to intensify. With the global emphasis to cut the scope 1 emission due to
road transportation for a sustainable future, an intelligent urban traffic system is the need of
the hour.
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Most of the cities deploy a traditional traffic control system that uses an array of
programming logic controllers (PLC) and a round-robin scheduling algorithm to allow traffic
for each lane to pass in a circular fashion [7]. However, few pilot studies have been conducted
on the deployment of Internet of Things (IoT)-driven intelligent traffic control systems. Most
of these studies have been part of the deployment of connected and automated vehicles
and self-driving cars [16, 14]. Given the uncertainty around the future of self-driving cars
and the urgency of decarbonization targets, there is a need for an IoT system for current
on-road vehicles. Few recent IoT frameworks have used recent technologies like infrared
cameras and GPS [3], RFID [6], Bluetooth and Zigbee [15]. However, these technologies
require the deployment of an array of sensors in vehicles. These solutions require large
investment and energy to revamp the existing vehicles and the accuracy of detection of traffic
density estimation is not substantially high due to their susceptibility to noise from the
environment [12].

To overcome the aforementioned problems, we proposed a novel framework, IoT based
Intelligent Urban Traffic System (I2UTS) for traffic light control that leveraged the existing
CCTV network for designing the IoT-based framework for traffic light control [1]. CCTV
videos have proven to be efficient and economical in past. There are several works that
have explored the potential of CCTV camera networks as input sensors for solving traffic
problems like predicting accidents, monitoring spatio-temporal behavior of pedestrians, and
the detection of firearms and knives [4]. I2UTS framework used CCTV video and state-of-
the-art CNN to estimate the traffic density. Traffic density was a major input to control
traffic lights. To address the privacy concern and computational resource requirements, Yolo
v3 with a darknet backbone was deployed over edge device, Raspberry Pi, alongside our novel
scheduling algorithm. Even though, I2UTS was able to achieve 68.10% vehicle detection
accuracy, it inherited problems associated with end-to-end convolutional neural networks
(CNNs) that rendered practical difficulties in real-time traffic network analysis.

The first major problem associated with I2UTS was the inability to find datasets with
emergency vehicles. One of the novel contributions of our previous research was to account
for the different traffic signal times incase emergency vehicles like police cars, firefighter
trucks, and ambulances are part of the traffic scheduling algorithm. Since, the proposed
CNNs Yolo v3- Efficient Net is dependent on labeled data, the availability of labeled dataset
of the emergency vehicle was a challenge. Finding such a dataset is cumbersome given
the rare occurrence of emergency vehicles in traffic conditions. The proposal of emergency
vehicle datasets has been an area of research. Researchers have turned to various resources
like google search alongside manual annotation of 1500 images, manual filtering of Kaggle
dataset images, and youtube streams [13]. Given the amalgamation of various sources
of image acquisition, these datasets suffer from large viewpoint variations, which renders
them unsuitable for our IoT framework where the input sensor, CCTV camera, has a fixed
viewpoint. Apart from viewpoint variation, another problem in the detection of emergency
vehicles is weather variation. Inclement weather conditions present in the images often
decrease vehicle detection accuracy significantly [5]. Since, the speed of non-emergency
vehicles is comparatively slow, their occurrence on CCTV images for a fixed time frame is
higher. This increases their detection accuracy alongside the availability of a large set of
labeled images in varying weather as a training input for YOLO V3. These problems clearly
illustrate the inhibition of using RGB cameras for emergency vehicles. This serves as a
major motivation to re-investigate our previous work I2UTS for emergency vehicle detection.
Emergency vehicles all over the world use loud-noise making noise, sirens, to alert the traffic
of passage. In this work, we propose a multi-modal distributed IoT framework that detects
the distinguished sound property of emergency vehicles alongside the image-based traffic
density estimation.
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The second major problem associated with I2UTS is the high variance in mean average
precision (mAP) across different classes of vehicle detectors. Although, the major outlier was
the class “van” where mAP was 37.49%. Further, False Discovery Rate (FDR) was 63.23%,
which clearly indicates that the proposed YOLOV3-Effecient net has high false positive (FP)
in comparison to true positive (TP) for “van”. YOLO is a preferred single-stage object
detector in comparison to its counterparts two-stage detectors like RCNN due to its faster
performance on edge devices. However, YOLO struggles to localize smaller objects/vehicles
and identify the optimum number of clusters. This is the main reason that I2UTS has a
high misclassified bus stops as vans due to similar features. Single-stage detectors classify
and localize objects in a single shot using dense sampling whereas two-stage detector consists
of an additional preliminary stage of region proposal. The region proposal stage indeed
increases the performance of object detector but are computationally expensive. However,
the CCTV camera on road is fixed and viewpoint variation in the images captured is hardly
possible. Changes in road infrastructure are also minimal. Considering, this advantage, we
propose a novel two-stage detector road-based YOLO (“R-YOLO”) that confines the search
of vehicles to the road with an increased performance accuracy comparable to two-stage
object detector(like RCNN) and low computational resource usage like single stage detector
(like YOLO).

The remainder of the paper is organised as follows. Section II describes the proposed IoT
framework. The experimental evaluation and results of the proposed distributed system is
detailed in Section III. Finally, the conclusion is presented in Section IV.

2 Proposed Distributed IoT framework

The proposed distributed IoT based urban traffic management system contains two edge
parts: 1) S1: Vehicle Detector that uses Deep Neural Network, R-CNN. 2) S2: Emergency
Vehicle Detector that uses acoustic sliding window approach to detect siren’s of emergency
vehicle.

Figure 1 A multi-modal IoT Distributed Framework.
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2.1 Edge Devices and Sensors
The previous works deployed NVIDIA Jetson TX2 that is a computationally powerful edge
device with the dual support of CPU and GPU [2]. However, the cost of Jetson Nano is 24
times more than average cost of other edge devices. Given the economic feasibility contraint
of the system, we use Raspberry PI 4 as the edge device S1 for vision algorithms with
moderate memory of 4 GB and powerful Quad core cortex-A72 (Arm-8) 1.5GHz processor.

The acoustics emergency vehicle detector uses Arduino Nano as Edge device S2. Arduino
Nano is an open source micro-controller based on ATmega328P architecture. With a flash
memory of 32 KB, 16 Analog Pins and 22 I/O pins, SEN0232 noise meter is used. SEN0232
uses an instrument circuit and a low noise microphone, with a measuring decibel value ranges
from 30dBA to 130dBA, accurately measuring noise level of the surrounding environment.

2.2 System Overview
A higher level overview of the distributed system is as follows.

1. Cloud Layer: Road Detector
a. Train Faster-RCNN network on cloud to detect the vehicles.
b. Detect the object road and Estimate the road mask.
c. Train the YOLO v3 network with Efficient net as a backbone on cloud to detect the

road.
d. Transfer the trained weights to the Faster RCNN deployed on the edge device S1 for

testing.
e. Transfer road mask to the edge device S2 for road extraction.

2. Edge S2: Acoustic Emergency Vehicle Detector
a. Detect Siren Sound from continuous noise level monitoring.
b. Send the emergency vehicle trigger to Edge Device S1.

