
Towards Mechanised Consensus in Isabelle
Elliot Jones
Department of Computer Science, University of Exeter, UK

Diego Marmsoler #Ñ

Department of Computer Science, University of Exeter, UK

Abstract
A blockchain acts as a universal ledger for digital transactions between two parties that require no
moderation from a third party. Such transactions are cheaper, quicker, and more secure with high
traceability and transparency, with the decentralised structure of a blockchain network allowing
for greater scalability and availability. For these reasons, blockchain is at the forefront of emerging
technologies, with a wide variety of industries investing billions into the technology. A blockchains
consensus protocol is what allows a blockchain network to be decentralised but can be subject
to malicious behaviour and faults in its design and implementation that can lead to catastrophic
effects like the DAO hack that resulted in a loss of $60 million. From this it is clear to see that
the verifications of these protocols are paramount to ensure the safe use of blockchain. In this
research, we formally verify the Proof-of-Work consensus protocol, used by Bitcoin, in Isabelle/HOL
by modelling the blockchain as the longest branch in a binary tree and proving that the common
prefix property holds with the assumption that the network is in majority honest. In this paper,
we discuss the validity of our approach, key functions and lemmas we used to complete the proof,
advantages and drawbacks of the model, related work and how this research can be taken further.

2012 ACM Subject Classification Security and privacy → Logic and verification

Keywords and phrases Formal Methods, Blockchain, Isabelle/HOL, Consensus, Verification, Theorem
Provers

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.4

Supplementary Material Software (Theory Files): https://doi.org/10.5281/zenodo.10479776 [16]

Funding Diego Marmsoler : This work was supported by the Engineering and Physical Sciences
Research Council [grant number EP/X027619/1].

Acknowledgements We would like to thank the FMBC 2024 reviewers for the careful reading and
constructive suggestions on the paper and the formalisation.

1 Introduction

Blockchain was first introduced to the world in 2008, when the illusive Satoshi Nakamoto
published his paper on Bitcoin [27]. Using cryptographic hash functions and consensus
protocols, blockchain allows parties to carry out digital transactions ‘peer-to-peer’, meaning
no third-party is required to mediate and requires no trust between parties. This allows
transactions to be faster, cheaper, and more secure with high traceability and transparency.
Furthermore, the decentralised structure of blockchain allows for greater scalability and
availability. Whilst its original purpose was for cryptocurrencies, blockchain has since been
identified as a means to transform a variety of industries such as finance, healthcare and
energy [25]. It is for these reasons that blockchain has become one of the most promising
emerging technologies, with worldwide spending expected to grow from $6.6 billion in 2021
to an estimated $19 billion by 2024 [34].

However, blockchain presents its own unique challenges. The consensus protocol of a
blockchain is what allows it to be decentralised and Byzantine Fault Tolerant (BFT), but
these protocols can act as a vector of attack for malicious users. For example, a 51% attack is

© Elliot Jones and Diego Marmsoler;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 4; pp. 4:1–4:22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.marmsoler@exeter.ac.uk
http://marmsoler.com
https://orcid.org/0000-0003-2859-7673
https://doi.org/10.4230/OASIcs.FMBC.2024.4
https://doi.org/10.5281/zenodo.10479776
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Towards Mechanised Consensus in Isabelle

when an attacker controls most of the computing power of a blockchain network, giving the
attacker the opportunity to alter transactions on the blockchain and use the same money for
multiple transactions in a double spending attack. An example of this was when Ethereum
Classic suffered 51% attacks in 2019 and 2020, losing approximately $1.1 million [26] and
$5.6 million [11] in double spending.

Moreover, the design and implementation of a blockchain and its consensus protocol led
to challenges themselves, with the infamous DAO hack stemming from a smart contract flaw
and resulting in a loss of $60 million [8]. Furthermore, A faulty consensus protocol would
mean nodes would not be able to agree on the correct chain, allowing malicious actors to
potentially change history and double spend without most of the network being malicious.
Consequently, the need to verify blockchain consensus protocols is paramount to ensure the
security of users. The birth of blockchain has caused a surge of investment into software
verification. No organisation showcases this better than CertiK, founded in 2018 and now
the world’s leading company in Web3 security auditing. With a valuation of $2 billion and
annual revenue of $40 million [13], Certik uses cutting-edge formal verification techniques to
audit blockchains and smart contracts. The most popular consensus protocol in the world is
Proof-of-Work (PoW) due to its usage by Bitcoin, the largest cryptocurrency in the world
with a market capitalisation of over $700 billion [9]. PoW assumes that the majority of the
network’s computing power is acting honestly, making it susceptible to a 51% attack. Despite
this, it is still important to verify that the protocol works as expected in the presence of
a majority honest network. In doing so, we ensure that consensus will continue to hold as
the blockchain network progresses through time and block stability will remain. A verified
consensus protocol will promote confidence and encourage participation in the network by
minimising faults and malicious behaviour.

In this paper, we formalise a general PoW protocol in Isabelle/HOL [29] and verify
consensus by proving the common prefix property [12]. To this end, the paper provides the
following main contributions:

1. We describe a general model for blockchain and its formalisation in Isabelle/HOL. A
blockchain is modeled as a tree and accompanied by a function to check its validity
(Subsubsection 3.2.4). The model provides abstract characterizations of minings (Subsec-
tion 3.3) and honest minings (Subsection 3.4) as special types thereof. The protocol is
modeled as an inductively defined set of valid event traces, where each event is either a
honest or dishonest mining (definition traces in Listing 11).

2. We formalise and discuss the common prefix property in Isabelle/HOL (Listing 13). This
is an important safety property for consensus protocols which asserts that, once confirmed,
blocks cannot be modified anymore.

3. We verify the property from our model. Thereby we discover important assumptions
which are required for consensus, such as b1 and b2 in Listing 11 or the preconditions for
dishonest_induct in Listing 11.

In Section 2, we highlight key blockchain properties that are essential to understand our
verification. In Section 3, we explain our model, the functions and datatypes we have used,
and the mining locales. In Section 4, we describe the blockchain locale and the proof of
our consensus property. We conclude the paper with a discussion (Section 5) in which we
highlight the simplifications and assumptions we have made for our model.

E. Jones and D. Marmsoler 4:3

2 Background

As described in [27], a blockchain is a sequence of blocks, where each block contains a
collection of transactions between parties in a network. A blockchain is initialised by a
genesis block, a block that contains no transactions but has a unique hash value. To add a
new block to the chain, a network participant must first assemble enough transactions into a
block, then find the Merkle root hash of these transactions and combine it with the previous
block’s hash and a nonce to produce its own hash that meet the network’s hash requirements.
Once the participant finds a nonce that produces a suitable hash, it can link its block to
the chain.

However, through a process called forking, a blockchain can split into two or more chains.
This happens when two or more blocks are linked to the same block. A blockchain network’s
consensus protocol allows participants to decide which chain is the ‘correct’ chain so that
they can continue to add blocks to that chain. This mitigates the need for a central authority
to decide which chain is the correct chain. A violation of consensus will halt the progress of
the blockchain as participants cannot decide where to add a block.

