
Formal Specification of the Cardano Blockchain
Ledger, Mechanized in Agda
Andre Knispel #

Input Output, Berlin, Germany
Orestis Melkonian #

Input Output, Kirkwall, UK

James Chapman #

Input Output, Glasgow, UK
Alasdair Hill #

Input Output, Bristol, UK

Joosep Jääger #

Input Output, Tartu, Estonia
William DeMeo #

Input Output, Boulder, US

Ulf Norell #

QuviQ, Göteborg, Sweden

Abstract
Blockchain systems comprise critical software that handle substantial monetary funds, rendering
them excellent candidates for formal verification. One of their core components is the underlying
ledger that does all the accounting: keeping track of transactions and their validity, etc.

Unfortunately, previous theoretical studies are typically confined to an idealized setting, while
specifications for real implementations are scarce; either the functionality is directly implemented
without a proper specification, or at best an informal specification is written on paper.

The present work expands beyond prior meta-theoretical investigations of the EUTxO model to
encompass the full scale of the Cardano blockchain: our formal specification describes a hierarchy of
modular transitions that covers all the intricacies of a realistic blockchain, such as fully expressive
smart contracts and decentralized governance.

It is mechanized in a proof assistant, thus enjoys a higher standard of rigor: type-checking prevents
minor oversights that were frequent in previous informal approaches; key meta-theoretical properties
can now be formally proven; it is an executable specification against which the implementation in
production is being tested for conformance; and it provides firm foundations for smart contract
verification.

Apart from a safety net to keep us in check, the formalization also provides a guideline for the
ledger design: one informs the other in a symbiotic way, especially in the case of state-of-the-art
features like decentralized governance, which is an emerging sub-field of blockchain research that
however mandates a more exploratory approach.

All the results presented in this paper have been mechanized in the Agda proof assistant and
are publicly available. In fact, this document is itself a literate Agda script and all rendered code
has been successfully type-checked.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Logic and verification; Theory of computation → Program specifications

Keywords and phrases blockchain, distributed ledgers, UTxO, Cardano, formal verification, Agda

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.2

Supplementary Material
Software (Agda Code): https://github.com/IntersectMBO/formal-ledger-specifications [19]

archived at swh:1:dir:085aefb014706c3ee4bcf1a9f85fcceaf10ba4cc

1 Introduction

This paper gives a high-level overview of the Cardano ledger specification in the Agda proof
assistant, which is one of three core pieces of the Cardano blockchain:

Networking: deals with sending messages across the internet.
Consensus: establishes a common order of valid blocks.
Ledger: decides whether a sequence of blocks is valid.

© Andre Knispel, Orestis Melkonian, James Chapman, Alasdair Hill, Joosep Jääger, William DeMeo,
and Ulf Norell;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 2; pp. 2:1–2:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andre.knispel@iohk.io
https://orcid.org/0000-0003-0068-3799
mailto:orestis.melkonian@iohk.io
https://orcid.org/0000-0003-2182-2698
mailto:james.chapman@iohk.io
https://orcid.org/0000-0001-9036-8252
mailto:alasdair.hill@iohk.io
mailto:joosep.jaager@iohk.io
mailto:william.demeo@iohk.io
https://orcid.org/0000-0003-1832-5690
mailto:ulf.norell@quviq.com
https://doi.org/10.4230/OASIcs.FMBC.2024.2
https://github.com/IntersectMBO/formal-ledger-specifications
https://archive.softwareheritage.org/swh:1:dir:085aefb014706c3ee4bcf1a9f85fcceaf10ba4cc;origin=https://github.com/IntersectMBO/formal-ledger-specifications;visit=swh:1:snp:5097bdc07a9030f7e251cb6529989d442bb82f35;anchor=swh:1:rev:002b7226a3af8e5e1068fd0c8fd1fcbb51bba64e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

Such separation of concerns is crucial to enable a rigidly formal study of each individual
component; the ledger is based on the Extended UTxO model (EUTxO), an extension of
Bitcoin’s model of unspent transaction outputs [20] – in contrast to Ethereum’s account-based
model [8] – to accommodate fully expressive smart contracts that run on the blockchain.
Luckily for us, EUTxO enjoys a well-studied meta-theory [9, 10] that is also mechanized
in Agda, albeit in a much simpler setting where a single ledger feature is considered at a
time, but not how multiple concurrent features interact. We take this to the next level by
scaling up these prior theoretical results to match the complexity of the real world: the
Cardano blockchain being one of the top ten cryptocurrencies today by market capitalization,
it handles gigabytes of transactions that transfer hundred of millions US dollars, while
simultaneously supporting all these features plus many more that have not been formally
studied before.

We are happy to report that the formalization overhead has proven minuscule compared
to the development effort of the actual implementation, measured either by lines of code (˜10
thousand lines of Agda formalization versus ˜200 thousand of Haskell implementation) or
by number of man hours put in so far (only a couple of full-time formal methods engineers
versus tens of production developers). The result is a mechanized document that leaves little
room for error, additionally proves crucial invariants of the overall system ,e.g., that the
global value carried by the system stays constant, formally stated in Section 4. It doubles as
an executable reference implementation that we can utilize in production for conformance
testing. All of our work, much like this paper, is mechanized in Agda and is publicly available:

https://github.com/IntersectMBO/formal-ledger-specifications

Scope. Cardano’s evolution proceeds in eras, each introducing a new vital feature to the
previous ones. While we would ideally want to provide a multitude of formal artifacts, each
describing a single era in full detail, the specification formalized here is that of the Voltaire
era that introduces decentralized governance as described in the Cardano Improvement
Proposal (CIP) 1694.1 This stems from the fact that the design of the blockchain happens in
tandem with the formal specification; one informs the other in an intricate, non-linear fashion.
Thus arises a pragmatic need to think of the process as an act of balance between keeping
up with the past, i.e., going back to previous eras and incrementally incorporating their
features, and co-evolving with the current design of the future ledger capabilities. Therefore,
we set aside details of the previous Byron, Shelley, and Alonzo eras while at the same
time missing orthogonal features related to smart contracts brought in the Babbage era.