3. Edge S1: Vehicle Detector
a. Estimate the traffic density of each road lane by detecting vehicles using road mask

and YOLOv3 vehcile detector.
b. Use the parameters generated in previous steps as an input to the proposed traffic

control algorithm.

2.2.1 Dataset
Many prior studies have utilized the KITTI and COCO datasets to train the YOLOv3
network. However, a more recent dataset, UA-DETRAC [18], developed by the University
of Albany for object detection and tracking, is more profound as a benchmark dataset for
real-world multi-object tracking. This dataset comprises traffic camera videos, recorded at
25 fps over a span of 10 hours, with a resolution of 960 x 540 pixels. The footage originates
from 24 distinct locations in Beijing and Tianjin, China, offering a diverse and challenging
environment. UA-DETRAC includes approximately 1.21 million labeled bounding boxes
representing 8250 vehicles across four classes: car, van, bus, road and others. Figure 2
illustrates some CCTV images from the dataset. An additional strength of utilizing UA-
DETRAC is its representation of multi-class weather conditions and variations in day and
night illumination. This dataset is used for both the purposes-road and vehicle detection.
For both the tasks, the dataset is divided into training, validation, and testing sets following
a 70:15:15 ratio, respectively.
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(a) (b)

Figure 2 Sample CCTV images from UA-DETRAC [18].

2.2.2 DNN for Road Detection
For road detection and classification, we use YOLO v3 CNN model [9] trained on the
backbone of Efficient Net [17]. Unlike the traditional YOLO v3 model [9] which has used
DarkNet-53 network as backbone, our network has a high object detection accuracy at low
inference latency. Changes in road infrastructures are minimal, so we can assume CCTV
images have advantage of viewpoint invariation. Since vehicles runs on road, the bounding
boxes of vehicles are embedded within the bounding box of road, pooling of region of interests,
we select the road bounding box. Once the bounding box is selected, we calculate road mask.
Road Mask is a binary image that is applied to CCTV images to mask out remaining image
( converts the pixels to black) except road object. Road Mask image is helpful in limiting
regions of interest. Fig 3b, 3d, and 3f show the CCTV image obtain after applying road
mask.

2.2.3 DNN for Vehicle detection
For vehicle detection and classification into five annotation classes: bus, car, vans, road,
and others, we use Faster R-CNN model [10]. Faster R-CNN in comparison to traditional
regional based CNN [11] is manifold times faster due to region proposal network. However,
its pooling characteristic is also extremely beneficial. Faster RCNN has a better accuracy
than single shot detectors like YOLO. However, the inference speed is extremely slow in
comparison to YOLO, rendering it unsuitable for real-time object detection on edge devices.
To overcome this, we limit the scope by inputing the image with road mask. Therefore,
Faster R-CNN will now only detect object on road, significantly reducing the image area,
number of objects, in turn reducing the processing time. Few instances of vehicle detection
are illustrated in Figure 3.

2.2.4 Acoustic Emergency Vehicle Detection Framework
Most sirens are rated at around 124 dB when measured 10 feet in front of the sound source. As
the distance from the siren doubles, the sound pressure of the siren will drop by approximately
6dB. This concept is known as the “inverse square law.” In our system, Data is collected with
a frequency of 50Hz and a sliding window technique is employed to detect the emergency
vehicle. A sliding window computes the area of the sound noise level over a certain period of
time as shown in Figure 4. When the area exceeds a predefined value the detection algorithm
dispatches the emergency light sequence. When it does not, normal sequence is carried out.
The area value is computed using the formula:

Area = Frequency × sound level (1)

NG-RES 2024
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(a) (b)

(c) (d)

(e) (f)

Figure 3 Examples of vehicle detection by a), c), e) by I2UTS and in b), d), f) by our proposed
system on same CCTV images from UA-DETRAC [18]. Proposed system performs masking while
leaving road.

The system is continuously computing the area over the window length, noise values are
summed together over a defined window. The highest sound level is set 100dB, this value
has been chosen to take into account different distances of the ambulance from the sound
sensor. It has been chosen as it is the average noise level when taking into account 80 feet
(25m) as the noise level varies between 124dB and 76dB.

Figure 4 Sample Sliding Window for Emergency vehicle’s siren.
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Once the siren is detect, a trigger is generated in Edge device S2. This is sent to edge
device S1 as shown in Figure 1. Edge Device S1 estimates the vehicle density of each lane
using vision algorithm explained in Section 2.2.3. Traffic Control Algorithm proposed by us
in our earlier work in I2UTS uses both these parameters to calculate traffic light sequence
again on edge device S1. The mutli-modal nature of our framework that encapsulates both
acoustic and vision sensor and processing to build a resilient system.

3 Experimentation and Results

In this section, we evaluate the performance of our proposed distrubuted IoT framework.
The weights of the Faster RCNN and YOLO v3- Effecient Net are trained on a cloud server
with Intel i7-9th generation as main processor alongside Nvidia 1660Ti GPU on Linux 18.04
operating system. CUDA 10.1 with Cudnn 7 libraries were used for parallel computation
on GPU. The edge device S1, Raspberry Pi 4, has Quad core cortex-A72 (Arm-8) 1.5GHz
processor, 4GB RAM and OpenGL ES 3.0 graphics with Raspbian Buster as the operating
system.

The experimental setup for edge system for edge comprises of a SEN0232 sound meter
that is connected through a SPI serial connection to an Arduino Nano. This edge device is
further connected to Raspberry Pi either wirelessly or through USB. Raspberry Pi is edge
device that is responsible for managing the traffic light sequence.

3.1 Emergency Vehicle Detection
Experiments were conducted to find the optimal window lengths. To do so multiple window
sizes were chosen starting from 0.5s to 10s. After each trial the window length is incremented
by 0.5s. For each window size, ten different sounds are played, of which three correspond to
sirens sound of emergency vehicles (police, ambulance, fire-truck) while the rest are different
urban noises. The detection time is measured, as well as detection accuracy. The overall
operation is repeated 100 times. The detection time Dt is the difference between the time at
which the siren is first detected Td and the time at which the sound is played Tp.

Dt = Td − Tp (2)

The accuracy of detection is defined as the number of the truly predicted siren sounds Ps

and the truly predicted urban noises Pu divided by the number all the tests N.

Accuracy = Ps + Pu

N
(3)

Table 1 Accuracy and detection time per window size.

Window Length(s) 0.5 2 3.5 5 6.5 8 9.5
Detection Accuracy (%) 63.6 88.4 94.5 99.5 97.4 99.2 99.4

Detection Time (s) 0.54 2.032 3.524 5.031 6.521 8.041 9.523

Results are shown in Table 1, accuracy is very low for short window sizes. The main
reason behind this is that it detects numerous urban noises as being siren sounds. Short
window sizes make the detection algorithm act as a threshold detection. Accuracy increases
with the window length to attain a maximum of 99.5% at 5s and it stays at the same
level relatively. From 1000 segments, only 5 sound segments were miss-classified, and these
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Figure 5 Number of Epoch v/s Loss Difference [1].

segments belong to the urban noises’ sounds. The detection time for the different experiments
takes an average time of 0.03s ± 0.007s. For 5s the maximum accuracy is reached, and it is
selected to be utilised. Another reason is that it is more effective to have a quicker detection.

