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Abstract
Smart contract upgrades are costly from a verification perspective and can be a meaningful source
of vulnerabilities when done incorrectly. Unfortunately, there is no established, formal framework
through which one can reason about contracts as they undergo upgrades, though much work has
been done to verify standalone smart contracts. Instead, one must repeat the full verification process
for each contract upgrade, something which relies heavily on fallible intuition, can lead to unexpected
vulnerabilities, and drives up the cost of formally verifying smart contracts. We propose a formal
framework for contract upgrades in ConCert, a Coq-based smart contract verification tool. Central
to this framework is our notion of a contract morphism, a theoretical tool which we introduce to
formally encode structural relationships between smart contracts, and with which we can formally
specify and verify an upgraded contract relative to its previous versions. We argue that ours is
a natural framework for specifying and verifying contract upgrades, and hope to offer a first step
towards rigorous, efficient specification and verification of contract upgrades.
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1 Introduction

Faulty upgrades are a meaningful source of smart contract vulnerabilities. Costly attacks
such as those on Uranium Finance (2021) [8], NowSwap (2021) [4], and Nomad (2022) [7, 9],
totaling 241 million USD in lost assets, are a few of many examples of contracts attacked
after an erroneous upgrade. Furthermore, because verifying software is time, labor, and
resource intensive, it can be difficult to justify formally verifying software which may be
upgraded quickly or frequently – a problem shared with other verified software, e.g. [16, 22].
Both of these factors limit the effectiveness of formal methods to address security issues in
real-world software, inhibiting verification as business and security propositions [18].

What is needed is a practical and formal framework through which to specify and verify
contract upgrades. As it stands we have no such framework apart from repeating the formal
specification and verification process on a new contract version. Not only are upgrades costly
from a verification perspective, as we have no good way of reusing much of the verification
work on previous contract versions, but incorrect specifications are themselves a meaningful
source of contract vulnerabilities [20]. Thus each time a specification is made from scratch
we risk introducing errors of incorrect specification.

To mitigate these issues we introduce a formal framework for specifying and verifying
contract upgrades, through which we can reuse formal specification and proof on previous
contract versions. This framework relies on the notion of a contract morphism, a theoretical
tool we introduce that formally encodes structural relationships between smart contracts,
and with which we can specify and reason about the structure and behavior of an upgraded
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7:2 Smart Contract Upgrades in Coq

contract relative to its previous versions. We argue that this is a natural framework for
specifying and verifying contract upgrades, one which could decrease the cost of formally
verifying contract upgrades as well as the risk of introducing vulnerabilities due to incorrect
specification.

We proceed as follows. In §2, we survey related work. In §3, we introduce contract
morphisms as a formal tool to specify and verify contract upgrades. In §4 we give two
examples of formally specifying a contract upgrade with contract morphisms. In §5 we
discuss formal verification with contract morphisms. We conclude in §6.

2 Related Work

In the realm of smart contracts there is limited formal work on formal reasoning about
contract upgrades. Previous work [3, 6] proposes paradigm-shifting methods to either attach
formal proofs to smart contracts and their upgrades, which are verified by the chain, or to
trust a canonical third party to verify all contract upgrades before deployment. Unfortunately
this work is likely impractical, as both solutions require substantial paradigm shifts or re-
engineering of blockchain ecosystems. The latter also arguably contradicts the permissionless
ethos of blockchain ecosystems by mandating a trusted third party.

In the context of software more generally, much work has gone into ensuring that software
upgrades are carried out safely with formal methods [10, 12, 22]. Recent work has begun
to address the issue of adapting formal proofs in a proof assistant to changes in software in
order to lower the cost of formally verified software which may undergo regular upgrades [16].
This problem is complicated by the computable nature of proofs in proof assistants like Coq;
chosen data types strongly influence the structure of proofs, making adaptation difficult [11].
A notable contribution to this work is Ringer et al.’s work on proof repair [14, 15], which
seeks to relate a new program version to the old – by type equivalences or by comparing
inductive structures – and thereby reuse previously-completed proofs on the updated code.