Transitions as relations. The ledger can itself be conceptually divided into multiple sub-
components, each described by a transition between states that only contains the relevant
parts of the overarching ledger state and possibly some internal auxiliary information that is
discarded at the outer layer. These transitions are not independent, but form a hierarchy
of “state machines” where some higher-level transition might demand successful transition
of a sub-component down the dependency graph as one of its premises. Eventually, these
cascading transitions all get combined to dictate the top-level transition that handles an
individual block of transactions submitted to the blockchain.

Formally, we formulate such (labeled) transitions as relations X between the environment
Γ inherited from a higher layer, an initial state s, a signal b that acts as user input, and a
final state s′:

1 https://github.com/cardano-foundation/CIPs/blob/17771640/CIP-1694/README.md

https://github.com/IntersectMBO/formal-ledger-specifications
https://github.com/cardano-foundation/CIPs/blob/17771640/CIP-1694/README.md

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:3

Γ ⊢ s
b−→
X

s′

Environments
(Signals) States

Possible transitions
We will henceforth present such transitions as shown on the right; a triptych defining
environments and possibly signals (top left), states (top right), and the rules that inductively
define the transition (bottom).

Agda preliminaries
In Agda, the aforementioned ledger transitions are modeled as inductive families of type:

⊢⇀L_ M_ : Env → State → Signal → State → Type

Reflexive transitive closure. We will often need to apply a transition repeatedly until we
arrive at a final state, which corresponds to the standard mathematical construction of taking
the relation’s reflexive transitive closure:

data _⊢_⇀L_ M∗_ : Env → State → List Signal → State → Type where

base :

Γ ⊢ s ⇀L [] M∗ s

step :
• Γ ⊢ s ⇀L b M s’
• Γ ⊢ s’ ⇀L bs M∗ s”

Γ ⊢ s ⇀L b :: bs M∗ s”

Finite sets & maps. One particular trait we inherited from previous pen-and-paper iterations
of the ledger specification is a heavy use of set theory, which goes against Agda’s foundations
in Type Theory, both technically and in a philosophical sense. To remedy this, we have
developed an in-house library for conducting Axiomatic Set Theory within the type-theoretic
setting of Agda [18]; we stay in its finite fragment for this application. Crucially, the type of
sets is entirely abstract: there is no way to utilize proof-by-computation (e.g., as one would
do when modeling sets as lists of distinct elements), so that all proofs eventually resort to
the axioms and the library’s implementation details stay irrelevant. At the same time, when
extracting executable code the library provides a properly executable implementation – the
abstraction layer only exists at compile-time. Implementing this abstraction layer helped us
greatly reduce code complexity and size over a previous list-based approach. In fact, it is
highly encouraged to provide multiple implementations without affecting the formalization
and the validity of the established proofs therein.

Equipped with the axioms provided by the library, e.g., the ability to construct power
sets P, it is remarkably easy to define common set-theoretic concepts like set inclusion and
extensional equality of sets (left), as well as re-purpose sets of key-value pairs to model finite
maps2 by imposing uniqueness of keys (right):

⊆ : {A : Type} → P A → P A → Type
X ⊆ Y = ∀ {x} → x ∈ X → x ∈ Y

≈ : {A : Type} → P A → P A → Type
X ≈ Y = X ⊆ Y × Y ⊆ X

⇀ : Type → Type → Type
A ⇀ B = ∃ λ (ℜ : P (A × B)) →

∀ {a b b’} → (a , b) ∈ ℜ → (a , b’) ∈ ℜ → b ≡ b’

2 It is natural to think of maps as partial functions, but unrestricted Agda functions would not do here.

FMBC 2024

2:4 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

2 Fundamental entities

2.1 Cryptographic primitives
There are two types of credentials that can be used on Cardano: VKey and script credentials.
VKey credentials use a public key signing scheme (Ed25519) for verification. Some serialized
(Ser) data can be signed, and isSigned is the property that a public VKey signed some data
with a given signature (Sig). There are also other cryptographic primitives in the Cardano
ledger, for example KES and VRF used in the consensus layer, but we omit those here.

Script credentials correspond to a hash of a script that has to be executed by the ledger
as part of transaction validation. There are two different types of scripts, native and Plutus,
but the details of this are not relevant for the rest of this paper.

VKey Sig Ser : Type isSigned : VKey → Ser → Sig → Type

In the specification, all definitions that require these primitives must accept these as
additional arguments. To streamline this process, these definitions are bundled into a record
and, using Agda’s module system, are quantified only once per file. We are using this pattern
many times, either to introduce additional abstraction barriers or to effectively provide
foreign functions within a safe environment. Additionally, particularly fundamental interfaces
like the one presented above are sometimes re-bundled transitively into larger records, which
further streamlines the interface. This is in stark contrast to the Haskell implementation,
which often needs to repeat tens of type class constraints on many functions in a module.

2.2 Addresses
There are various types of addresses used for storing funds in the UTxO set, which all contain
a payment Credential and optionally a staking Credential. Addr is the union of all of those
types. A Credential is a hash of a public key or script, types for which are kept abstract. The
most common type of address is a BaseAddr which must include a staking Credential.

There is also a special type of address (not included in Addr) without a payment credential,
called a reward address. It is not used for interacting with the UTxO set, but instead used
to refer to reward accounts [32].

Credential = KeyHash ⊎ ScriptHash

record BaseAddr : Type where
pay : Credential
stake : Credential

record RwdAddr : Type where
stake : Credential

Addr = BaseAddr ⊎ . . .

2.3 Base types
The basic units of currency and time are Coin, Slot and Epoch, which we treat as natural
numbers, while an implementation might use isomorphic but more complicated types (for
example to represent the beginning of time in a special way).

Coin = Slot = Epoch = N

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:5

A Coin is the smallest unit of currency, a Slot is the smallest unit of time (corresponding to 1
second in the main chain), and an Epoch is a fixed number of slots (corresponding to 5 days
in the main chain). Every slot, a stake pool has a random chance to be able to mint a block,
and one block every five slots is expected [13].

3 Advancing the blockchain

3.1 Protocol parameters
We start with adjustable protocol parameters. In contrast to constants such as the length of
an Epoch, these parameters can be changed while the system is running via the governance
mechanism. They can affect various features of the system, such as minimum fees, maximum
and minimum sizes of certain components, and more.