3.2 Vehicle Detection

While training and fine-tuning the hyper-parameters of both the DNNs for vehicle and road
detection, we ensure model reaches optima by neither overfiting nor underfiting. The most
important hyperparameter that we need to fine-tune will be number of epochs. To determine
this, we plot number of epochs with respect to validation and training loss difference. Figure 5
shows that the loss value’s difference is lowest around 100th epoch.

The other important metric to measure efficiency of vehicle detection system is inference
time. The inference time of our DNN on the edge divice S1, Raspberry Pi varied between
1.55 – 2.3 sec per frame. This is comparable to state-of-the-art I2UTS framework which
had inference time of 1.45 – 1.57 sec per frame. The power consumption of edge device
(Raspberry Pi 4) per second on different loads is presented in Table 2. The input voltage
and current to edge device was DC 5.1V and 3A.

Table 2 Power consumption of IoT device on different loads.

Parameters Current (Amps) Voltage (Volts) Power (Watts)
IoT device not connected to monitor 0.76 5.8 3.12

IoT device connected to monitor 0.78 5.8 3.45
IoT device running only detector 1.34 5.23 6.87

IoT device running detector with connected monitor 1.4 5.23 7.182

The highest power consumption observed was 7.18 W when the detector ran alongside a
monitor, constituting only half of the input power supplied. When connected to a traffic
camera, the power consumption reduced to 6.87 W. The mean average precision (mAP)
for vehicle detection DNN is 79.5% in comparison to 65.10% achieved by state-of-the-art
framework I2UTS. If both the metrics inference time and accuracy are looked together, we
can easily say that our proposed novel two-stage detector R-YOLO is able to achieve better
accuracy in similar inference time.
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4 Conclusion

This paper proposes a distributed IoT framework for urban traffic management system using
the CCTV camera and sound sensor. The framework uses the two important observations in
urban traffic control: 1) Structural Changes to road are minimum. 2) Emergency Vehicles
have distinct sound. The novel two stage detector exploits the first observation by detecting
road in first stage and vehicles in second stage. The detector achieves 79.5% accuracy that
can further be enhanced by training the network on multiple datasets with CCTV footage
with viewpoint and illumination variation. The second observation is implemented using
acoustic sliding window detection algorithm achieving 99.4% accuracy.
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Abstract
Envisioned to deliver superior Quality of Service (QoS) by offering faster data rates and reduced
latency in 6G communication scenarios, pioneering communication protocols like the IEEE 802.15.7
are poised to facilitate emerging application trends (e.g. metaverse). The IEEE 802.15.7 standard
that supports visible light communication (VLC) provides determinism for time-critical reliable com-
munication through its guaranteed time-slots mechanism of the contention-free period (CFP) while
supporting non-time-critical communication through contention-access period (CAP). Nevertheless,
the IEEE 802.15.7 MAC structure is fixed and statically defined at the beginning of the network
creation. This rigid definition of the network can be detrimental when the traffic characteristics
evolve dynamically, for example, due to environmental or user-driven workload conditions. To this
purpose, this paper proposes a resource-aware dynamic architecture for IEEE 802.15.7 networks that
efficiently adapts the superframe structure to traffic dynamics. Notably, this technique was shown
to reduce the overall delay and throughput by up to 45% and 30%, respectively, when compared to
the traditional IEEE 802.15.7 protocol performance under the same network conditions.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Networks
→ Network protocols; Theory of computation → Design and analysis of algorithms

Keywords and phrases IEEE 802.15.7, VLC networks, network tuning

Digital Object Identifier 10.4230/OASIcs.NG-RES.2024.3

Category Invited Paper

Funding This work was partially supported by National Funds through FCT/MCTES (Portuguese
Foundation for Science and Technology) within the CISTER Research Unit (UIDB/04234/2020).

1 Introduction

With 6G expected on the horizon by 2025, new technologies must be adopted to ensure the
flawless usage of 6G [5]. Likewise, with the ever-growing network traffic demand and the need
to support high bandwidth applications, researchers are venturing into new communication
possibilities, including Visible Light Communication (VLC) and the Terahertz (THz) band.
VLC, particularly, is deemed to be well-suited to meet the criteria of emerging applications
toward 6G, including Virtual Reality (VR) and augmented Reality (AR), among others.
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Figure 1 The superframe structure of IEEE 802.15.7 with the contention-free period of guaranteed
time-slots enabling time-critical communication for VLC applications.

VLC’s distinctive features such as its immunity to electromagnetic interference, high data
rates, and the capability to operate in unlicensed bands [7], have placed it among the potential
candidates to be included in the competitive arsenal of 6G communication technologies.

IEEE 802.15.7 [13] is a communication protocol poised to realize communication in VLC
networks. The architecture of this standard supports high data rates of up to 96 Mbps with
almost 300 THz of unlicensed spectrum. This makes it ideal to support bandwidth-hungry
applications, potentially using existing illumination infrastructure. The standard also offers
predictable protocol features enabling the support of critical and demand strict timeliness
requirements through its Guaranteed Time Slot (GTS) mechanism, which operates in a
periodically synchronized superframe structure (Fig. 1).

Among the key parameters of the protocol is the superframe order (SO) which defines
the duration of the active period of the superframe, a.k.a. the superframe duration (SD).
Within this scheme, beacons are transmitted between subsequent superframes enabling time
synchronization and MAC management. The time interval between beacons is known as the
beacon interval (BI). All these parameters can be properly set statically at the beginning
of the network to govern overall communication performance. This approach, although
suitable in the case of highly stationary network scenarios, prevents achieving adequate
Quality of Service (QoS) when traffic characteristics evolve dynamically, for example, due to
environmental or user-driven workload conditions.

In fact, in several potential VLC scenarios for 6G, such as healthcare monitoring [9],
underwater networks [1] or vehicular communication, to name a few, the data traffic and/or
the number of nodes that connect (or disconnect) to a central coordinator can vary frequently,
e.g., based on local environmental circumstances [2], mobility of the nodes from one area to
another [9], and/or due to multiple nodes reaching the same area and creating a bottleneck,
which implies more traffic to be accommodated. The aforementioned static settings are just
examples of how a dynamic traffic behavior can lead to inevitable compromises on QoS on
metrics such as (worst-case) delay or throughput. This raises a need for a novel VLC network
architecture that can adapt protocol features on the fly to varying conditions.

In this paper, we propose an adaptive MAC architecture called the DynaVLC that will
dynamically toggle the network parameters and make them suitable to the underlying traffic
behavior. This method can adapt efficiently to scenarios where the data traffic demand grow
either higher or lower while satisfying QoS requirements such as latency or throughput. This
tuning technique can be facilitated by managing entities such as the network coordinators
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typically set to be aware of the network demand requirements to be served by the GTS. More
concretely, making the network coordinators demand-aware can be done, for example, by
integrating an RPL (Routing Protocol for Lossy Networks) layer over the VLC MAC layer.

We summarize the main contributions presented in this paper as follows:
We provide a novel dynamic MAC structure tuning architecture called DynaVLC for
IEEE 802.15.7 networks that yields better QoS performance.
We introduce the so-called CAP reduction and modeling of the GTS under the DynaVLC
architecture for several scenarios involving varying network demand.
We derive the worst-case bounds and perform an in-depth performance analysis of the
proposed structure covering both throughput and delay analysis.