The PoW consensus protocol works on the rule that the longest chain is the correct chain.
It does this by assuming that the majority of the network’s computing power is honest,
meaning that it should be able to solve block hashes quicker than dishonest computing power
and keep the correct chain the longest chain. If there are two or more longest chains of the
same length, participants will randomly select a chain to work on until one of the chains has
a block added and prevails as the longest chain.

Garay et al. identifies the two fundamental properties of PoW consensus as the common
prefix and chain quality properties that ensure consensus if they hold [12]. The common
prefix property states that honest network participants agree on the longest chain up to k
blocks where k is a variable set by the network. The chain quality property states that the
number of blocks produced from dishonest participants will not be very large. As part of our
model, we make the assumption of majority honesty, which mitigates the need for the chain
quality property. Because of this, the objective of our verification is to prove the common
prefix property which subsequently proves consensus.

3 Model

3.1 Binary Tree
As mentioned previously, we will model the blockchain as the longest branch in a binary
tree. The rationale behind this is that the tree structure offers an effective way to model the
stages a blockchain has as it progresses through time. In a binary tree, each node represents
a block of the blockchain, with the root node acting as the genesis block as all branches stem
from the root node the same way all blockchains stem from the genesis block. Additionally,
the different branches of the binary tree model represent the different competing chains at
different stages of the network. It is possible to contain data of an arbitrary type within the
tree nodes in Isabelle but it is not necessary for our verification as we are only considering
the general construction of a blockchain so there is no need to consider the transactions
inside each block.

For each node in a binary tree, there can be zero, one or two child nodes. If there are
no child nodes, then we are at the end of a branch and it is either the longest chain or was
competing to be the longest chain at an earlier point in time, known as a stale block. If
there is a single child node, then this means a block was added to the chain at this point. If

FMBC 2024

4:4 Towards Mechanised Consensus in Isabelle

Figure 1 Binary Tree Progression.

1 datatype ’a tree =
2 Tip | Node "’a tree" ’a "’a tree"
3
4 definition exampleTree :: "nat tree" where
5 "exampleTree = Node
6 (Node
7 (Node
8 (Node Tip 5 Tip)
9 2

10 Tip)
11 1
12 (Node Tip 3 Tip))
13 0
14 (Node Tip 4 Tip)"

Figure 2 Binary Tree in Isabelle.

there are two child nodes, this is when two blocks are solved simultaneously, so there are now
competing chains. Figure 1 showcases each case of binary tree progression. We start with
the root node (genesis block), then two nodes (blocks) are added to the tree simultaneously.
We now have two valid chains. Eventually, a block is added to the left chain, so we have a
single longest chain. Figure 2 shows how we construct a binary tree in Isabelle/HOL with a
visual representation of the example tree.

As part of our model, we have made the assumption that all participants in the network are
synchronised, meaning they all share the same view of the blockchain. In reality, there is no
global view of the blockchain, and each participant has their own copy of the blockchain which
may not always be the same for every participant. In our model we only consider a single
binary tree for each network so we must assume that participants views are synchronised.

An alternative method for modelling a PoW blockchain network is using a list. Here each
entry acts as a block in the longest chain, with the ith entry being the ith block in the chain.
However, a list would only keep track of the longest chain and so would not give us a full
picture of the network. As a result, we cannot consider a scenario in which a chain that is
not the longest chain eventually becoming the longest chain as we would not be keeping a
list for it. In reality, this situation would arise from a 51% attack on the network.

E. Jones and D. Marmsoler 4:5

3.2 Isabelle Functions
In this section, we will detail the key functions and datatypes that are used to verify the
consensus property. We will explain what each function does, how it is encoded into Isabelle,
give an example, and showcase any relevant proofs that were later used in the verification.
For the functions that require a binary tree as an input, we will use the example binary tree
from Figure 2 to show the effect the function has.

3.2.1 Nodes
The nodes function counts the number of nodes in the inputted binary tree. In Listing 1
we can see its usage to count six nodes in the example tree. There were no relevant proofs
associated with this function.

Listing 1 nodes Function in Isabelle.

1 primrec nodes :: "’a tree ⇒ nat" where
2 "nodes Tip = 0"
3 | "nodes (Node l e r) = Suc (nodes l + nodes r)"
4
5 value "nodes exampleTree"
6 "6" :: "nat"

3.2.2 Height
The height function calculates the height of the inputted binary tree. In Listing 2 we can
see its definition in Isabelle and its usage to calculate that the example tree has a height of
four. The height function satisfies some monotonicity properties which can be found in the
appendix A.

Listing 2 height Function in Isabelle.

1 primrec height :: "’a tree ⇒ nat" where
2 "height Tip = 0"
3 | "height (Node l e r) = Suc (max (height l) (height r))"
4
5 value "height exampleTree"
6 "4" :: "nat"

3.2.3 Longest
The longest function returns a set of lists of node data where each list represents a longest
chain. In Listing 3 we can see its definition as well as its usage to calculate the longest chain
of the example tree. In the example, we have used natural numbers as the node data. There
were no relevant proofs associated with this function.

Listing 3 longest Function in Isabelle.

1 primrec longest:: "’a tree ⇒ (’a list) set" where
2 "longest Tip = {[]}"
3 | "longest (Node l e r) =
4 { e # p | p. p ∈

FMBC 2024

4:6 Towards Mechanised Consensus in Isabelle

5 (if height l > height r then longest l
6 else if height r > height l then longest r
7 else longest l ∪ longest r)}"
8
9 value "longest exampleTree"

10 "{[0, 1, 2, 5]}" :: "nat list set"

3.2.4 Check
The check function checks for input tree t that no other branch is within d nodes of one
of the longest chains, up to depth n of the tree, returning true if it holds. We call d our
difference value. In Listing 4 we can see its definition and its usage to show that the example
tree does hold up to depth 1 with a difference value of 1 but does not hold at a depth of 2.

Listing 4 check Function in Isabelle.

1 fun check :: "nat ⇒ nat ⇒ ’a tree ⇒ bool" where
2 "check 0 d t = True"
3 | "check (Suc n) d Tip = False"
4 | "check (Suc n) d (Node l e r) =
5 (((height l - height r > d) ∧ (check n d l)) ∨
6 ((height r - height l > d) ∧ (check n d r)))"
7
8 value "check 1 1 exampleTree"
9 "True" :: "bool"

10
11 value "check 2 1 exampleTree"
12 "False" :: "bool"

Furthermore, the first two properties we prove are the weakened statements of the depth
and difference values, stating that if the check function is true for a given depth or difference
value x then it will also be true for all values less than x. These statements are proven by
structural induction over the tree parameter t as well as the depth parameter n. The common
prefix lemma states that given a tree t that returns true on the check function for depth n

and difference value d, all longest chains will have the same first n nodes. Listing 5 shows
these properties in Isabelle, with the proof of the common prefix property in appendix A.