The full specification contains well over 20 parameters, while we only list a few. The max-
imum sizes should be self-explanatory, while a and b are the coefficients of a polynomial used
in the calculation of the minimum fee for transactions (c.f., function minfee in Appendix B).

record PParams : Type where
maxBlockSize maxTxSize a b : N

3.2 Extending the blockchain block-by-block
CHAIN is the main state machine describing the ledger. Since it is not invoked from any
other state machine, it does not have an environment. It invokes two other state machines,
NEWEPOCH and LEDGER*, where the former detects if the new block b is in a new epoch.
In that case, NEWEPOCH takes care of various bookkeeping tasks, such as counting votes for
the governance system and updating stake distributions for consensus. For a basic version
that detects whether a new epoch has been entered, see Appendix C. The potentially updated
state is then given to LEDGER*, which is the reflexive-transitive closure of LEDGER and
applies all the transactions in the block in sequence. Finally, CHAIN updates ChainState with
the resulting states.

There is a key property about NEWEPOCH, which is that it never gets stuck, i.e. that
for all states, environments and signals it always transitions to a new state. This property is
proven in our development.

record Block : Type where
ts : List Tx
slot : Slot

record NewEpochState : Type where
lastEpoch : Epoch
acnt : Acnt
ls : LState
es : EnactState
fut : RatifyState

record ChainState : Type where
newEpochState : NewEpochState

CHAIN :
• mkNewEpochEnv s ⊢ s .newEpochState ⇀L epoch slot ,NEWEPOCH M nes
• J slot ⊗ constitution .proj1 .proj2 ⊗ pparams .proj1 ⊗ es K ⊢ nes .ls ⇀L ts ,LEDGER∗ M ls’

__

_ ⊢ s ⇀L b ,CHAIN M updateChainState s nes

FMBC 2024

2:6 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

3.3 Extending the ledger transaction-by-transaction

Transaction processing is broken down into three separate parts: accounting & witnessing
(UTXOW), application of certificates (CERT) and processing of governance votes & proposals
(GOV).

record LEnv : Type where
slot : Slot
ppolicy : Maybe ScriptHash
pparams : PParams
enactState : EnactState

record LState : Type where
utxoSt : UTxOState
govSt : GovState
certState : CertState

LEDGER :
• mkUTxOEnv Γ ⊢ utxoSt ⇀L tx ,UTXOW M utxoSt’
• J epoch slot ⊗ pparams ⊗ txvote ⊗ txwdrls K ⊢ certState ⇀L txcerts ,CERT∗ M certState’
• J txid ⊗ epoch slot ⊗ pparams ⊗ enactState K ⊢ govSt ⇀L txgov txb ,GOV∗ M govSt’

__

Γ ⊢ s ⇀L tx ,LEDGER M J utxoSt’ ⊗ govSt’ ⊗ certState’ K

(The notation J . . . ⊗ . . . K constructs records of any type by giving their fields in order.)

4 UTxO

4.1 Witnessing

Transaction witnessing checks that all required signatures are present and all required scripts
accept the validity of the given transaction. witsKeyHashes and witsScriptHashes is the set
of hashes of keys/scripts included in the transaction.

UTXOW-inductive :
• witsVKeyNeeded ppolicy utxo txb ⊆ witsKeyHashes
• scriptsNeeded ppolicy utxo txb ≡ witsScriptHashes
• ∀[(vk , σ) ∈ vkSigs] isSigned vk (txidBytes txid) σ

• ∀[s ∈ scriptsP1] validP1Script witsKeyHashes txvldt s
• Γ ⊢ s ⇀L tx ,UTXO M s’

__

Γ ⊢ s ⇀L tx ,UTXOW M s’

4.2 Accounting

Accounting is handled by the UTXO state machine. The preconditions for UTXO-inductive
ensure various properties or prevent attacks. For example, if txins was allowed to be empty,
one could make a transaction that only spends from reward accounts. This does not require a
specific hash to be present in the transaction body, so such a transaction could be repeatable in
certain scenarios. The equation between produced and consumed ensures that the transaction
is properly balanced. For details on some of these functions, see Appendix B.

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:7

record UTxOEnv : Type where
slot : Slot
pparams : PParams

Deposits = DepositPurpose ⇀ Coin

record UTxOState : Type where
utxo : UTxO
deposits : Deposits
fees donations : Coin

UTXO-inductive :
• txins ̸≡ ∅
• txins ⊆ dom utxo
• minfee pp tx ≤ txfee
• txsize ≤ maxTxSize pp
• consumed pp s txb ≡ produced pp s txb
• coin mint ≡ 0

__

Γ ⊢ s ⇀L tx ,UTXO M

J (utxo | txins) ∪ outs txb
⊗ updateDeposits pp txb deposits
⊗ fees + txfee
⊗ donations + txdonation K

▶ Property 4.1 (Value preservation). Let getCoin be the sum of all coins contained within a
UTxOState. Then, for all Γ ∈ UTxOEnv, s, s’ ∈ UTxOState and tx ∈ Tx, if tx .body .txid /∈
map proj1 (dom (s .UTxOState.utxo))and Γ ⊢ s ⇀L tx ,UTXO M s’then getCoin s ≡ getCoin s’.

Note that this is one of the most important properties of a UTxO-based ledger, as
evidenced by its central place in EUTxO’s meta-theory [9, 10].

5 Decentralized Governance

5.1 Entities and actions
The governance framework has three bodies of governance, the constitutional committee,
delegated representatives and stake pool operators, corresponding to the roles CC, DRep
and SPO. Proposals relevant to the governance system come in the form of Governance
Actions. They are identified by their GovActionID, which consists of the TxId belonging to
the transaction that proposed it and the index within that transaction (a transaction can
propose multiple governance actions at once).

GovActionID = TxId × N
data GovRole : Type where

CC DRep SPO : GovRole
data GovAction : Type where

NoConfidence : GovAction
NewCommittee : Credential ⇀ Epoch → P Credential → Q → GovAction
NewConstitution : DocHash → Maybe ScriptHash → GovAction
TriggerHF : ProtVer → GovAction
ChangePParams : PParamsUpdate → GovAction
TreasuryWdrl : (RwdAddr ⇀ Coin) → GovAction
Info : GovAction

For the meaning of these individual actions, see [12].