Drawing on this previous work, particularly Ringer et al.’s idea of reusing formal proofs
by way of structural similarities between programs, our goal is to provide a framework for
using formal methods to formally specify and verify smart contract upgrades. Contract
morphisms (§3) will be our primary theoretical tool for specifying and verifying contract
upgrades. Their purpose is to formally encode a structural relationship between smart
contracts which can be used for both formal specification and proof reuse. With contract
morphisms we address the problem of formal reasoning about contract upgrades, but in
contrast to previous work on the subject our proposed framework does not require the
paradigm-shifting reengineering of blockchain systems in order to be used.

Finally, we note that for smart contracts there is a distinction between contract upgrades
and contract upgradeability. Some contracts come with a predefined logic to handle up-
grades and avoid hard forks, the most popular of these on Ethereum being the Diamond
framework [13]. However, they are complicated contracts as their specifications include the
upgradeability functionality and governance, as well as the functionality of a given version
of the contract. We will only consider upgrades via hard forks in this paper, leaving the
question of rigorous formal specification and verification of upgradeable contracts to future
work.

3 Contract Morphisms

In what follows we define contract morphisms, a theoretical tool which codifies formal
relationships between smart contracts. In later sections we use them to formally specify and
verify contract upgrades. We argue that this provides our desired formal framework.
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3.1 Morphisms of Pure Functions
Before focusing on the specific case of smart contracts, we consider the more general case
of programs formalized as pure functions. Take types A, A′ and B, B′, and two functions
p : A → B and q : A′ → B′. A morphism from p to q is a pair of functions fi and fo which
form a commutative square,

A A′

B B′

fi

p q

fo

i.e. for which

q ◦ fi = fo ◦ p.

Together, we call fi and fo the morphism

f : p → q.

Via fi and fo, the commutative square like the above maps inputs and outputs of p to
inputs and outputs of q. If p and q are programs (in particular, pure functions), we can also
interpret this as execution traces of p to execution traces of q, such that transforming the
inputs of p into those of q with fi, and then applying q is the same as applying p first and
then transforming the outputs over fo.

We can define composition of morphisms easily as the composition of commutative squares.
That is, given functions p, q, and r, and morphisms

f ′ : p → q and f ′′ : q → r,

we can define a morphism f := f ′′ ◦ f ′ : p → r by the outer square of the following diagram,

A A′ A′′

B B′ B′′

f ′
i

p q

f ′′
i

r

f ′
o f ′′

o

which is commutative if each of the inner squares are commutative. Note that composition is
associative, assuming the underlying functions are associative, and that we have the obvious
identity morphism fid : p → p given by fi, fo := id,

A A

B B

id

p p

id

which commutes trivially. Thus given a well-defined class of functions, which in our case will
be smart contracts modeled in Coq by pure functions, we have a category on those functions
with morphisms given by commutative squares on those pure functions.

In the coming sections, given a morphism f : p → q, we might consider the case that q

is an upgraded version of p. Because f relates execution traces of q to those of p, we will
see this can be used to reason formally about q in terms of p, both in specification and
verification.

FMBC 2024
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3.2 Contract Morphisms in ConCert
In ConCert, a Coq-based tool for smart contract verification which models the execution
semantics of third-generation blockchains [2] and features verified extraction to various
blockchains [1], smart contracts are formalized with a Contract type as a pair of pure, stateful
functions init and receive. The init function governs contract initialization and the receive
function governs contract calls. The Contract type is polymorphic, parameterized by four
types: Setup, Msg, State, and Error which, respectively, govern the data necessary for contract
initialization, contract calls, contract storage, and contract errors.

For a contract

C : Contract Setup Msg State Error

the type signatures of each component function (init C) and (receive C) are given as follows,
where the types Chain and ContractCallContext are ConCert-specific types used to model
the underlying blockchain and context.