Listing 5 check Function Properties in Isabelle.

1 lemma check_weaken_distance:
2 assumes "check n (Suc x) t"
3 shows "check n x t"
4 using assms by (induction rule: check.induct, auto)
5
6 proposition check_weaken_depth:
7 assumes "check (Suc x) d t"
8 shows "check x d t"
9 using assms by (induction rule: check.induct, auto)

10
11 lemma common_prefix[rule_format]:
12 "∀p p’. check n d t ∧ p ∈ longest t
13 ∧ p’ ∈ longest t −→ take n p = take n p’"

E. Jones and D. Marmsoler 4:7

The common prefix lemma shows that the common prefix property holds for an arbitrary
tree t that passes the check function. To prove consensus, we must now show that this
property holds for the set of trees that can occur in our majority honest PoW network.

3.2.5 Event
We model our blockchain network as a sequence of events, where an event is the pair consisting
of the Honest and State variable and describes an action carried out on a binary tree. The
Honest field is of type Boolean and it is used to distinguish between honest and dishonest
mining events, whilst the State field contains the state of the binary tree after the event
has occurred. We then define a function count which can be used to count the number of
honest or dishonest events in a list of events. We prove properties for adding events to a list
of events in appendix A in Listing 16. The definitions can be seen in Listing 6.

Listing 6 Event Properties in Isabelle.

1 record ’a event =
2 Honest :: bool
3 State :: "’a tree"
4
5 definition count::"bool ⇒ (’a event) list ⇒ nat" where
6 "count b = List.length ◦ filter (λx. Honest x = b)"

3.3 Mining
The mining locale is used to describe how we mine blocks and add them to the blockchain
using add functions. It has two key properties:
1. Mining on top of an empty tree results in a tree with one node.
2. Mining on top of a non-empty tree adds the new block either to the left or the right

branch.

From this, we prove the lemmas mining_cases and height_add. mining_cases is used
to describe the cases of mining on either the left or right branch of a tree and follows easily
from property 2 of the locale. height_add shows that the height of a tree either stays
the same or increases by 1 after mining on it and is proved by induction on the binary
tree variable. Listing 7 shows these properties in Isabelle, with the proof of height_add in
appendix B.

Listing 7 Mining Locale in Isabelle.

1 locale mining =
2 fixes add :: "’a tree ⇒ ’a tree"
3 assumes m1: "∃e. add Tip = Node Tip e Tip"
4 and m2: "

∧
l e r. add (Node l e r) = Node (add l) e r

5 ∨ add (Node l e r) = Node l e (add r)"
6
7 lemma mining_cases:
8 fixes l e r
9 obtains (l) "add (Node l e r) = Node (add l) e r"

10 | (r) "add (Node l e r) = Node l e (add r)"
11 using m2 by auto

FMBC 2024

4:8 Towards Mechanised Consensus in Isabelle

12
13 lemma height_add:"height (add t) = height t
14 ∨ height (add t) = Suc (height t)"

From these lemmas, we derive the lemma check_add which shows the three possible cases
a tree can be after applying an add function to it, assuming the original tree passes the check
function with difference value d + 1 and depth n. The three cases are as follows:
1. We have mined on one of the longest chains. Here, the height of the new tree is higher

than the original tree and can pass the check function with difference value d + 2 and
depth n.

2. We have mined on one of the second-longest chains. Here, the height of the new tree is
equal to the original tree and can pass the check function with difference value d and
depth n.

3. We have mined on one of the chains that is not one of the longest or second longest
chains. Here, the height of the new tree is equal to the original tree and can pass the
check function with difference value d + 1 and depth n.

We prove this statement by structural induction over the tree variable. It can be seen in
Listing 8 with its proof in appendix B.

Listing 8 check_add Lemma in Isabelle.

1 lemma check_add[rule_format]:
2 "check n (Suc d) t −→
3 height t < height (add t) ∧ check n (Suc (Suc d)) (add t)
4 ∨ height t = height (add t) ∧ check n (Suc d) (add t)
5 ∨ height t = height (add t) ∧ check n d (add t)"

Lastly, we create the corollary check_add_cases to distinguish between the cases of
mining on a tree. This follows directly from check_add and can be seen in Listing 9.

Listing 9 check_add_cases Lemma in Isabelle.

1 corollary check_add_cases:
2 assumes "check n (Suc d) t"
3 obtains "check n (Suc (Suc d)) (add t)"
4 | "check n (Suc d) (add t)"
5 | "check n d (add t)"
6 using check_add[OF assms] by auto

3.4 Honest Mining
The honest locale is used to describe how honest participants mine blocks and add them to
the blockchain. It has the same properties as the mining locale with the additional property
that a mined block is always added to the longest chain of the network. Like in the mining
locale, we prove similar mining_cases, height_add and check_add lemmas.

The cases for honest minings are adding to the left or right branch of a tree depending
on which branch is longer. This follows from the new locale property. height_add shows
that the height of the tree always increases by 1 when the mining is honest and is proved by
induction on the binary tree variable. From these lemmas, we derive the check_add lemma
which shows the only possible cases a tree can be after applying an honest add function to it,

E. Jones and D. Marmsoler 4:9

assuming the original tree passes the check function with difference value d and depth n, is
that the new tree passes the check function with difference value d + 1 and depth n. This
is the same as case 1 for the check_add lemma in the mining locale as we have mined on
the longest chain. Listing 10 shows the locale in Isabelle, with the proofs of check_add and
height_add found in Appendix C.

Listing 10 Honest Mining Locale in Isabelle.

1 locale honest = mining +
2 assumes h1:
3 "

∧
l e r. height l ≥ height r ∧ add (Node l e r) = Node (add l) e r

4 ∨ height r ≥ height l ∧ add (Node l e r) = Node l e (add r)"
5
6 lemma mining_cases:
7 fixes l e r
8 obtains (l) "height l ≥ height r ∧ add (Node l e r) = Node (add l) e r"
9 | (r) "height r ≥ height l ∧ add (Node l e r) = Node l e (add r)"

10 using h1 by auto
11
12 lemma height_add: "height (add t) = Suc (height t)"
13
14 lemma check_add[rule_format]:
15 "check n d t −→ check n (Suc d) (add t)"

4 Verification

For the verification, we fix the state of the blockchain at a particular point in time, then
define all possible future progressions of the tree structure and then show that all of them
preserve the common prefix property.

To this end, we introduce a new locale blockchain which uses the mining locale for
dishonest miners and the locale for honest miners. In addition, we introduce two new
parameters to provide context to the model:

A fixed tree t0 which represents the blockchain at a particular point in time.
A natural number depth, which determines the length of the prefix which is considered
stable, i.e., which should not change in the future.

In addition to these parameters, we assume two more properties:
1. The initial tree, t0 passes the check function for a threshold equal to the difference

between its height and the depth value (property b1 in Listing 11).
2. The height of the initial chain is greater than the depth (property b2 in Listing 11).