FMBC 2024

2:8 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

5.2 Votes and proposals

Before a Vote can be cast it must be packaged together with further information, such as
who is voting and for which governance action. This information is combined in the GovVote
record. To propose a governance action, a GovProposal needs to be submitted. Beside the
proposed action, it requires a deposit, which will be returned to returnAddr.

data Vote : Type where
yes no abstain : Vote

record GovVote : Type where
gid : GovActionID
role : GovRole
credential : Credential
vote : Vote

record GovProposal : Type where
action : GovAction
deposit : Coin
returnAddr : RwdAddr

5.3 Enactment

Enactment of a governance action is carried out via the ENACT state machine. We just show
two example rules for this state machine – there is one corresponding to each constructor of
GovAction. For an explanation of the hash protection scheme, see Appendix A.

record EnactEnv : Type where
gid : GovActionID
treasury : Coin
epoch : Epoch

record EnactState : Type where
cc : HashProtected (Maybe ((Credential ⇀ Epoch) × Q))
constitution : HashProtected (DocHash × Maybe ScriptHash)
pv : HashProtected ProtVer
pparams : HashProtected PParams
withdrawals : RwdAddr ⇀ Coin

Enact-NewConst :
__

J gid ⊗ t ⊗ e K ⊢ s ⇀L NewConstitution dh sh ,ENACT M record s { constitution = (dh , sh) , gid }

Enact-Wdrl :
let newWdrls = s .withdrawals ∪ wdrl in

∑
[x ← newWdrls] x ≤ t

__

J gid ⊗ t ⊗ e K ⊢ s ⇀L TreasuryWdrl wdrl ,ENACT M record s { withdrawals = newWdrls }

(The record keyword indicates a record update, i.e. we take the existing EnactState and
update one of its fields.)

5.4 Voting and Proposing

The order of proposals is maintained by keeping governance actions in a list – this acts as a
tie breaker when multiple competing actions might be able to be ratified at the same time.

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:9

record GovActionState : Type where
votes : (GovRole × Credential) ⇀ Vote
returnAddr : RwdAddr
expiresIn : Epoch
action : GovAction
prevAction : NeedsHash action

GovState = List (GovActionID × GovActionState)

record GovEnv : Type where
txid : TxId
epoch : Epoch
pparams : PParams
enactState : EnactState

GOV-Vote :
• (aid , ast) ∈ fromList s
• canVote pparams (action ast) role

__

(Γ , k) ⊢ s ⇀L sig ,GOV M addVote s aid role cred v

GOV-Propose :
• actionWellFormed a ≡ true
• d ≡ govActionDeposit

__

(Γ , k) ⊢ s ⇀L inj2 prop ,GOV M addAction s (govActionLifetime + epoch) (txid , k) addr a prev

5.5 Ratification
Governance actions are ratified through on-chain voting actions. Different kinds of governance
actions have different ratification requirements but always involve at least two of the three
governance bodies. The voting power of the DRep and SPO roles is proportional to the stake
delegated to them, while the constitutional committee has individually elected members
where each member has the same voting power.

Some actions take priority over others and, when enacted, delay all further ratification to
the next epoch boundary. This allows a changed government to reevaluate existing proposals.

record RatifyEnv : Type where
stakeDistrs : StakeDistrs
currentEpoch : Epoch
dreps : Credential ⇀ Epoch

record RatifyState : Type where
es : EnactState
removed : P (GovActionID × GovActionState)
delay : Bool

RATIFY-Accept :
• accepted Γ es st
• ¬ delayed action prevAction es d
• J a .proj1 ⊗ treasury ⊗ currentEpoch K ⊢ es ⇀L action ,ENACT M es’

__

Γ ⊢ J es ⊗ removed ⊗ d K ⇀L a ,RATIFY M
J es’ ⊗ { a } ∪ removed ⊗ delayingAction action K

RATIFY-Reject :
• ¬ accepted Γ es st
• expired currentEpoch st

FMBC 2024

2:10 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

__

Γ ⊢ J es ⊗ removed ⊗ d K ⇀L a ,RATIFY M J es ⊗ { a } ∪ removed ⊗ d K

RATIFY-Continue :
(• ¬ accepted Γ es st • ¬ expired currentEpoch st)

⊎ (• accepted Γ es st
• (delayed action prevAction es d

⊎ (∀ es’ → ¬ J a .proj1 ⊗ treasury ⊗ currentEpoch K ⊢ es ⇀L action ,ENACT M es’)))
__

Γ ⊢ J es ⊗ removed ⊗ d K ⇀L a ,RATIFY M J es ⊗ removed ⊗ d K

The main new ingredients for the rules of the RATIFY state machine are:
accepted, which is the property that there are sufficient votes from the required bodies to
pass this action;
delayed, which expresses whether an action is delayed;
expired, which becomes true a certain number of epochs after the action has been proposed.

The three RATIFY rules correspond to the cases where an action can be ratified and
enacted (in which case it is), or it is expired and can be removed, or, otherwise it will be
kept around for the future. This means that all governance actions eventually either get
accepted and enacted via RATIFY-Accept or rejected via RATIFY-Reject. It is not possible to
remove actions by voting against them, one has to wait for the action to expire.

6 Transactions

A transaction is made up of a transaction body and a collection of witnesses.

Ix TxId : Type
TxIn = TxId × Ix
TxOut = Addr × Value × Maybe DataHash
UTxO = TxIn ⇀ TxOut

record TxBody : Type where
txins : P TxIn
txouts : Ix ⇀ TxOut
txfee : Coin
txvote : List GovVote
txprop : List GovProposal
txsize : N
txid : TxId

record TxWitnesses : Type where
vkSigs : VKey ⇀ Sig
scripts : P Script

record Tx : Type where
body : TxBody
wits : TxWitnesses

Some key ingredients in the transaction body are:
A set of transaction inputs (txins), each of which identifies an output from a previous
transaction. A transaction input (TxIn) consists of a transaction ID and an index to
uniquely identify the output.
An indexed collection of transaction outputs (txouts). A transaction output (TxOut) is
an address paired with a multi-asset Value (see [10]).
A transaction fee (txfee), whose value will be added to the fee pot.