Listing 1 Type signature of the init and receive functions, respectively, of a smart contract in
ConCert.
init C : Chain → ContractCallContext → Setup → result State Error.

receive C : Chain → ContractCallContext → State → option Msg →
result (State ∗ list ActionBody) Error.

Now consider contracts C1 and C2,

C1 : Contract Setup1 Msg1 State1 Error1

C2 : Contract Setup2 Msg2 State2 Error2.

We define a data type of morphisms between contracts C1 and C2,

ContractMorphism C1 C2.

This data type consists firstly of four component functions between the contract types of C1
and C2 – the Setup, Msg, State, and Error types respectively.

setup_morph : Setup1 -> Setup2
msg_morph : Msg1 -> Msg2
state_morph : State1 -> State2
error_morph : Error1 -> Error2.

We can use these component functions to make commutative squares like those we saw in §3.1
for each of the init and receive functions. For init, the horizontal arrows of the squares are
given by the functions mA_init and mB_init. For receive, the horizontal arrows are given
by the functions mA_recv and mB_recv. See Listing 2 for the definition of these functions in
terms of the four component functions given above.

Ainit A′
init Arecv A′

recv

Binit B′
init Brecv B′

recv

mA_init

init init′

mA_recv

receive receive′

mB_init mB_recv

The functions defined above give us squares, but to finish the definition of contract
morphisms we need these squares to commute. Thus our definition includes two coherence
conditions, one for the init square and one for the receive square, which are given as follows.
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Listing 2 The functions which we use for the horizontal arrows of a pair of commutative squares
f_init : init C1 -> init C2 and f_recv : receive C1 -> receive C2, respectively, in the
definition of a contract morphism.
(* functions to form a commutative square on init *)
mA_init :=

fun (c : Chain) (ctx : ContractCallContext) (s : Setup) ⇒
(c, ctx, setup_morph s).

mB_init := fun (res : result State Error) ⇒
match res with
| Ok init_st ⇒ Ok (state_morph init_st)
| Err e ⇒ Err (error_morph e)
end.

(* functions to form a commutative square on receive *)
mA_recv := fun (c : Chain) (ctx : ContractCallContext)

(st : State) (op_msg : option Msg) ⇒
(c, ctx, state_morph st, option_map msg_morph op_msg).

mB_recv := fun (res : result (State ∗ list ActionBody) Error) ⇒
match res with
| Ok (init_st, nacts) ⇒ Ok (state_morph init_st, nacts)
| Err e ⇒ Err (error_morph e)
end.

(* The coherence condition that makes the init square commute *)
init_coherence: forall c ctx s,
(match (init C1 c ctx s) with

| Ok init_st ⇒ Ok (state_morph init_st)
| Err e ⇒ Err (error_morph e)
end) =

(init C2 c ctx (setup_morph s)).

(* The coherence condition that makes the receive square commute *)
recv_coherence : forall c ctx st op_msg,
(match (receive C1 c ctx st op_msg) with

| Ok (new_st, new_acts) ⇒ Ok (state_morph new_st, new_acts)
| Err e ⇒ Err (error_morph e)
end) =

(receive C2 c ctx (state_morph st) (option_map msg_morph op_msg)).

Thus a contract morphism

m : ContractMorphism C1 C2

is defined as a pair of commutative squares, each of which are morphisms between the
respective init and receive functions of each contract. We give the formal definition of a
contract morphism in Listing 3.

As the name morphism suggests, we should expect contract morphisms to behave like
morphisms in a well-defined category. That is, we should have an associative composition
operation on morphisms, and for every contract C should have an identity morphism

id_C : ContractMorphism C C

with which composition is trivial.