We then define the set traces, which contains all possible event sequences which can
occur in a network with the majority of miners being honest. The set is defined inductively
and each sequence can be of one of the following cases:
1. The list with one event that is honest and applies an honest add function to t0 (Line 9 in

Listing 11).
2. The list with one event that is dishonest and applies a dishonest add function to t0

(Line 10 in Listing 11).
3. A list of events that is already in traces, that is prepended with an honest event (Line 11

in Listing 11).

FMBC 2024

4:10 Towards Mechanised Consensus in Isabelle

4. A list of events that is already in traces, with less dishonest events than the sum of
the number of honest events and the threshold value, prepended with a dishonest event
(Line 13 in Listing 11).

Listing 11 shows the blockchain locale and traces set in Isabelle.

Listing 11 Blockchain Locale in Isabelle.

1 locale blockchain =
2 honest hadd + mining dadd
3 for hadd::"’a tree ⇒ ’a tree" and dadd::"’a tree ⇒ ’a tree" +
4 fixes depth::nat and t0::"’a tree"
5 assumes b1: "check depth (Suc (height t0 - depth)) t0"
6 and b2: "height t0 > depth"
7
8 inductive_set traces :: "(’a event list) set" where
9 honest_base: "[LHonest = True, State = hadd t0M] ∈ traces"

10 | dishonest_base: "[LHonest = False, State = dadd t0M] ∈ traces"
11 | honest_induct: "Jt ∈ tracesK
12 =⇒ LHonest = True, State = hadd (State (hd t))M # t ∈ traces"
13 | dishonest_induct:
14 "Jt ∈ traces; count False t < count True t + (height t0 - depth)K
15 =⇒ LHonest = False, State = dadd (State (hd t))M # t ∈ traces"

Using traces, we create the lemmas bounded_dishonest_mining and bounded_check.
bounded_dishonest_mining shows that given a list of events from traces, the sum of the
number of honest events and the threshold value is greater than or equal to the number of
dishonest events. This follows from assumption 2 of the blockchain locale. bounded_check
states that given a list of events from traces then the most recent tree from that list passes
the check function with a depth of depth and a difference value equal to the sum of number
of honest events and the threshold value minus the number of dishonest events plus one.
This statement is proven by induction of the tree variable for each case in traces. Listing 12
shows these lemmas in Isabelle with their proofs found in appendix D.

Listing 12 Blockchain Locale in Isabelle.

1 lemma bounded_dishonest_mining:
2 fixes t assumes "t ∈ traces"
3 shows "count True t + (height t0 - depth) ≥ count False t"
4
5 lemma bounded_check:
6 fixes t assumes "t ∈ traces"
7 shows "check depth
8 (Suc (count True t + (height t0 - depth) - count False t))
9 (State (hd t))"

We prove the consensus theorem within the blockchain locale. It states that given a list
of events from traces and lists of the longest chains nodes, then the lists of these chains are
the same up to index depth. This can be seen in Listing 13.

E. Jones and D. Marmsoler 4:11

Listing 13 Consensus Theorem in Isabelle.

1 theorem consensus:
2 fixes t assumes "t ∈ traces"
3 and "p ∈ longest (State (hd t))"
4 and "p’ ∈ longest (State (hd t))"
5 shows "take depth p = take depth p’"
6 using assms(2,3)
7 common_prefix[of depth
8 "Suc (count True t + (height t0 - depth) - count False t)"
9 "(State (hd t))"]

10 bounded_check[OF assms(1)] by blast

The theorem is similar to the common_prefix lemma we proved earlier in Listing 5
with the key differences being that tree t is in the traces set and we use the depth value
for parameter n in the check function. The common_prefix lemma was defined before we
established any of our locales and so is just a lemma for the check function itself and does
not consider anything related to consensus. The consensus theorem applies this lemma to the
context of consensus and is essentially a proof of the common prefix property. As mentioned
previously, we do not require the chain quality property under our assumption of majority
honesty so the common prefix property is enough to show that consensus holds.

5 Discussion

Our verification of consensus in this model required us to make simplifications to how
a blockchain network works. As mentioned in Section 3, we assume majority honesty
and synchronisation of the network. Despite PoW assuming majority honesty, this is not
always the case and so consensus can break down in the presence of a 51% attack. As
for synchronisation, a blockchain network can become asynchronous because of dishonest
behaviour or a fault within the network such as a participant having connectivity issues and
not being able to update their private copy of the blockchain. As a result of this, consensus
can still break down in a majority honest network.

Outside of these assumptions, we also made design choices for the model that lead to
simplifications. The first of these is the use of a binary tree instead of an n-ary tree. With
a binary tree, we can model forking at a node that can result in two chains. However, it
is possible for there to be more than one fork at a node, resulting in three or more chains
branching from a single node. A binary tree cannot be used to consider such an event, but in
reality the likelihood of this event occurring is very unlikely as it would require three or more
block hashes to be solved simultaneously and added to the chain at the same time. Using an
n-ary tree in our verification would also make the process far more complicated as we would
have to consider an arbitrary amount of branches for each node. It is for these reasons that
we did not believe using a n-ary tree instead of binary tree was worth the effort required.

The main simplification of our model is that it is not probabilistic. Blocks are added to
the blockchain by solving its hash which introduces a probabilistic element into the network
as we cannot be absolutely sure how long such a brute force exercise will take. Because
of this, majority honesty may not always hold as dishonest participants could get lucky in
their hash searching whilst honest participants could get unlucky. Mining also plays a key
role in the common prefix and chain quality properties described in [12], with their actual
definitions being probabilistic in nature as a result. Specifically, these properties only have
to hold with high probability but we show they always hold in our deterministic model.

FMBC 2024

4:12 Towards Mechanised Consensus in Isabelle

6 Related Work

There is some work formalising traditional consensus protocols and some has even been
mechanized in theorem provers. For example there exists a formalisation of Paxos [19] and
Disk Paxos [15] in Isabelle, HotStuff [6] in Agda [3], and Velisarios [33] in Coq [35]. When
it comes to blockchain, however, we usually do have less control over the actual network
participants. Thus, verification of consensus in blockchain poses additional challenges
compared to the verification of traditional BFT protocols.

There has been some early work on the verification of consensus in blockchain. In
particular, blockchain in general [31, 22], the Bitcoin backbone protocol [12], general proof-
of-stake [18], or a custom proof-of-work protocol known as Snow White [10]. While all these
studies provide useful insides into blockchain consensus they are not mechanized and thus
may contain mistakes.

More recently there has been some work on mechanizing blockchain consensus. For
example there is a formalisation of Tendermint [4] using TLA+ and a formalisation of the
Ethereum Beacon Chain [7] in Dafny. Moreover, there are formalisations of Casper [14],
CBC Casper [28], Stellar [20], and general inter-blockchain Protocols [17] in Isabelle. Finally,
there exists formalisations of Casper [30] (based on [14]), CKB [21, 5], Algorand [1], and
Gasper [2] in Coq [35]. While all these works formalise various types of consensus protocols
and some even verify certain properties for these protocols, none of them verify consistency
in terms of common prefix which is the focus of our work.