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:11

The size (txsize) and the hash (txid) of the serialized form of the transaction that was
included in the block. Cardano’s serialization is not canonical, so any information that is
necessary but lost during deserialisation must be preserved by attaching it to the data
like this.

7 Compiling to a Haskell implementation & Conformance testing

In order to deliver on our promise that the specification is also executable, there is still some
work to be done given that all transitions have been formulated as relations.

This is precisely the reason we also manually prove that each and every transition of the
previous sections is indeed computational:

record Computational (_⊢_⇀L_,X M_ : C → S → Sig → S → Type) : Type where
compute : C → S → Sig → Maybe S
compute-correct : compute Γ s b ≡ just s’ ⇔ Γ ⊢ s ⇀L b ,X M s’

The definition above captures what it means for a (small-step) relation to be accurately
computed by a function compute, which given as input an environment, source state, and
signal, outputs the resulting state or an error for invalid transitions. Most importantly, such
a function must be sound and complete: it does not return output states that are not related,
and, vice versa, all related states are successfully returned. An alternative interpretation is
that this rules out non-determinism across all ledger transitions, i.e., there cannot be two
distinct states arising from the same inputs.

There is one last obstacle that hinders execution: we have leveraged Agda’s module
system3 to parameterize our specification over some abstract types and functions that we
assume as given, e.g., the cryptographic primitives. As a final step, we instantiate these
parameters with concrete definitions, either by manually providing them within Agda, or
deferring to the Haskell foreign function interface to reuse existing Haskell ones that have no
Agda counterpart.

Equipped with a fully concrete specification and the Computational proofs for each relation,
it is finally possible to generate executable Haskell code using Agda’s MAlonzo compilation
backend.4 The resulting Haskell library is then deployed as part of the automated testing
setup for the Cardano ledger in production, so as to ensure the developers have faithfully
implemented the specification. This is made possible by virtue of the implementation
mirroring the specification’s structure to define transitions, which one can then test by
randomly generating environments/states/signals, and executing both state machines on
these same random inputs to compare the final results for conformance.

One small caveat remains though: production code might use different data structures,
mainly for reasons of performance, which are not isomorphic to those used in the specification
and might require non-trivial translation functions and notions of equality to perform
the aforementioned tests. In the future, we plan to also formalize these more efficient
representations in Agda and prove that soundness is preserved regardless.

3 https://agda.readthedocs.io/en/v2.6.4/language/module-system.html#parameterised-modules
4 https://agda.readthedocs.io/en/v2.6.4/tools/compilers.html#ghc-backend

FMBC 2024

https://agda.readthedocs.io/en/v2.6.4/language/module-system.html#parameterised-modules
https://agda.readthedocs.io/en/v2.6.4/tools/compilers.html#ghc-backend

2:12 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

8 Related Work

EUTxO. The approach we followed is a natural evolution of prior meta-theoretical results
on the EUTxO model [9, 10], but now employed at a much larger scale to cover all the
features of a realistic ledger: epochs, protocol parameters, decentralized governance, etc.

All this complexity does not come for free though: one has to be economical about
which properties to prove of the resulting system, and this might entail limiting oneself
to mechanizing just the core properties, such as global value preservation as we saw with
Property 4.1, otherwise the whole effort can quickly become practically infeasible to maintain
from a software-engineering perspective.

Formal Methods, generally. The overarching methodology – formally specifying the system
under design – is by no means particular to the blockchain space. A principal success story in
the wider computing world nowadays is definitely the WebAssembly language, an alternative
to Javascript to act as a compilation target for web applications with performance and
security in mind [16], which was designed in tandem with a formalization of its semantics [30].

Apart from keeping programming language designers honest by making sure no edge
cases are overlooked, it allows the language to evolve in a much more robust fashion: every
future extension has to pass through a rigorous process which eventually involves extending
the formalization itself.

While the WebAssembly line of work [30, 31] provided much inspiration for us, we believe
our approach to be even more radical by mitigating the need for informal processes altogether:
the formalization is the specification!

Formal Methods, specifically for blockchain. The work presented here fits well within
Cardano’s vision for agile formal methods [17], which strikes a good balance between a fully
certified implementation (too much effort, too few resources) and an informal, under-specified
product (quicker, easier, but far less trustworthy). Instead of demanding the impossible by
extracting the actual production from the formalization itself, we find the sweet spot lies in
the middle: extracting a reference implementation in Haskell and using conformance testing
to ensure the system in production behaves as it should (c.f., Section 7).

Apart from our work, there are very few mechanized results on UTxO-based blockchains
(modeled after Bitcoin [20]), and all of them invariably are formulated on a idealized
setting [27, 1, 9, 10], abstracting away the complexity that ensues when multiple features
interact. Thus, the mechanized specification presented here for the Cardano ledger is the
first of its kind, and we hope this sets a higher standard for subsequent work and pushes
forward a more formal agenda for blockchain research in the future.

Although not directly comparable to our use case, account-based blockchains (modeled
after Ethereum [8]) fair better in this respect, with plenty of formal method tools available,
ranging from model checking [15, 29] to full-blown formal verification [11, 7, 24]. Notable
blockchains that spearhead progress in this direction include Tezos [5, 6, 14], Ziliiqa and its
Scilla smart-contract language [26, 25], and Concordium [3, 22, 2, 28, 21]. The main difference
with our work lies in readability, partly due to the choice of tool (Agda being notorious for
its beautiful renderings but lack of proper support for practical “big” proofs that arise in
large scale software verification projects, where tactic-based proof assistants like Coq [4]
and Isabelle [23] are more common), and the point where mechanization is placed within
the development pipeline: most aforementioned work builds upon informal pen-and-paper
documents and some of its aspects are only mechanized a-posteriori. Having said that,

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:13

the fundamental split stems from a completely different target audience; our formalization
is meant to be read by researchers, formal methods engineers, compiler engineers, and
developers alike. In contrast, the majority of the aforementioned work is primarily targeted
at a select team of experts which complement other (informal) documentation and software.