The rest of the paper is organized as follows: Section 2 provides related works on some
of the adaptive techniques devised for VLC networks and general communication protocols.
Section 3 presents the CAP reduction technique as one of the key elements of the DynaVLC
architecture to increase the number of GTS in the superframe. Section 4 introduces the system
model and discusses the topologies and scenarios taken to demonstrate this architecture.
Section 5 presents our novel DynaVLC architecture, and Section 6 analyzes its performance.
Conclusions and a wrap-up with some discussion of future scope are presented in Section 7.

2 Related Works

The research work in [3] proposes a flexible superframe structure that enables sleep modes
for priority data handling in IEEE 802.15.7-based real-time sensor networks. This method
enables a hybrid mode in the contention access period and contention-free period (CFP)
adaptively. The method works by shifting periods and sending priority data with lower
bandwidth and delay. While the method holds promise in static/stationary conditions, the
improvements do not show to be suitable for evolving traffic conditions.

A different approach is proposed by researchers in [17] who propose a priority MAC based
on a multi-parameter for IEEE 802.15.7 VLC networks. They make use of common parameters
such as the backoff times (NB), backoff exponent (BE), and contention window (CW) to enable
priority-driven multilevel differentiated service. Moreover, using a discrete-time Markov
chain model, the authors analyzed the impact of their multi-parameter traffic differentiation
on throughput. More recently, a comparison between the traditional IEEE 802.15.7 frame
and a novel energy-efficient superframe was done in [4]. This work also considered different
inputs such as the biosensors’ battery life as well as adaptive data requirements to vary MAC
parameters accordingly. However, in both of these works variations in traffic data were not
considered. The data traffic was set as a constant and only the impact of the variation of
the MAC parameters such as the BO and SO were considered.

In one of our previous works, we presented the worst-case bounds delay of IEEE 802.15.7
using network calculus [13]. In this work, we explored the possibility of a technique called
CAP reduction functionality from IEEE 802.15.4 and carried out a detailed performance
analysis. This technique increases the number of GTS slots in the traditional IEEE 802.15.7
MAC frame, thus increasing the scalability for critical communication nodes in the network.
Based on these results, we recently presented in [14] the possibility of having a multichannel
structure to enhance the allocation for GTS in IEEE 802.15.7 frames. While both of these
works focused on increasing the number of GTS timeslots, both the methods are statically
defined, and thus cannot adapt to traffic dynamics in evolving network scenarios.

Adaptive superframe is a concept that has been researched for several network protocols
like the IEEE 802.15.4 and IEEE 802.15.6. The underlying idea is that superframes are
flexible to support GTS requirements [8, 11] where the active period or the CFP is adapted
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as per the requested data. They also can be adapted to support priority data [15, 6] and
support specific QoS like the energy efficiency [16]. Along this line of thought, in this work,
we propose a novel technique called DynaVLC for IEEE 802.15.7 VLC networks where the
superframe structure can be adjusted based on the oncoming traffic needs. The end goal is
to significantly improve network throughput and reduce the overall worst-case delay toward
deterministic 6G application scenarios.

3 Background to the CAP reduction architecture

CAP reduction is a technique where two or more superframes can be joined together as a
multi-superframe and the CAP period between them can be removed and replaced with a
CFP period. This technique was first introduced for the IEEE 802.15.4e - DSME network
protocol [10] and then extended to the IEEE 802.15.7 protocol in [13].

Figure 2 The superframe structure representation where BO=3, MO=3 and SO=2, also showing
the structure with CAP reduction comprising of 21 GTS timeslots to support critical deterministic
communication.

To have CAP reduction in the classes IEEE 802.15.7 protocols, we must introduce first
a concept called multi-superframes that can be enabled through multi-superframe order
(MO) and multi-superframe duration (MD). These parameters define the length of all the
individual superframes within the multi-superframe. The aforementioned parameters can be
formally represented as follows:

BI = aBaseSD × 2BOoptical clocks for 0 ≤ BO ≤ 14 (1)

SD = aBaseSD × 2SOoptical clocks for 0 ≤ SO ≤ BO ≤ 14 (2)

MD = aBaseSD × 2MOoptical clocks for 0 ≤ SO ≤ MO ≤ BO ≤ 14. (3)
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Table 1 Network configurations and their respective application scenarios.

Application BO SO MO CAP reduction SD size
Delay sensitive 6 0 2 enabled 60
Large scale 10 1 8 enabled 128
Energy critical 6 1 1 disabled 128
Reliability 8 2 2 disabled 240

The number of multi-superframes within a beacon interval is given by 2(BO−MO), and
the number of superframes within the multi-superframe by 2(MO−SO). To illustrate this
scheme we can take the configuration presented in Figure 2, which is a network infrastructure
representation where BO=3, MO=3 and SO=2. This is a case where two superframes are
stacked within a single multi-superframe. Note that after the network is initiated with these
parameters the infrastructure remains unchanged and the setup repeats periodically. For
clarity, we briefly describe the most relevant parameters as follows:

aBaseSD is defined as the minimum duration of a superframe and is set to 60 optical
clocks at the initial order of the superframe (i.e., SO=0 ). Formally, this value is defined as:

aBaseSD = Slot Duration × Ts (4)

where Ts is the size of the timeslot in the superframe. Note that Ts in a superframe is made
up of the data frames and idle frames. Data frames encompass the data transmissions and the
idle frames encompass acknowledgments, long interframe spacing (LIFS), short interframe
spacing (SIFS), and reduced interframe spacing (RIFS). Then, to develop the worst-case
bounds analysis, we must include the GTS transmission, its respective acknowledgments
and the CAP region within the multi-superframe. As every VLC superframe comprises 16
timeslots, the size of a single timeslot is denoted as:

Ts = SD

16 = aBaseSD × 2SO−4. (5)

For the parameters that define the multi-superframe architecture of Figure 2, the size of
every single timeslot will be 15 optical cycles, the superframe duration will be 240 optical
cycles and the entire multi-superframe will be 480 optical cycles. Among these optical cycles
210 optical cycles that correspond to 14 GTS timeslots across the multi-superframe support
critical deterministic communication. Now for the same structure when we employ CAP
reduction, the CAP region of the second superframe is replaced with a CFP and the inactive
period is removed, thus drastically increasing the number of GTS timeslots in the network.
In such a case, there will be 315 optical cycles corresponding to 21 GTS timeslots to support
critical deterministic communication. Now when multichannel communication can exist over
this architecture, i.e., over three multi-channels, there will be a total of 63 GTS timeslots
over 315 optical cycles.