There are three exceptions to this. First, there is the work of Pîrlea and Sergey [32] in
which they formalise a general blockchain protocol in Coq. Similarly to our work, they model
a blockchain as a tree (although implicitly as part of a forest). They then verify eventual
ledger consistency, which is a property similar to the one we verify. The main difference to
our work, however, is that they do not consider dishonest nodes in their analysis. Thus, by
allowing for nodes with arbitrary behaviour, we complement their work.

In addition, Marmsoler formalised a type of general proof of work [23] in FACTum [24].
Similar to our work, the author considers honest as well as dishonest nodes in his model.
Different to this work, however, a blockchain is modeled in terms of a list which does not
allow to investigate forks. Thus, by modeling a blockchain as a tree instead of a list, we
complement his work.

Finally, Thomsen and Spitters formalize a general, Nakamoto-Style Proof of Stake
protocol in Coq [36]. They then verify a safety property similar to the common prefix
property discussed in this paper. The main difference to our work lies in the type of
considered consensus mechanism. While Thomsen and Spitters work is based on a general
Proof of Stake consensus mechanism, our work focuses more on Proof of Work consensus.

7 Conclusion

In this paper, we have formally verified that consensus holds in a blockchain network that uses
PoW and is assumed to be majority honest. This verification was carried out in Isabelle/HOL
by modelling the blockchain as the longest chain in a binary tree. We have described the key
functions and lemmas required to carry out this verification and outlined our assumptions of
honesty and synchronisation for consensus to hold in our model. Lastly, we identify the key
limitation of our model in that it is not probabilistic to account for probabilistic elements
that occur within a PoW network such as mining. The successful verification of this paper
serves as motivation for the implementation of the verified consensus protocol.

E. Jones and D. Marmsoler 4:13

This paper could be expanded on in further research by aiming to address this limitation
and developing a probabilistic verification of PoW using a different mathematical model such
as state machines. Alternatively, a similar verification could be carried out on a different
consensus protocol such as Proof of Stake (PoS) which is used by the Ethereum blockchain.
However, PoS also has probabilistic elements that would need to be accounted for such
as validator selection that would need to be considered or mitigated under a simplifying
assumption.

References
1 Musab A Alturki, Jing Chen, Victor Luchangco, Brandon Moore, Karl Palmskog, Lucas

Peña, and Grigore Roşu. Towards a verified model of the algorand consensus protocol in
coq. In Formal Methods. FM 2019 International Workshops: Porto, Portugal, October 7–
11, 2019, Revised Selected Papers, Part I 3, pages 362–367. Springer, 2020. doi:10.1007/
978-3-030-54994-7_27.

2 Musab A Alturki, Elaine Li, Daejun Park, Brandon Moore, Karl Palmskog, Lucas Pena, and
Grigore Roşu. Verifying gasper with dynamic validator sets in coq. Technical report, 2020.

3 Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda–a functional language with
dependent types. In Theorem Proving in Higher Order Logics: 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings 22, pages 73–78. Springer,
2009. doi:10.1007/978-3-642-03359-9_6.

4 Sean Braithwaite, Ethan Buchman, Igor V. Konnov, Zarko Milosevic, Ilina Stoilkovska,
Josef Widder, and Anca Zamfir. Formal specification and model checking of the tendermint
blockchain synchronization protocol (short paper). In FMBC@CAV, 2020. doi:10.4230/
OASIcs.FMBC.2020.10.

5 Hao Bu and Meng Sun. Towards modeling and verification of the ckb block synchronization
protocol in coq. In Formal Methods and Software Engineering: 22nd International Conference
on Formal Engineering Methods, ICFEM 2020, Singapore, Singapore, March 1–3, 2021,
Proceedings 22, pages 287–296. Springer, 2020. doi:10.1007/978-3-030-63406-3_17.

6 Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo, and Lisandra Silva. Towards
formal verification of hotstuff-based byzantine fault tolerant consensus in agda. In Jyotirmoy V.
Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal Methods, pages 616–635,
Cham, 2022. Springer International Publishing. doi:10.1007/978-3-031-06773-0_33.

7 Franck Cassez, Joanne Fuller, and Aditya Asgaonkar. Formal verification of the ethereum 2.0
beacon chain. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 167–182. Springer, 2022. doi:10.1007/978-3-030-99524-9_9.

8 Coindesk. How the dao hack changed ethereum and crypto, 2023. [Accessed
December 2023]. URL: https://www.coindesk.com/consensus-magazine/2023/05/09/
coindesk-turns-10-how-the-dao-hack-changed-ethereum-and-crypto/.

9 CoinMarketCap. Bitcoin market capitalization, 2023. [Accessed December 2023]. URL:
https://coinmarketcap.com/currencies/bitcoin/.

10 Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Ian Goldberg and Tyler Moore, editors,
Financial Cryptography and Data Security, pages 23–41, Cham, 2019. Springer International
Publishing. doi:10.1007/978-3-030-32101-7_2.

11 Forkast. How ethereum classic’s 51ethereum, 2020. [Ac-
cessed December 2023]. URL: https://forkast.news/video-audio/
ethereum-classic-repeat-hacks-etc-labs-ceo-terry-culver-ben-sauter/.

12 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual international conference on the theory and applications of
cryptographic techniques, pages 281–310. Springer, 2015. doi:10.1007/978-3-662-46803-6_
10.

FMBC 2024

https://doi.org/10.1007/978-3-030-54994-7_27
https://doi.org/10.1007/978-3-030-54994-7_27
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.4230/OASIcs.FMBC.2020.10
https://doi.org/10.4230/OASIcs.FMBC.2020.10
https://doi.org/10.1007/978-3-030-63406-3_17
https://doi.org/10.1007/978-3-031-06773-0_33
https://doi.org/10.1007/978-3-030-99524-9_9
https://www.coindesk.com/consensus-magazine/2023/05/09/coindesk-turns-10-how-the-dao-hack-changed-ethereum-and-crypto/
https://www.coindesk.com/consensus-magazine/2023/05/09/coindesk-turns-10-how-the-dao-hack-changed-ethereum-and-crypto/
https://coinmarketcap.com/currencies/bitcoin/
https://doi.org/10.1007/978-3-030-32101-7_2
https://forkast.news/video-audio/ethereum-classic-repeat-hacks-etc-labs-ceo-terry-culver-ben-sauter/
https://forkast.news/video-audio/ethereum-classic-repeat-hacks-etc-labs-ceo-terry-culver-ben-sauter/
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

4:14 Towards Mechanised Consensus in Isabelle

13 Growjo. Certik revenue and competitors, 2022. [Accessed December 2023]. URL: https:
//growjo.com/company/CertiK.

14 Yoichi Hirai. A repository for pos related formal methods. https://github.com/palmskog/pos,
2018.

15 Mauro Jaskelioff and Stephan Merz. Proving the correctness of disk paxos. Archive of
Formal Proofs, jun 2005. , Formal proof development. URL: https://isa-afp.org/entries/
DiskPaxos.html.