9 Conclusion

We have outlined the mechanized specification of the EUTxO-based ledger rules of the
Cardano blockchain, by taking a bird’s-eye view of the hierarchy of transitions handling
different sub-components in a modular way.

Although space limitations preclude us from exhaustively fleshing out all the gory details
of our formalization, we hope to have conveyed the general design principles that will be
helpful to others when attempting to mechanize something of this kind and at this scale.
In the little space we could afford for more thorough details, we made a conscious choice
of putting emphasis on the most novel aspect of the current era of the Cardano blockchain:
decentralized governance. There, the introduction of the notions of voting, ratification, and
enactment complicate the ledger rules of previous eras – albeit in a fairly orthogonal way,
which we found particularly satisfying.

A mechanized formal artifact of this kind is rigid enough to eliminate any ambiguity
that would often arise in pen-and-paper specifications, all the while sustaining a readable
document that is accessible to a wide audience and allows for varied uses.

By virtue of conducting our work within a proof assistant based on constructive logic,
our result extends beyond a purely theoretical exercise to an executable resource that can be
leveraged as a reference implementation, against which a system-in-production can be tested
for conformance.

Last but not least, it is evident that developing a ledger on these foundations opens up
a plethora of opportunities for further formalization work, e.g., instantiating the abstract
notion of scripts with actual Plutus scripts brings us close to enabling practical smart
contract verification where developers write their programs immediately in Agda, prove
properties about their behavior, and then extract Plutus code they can deploy to the actual
Cardano blockchain. All these point to bright prospects for formal methods in UTxO-based
blockchains, which we are excited to explore in the future and hope that others do as well.

References
1 Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, and Anton Setzer. Verification of

Bitcoin Script in Agda using weakest preconditions for access control. In Henning Basold,
Jesper Cockx, and Silvia Ghilezan, editors, 27th International Conference on Types for Proofs
and Programs, TYPES 2021, June 14-18, 2021, Leiden, The Netherlands (Virtual Conference),
volume 239 of LIPIcs, pages 1:1–1:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.TYPES.2021.1.

2 Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. Extracting smart
contracts tested and verified in Coq. In Catalin Hritcu and Andrei Popescu, editors, CPP ’21:
10th ACM SIGPLAN International Conference on Certified Programs and Proofs, Virtual Event,
Denmark, January 17-19, 2021, pages 105–121. ACM, 2021. doi:10.1145/3437992.3439934.

3 Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. Concert: a smart contract
certification framework in Coq. In Jasmin Blanchette and Catalin Hritcu, editors, Pro-
ceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 215–228. ACM, 2020.
doi:10.1145/3372885.3373829.

FMBC 2024

https://doi.org/10.4230/LIPIcs.TYPES.2021.1
https://doi.org/10.1145/3437992.3439934
https://doi.org/10.1145/3372885.3373829

2:14 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

4 Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre,
Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The
Coq proof assistant reference manual: Version 6.1. PhD thesis, Inria, 1997.

5 Bruno Bernardo, Raphaël Cauderlier, Guillaume Claret, Arvid Jakobsson, Basile Pesin, and
Julien Tesson. Making tezos smart contracts more reliable with Coq. In Tiziana Margaria
and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and
Validation: Applications - 9th International Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part III, volume
12478 of Lecture Notes in Computer Science, pages 60–72. Springer, 2020. doi:10.1007/
978-3-030-61467-6_5.

6 Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. Mi-cho-coq,
a framework for certifying Tezos smart contracts. In Emil Sekerinski, Nelma Moreira, José N.
Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler,
José Creissac Campos, Troy Astarte, Laure Gonnord, Antonio Cerone, Luis Couto, Brijesh
Dongol, Martin Kutrib, Pedro Monteiro, and David Delmas, editors, Formal Methods. FM
2019 International Workshops - Porto, Portugal, October 7-11, 2019, Revised Selected Papers,
Part I, volume 12232 of Lecture Notes in Computer Science, pages 368–379. Springer, 2019.
doi:10.1007/978-3-030-54994-7_28.

7 Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges
Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil
Swamy, et al. Formal verification of smart contracts: Short paper. In Proceedings of the 2016
ACM Workshop on Programming Languages and Analysis for Security, pages 91–96, 2016.
doi:10.1145/2993600.2993611.

8 Vitalik Buterin. A next-generation smart contract and decentralized application platform
(white paper). https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_
Whitepaper_-_Buterin_2014.pdf, 2014.

9 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Mi-
chael Peyton Jones, and Philip Wadler. The Extended UTXO model. In Matthew Bernhard,
Andrea Bracciali, L. Jean Camp, Shin’ichiro Matsuo, Alana Maurushat, Peter B. Rønne, and
Massimiliano Sala, editors, Financial Cryptography and Data Security - FC 2020 International
Workshops, AsiaUSEC, CoDeFi, VOTING, and WTSC, Kota Kinabalu, Malaysia, February
14, 2020, Revised Selected Papers, volume 12063 of Lecture Notes in Computer Science, pages
525–539. Springer, 2020. doi:10.1007/978-3-030-54455-3_37.

10 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann
Müller, Michael Peyton Jones, Polina Vinogradova, and Philip Wadler. Native custom tokens
in the Extended UTXO model. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation: Applications - 9th International
Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,
October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes in Computer
Science, pages 89–111. Springer, 2020. doi:10.1007/978-3-030-61467-6_7.

11 Xiaohong Chen, Daejun Park, and Grigore Roşu. A language-independent approach to smart
contract verification. In International Symposium on Leveraging Applications of Formal
Methods, pages 405–413. Springer, 2018. doi:10.1007/978-3-030-03427-6_30.

12 Jared Corduan, Matthias Benkort, Kevin Hammond, Charles Hoskinson, Andre Knispel, and
Samuel Leathers. A first step towards on-chain decentralized governance. https://cips.
cardano.org/cip/CIP-1694, 2023.

13 Bernardo Machado David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
Praos: An adaptively-secure, semi-synchronous proof-of-stake protocol. IACR Cryptology
ePrint Archive, 2017:573, 2017 . URL: http://eprint.iacr.org/2017/573.