FMBC 2024
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Listing 3 The formal definition of a contract morphism in ConCert, consisting of four component
functions and two coherence conditions, which together give a pair of commutative squares.
Record ContractMorphism

(C1 : Contract Setup1 Msg1 State1 Error1)
(C2 : Contract Setup2 Msg2 State2 Error2) :=
build_contract_morphism {

(* the components of a morphism *)
setup_morph : Setup1 → Setup2 ;
msg_morph : Msg1 → Msg2 ;
state_morph : State1 → State2 ;
error_morph : Error1 → Error2 ;
(* coherence conditions *)
init_coherence : forall c ctx s,

result_functor state_morph error_morph (init C1 c ctx s) =
init C2 c ctx (setup_morph s) ;

recv_coherence : forall c ctx st op_msg,
result_functor (fun ’(st, l) ⇒ (state_morph st, l))

error_morph
(receive C1 c ctx st op_msg) =

receive C2 c ctx (state_morph st)
(option_map msg_morph op_msg) ;

}.

Indeed, this is the case. We can compose morphisms by composing the morphism
component functions. We have two results,

compose_init_coh and compose_recv_coh,

which show that coherence of the composed morphism follows from the coherence conditions
of each individual morphism. These results simply show that commutative squares compose,
as we saw in §3.1, giving us a well-defined composition function compose_cm.

compose_cm : forall C1 C2 C3
(g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) : ContractMorphism C1 C3.

We also have a proof that composition is associative, drawing on the associativity of component
functions, and we have the obvious identity morphism, given by four identity component
functions, such that composition with the identity is trivial.

Definition id_cm (C : Contract Setup Msg State Error) :
ContractMorphism C C := {|

(* components *)
setup_morph := id ;
msg_morph := id ;
state_morph := id ;
error_morph := id ;
(* coherence conditions *)
init_coherence := init_coherence_id C ;
recv_coherence := recv_coherence_id C ;

|}.

This gives us a well-defined category Contracts of smart contracts, with objects given by
the Contract type and morphisms given by the ContractMorphism type.
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Note that in many categories, e.g. the categories of sets, topological spaces, or groups,
morphisms are structure-preserving functions. So too for us. The existence of a morphism

f : ContractMorphism C1 C2

indicates a structural and mathematical relationship between contracts C1 and C2, in particular
relating their execution traces via the four component morphisms. As we will see, this
relationship can be exploited to prove theorems about one contract in terms of another
contract, something which we will do here in the case of contract upgrades and upgradeability.

In many categories there are also different classes of morphisms, including injections
(embeddings, monomorphisms), surjections (quotients, epimorphisms), and isomorphisms.
Injections, or embeddings, typically preserve the structure of the domain faithfully within
the codomain, essentially identifying a copy of the domain within the codomain. Surjections
typically represent a compression of some kind, and the information lost in the compression
can frequently be described by a kernel object. As we will see, we also have injective and
surjective contract morphisms, which are given when the four component functions are,
respectively, injective or surjective, and which follow analogous intuitions.

4 Morphisms to Formally Specify and Verify Contract Upgrades

Our goal now is to use contract morphisms as a tool to formally specify and verify contract
upgrades in ConCert. Consider a contract upgrade from the perspective of a formal spe-
cification. Contracts are usually upgraded with a goal that relates the new to the previous
contract version, whether it be to patch a bug, add functionality, or improve contract fea-
tures. Thus the new specification relates to the old – it should eliminate a vulnerability
but preserve all other functionality, be backwards compatible while adding functionality, or
make improvements such as greater gas-efficiency without deviating from the behavior of
the previous contract version. Of course, in practice an upgraded contract is not formally
specified in relation to an older version, but rather by altering the old specification into the
new, or simply starting from scratch and writing a new specification by hand. As discussed
in §1, this can be a source of vulnerabilities.

In this section, we will formally specify contract upgrades in two examples using contract
morphisms. The advantage of using morphisms is that we are able to clearly articulate
the intent of an upgrade in the formal specification by way of a morphism in such a way
that formal verification consists of producing a morphism between the updated contract
implementation and a previous version which meets the required specification.