16 Elliot Jones and Diego Marmsoler. Towards Mechanised Consensus in Isabelle. version 1.0.,
(visited on 02/05/2024). URL: https://doi.org/10.5281/zenodo.10479776.

17 Florian Kammüller and Uwe Nestmann. Inter-Blockchain Protocols with the Isabelle Infra-
structure Framework. In Bruno Bernardo and Diego Marmsoler, editors, 2nd Workshop on
Formal Methods for Blockchains (FMBC 2020), volume 84 of Open Access Series in Informatics
(OASIcs), pages 11:1–11:12, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/OASIcs.FMBC.2020.11.

18 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual international cryptology
conference, pages 357–388. Springer, 2017. doi:10.1007/978-3-319-63688-7_12.

19 Philipp Küfner, Uwe Nestmann, and Christina Rickmann. Formal verification of distributed
algorithms. In Jos C. M. Baeten, Tom Ball, and Frank S. de Boer, editors, Theoretical
Computer Science, pages 209–224, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-33475-7_15.

20 Giuliano Losa and Mike Dodds. On the Formal Verification of the Stellar Consensus Protocol.
In Bruno Bernardo and Diego Marmsoler, editors, 2nd Workshop on Formal Methods for
Blockchains (FMBC 2020), volume 84 of Open Access Series in Informatics (OASIcs), pages
9:1–9:9, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/OASIcs.FMBC.2020.9.

21 Xiaokun Luan and Meng Sun. Modeling and verification of ckb consensus protocol in coq.
In 2021 IEEE 21st International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 660–667. IEEE, 2021. doi:10.1109/QRS-C55045.2021.00100.

22 Bojan Marinković, Paola Glavan, Zoran Ognjanović, Dragan Doder, and Thomas Studer. Prob-
abilistic consensus of the blockchain protocol. In Gabriele Kern-Isberner and Zoran Ognjanović,
editors, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 469–480,
Cham, 2019. Springer International Publishing. doi:10.1007/978-3-030-29765-7_39.

23 Diego Marmsoler. Towards verified blockchain architectures: A case study on interactive
architecture verification. In Formal Techniques for Distributed Objects, Components, and
Systems: 39th IFIP WG 6.1 International Conference, FORTE 2019, Held as Part of the 14th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2019,
Kongens Lyngby, Denmark, June 17–21, 2019, Proceedings, pages 204–223, Berlin, Heidelberg,
2019. Springer-Verlag. doi:10.1007/978-3-030-21759-4_12.

24 Diego Marmsoler and Habtom Kashay Gidey. Interactive verification of architectural
design patterns in factum. Form. Asp. Comput., 31(5):541–610, nov 2019. doi:10.1007/
s00165-019-00488-x.

25 Ahmed Afif Monrat, Olov Schelén, and Karl Andersson. A survey of blockchain from the
perspectives of applications, challenges, and opportunities. IEEE Access, 7:117134–117151,
2019. doi:10.1109/ACCESS.2019.2936094.

26 Neptune Mutual. Ethereum classic 51 [Accessed December 2023]. URL: https://
neptunemutual.com/blog/ethereum-classic-51-attacks/.

27 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business
review, 2008.

28 R. Nakamura, T. Jimba, and D. Harz. Refinement and verification of cbc casper. In 2019
Crypto Valley Conference on Blockchain Technology (CVCBT), pages 26–38, Los Alamitos,
CA, USA, jun 2019. IEEE Computer Society. doi:10.1109/CVCBT.2019.00008.

https://growjo.com/company/CertiK
https://growjo.com/company/CertiK
https://isa-afp.org/entries/DiskPaxos.html
https://isa-afp.org/entries/DiskPaxos.html
https://doi.org/10.5281/zenodo.10479776
https://doi.org/10.4230/OASIcs.FMBC.2020.11
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-642-33475-7_15
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://doi.org/10.1109/QRS-C55045.2021.00100
https://doi.org/10.1007/978-3-030-29765-7_39
https://doi.org/10.1007/978-3-030-21759-4_12
https://doi.org/10.1007/s00165-019-00488-x
https://doi.org/10.1007/s00165-019-00488-x
https://doi.org/10.1109/ACCESS.2019.2936094
https://neptunemutual.com/blog/ethereum-classic-51-attacks/
https://neptunemutual.com/blog/ethereum-classic-51-attacks/
https://doi.org/10.1109/CVCBT.2019.00008

E. Jones and D. Marmsoler 4:15

29 Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer, 2002. doi:10.1007/3-540-45949-9.

30 Karl Palmskog, Milos Gligoric, Lucas Pena, Brandon Moore, and Grigore Roşu. Verification of
casper in the coq proof assistant. Technical report, University of Illinois at Urbana-Champaign,
2018.

31 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, pages 643–673, Cham, 2017. Springer International Publishing. doi:
10.1007/978-3-319-56614-6_22.

32 George Pîrlea and Ilya Sergey. Mechanising blockchain consensus. In Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pages 78–90,
2018. doi:10.1145/3167086.

33 Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Esteves-Verissimo. Velisarios: Byzantine
fault-tolerant protocols powered by coq. In Amal Ahmed, editor, Programming Languages
and Systems, pages 619–650, Cham, 2018. Springer International Publishing. doi:10.1007/
978-3-319-89884-1_22.

34 Statista. Blockchain - statistics and facts, 2023. [Accessed December 2023]. URL: https:
//www.statista.com/statistics/800426/worldwide-blockchain-solutions-spending/.

35 The Coq Development Team. The Coq reference manual – release 8.18.0. https://coq.inria.
fr/doc/V8.18.0/refman, 2023.

36 Søren Eller Thomsen and Bas Spitters. Formalizing nakamoto-style proof of stake. In
2021 IEEE 34th Computer Security Foundations Symposium (CSF), pages 1–15. IEEE, 2021.
doi:10.1109/CSF51468.2021.00042.

A Functions

Listing 14 Monotonic Properties of height Function in Isabelle.

1 proposition height_mono_l:
2 "height r ≤ height l =⇒ height l < height l’ =⇒
3 height (Node l e r) < height (Node l’ e r)"
4 by (induction l; simp)
5
6 proposition height_mono_r:
7 "height l ≤ height r =⇒ height r < height r’ =⇒
8 height (Node l e r) < height (Node l e r’)"
9 by (induction r; simp)

Listing 15 Proof of the common prefix lemma in Isabelle.