The setting of the network parameters and the CAP reduction can also be made
application-specific. For instance, in a delay-sensitive network that carries priority traffic, we
need an architecture with minimal SD size so that the next packet can be sent with minimal
latency. With CAP enabled, the delay due to waiting for the inactive period and the adjacent
CAP region can be avoided. In the case of a large-scale network, more nodes must be
accommodated within a short period. In such cases, there is a need for a short SD duration
but a larger number of superframes within a single multi-superframe. As an illustrative
example, different network configurations and their respective application scenarios are shown
in Table 1.
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4 System Model

With the possibility of having multiple channels, enabling multi-channel mesh networks would
be feasible in VLC scenarios. Having this in mind, we assume a mesh network as shown in
Figure 3. To emulate real networking scenarios, we consider dynamic nodes that join and
leave the network. A mesh network consists of a PAN coordinator (node PAN-C in Figure 3),
which can transceive messages and beacons. Then there will be Fully Functional Nodes
(FFN) that facilitate routing and send beacons for association and timing synchronization.
Finally, the Reduced Functional Nodes (RFN) are capable of only receiving messages. Such
a network is facilitated with the aid of routing using protocols like the RPL by which a
point-to-many-points (P2MP) tree-like network can be devised.

Figure 3 A mesh network comprising of the PAN-C, FFNs (green nodes) and RFNs (orange
nodes) that dynamically join and leave the network.

Node association is done through the PAN coordinator. At the inception of the net-
work formation, new FFNs advertise their respective superframe through periodic beacons.
Association to an FFN, RFN or a PAN-C is done through an association request.

The nodes in the association process are assumed to be RPL-enabled routing nodes. The
PAN-C acts as the sink in the Destination-Oriented Directed Acyclic Graph (DODAG).
PAN-C is responsible for transmitting DODAG messages. In the RPL overlay network, all
routers (FFNs) continuously broadcast DAG Information Object (DIO) messages to announce
the DODAG. A node listens to the DIO messages when it joins the network through the
association process. Upon receiving a DIO message from the FFN, the joining node adds the
sender’s DIO address to its parent list and calculates its rank based on the specified Objective
Function (OF). The Objective Function for the DODAG can be QoS-defining factors such
as Link Quality Indicator, Packet Delivery Ratio, or Power Consumption. Finally, the DIO
message is updated with the newly computed ranks. The client node then selects its preferred
parent from the list of FFNs as the default node through which inbound traffic is directed.

Figure 4 presents the mesh connection network for the network defined in the system
model (Figure 3). An optimal schedule that utilizes the minimal number of time slots and
channels can be defined using optimization methods like the Symphony [12] (adapted to
IEEE 802.15.7 structure). Still, it must follow the mandate that the transmitting nodes do
not overlap in time amongst themselves. By using Symphony, we provide a (near) optimal
solution that uses 12 GTSs spanning over four channels and three timeslots. A transmission
bitmap (Figure 4) will be created based on the transmissions of the mesh network and will
be passed on to the underlying link layers using the RPL backbone periodically at every
beacon interval.
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Figure 4 mesh formation of the network, its optimized schedule and its respective transmission
bitmap that will be transmitted through the RPL-enabled routing nodes.

The proposed solution in this work aids in tackling two major network issues caused by
the static assignment of the network parameters at the inception of the network formation.
The first problem is a requisite when there is a need for a more guaranteed bandwidth than
what is available. More bandwidth will be provided if a smaller SO is defined at the beginning
of the network definition. By setting a smaller SO more superframes can be affixed within
the multi-superframe duration, further with CAP reduction the total number of guaranteed
bandwidth to be serviced can also be drastically increased. However, in the case of a small
SO with a large amount of bandwidth available, it could be a negative factor when there
is a need for less bandwidth compared to what is available. The more suitable solution for
these aforementioned problems is a tunable network architecture that can adjust its network
parameters when the network demand changes.

5 DynaVLC architecture

The PAN-C establishes the multi-channel GTS allocation based on the number of channels,
the number of GTS time slots and the total available GTS resources NCF P . When the CAP
reduction primitive is enabled the total number of GTS timeslots NT S augments to 7 + NCR,
where NCR is the number of timeslots added through CAP reduction. In a system with C

channels, the total resources available can be computed as C × NT S .
The duration of timeslot in the multi-superframe TMS with Nη symbols that encompasses

the size of the CAP (TCAP ) and the CFP created through CAP reduction TCF P can be
calculated as:

TMS = Nη

TCAP + TCF P
. (6)

Let GTSmin be the minimum number of superframe slots a single GTS can extend
over. We present this constraint such that there is a limit for the GTS not to span over
multi-superframe duration for a maximum forward delay of Dmax.

GTSmin =
⌈

Dmax

TMS

⌉
(7)
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For n timeslots with a burst rate b and a data rate D, the maximum forward delay Dmax

can be obtained as:

Dmax = b × BI

D × Tdata
+ (BI − n(TMS)). (8)

Then, since the maximum number of the GTS varies based on the CAP reduction
technique, with C number of channels spanning across the CFP timeslots, the max GTS can
be defined as:

GTSmax =min


(TCAP +TCF P )

(
1− TCAP

TMS

)
GTSmin

 , C×NCF P

 . (9)

Following the availability of the transmission bitmap from the optimal schedule through
the RPL backbone, the amount of the required resources R is known to the PAN-C. Based
on the requirement of resources, if needed more, the PAN-C adds/removes CAP reduction
primitive and increments/decrements the value of MO in the subsequent beacon intervals as
shown in Algorithm 1.

Algorithm 1 DynaVLC algorithm to dynamically tune the superframe to the network demand.

Input: BO, SO, MO
optimal schedule from the RPL backbone
Number of channels (C) and Number of GTS available (NCF P )
Initialization
repeat

Schedule R = Required number of resources to accommodate the network
Resource test: check NCF P ≥ R in a multi-superframe

Problem 1: Minimal resources and high demand
while NCF P ≤ R do

CAP Reduction = ON;
if resource test true then

Print: DynaVLC is successful,
else

MO = MO + 1;
end if

end while

Problem 2: abundant resources and less demand
while NCF P ≥ R do

CAP Reduction = OFF;
if Resource test true then

Print: DynaVLC is successful,
else

MO = MO - 1;
end if

end while
until Every multi-superframe duration
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In a multi-superframe duration (MD) of N superframes, and for a data rate of D over C

channels, the maximum throughput for a single multi-superframe duration can be given as:

THmax =
(

(N × TMS) − Tidle

GTSmax

)
× D ∗ C. (10)

6 Numerical Analysis

To analyze the impact of DynaVLC, we consider an evolving network with the number of GTS
transmissions increasing over time and analyze the delay. Let us consider a multi-superframe
architecture with BO =6, MO = 1, SO = 1, such that there will be two superframes within
a multi-superframe that repeats for every beacon interval. For this test let us consider three
channels spanning over the 7 GTS in the classic IEEE 802.15.7 structure. In the classic VLC
structure with 3 channels, there will be a total of 21 GTS slots, which will not be capable
of accommodating more than 21 pairs of transmissions. However, when CAP reduction is
added to the multi-superframe the number of available GTS increases to 63 individual GTS
slots. However, in the case of static CAP reduction, after the 63 timeslots are filled, it waits
for the entire CAP duration until the subsequent superframe starts allocating the GTSs.

In the case of DynaVLC, when the number of resources is minimal, initially the CAP
reduction kicks in and we get almost the same performance as that of the static CAP
reduction. When the entire CFP is full, the resource test R fails and the value of MO is
increased adding another superframe to the multi-superframe. Now with CAP reduction on
all of the superframes, we will have a total of 102 GTS slots for deterministic communication
resulting in a decrease in delay by up to 45 %.