▶ Example 1 (Swap Contract Upgrade). Consider a smart contract C1 that prices and executes
trades, e.g. a decentralized exchange (DEX) or an automated market maker (AMM) [23].
Suppose that we wish to upgrade C1 to a contract C2 so that it calculates trades at higher
precision by a factor of ten, meaning that the internal token balances in storage have one
more decimal place, and the trade calculation is able to calculate at one decimal place greater
in precision. Then in ConCert our contract C1 will have a storage type which keeps track of
internal token balances, exposed by a function get_bal.

Context { storage : Type } { get_bal : storage → N }.

It will also have a TRADE entrypoint which accepts a payload of some type, trade_data,
characterized by an entrypoint type, entrypoint, and an associated typeclass, Msg_Spec.

FMBC 2024
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Listing 4 We assume an entrypoit type entrypoint, characterized by a typeclass Msg_Spec,
which includes a trade function trade.
Class Msg_Spec (T : Type) := {

(* the trade entrypoint *)
trade : trade_data → T ;
(* for any other entrypoint types *)
other : other_entrypoint → option T ;

}.

(* We assume an entrypoint conforming to Msg_Spec *)
Context { entrypoint : Type } ‘{ e_msg : Msg_Spec entrypoint }.

Now assume that C1 has some internal function calculate_trade that it uses to calculate
how many tokens will be traded out for a given contract call to the TRADE entrypoint. The
trade quantity, internal token balances, and the calculate_trade function will all be accurate
up to some decimal place, commonly 9 in the wild, formalized in the following specification,
spec_trade, of C1.

Listing 5 The formalized proposition that C1 uses calculate_trade to price trades.
(* the specification of C1’s trading functionality with regards to the

calculate_trade function *)
Definition spec_trade : Prop :=

forall cstate chain ctx trade_data cstate’ acts,
(* for any successful call to C1’s trade entrypoint, *)
receive C1 chain ctx cstate (Some (trade trade_data)) =
Ok(cstate’, acts) →
(* the balance in storage updates according to the

calculate_trade function *)
get_bal cstate’ =
get_bal cstate + calculate_trade (trade_qty trade_data).

The property of Listing 5, spec_trade, is a specification with regards to which C1 is assumed
to be correct.

Now we wish to upgrade C1 to a new contract C2 such that C2 calculates trades and keeps
balances at one decimal place higher of accuracy. We will first have a specification for C2
which is analogous to spec_trade in Listing 5, which says that C2 uses some new function,
calc_trade_precise, to calculate its trades.

Listing 6 The formalized proposition that C2 uses calculate_trade_precise to price trades.
(* The specification of C2’s trading functionality with regards to the

calculate_trade_precise function. This is analogous to spec_trade *)
Definition spec_trade_precise : Prop :=

forall cstate chain ctx trade_data cstate’ acts,
(* for a successful call to C2’s trade entrypoint, *)
receive C2 chain ctx cstate (Some (trade trade_data)) = Ok (cstate’, acts) →
(* the balance in storage updates according to the

calculate_trade_precise function *)
get_bal cstate’ =
get_bal cstate +
calculate_trade_precise (trade_qty trade_data).



D. Sorensen 7:9

Our goal now is to use a contract morphism to complete the formal specification of C2 in
terms of C1. Our specification is this: A correct implementation of the upgraded contract C2
must satisfy spec_trade_precise and be accompanied by a contract morphism

f : ContractMorphism C2 C1

with the following five properties, stated formally in Listing 7:
1. msg_morph f rounds down the precision of messages to trade by a factor of 10
2. msg_morph f is the identity morphism on all messages aside from messages to trade
3. state_morph f rounds down on the balances kept in storage exposed by get_bal
4. error_morph f and setup_morph f are the respective identity functions

Listing 7 The formal specification of the upgrade from C1 to C2.
(* FORMAL SPECIFICATION:

An upgrade C2 must admit a morphism
f : ContractMorphism C2 C1
with the following properties: *)

(* 1. msg_morph f rounds trades down when it maps inputs of the receive function *)
Definition f_recv_input_rounds_down

(f : ContractMorphism C2 C1) : Prop :=
forall t’, exists t,
(msg_morph C2 C1 f) (trade t’) = trade t ∧
trade_qty t = (trade_qty t’) / 10.