1 lemma common_prefix[rule_format]:
2 "∀p p’. check n d t ∧ p∈longest t ∧ p’∈longest t −→
3 take n p = take n p’"
4 proof (induction rule: check.induct)
5 case (1 d t)
6 then show ?case by simp
7 next
8 case (2 n d)
9 then show ?case by simp

10 next
11 case (3 n d l e r)

FMBC 2024

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1145/3167086
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/978-3-319-89884-1_22
https://www.statista.com/statistics/800426/worldwide-blockchain-solutions-spending/
https://www.statista.com/statistics/800426/worldwide-blockchain-solutions-spending/
https://coq.inria.fr/doc/V8.18.0/refman
https://coq.inria.fr/doc/V8.18.0/refman
https://doi.org/10.1109/CSF51468.2021.00042

4:16 Towards Mechanised Consensus in Isabelle

12 show ?case
13 proof (rule+, (erule conjE)+)
14 fix p p’
15 assume a1: "check (Suc n) d (Node l e r)"
16 and a2: "p ∈ longest (Node l e r)"
17 and a3: "p’ ∈ longest (Node l e r)"
18 from a1 consider (1) "d < height l - height r ∧ check n d l"
19 | (2) "d < height r - height l ∧ check n d r" by auto
20 then show "take (Suc n) p = take (Suc n) p’"
21 proof cases
22 case 1
23 then have "height r < height l" by auto
24 then have "tl p ∈ longest l" and "tl p’ ∈ longest l"
25 using a2 a3 by auto
26 then have "take n (tl p) = take n (tl p’)" using 1 3 by blast
27 moreover have "take (Suc n) p = hd p # take n (tl p)"
28 using a2 by auto
29 moreover have "take (Suc n) p’ = hd p’ # take n (tl p’)"
30 using a3 by auto
31 moreover have "hd p = hd p’" using a2 a3 by auto
32 ultimately show ?thesis by simp
33 next
34 case 2 (*symmetric*)
35 qed
36 qed
37 qed

Listing 16 Proofs for Adding Events to Lists of Events in both Honest and Dishonest Cases.

1 lemma count_true_base[simp]:
2 "count True [] = 0" unfolding count_def by simp
3 lemma count_false_base[simp]:
4 "count False [] = 0" unfolding count_def by simp
5
6 lemma count_honest_true_ind[simp]:
7 assumes "Honest e"
8 shows "count True (e#es) = Suc (count True es)"
9 unfolding count_def using assms by simp

10 lemma count_honest_false_ind[simp]:
11 assumes "Honest e"
12 shows "count False (e#es) = count False es"
13 unfolding count_def using assms by simp
14
15 lemma count_dhonest_false_ind[simp]:
16 assumes "¬ Honest e"
17 shows "count False (e#es) = Suc (count False es)"
18 unfolding count_def using assms by simp
19 lemma count_dhonest_true_ind[simp]:
20 assumes "¬ Honest e"
21 shows "count True (e#es) = count True es"
22 unfolding count_def using assms by simp

E. Jones and D. Marmsoler 4:17

B Mining Locale

Listing 17 Mining height_add Proof in Isabelle.

1 lemma height_add:
2 "height (add t) = height t ∨ height (add t) = Suc (height t)"
3 proof (induction t)
4 case Tip
5 then show ?case using m1 by auto
6 next
7 case (Node l e r)
8 show ?case
9 proof (cases rule: mining_cases)

10 case l
11 moreover from this have
12 "height (add (Node l e r)) = height (Node (add l) e r)" by simp
13 ultimately show ?thesis using Node(1) by auto
14 next
15 case r
16 moreover from this have
17 "height (add (Node l e r)) = height (Node l e (add r))" by simp
18 ultimately show ?thesis using Node(2) by auto
19 qed
20 qed

Listing 18 Mining check_add Proof in Isabelle.

1 lemma check_add[rule_format]:
2 "check n (Suc d) t −→
3 height t < height (add t) ∧ check n (Suc (Suc d)) (add t)
4 ∨ height t = height (add t) ∧ check n (Suc d) (add t)
5 ∨ height t = height (add t) ∧ check n d (add t)"
6 proof (induction rule: check.induct)
7 case (1 d t)
8 then show ?case using height_add by auto
9 next

10 case (2 n d)
11 then show ?case by simp
12 next
13 case (3 n d l e r)
14 show ?case
15 proof
16 assume "check (Suc n) (Suc d) (Node l e r)"
17 then consider (l) "Suc d < height l - height r ∧ check n (Suc d) l"
18 | (r) "Suc d < height r - height l ∧ check n (Suc d) r" by auto
19 then show "height (Node l e r) < height (add (Node l e r))
20 ∧ check (Suc n) (Suc (Suc d)) (add (Node l e r))
21 ∨ height (Node l e r) = height (add (Node l e r))

FMBC 2024

4:18 Towards Mechanised Consensus in Isabelle

22 ∧ check (Suc n) (Suc d) (add (Node l e r))
23 ∨ height (Node l e r) = height (add (Node l e r))
24 ∧ check (Suc n) d (add (Node l e r))"
25 proof (cases)
26 case l
27 then consider
28 "height l < height (add l) ∧ check n (Suc (Suc d)) (add l)"
29 | "height l = height (add l) ∧ check n (Suc d) (add l)"
30 | "height l = height (add l) ∧ check n d (add l)" using 3 by auto
31 then show ?thesis
32 proof cases
33 case 1
34 then show ?thesis
35 proof (cases rule: mining_cases)
36 case l2: l
37 moreover from 1 l have
38 "check (Suc n) (Suc (Suc d)) (Node (add l) e r)" by auto
39 moreover from 1 l l2 have
40 "height (Node l e r) < height (add (Node l e r))" by auto
41 ultimately show ?thesis by simp
42 next
43 case r
44 consider "height (add r) = height r"
45 | "height (add r) = Suc (height r)" using height_add by auto
46 then show ?thesis
47 proof cases
48 case l1: 1
49 then have "height (Node l e r) = height (add (Node l e r))"
50 using r by simp
51 moreover have "check (Suc n) (Suc d) (add (Node l e r))"
52 using l l1 r by auto
53 ultimately show ?thesis by simp
54 next
55 case x: 2
56 moreover have "height l > Suc (height r)" using l by auto
57 ultimately have
58 "height (Node l e r) = height (add (Node l e r))"
59 using r by simp
60 moreover have "check (Suc n) d (add (Node l e r))"
61 proof -
62 have "d < height l - height (add r)" using x l by auto
63 moreover have "check n d l"
64 using l check_weaken_distance by simp
65 ultimately show ?thesis using r by simp
66 qed
67 ultimately show ?thesis by simp
68 qed
69 qed

E. Jones and D. Marmsoler 4:19

70 next
71 case 2
72 then show ?thesis
73 proof (cases rule: mining_cases)
74 case l2: l
75 moreover have "check (Suc n) (Suc d) (Node (add l) e r)"
76 using 2 l by auto
77 moreover have
78 "height (Node l e r) = height (add (Node l e r))"
79 using 2 l2 by auto
80 ultimately show ?thesis by simp
81 next
82 case r
83 consider "height (add r) = height r"
84 | "height (add r) = Suc (height r)" using height_add by auto
85 then show ?thesis
86 proof cases
87 case l1: 1
88 then have "height (Node l e r) = height (add (Node l e r))"
89 using r by simp
90 moreover have "check (Suc n) (Suc d) (add (Node l e r))"
91 using l l1 r by auto
92 ultimately show ?thesis by simp
93 next
94 case x: 2 (*symmetric to 1*)
95 qed
96 qed
97 next
98 case 3 (*symmetric to 2*)
99 qed

100 next
101 case r (*symmetric to l*)
102 qed
103 qed
104 qed

C Honest Mining Locale

Listing 19 Honest Mining height_add Proof in Isabelle.