Figure 5 Impact of DynaVLC on the overall delay of the network - with the increment of MO as
the number of GTS transmissions increase more superframes are added into the multi-superframe
duration to accommodate the GTSs.

In the second part of our numerical analysis, we study the throughput of the network,
comparing the static settings against the DynaVLC. Under static CAP reduction, we switch it
“ON” at the beginning of the network, hence it has enough amount of GTS to accommodate
the traffic. Yer, as the number of GTS increases, the non-allocated slots will have to wait for
an entire CAP period to get served in the subsequent superframe. This results in a decrease
in the network throughput, but still, it is higher than the standard VLC by 20–30 %.
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In the case of DynaVLC, we initially have the CAP reduction setting “ON” to support
the network demand, hence, it provides an identical throughput as the example with CAP
reduction. However, as the number of GTS increases, the value of MO is incremented
resulting in the addition of more superframes into the multisuperframe. Around 125 GTS
requirement with the addition of more superframes into the MD, we witness an increase of
throughput and it slowly reduces with the increase of the GTS slots. The throughput will
eventually converge when the values of BO and MO become equal and all the GTS slots are
occupied.

Figure 6 Impact of DynaVLC on the overall throughput of the network - with the increment
of MO as the number of GTS transmissions increase more superframes are added into the multi-
superframe duration to accommodate the GTSs.

7 Conclusion

In current VLC network deployments QoS defining MAC parameters such as MO, SO, BI
are statically defined. This is an impediment to constantly evolving networks with varying
workload conditions. To address the compromises of these static networks, in this research
work, we propose a dynamic tuning mechanism called DynaVLC that can adjust the value
of MO and CAP reduction to increase the resources available based on the changes in
network demand. With DynaVLC, we were able to witness a decrease of 15-45% in delay
when compared to the network in static settings, as well as an improvement of 20-30% in
terms of the overall throughput. As a future work, we intend to create an open-source
implementation of the IEEE 802.15.7 protocol adaptations here introduced with further
enhancements towards the existing VLC architecture.
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Abstract
Embedded system applications usually have requirements regarding non-functional properties of their
execution like latency or power consumption. Enforcement of such requirements can be implemented
by a reactive control loop, where an enforcer determines based on a system response (feedback) how
to control the system, e.g., by selecting the number of active cores allocated to a program or by
scaling their voltage/frequency mode. It is of a particular interest to design enforcement strategies
for which it is possible to provide formal guarantees with respect to requirement violations, especially
under a largely varying environmental input (workload) per execution. In this paper, we consider
enforcement strategies that are modeled by a finite state machine (FSM) and the environment by
a discrete-time Markov chain. Such a formalization enables the formal verification of temporal
properties (verification goals) regarding the satisfaction of requirements of a given enforcement
strategy.

In this paper, we propose history-based enforcement FSMs which compute a reaction not just on
the current, but on a fixed history of K previously observed system responses. We then analyze the
quality of such enforcement FSMs in terms of the probability of satisfying a given set of verification
goals and compare them to enforcement FSMs that react solely on the current system response.
As experimental results, we present three use cases while considering requirements on latency and
power consumption. The results show that history-based enforcement FSMs outperform enforcement
FSMs that only consider the current system response regarding the probability of satisfying a given
set of verification goals.
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1 Introduction

Embedded applications usually come with constraints on non-functional properties such
as latency, power consumption, temperature, security, etc. A major uncertainty source
that affects such properties is the varying workload of the input data1. Different run-time

1 Other uncertainties such as caused by resource sharing can be handled systematically by techniques for
isolating application programs dynamically at run-time such as invasive computing [1, 32] and therefore
not considered here.
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management methods exist for dynamic control of program executions. However, most of
them have as disadvantages that they cannot provide formal guarantees regarding their
capability to fulfill the given requirements.

Run-time requirement enforcement (RRE) techniques [33] have been proposed to enforce
a set of non-functional properties of execution of a given application program within defined
bounds. Such techniques dynamically adapt system configurations including, e.g., the
voltage/frequency settings and/or the number of active cores in reaction to observed system
responses. Based on that, FSM-based RREs [10–13, 30] have been proposed for formally
specifying and verifying control strategies. Such approaches consider execution properties
that can be modeled by requirements [31], i.e. expressions on non-functional properties such
as permitted corridors on latency, power consumption, etc. Different verification goals can
be specified and formally verified, e.g., the probability with which program executions satisfy
a given set of requirements.

The FSM-based RRE approaches in [10–13, 30] define and use a binary requirement
response vector that specifies for each given requirement whether it has been satisfied (1)
or not (0) in the current execution. Based on such a system response, then determines the
next state, respectively configuration to be applied during the next execution. However,
it is a challenge to design enforcement FSMs that satisfy a set of verification goals with
maximized probabilities, especially if the considered requirements are conflicting with each
other like latency and power consumption. A potential for improvements is to let the enforcer
consider not only the current, but also system responses from earlier execution iterations
when deciding for the next configuration. In this regard, this paper proposes history-based
enforcement FSMs that not only consider the current system response, but also a history of
previous system responses for reaction.

This paper is organized as follows. Section 2 discusses the related work. In Section 3,
we introduce the system model, formally specify history-based enforcement FSMs, and
propose three examples of history-based enforcement FSMs that use a history of previous
system responses for determining a reaction. Section 4 describes the evaluation of history-
based enforcement FSMs for three different use case applications and compares between
the proposed history-based enforcement FSMs and enforcement FSMs that do not consider
previous responses for reaction. Finally, Section 5 concludes this work.

2 Related Work

Approaches based on heuristics [35], online learning [4, 23–25], or statistical regression [8, 15]
are generally not able to provide any formal guarantees regarding the satisfaction or violation
of non-functional properties of program executions. Finite state machines (FSMs) have been
proposed to formally specify functional system properties [5, 14,29]. Based on the concept of
Run-time Requirement Enforcement (RRE) [33], FSMs have been proposed in [10–13,30] for
feedback-based enforcement of non-functional properties on MPSoCs.

Such FSM-based RREs utilize a requirement response vector that abstracts the system
as a function that specifies for each requirement whether it has been fulfilled or violated in
the current execution. Based on such a system response, the enforcer reacts by determining
the configuration to be applied in the next execution iteration. However, all of the previous
approaches only consider the current system response for reaction. In our work, we take into
account a time window of K previous responses when deciding for the configuration for the
next execution.
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In control theory, the principle of time-delayed feedback [18, 36] has been proposed to
increase the stability of a system. However, this concept has never been applied for controlling
software systems. In addition, similar to [6,16,26,27], approaches based on control theory can
only give guarantees regarding the control stability or convergence, but not the satisfaction
or violation of non-functional properties of program executions.

3 Method

In this section, we first present the considered system model and then formulate and propose
three different history-based enforcement FSM strategies that take multiple previous system
responses into account for taking a reaction.