(* 2. msg_morph f only affects the trade entrypoint *)
Definition f_recv_input_other_equal

(f : ContractMorphism C2 C1) : Prop :=
forall msg o,
(* for calls to all other entrypoints, *)
msg = other o →
(* f is the identity *)
option_map (msg_morph C2 C1 f) (other o) = other o.

(* 3. state_morph f rounds down on the storage *)
Definition f_state_morph (f : ContractMorphism C2 C1) : Prop :=

forall st, get_bal (state_morph C2 C1 f st) = (get_bal st) / 10.

(* 4. error_morph f and setup_morph f are the identity functions *)
Definition f_recv_output_err (f : ContractMorphism C2 C1) : Prop :=

(error_morph C2 C1 f) = id.

Definition f_init_id (f : ContractMorphism C2 C1) : Prop :=
(setup_morph C2 C1 f) = id.

The meaning of a morphism f satisfying the above conditions, as a specification, is in
the coherence conditions of f. We know that every possible execution trace of C2 has a
corresponding execution trace in C1, and we know that the input messages are identical
except that C2 accepts trades at a higher level of precision. The coherence conditions also
tell us that the state of C2 is always related to the analogous state of C1, expressed in the
function state_morph. With regards to the trading functionality of our new contract C2, we
know that the balance kept in the storage of C2, which is affected by trades, will always be
identical to the analogous balance of C1 after rounding down, which we can formally prove.

FMBC 2024
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Listing 8 All reachable states of C2 round down to their corresponding states in C1.
Theorem rounding_down_invariant bstate caddr

(trace : ChainTrace empty_state bstate):
(* Forall reachable states with contract at caddr, *)
env_contracts bstate caddr = Some (C2 : WeakContract) →
(* cstate is the state of the contract AND *)
exists (cstate’ cstate : storage),
contract_state bstate caddr = Some cstate’ ∧
(* cstate is contract-reachable for C1 AND *)
cstate_reachable C1 cstate ∧
(* such that for cstate, the state of C1 in bstate,

the balance in cstate is rounded-down from the
balance of cstate’ *)

get_bal cstate = (get_bal cstate’) / 10.

Most importantly, f guarantees a relationship between the trading functionality of C2 and
that of C1: C2 emulates the exact same trading behavior as C1 after rounding down one
decimal place in precision. This means that C2 does not introduce any novel vulnerabilities
relating to trades and balances not extant to C1. In particular, a proof of this fact would
have prevented the attacks on Uranium Finance [8], NowSwap [4], and Nomad [7].

Moving on, note that f of Example 1 was directed from C2 to C1. The coherence conditions
of f forced all execution traces of C2 to conform to a pattern set by C1, which is precisely
what lets us make the claim that we haven’t introduced any new behaviors regarding trading
functionality to C2 aside from the increase in precision. Morphisms directed in the opposite
direction can also be used in specification. Rather than classifying all possible execution
traces of the upgrade, in this case a morphism proves that certain desired behavior exists
within the contract. We illustrate with an example of specifying backwards compatibility.

▶ Example 2 (Backwards Compatibility). Consider contracts C1 and C2, where C2 is again an
upgrade of C1, and suppose that we wish to show that C2 is backwards compatible with C1.
The intent of this upgrade is that the full functionality of C1 be present within C2. We show
this by embedding C1 into C2 via an injective contract morphism.

We illustate with a simple example of a counter contract C1 which keeps some n : N in
storage and has one entrypoint incr that increments the natural number in storage by 1. C1
is upgraded to C2, which in addition to an entrypoint to increment the natural number in
storage also includes a decr entrypoint to decrement the natural number in storage by 1.

Listing 9 The entrypoint types of C1 and C2, respectively.
Inductive entrypoint1 := | incr (u : unit).
Inductive entrypoint2 := | incr’ (u : unit) | decr (u : unit).