14 Christopher Goes. Compiling Quantitative Type Theory to Michelson for compile-time
verification and run-time efficiency in juvix. In Tiziana Margaria and Bernhard Steffen, editors,

https://doi.org/10.1007/978-3-030-61467-6_5
https://doi.org/10.1007/978-3-030-61467-6_5
https://doi.org/10.1007/978-3-030-54994-7_28
https://doi.org/10.1145/2993600.2993611
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-03427-6_30
https://cips.cardano.org/cip/CIP-1694
https://cips.cardano.org/cip/CIP-1694
http://eprint.iacr.org/2017/573

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:15

Leveraging Applications of Formal Methods, Verification and Validation: Applications - 9th
International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes,
Greece, October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes in Computer
Science, pages 146–160. Springer, 2020. doi:10.1007/978-3-030-61467-6_10.

15 Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis
Smaragdakis. Madmax: Surviving out-of-gas conditions in Ethereum smart contracts. Proceed-
ings of the ACM on Programming Languages, 2(OOPSLA):1–27, 2018. doi:10.1145/3276486.

16 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. Bringing the web up to speed with
WebAssembly. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 185–200. ACM, 2017. doi:10.1145/3062341.
3062363.

17 Philipp Kant, Kevin Hammond, Duncan Coutts, James Chapman, Nicholas Clarke, Jared
Corduan, Neil Davies, Javier Díaz, Matthias Güdemann, Wolfgang Jeltsch, Marcin Szamotulski,
and Polina Vinogradova. Flexible formality: Practical experience with agile formal methods.
In Aleksander Byrski and John Hughes, editors, Trends in Functional Programming - 21st
International Symposium, TFP 2020, Krakow, Poland, February 13-14, 2020, Revised Selected
Papers, volume 12222 of Lecture Notes in Computer Science, pages 94–120. Springer, 2020.
doi:10.1007/978-3-030-57761-2_5.

18 Andre Knispel. Constructive zf-style set theory in type theory. unpublished, 2023. URL:
https://whatisrt.github.io/papers/ZF-style-set-theory-in-type-theory.pdf.

19 Andre Knispel, Orestis Melkonian, James Chapman, Alasdair Hill, Joosep Jääger,
William DeMeo, and Ulf Norell. IntersectMBO/formal-ledger-specifications. swhId:
swh:1:dir:085aefb014706c3ee4bcf1a9f85fcceaf10ba4cc, (visited on 06/05/2024). URL:
https://github.com/IntersectMBO/formal-ledger-specifications.

20 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/en/
bitcoin-paper, oct 2008.

21 Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters. Formalising decentralised exchanges in
Coq. In Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic, editors,
Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2023, Boston, MA, USA, January 16-17, 2023, pages 290–302. ACM, 2023.
doi:10.1145/3573105.3575685.

22 Jakob Botsch Nielsen and Bas Spitters. Smart contract interactions in Coq. In Emil Sekerinski,
Nelma Moreira, José N. Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell, Matt
Luckcuck, Diego Marmsoler, José Creissac Campos, Troy Astarte, Laure Gonnord, Antonio
Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib, Pedro Monteiro, and David Delmas,
editors, Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11,
2019, Revised Selected Papers, Part I, volume 12232 of Lecture Notes in Computer Science,
pages 380–391. Springer, 2019. doi:10.1007/978-3-030-54994-7_29.

23 Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002. doi:10.1007/
3-540-45949-9.

24 George Pîrlea and Ilya Sergey. Mechanising blockchain consensus. In June Andronick and
Amy P. Felty, editors, Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages
78–90. ACM, 2018. doi:10.1145/3167086.

25 Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Temporal properties of smart contracts. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice - 8th International Symposium, ISoLA 2018,
Limassol, Cyprus, November 5-9, 2018, Proceedings, Part IV, volume 11247 of Lecture Notes
in Computer Science, pages 323–338. Springer, 2018. doi:10.1007/978-3-030-03427-6_25.

FMBC 2024

https://doi.org/10.1007/978-3-030-61467-6_10
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1007/978-3-030-57761-2_5
https://whatisrt.github.io/papers/ZF-style-set-theory-in-type-theory.pdf
https://archive.softwareheritage.org/swh:1:dir:085aefb014706c3ee4bcf1a9f85fcceaf10ba4cc;origin=https://github.com/IntersectMBO/formal-ledger-specifications;visit=swh:1:snp:5097bdc07a9030f7e251cb6529989d442bb82f35;anchor=swh:1:rev:002b7226a3af8e5e1068fd0c8fd1fcbb51bba64e
https://github.com/IntersectMBO/formal-ledger-specifications
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1145/3573105.3575685
https://doi.org/10.1007/978-3-030-54994-7_29
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3167086
https://doi.org/10.1007/978-3-030-03427-6_25

2:16 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

26 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken
Chan Guan Hao. Safer smart contract programming with Scilla. Proc. ACM Program. Lang.,
3(OOPSLA):185:1–185:30, 2019. doi:10.1145/3360611.

27 Anton Setzer. Modelling Bitcoin in Agda. CoRR, abs/1804.06398, 2018. doi:10.48550/arXiv.
1804.06398.

28 Søren Eller Thomsen and Bas Spitters. Formalizing Nakamoto-style proof of stake. In 34th
IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25,
2021, pages 1–15. IEEE, 2021. doi:10.1109/CSF51468.2021.00042.

29 Petar Tsankov. Security analysis of smart contracts in Datalog. In International Symposium
on Leveraging Applications of Formal Methods, pages 316–322. Springer, 2018. doi:10.1007/
978-3-030-03427-6_24.

30 Conrad Watt. Mechanising and verifying the WebAssembly specification. In June Andronick
and Amy P. Felty, editors, Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages
53–65. ACM, 2018. doi:10.1145/3167082.

31 Conrad Watt, Maja Trela, Peter Lammich, and Florian Märkl. Wasmref-isabelle: A verified
monadic interpreter and industrial fuzzing oracle for WebAssembly. Proc. ACM Program.
Lang., 7(PLDI):100–123, 2023. doi:10.1145/3591224.

32 Joachim Zahnentferner. Chimeric ledgers: Translating and unifying UTXO-based and account-
based cryptocurrencies. Cryptology ePrint Archive, Report 2018/262, 2018. URL: https:
//eprint.iacr.org/2018/262.