3.1 System Model
Embedded systems, especially MPSoCs, often consider the execution of periodic applications,
e.g., image, video, or periodic control applications. For each individual program execution, a
set of non-functional requirements shall be respected, even under environmental changes, e.g.,
varying input. This input can be represented for each discrete execution k of an application
by an environment feature vector i(k) ∈ I, where I is called the environment space [11]. The
program utilizes a number n of cores that can be dynamically changed as well as the their
voltage/frequency setting m. Such a setting ⟨n, m⟩ is called a configuration c and the set
of available configurations a configuration space C. FSM-based RREs [11] react based on
a feedback from the system-under-control by adapting the configuration c(k + 1) for the
(k + 1)th execution accordingly. Figure 1 illustrates the considered system model which is
described more closely in the following.

Figure 1 Illustration of a feedback-based RRE. A requirement response vector r is mapped to a
binary requirement response vector ϕ that will be used by an enforcement FSM F to decide for the
next configuration c(k + 1) ∈ C. Reprinted from [11].

Depending on an input i(k) ∈ I and a system configuration c(k) ∈ C, let the k-th
execution result into a set of H observable non-functional properties, e.g., latency and power
consumption in case of H = 2 observable properties. The system-under-control can then be
described by a system response function r : I × C → RH [11]. Thus, the system response
r(i(k), c(k)) = (o1(k), . . . , oH(k)) at execution k is a vector of H execution properties of
interest, see Figure 1. Now, requirements on these properties, e.g., deadlines, must be fulfilled
for each execution, where each property oh, h = 1, . . . , H can be formulated using corridors
from which the following two propositions φLB

h and φUB
h can be derived

NG-RES 2024
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φLB
h (oh(k)) = (LBh ≤ oh(k)) (1)

φUB
h (oh(k)) = (oh(k) ≤ UBh) (2)

where LBh and UBh refer to the lower and the upper bound, respectively, on the execution
property oh. The information regarding which proposition is satisfied and which is violated
at the k-th execution is represented by a binary vector β named requirement response. It is
obtained from the system response r using the requirement response function ϕ [11]

β(k) := ϕ (o1(k), . . . , oH(k)) =
(
φLB(o1(k)), φUB(o1(k)), . . . ,

φLB(oH(k)), φUB(oH(k))
)

∈ {0, 1}2H . (3)

This binary requirement response vector β(k) constitutes the input to the enforcement FSM
F that determines the next configuration c(k + 1) ∈ C to enforce the given non-functional
properties for the next execution.

An enforcement FSM (F ) can be formally modeled by a deterministic finite state machine
(Moore machine) which is described by a 6-tuple (Z, z0, B, δ, C, γ) [11]:

Z is a finite set of states.
z0 ∈ Z is the initial state.
B is the input alphabet.
δ is the transition relation: δ ⊆ B × Z × Z with (β, z, z′) representing a transition from z

to z′ under input β.
C is the output alphabet, also called configuration space.
γ is the output function that maps each state to an output (i.e., a configuration):
γ : Z → C.

Finally, in order to quantitatively compare different enforcement strategies, verification
goals can be formulated in temporal logic [7]. The two types of temporal logic are linear
temporal logic and branching time logic. Linear temporal logic (LTL) describes events over
a single time path in the FSM. Branching time logic such as computation tree logic (CTL)
quantifies the possible paths from a given state in the FSM. Different levels of strictness of
requirement enforcement can be differentiated, see [34]. Accordingly, different verification
goals can be defined. For example, the CTL formula AG(φh) for strict enforcement indicates
that φ holds for every path and at every state on the path. For loose enforcement, AF (φh)
specifies that for every possible path there exists a state at which φ holds, see [11].

Probabilistic verification goals, based on PCTL [2], can also be formulated to specify
stochastic verification goals for loose enforcement. We utilize probabilistic verification goals
that are based on steady-state probabilities in Markov chains as they are helpful for obtaining
requirement satisfaction probabilities of long execution runs of an application regardless
of the initial state. The operator S is used in PRISM [20] to reason about the steady-
state probability of a model [3]. We define the verification goal S=?[φ] as the steady-state
probability of being in a satisfying state for the requirement φ. Finally, we refer to the set of
all considered verification goals by V G.

3.2 History-based Enforcement FSMs
In this work, we propose enforcement strategies that not only react based on the current
response vector β(k), but additionally on a history of system responses (β(k−1), . . . , β(k−K))
belonging to the previous K execution iterations. Note that the case of K = 0 represents
the case of enforcement FSMs that are not history-based, i.e., they only react on β(k) and
do not consider previous system responses for reaction.
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In this section, we introduce exemplarily three multi-requirement history-based enforce-
ment FSMs F1, F2, F3 that consider current response β(k) and the previous response β(k − 1)
(K = 1) to calculate a proper reaction. These FSMs execute on an MPSoC given with n = 4
available cores that can operate in m = 20 different power modes (voltage/frequency states).
Thus, the size of the configuration space C available for enforcement is |C| = 4 · 20 = 80.
We also assume these configurations to be power-ascending so that the configuration cj

associated with ⟨nj , mj⟩ has a higher power consumption than that of configuration cj−1
where 0 ≤ j < |C|.

Let us consider the latency oL and the power consumption oP as properties of execution
to be enforced, thus H = 2. For simplicity, we only utilize one-sided requirements so that the
lower bounds are LBoL

= 0 and LBoP
= 0. Additionally, let the set of states Z be |Z| = |C|

such that the output function is a bijection γ : Z ↔ C of sets Z and C. Thus, there is a
one-to-one relation between enforcer states and configurations, such that each enforcer state
z ∈ Z uniquely outputs one configuration c ∈ C. Based on that, each enforcement FSM has as
many states as |Z| = |C| = 80, thus, Z = {z0, · · · , z79}, the input β ∈ B = {0, 1}H = {0, 1}2

with β = ϕ(r′(s, c)) = ϕ(oL, oP ) = ((oL ≤ UBoL
), (oP ≤ UBoP

)), an assumed initial state
z0 = 0. Finally, we assume both the latency requirement φL(k) and the power requirement
φP (k) are satisfied for executions k < 0.

3.2.1 Latency Violation-Oriented History-Based Enforcement FSM
This enforcement FSM decreases the current state by exactly one step in case of a violation of
a power requirement in both the current execution (φP (k)) and the previous one (φP (k − 1))
only when the latency requirement in both the current execution (φL(k)) and the previous one
(φL(k −1)) is satisfied. It stays in the same configuration for the other cases when the latency
requirement is satisfied in both executions (φL(k)) and (φL(k − 1)). It increases by one step
in case of a violation of an latency requirement in either the current execution (φL(k)) or the
previous one (φL(k − 1)). Finally, it increases by two steps in case of a violation of an latency
requirement in both the current execution (φL(k)) and the previous one (φL(k − 1)). A
corresponding enforcement FSM F1 = (Z, z0, I, γ, C, δ1) has the transition relation δ1 shown
in Table 1.

3.2.2 Power Violation-Oriented History-Based Enforcement FSM
This enforcement FSM increases the current state by exactly one step in case of a violation of
a latency requirement in both the current execution (φL(k)) and the previous one (φL(k − 1))
only when the power requirement in both the current execution (φP (k)) and the previous one
(φP (k − 1)) is satisfied. It stays in the same configuration for the other cases when the power
requirement is satisfied in both executions (φP (k)) and (φP (k − 1)). It decreases by one step
in case of a violation of a power requirement in either the current execution (φP (k)) or the
previous one (φP (k − 1)). Finally, it decreases by two steps in case of a violation of a power
requirement in both the current execution (φP (k)) and the previous one (φP (k − 1)). A
corresponding enforcement FSM F2 = (Z, z0, I, γ, C, δ2) has the transition relation δ2 shown
in Table 2.