1 lemma height_add: "height (add t) = Suc (height t)"
2 proof (induction t)
3 case Tip
4 then show ?case using m1 by auto
5 next
6 case (Node l e r)
7 show ?case
8 proof (cases rule: mining_cases)

FMBC 2024

4:20 Towards Mechanised Consensus in Isabelle

9 case l
10 moreover from this have
11 "height (add (Node l e r)) = height (Node (add l) e r)" by simp
12 ultimately show ?thesis using Node(1) by simp
13 next
14 case r
15 moreover from this have
16 "height (add (Node l e r)) = height (Node l e (add r))" by simp
17 ultimately show ?thesis using Node(2) by simp
18 qed
19 qed

Listing 20 Honest Mining check_add Proof in Isabelle.

1 lemma height_add: "height (add t) = Suc (height t)"
2 proof (induction t)
3 case Tip
4 then show ?case using m1 by auto
5 next
6 case (Node l e r)
7 show ?case
8 proof (cases rule: mining_cases)
9 case l

10 moreover from this have
11 "height (add (Node l e r)) = height (Node (add l) e r)" by simp
12 ultimately show ?thesis using Node(1) by simp
13 next
14 case r
15 moreover from this have
16 "height (add (Node l e r)) = height (Node l e (add r))" by simp
17 ultimately show ?thesis using Node(2) by simp
18 qed
19 qed

D Blockchain Locale

Listing 21 bounded_dishonest_mining Proof in Isabelle.

1 lemma bounded_dishonest_mining:
2 fixes t
3 assumes "t ∈ traces"
4 shows "count True t + (height t0 - depth) ≥ count False t"
5 using assms b2 by (induction rule:traces.induct; simp)

Listing 22 bounded_check Proof in Isabelle.

1 lemma bounded_check:
2 fixes t
3 assumes "t ∈ traces"

E. Jones and D. Marmsoler 4:21

4 shows "check depth
5 (Suc (count True t + (height t0 - depth) - count False t))
6 (State (hd t))"
7 using assms
8 proof (induction rule:traces.induct)
9 case honest_base

10 define t where "t = [LHonest = True, State = hadd t0M]"
11 then have "Suc (count True t + (height t0 - depth) - count False t)
12 = Suc (Suc (height t0 - depth))" by simp
13 moreover from b1 have "check depth
14 (Suc (Suc (height t0 - depth))) (hadd t0)"
15 using honest.check_add by (simp add: honest_axioms)
16 ultimately show ?case unfolding t_def by simp
17 next
18 case dishonest_base
19 define t where "t = [LHonest = False, State = dadd t0M]"
20 then have *: "Suc (count True t + (height t0 - depth) - count False t)
21 = (height t0 - depth)" using b2 by simp
22 show ?case
23 proof (cases rule: check_add_cases[OF b1])
24 case 1
25 then have "check depth (Suc (height t0 - depth)) (dadd t0)"
26 using * unfolding t_def using check_weaken_distance by simp
27 then show ?thesis using * unfolding t_def
28 using check_weaken_distance by simp
29 next
30 case 2
31 then show ?thesis using * unfolding t_def
32 using check_weaken_distance by auto
33 next
34 case 3
35 then show ?thesis using * unfolding t_def by simp
36 qed
37 next
38 case (honest_induct t)
39 define t’ where "t’ = LHonest = True, State = hadd (State (hd t))M # t"
40 moreover have "Suc (count True t + (height t0 - depth)) > count False t"
41 using honest_induct bounded_dishonest_mining[OF honest_induct(1)]
42 by simp
43 ultimately have "count True t’ + (height t0 - depth) - count False t’
44 = Suc (count True t + (height t0 - depth) - count False t)" by simp
45 moreover from honest_induct have "check depth
46 (Suc (Suc (count True t + (height t0 - depth) - count False t)))
47 (hadd (State (hd t)))" using honest.check_add[OF honest_axioms]
48 by (simp add: honest_axioms)
49 ultimately show ?case unfolding t’_def
50 using check_weaken_distance by simp
51 next

FMBC 2024

4:22 Towards Mechanised Consensus in Isabelle

52 case (dishonest_induct t)
53 define t’ where "t’ = LHonest = False, State = dadd (State (hd t))M # t"
54 then have *: "count True t’ + (height t0 - depth) - count False t’
55 = count True t + (height t0 - depth) - Suc (count False t)" by simp
56 have "check depth
57 (Suc (count True t’ + (height t0 - depth) - count False t’))
58 (State (hd t’))"
59 proof (cases rule: check_add_cases[OF dishonest_induct(3)])
60 case 1
61 then have "check depth
62 (Suc ((count True t + (height t0 - depth) - (count False t))))
63 (dadd (State (hd t)))" using check_weaken_distance by simp
64 then have "check depth
65 (((count True t + (height t0 - depth) - (count False t))))
66 (dadd (State (hd t)))" using check_weaken_distance by simp
67 moreover have "count True t + (height t0 - depth) > (count False t)"
68 using dishonest_induct(2) by simp
69 ultimately have "check depth
70 (Suc (count True t + (height t0 - depth) - Suc (count False t)))
71 (dadd (State (hd t)))" using Suc_diff_Suc by simp
72 then show ?thesis using * unfolding t’_def by simp
73 next
74 case 2
75 then have "check depth
76 (((count True t + (height t0 - depth) - (count False t))))
77 (dadd (State (hd t)))" using check_weaken_distance by simp
78 moreover have "count True t + (height t0 - depth) > (count False t)"
79 using dishonest_induct(2) by simp
80 ultimately have "check depth
81 (Suc (count True t + (height t0 - depth) - Suc (count False t)))
82 (dadd (State (hd t)))" using Suc_diff_Suc by simp
83 then show ?thesis using * unfolding t’_def by simp
84 next
85 case 3
86 moreover have "count True t + (height t0 - depth) > (count False t)"
87 using dishonest_induct(2) by simp
88 ultimately have "check depth
89 (Suc (count True t + (height t0 - depth) - Suc (count False t)))
90 (dadd (State (hd t)))" using Suc_diff_Suc by simp
91 then show ?thesis using * unfolding t’_def by simp
92 qed
93 then show ?case unfolding t’_def by simp
94 qed

	1 Introduction
	2 Background
	3 Model
	3.1 Binary Tree
	3.2 Isabelle Functions
	3.2.1 Nodes
	3.2.2 Height
	3.2.3 Longest
	3.2.4 Check
	3.2.5 Event

	3.3 Mining
	3.4 Honest Mining

	4 Verification
	5 Discussion
	6 Related Work
	7 Conclusion
	A Functions
	B Mining Locale
	C Honest Mining Locale
	D Blockchain Locale