A Governance helper calculations

The design of the hash protection mechanism is elaborated here. The issue at hand is
that different actions of the same type may override each other, and they allow for partial
modifications to the state. So if arbitrary actions were allowed to be applied, the system
may end up in a particular state that was never intended and voted for.

In the original design of the governance system, the fix for this issue was to allow only a
single governance action of each type to be enacted per epoch. This restriction is a potentially
severe limitation and may open the door to some types of attacks.

The final design instead requires some types of governance actions to reference the ID of
the parent they are building on, similar to a Merkle tree. Then, in a single epoch the system
can take arbitrarily many steps down that tree, and since IDs are unforgeable, the system is
only ever in a state that was publically known prior to voting.

There are two governance actions where this mechanism is not required, because they
either commute naturally or they do not actually affect the state. For these it is more
convenient to not enforce dependencies.

NeedsHash : GovAction → Type
NeedsHash NoConfidence = GovActionID
NeedsHash (NewCommittee _ _ _) = GovActionID
NeedsHash (NewConstitution _ _) = GovActionID
NeedsHash (TriggerHF _) = GovActionID
NeedsHash (ChangePParams _) = GovActionID
NeedsHash (TreasuryWdrl _) = ⊤
NeedsHash Info = ⊤

HashProtected : Type → Type
HashProtected A = A × GovActionID

The two functions adjusting the state in GOV are addVote and addAction.

https://doi.org/10.1145/3360611
https://doi.org/10.48550/arXiv.1804.06398
https://doi.org/10.48550/arXiv.1804.06398
https://doi.org/10.1109/CSF51468.2021.00042
https://doi.org/10.1007/978-3-030-03427-6_24
https://doi.org/10.1007/978-3-030-03427-6_24
https://doi.org/10.1145/3167082
https://doi.org/10.1145/3591224
https://eprint.iacr.org/2018/262
https://eprint.iacr.org/2018/262

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:17

addVote inserts (and potentially overrides) a vote made for a particular governance action
by a credential in a role.
addAction adds a new proposed action at the end of a given GovState, properly initializing
all the requiered fields.

addVote : GovState → GovActionID → GovRole → Credential → Vote → GovState
addVote s aid r kh v = map modifyVotes s

where modifyVotes = λ (gid , s’) → gid , record s’
{ votes = if gid ≡ aid then insert (votes s’) (r , kh) v else votes s’}

addAction : GovState
→ Epoch → GovActionID → RwdAddr → (a : GovAction) → NeedsHash a
→ GovState

addAction s e aid addr a prev = s :: (aid , record
{ votes = ∅ ; returnAddr = addr ; expiresIn = e ; action = a ; prevAction = prev })

B UTxO

Some of the functions used to define the UTXO and UTXOW state machines are defined here;
inject is the function takes a Coin and turns it into a multi-asset Value [10].

outs : TxBody → UTxO
outs tx = mapKeys (tx .txid ,_) (tx .txouts)

minfee : PParams → Tx → Coin
minfee pp tx = pp .a * tx .body .txsize + pp .b

consumed : PParams → UTxOState → TxBody → Value
consumed pp st txb

= balance (st .utxo | txb .txins)
+ txb .mint
+ inject (depositRefunds pp st txb)

produced : PParams → UTxOState → TxBody → Value
produced pp st txb

= balance (outs txb)
+ inject (txb .txfee)
+ inject (newDeposits pp st txb)
+ inject (txb .txdonation)

credsNeeded : Maybe ScriptHash → UTxO → TxBody → P (ScriptPurpose × Credential)
credsNeeded p utxo txb

= map (λ (i , o) → (Spend i , payCred (proj1 o))) ((utxo | txins))
∪ map (λ a → (Rwrd a , RwdAddr.stake a)) (dom $ txwdrls .proj1)
∪ map (λ c → (Cert c , cwitness c)) (fromList txcerts)
∪ map (λ x → (Mint x , inj2 x)) (policies mint)
∪ map (λ v → (Vote v , GovVote.credential v)) (fromList txvote)
∪ (if p then (λ {sh} → map (λ p → (Propose p , inj2 sh)) (fromList txprop))

FMBC 2024

2:18 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

else ∅)
where open TxBody txb

witsVKeyNeeded : Maybe ScriptHash → UTxO → TxBody → P KeyHash
witsVKeyNeeded sh = mapPartial isInj1 ◦2 map proj2 ◦2 credsNeeded sh

scriptsNeeded : Maybe ScriptHash → UTxO → TxBody → P ScriptHash
scriptsNeeded sh = mapPartial isInj2 ◦2 map proj2 ◦2 credsNeeded sh

C Advancing epochs

The NEWEPOCH state machine is responsible for detecting epoch changes: either the epoch
remains unchanged (NEWEPOCH-Not-New), or the immediately next epoch is reached and
the state is updated subject to some ratification requirements (NEWEPOCH-New).

NEWEPOCH-New :
• e ≡ suc lastEpoch
• record { currentEpoch = e ; treasury = treasury ; GState gState ; NewEpochEnv Γ }

⊢ J es ⊗ ∅ ⊗ false K ⇀L govSt’ ,RATIFY∗ M fut’
__

Γ ⊢ nes ⇀L e ,NEWEPOCH M J e ⊗ acnt’ ⊗ ls’ ⊗ es ⊗ fut’ K

NEWEPOCH-Not-New :
e ̸≡ suc lastEpoch
__

Γ ⊢ nes ⇀L e ,NEWEPOCH M nes

	1 Introduction
	2 Fundamental entities
	2.1 Cryptographic primitives
	2.2 Addresses
	2.3 Base types

	3 Advancing the blockchain
	3.1 Protocol parameters
	3.2 Extending the blockchain block-by-block
	3.3 Extending the ledger transaction-by-transaction

	4 UTxO
	4.1 Witnessing
	4.2 Accounting

	5 Decentralized Governance
	5.1 Entities and actions
	5.2 Votes and proposals
	5.3 Enactment
	5.4 Voting and Proposing
	5.5 Ratification

	6 Transactions
	7 Compiling to a Haskell implementation & Conformance testing
	8 Related Work
	9 Conclusion
	A Governance helper calculations
	B UTxO
	C Advancing epochs