3.2.3 Multi-Requirement History-Based Enforcement FSM
This enforcement FSM does not favor any requirement when transitioning between enforcer
states. A corresponding enforcement FSM F3 = (Z, z0, I, γ, C, δ3) has the transition relation
δ3 shown in Table 3.

NG-RES 2024
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Table 1 The transition relation δ1 of the latency-oriented history-based enforcement FSM F1.

z(k) β(k − 1) β(k) z(k + 1)

zj true true true true zj

zj true false true true zj

zj true true true false zj

zj true false true false zj−1

zj false true true true zj+1

zj false false true true zj+1

zj false true true false zj+1

zj false false true false zj+1

zj true true false true zj+1

zj true false false true zj+1

zj true true false false zj+1

zj true false false false zj+1

zj false true false true zj+2

zj false false false true zj+2

zj false true false false zj+2

zj false false false false zj+2

Table 2 The transition relation δ2 of the power-oriented history-based enforcement FSM F2.

z(k) β(k − 1) β(k) z(k + 1)

zj true true true true zj

zj true false true true zj−1

zj true true true false zj−1

zj true false true false zj−2

zj false true true true zj

zj false false true true zj−1

zj false true true false zj−1

zj false false true false zj−2

zj true true false true zj

zj true false false true zj−1

zj true true false false zj−1

zj true false false false zj−2

zj false true false true zj+1

zj false false false true zj

zj false true false false zj−1

zj false false false false zj−2

4 Experimental Results

In this section, we introduce three applications for evaluating the proposed enforcement
FSMs in Section 3.2. For comparison, we also perform a design space exploration (DSE)
method from [13] to generate optimized enforcement FSMs for a given set of verification goals
V G for each application, where these enforcement FSMs do not consider previous system
responses for reaction. To perform the DSE, the NSGA-II [9] multi-objective evolutionary
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Table 3 The transition relation δ3 of the multi-requirement history-based enforcement FSM F3.

z(k) β(k − 1) β(k) z(k + 1)

zj true true true true zj

zj true false true true zj−1

zj true true true false zj−1

zj true false true false zj−2

zj false true true true zj+1

zj false false true true zj

zj false true true false zj

zj false false true false zj−1

zj true true false true zj+1

zj true false false true zj

zj true true false false zj

zj true false false false zj−1

zj false true false true zj+2

zj false false false true zj+1

zj false true false false zj+1

zj false false false false zj

algorithm provided by the optimization framework Opt4J [22] is used. Each run of the
DSE features 100 iterations with a population size of 20 enforcement FSMs with a crossover
probability of 0.9 and a mutation probability of 0.01. Each experiment was repeated three
times to compensate for the randomness of the exploration.

4.1 Applications
We consider three applications for evaluation. Each application is modeled by a graph
of actors, where each actor processes an input i(k) in each iteration k. The applications
execute on a tiled many-core system that consists of a set of processing cores, peripherals
like memories, and a network adapter, which are interconnected via a tile-local bus system.
For this matter, a simulation framework called InvadeSIM [28], a many-core simulator for
parallel applications is used.

4.1.1 Object Detection Application
An image processing application that detects a given object in each image frame by applying
a scale-invariant feature transform (SIFT) matching algorithm. We use a driving car image
sequence R of the KITTI-360 dataset [21] with |R| = 100 frames, a latency lower bound
LBoL

= 0 ms and an upper bound (deadline) UBoL
= 65 W, an power lower bound LBoP

= 0
mJ and an upper bound UBoP

= 5 W.

4.1.2 String Search Application
This application stems from the ParMiBench benchmark suite [17] that searches in a given
input text k with i(k) lines for a given pattern. For this use case, we create a trace of
|R| = 100 randomly generated texts, each having i(k) lines. We use the bounds LBoL

= 0
ms, UBoL

= 15 ms, LBoP
= 0 W and UBoP

= 1.5 W.
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(b) String search.
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(c) SHA.

Figure 2 Verification results for the proposed history-based enforcement FSMs F1, F2, F3 for a
history of K = 1, compared to DSE-optimized enforcement FSMs that do not consider the response
history [13], and the heuristic techniques race-to-idle and pace-to-idle [19].

4.1.3 Secure Hash Application
Another application from the ParMiBench benchmark suite [17]. This security application
computes the hash for the input k that consists of i(k) messages. For this use case, we
create a trace of |R| = 100 randomly generated inputs k, with LBoL

= 0 ms, UBoL
= 9 ms,

LBoP
= 0 W, and UBoP

= 3 W.

4.2 Results
Figure 2 shows the verification results of the proposed history-based enforcers F1, F2, F3 that
consider the previous response β(k − 1) together with enforcement FSMs that are obtained
from the DSE method in [13] and do not consider any previous response for reaction, as
well as race-to-idle (i.e., running with the highest configuration c79) and pace-to-idle (i.e.,
running with the slowest configuration c0) [19].

We notice in Figure 2 that the history-based enforcement FSMs F1 and F2 are not
dominated by any other enforcement FSM in all of the three applications. Also, the
history-based enforcement FSM F3 is not dominated in the case of string search application.
This shows that reacting based on a history of previous system responses can enhance the
probability of satisfying the considered verification goals. The reason is the larger design
space of transition possibilities in the enforcement FSM.

Table 4 shows the average verification time, number of states, and transitions for 10
randomly-generated enforcement FSMs with different history options. Enforcement FSMs
with K = 0 indicates that they only react on the current system response β(k). History-based
enforcement FSMs with K = 1 implies that they include the previous system response β(k−1)
for reaction as well as β(k). Finally, history-based enforcement FSMs with K = 2 consider
the system responses β(k − 2), β(k − 1), and β(k) for reaction. We notice that reacting based
on previous system responses leads to a substantial increase in verification times. This is
explained by the increase of number of states and transitions of the resulting enforcement
FSM. We also notice that this increase is proportional to the length of the time window K

of previously considered responses.

5 Conclusion

In this paper, we proposed to integrate a history of previous system responses into the design
of enforcement strategies. The evaluation shows that such history-based enforcement FSMs
have the potential to have higher probabilities of satisfying a given set of verification goals



K. Esper and J. Teich 4:9

Table 4 Average verification time, number of states, and transitions for 10 randomly-generated
enforcement FSMs with different history options.

K = 0 K = 1 K = 2
Application time (ms) states transitions time (ms) states transitions time (ms) states transitions

Object detection 133.0 262.7 710.7 357.0 1,193.3 3,176.3 6,460.1 4,064.3 10,786.6
String Search 416.1 1,299.4 5,166.7 24,786.9 10,354.9 41,301.9 840,498.1 41,477.8 166,058.5

SHA 179.3 453.9 1,513.5 2,894.3 2,800.1 9,303.8 63,172.1 9,726.3 32,336.3

than enforcement FSMs that do not consider any system response history. This offers system
designers with a trade-off between complexity and performance. In the future, we aim to
automatically optimize history-based enforcement FSMs for a given set of verification goals.
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