We prove that C2 is backwards compatible with C1 by defining a contract morphism

f : ContractMorphism C1 C2

with the following component functions.

Definition msg_morph (e : entrypoint1) : entrypoint2 :=
match e with | incr _ ⇒ incr’ tt end.

Definition setup_morph : setup → setup := id.
Definition state_morph : storage → storage := id.
Definition error_morph : error → error := id.
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These component functions do the obvious thing – send calls to the increment entrypoint of
C1 to the increment entrypoint of C2 with the same payload, and do nothing otherwise. And
f is an embedding since each of its component functions are manifestly injective, which we
can formally prove.

Lemma f_is_embedding : is_inj_cm f.

Again, the meaning of f as a specification is in its coherence conditions. Any reachable
state of C1 necessarily has an analagous reachable state of C2 which is fully structure preserving:
if we were to only use the functionality of C2 which it inherits from C1, we would get identical
contract behavior to C1. We have a formal proof of this result.

Listing 10 C2 is backwards compatible with C1 via the embedding f.
Theorem injection_invariant bstate caddr

(trace : ChainTrace empty_state bstate):
env_contracts bstate caddr = Some (C1 : WeakContract) →
(* Forall reachable states cstate of C1,

there’s a corresponding reachable state
cstate’ of C2, related by the injection *)

exists (cstate’ cstate : storage),
contract_state bstate caddr = Some cstate ∧
(* cstate’ is a contract-reachable state of C2 *)
cstate_reachable C2 cstate’ ∧
(* .. equal to cstate *)
cstate’ = cstate.

This is a toy example, but in practice specifying a new contract which is backwards compatible
to the old in this strong sense may not be straightforward. Via contract embeddings, contract
morphisms give us a way of formally specifying and verifying backwards compatibility.

5 Further Applications of Morphisms in Formal Verification

Contract morphisms establish a relationship between contracts which makes them suitable
for specifying and verifying upgrades. For that same reason, contract morphisms may also
have applications in proof reuse, or proof transport, more generally. The special case of
contract isomorphism may also provide a stronger relationship between formal specification
and proof on the associated contracts.

5.1 Hoare Properties and Contract Morphisms
First we consider properties that transport over a morphism, in particular those that we
can pull back over a morphism. Hoare properties are a particularly strong example: they
relate pre-conditions to post-conditions, which is relevant to morphisms because morphisms
relate inputs and outputs of contract executions. As contracts are formalized in ConCert,
constraints on on inputs amount to pre-conditions, and constraints on outputs amount to
post-conditions. Thus for contracts C1 and C2 and a morphism f : ContractMorphism C1 C2,
we might expect to be able to transport Hoare properties of one contract over f to the other.

Indeed, any Hoare property proved for C2 will always have an analogous result on C1,
mediated by f. We proved this in two results which relate all reachable states of C1 to those
of C2, and those of C2 to those of C1, via the state_morph component of f. These results,
left_cm_induction and right_cm_induction, are collectively called morphism induction, as
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they allow us to induct along the execution trace of one contract in relation to that of another.
In particular, morphism induction says that properties of the state of C2 which are invariant
over state_morph must hold for all states of C1.

As a toy example of this relationship, suppose that we can prove that if a certain boolean
in the storage of C2 is set at true, a given entrypoint e2 of C2 can be successfully called, and
that it fails otherwise. Suppose further that the msg_morph component of f sends all calls
to an entrypoint e1 of C1 to calls to e2, and that the state_morph component of f sends a
state of C1 with an analogous boolean set at true to one of C2 with the boolean set at false,
and visa versa. Then by morphism induction on the trace of C1, we get for free that calls to
e1 succeed only when the analogous boolean in the state of C1 is set at false, rather than
true. The relationship encoded by f between contracts C1 and C2 shows that C1 and C2 use
opposing, but predictably related, logic for execution, which allows us to reuse proofs on C2
to prove analogous results on C1.

5.2 Isomorphisms and Propositional Indistinguishability
This relationship between contracts strengthens when we have a pair of morphisms

f : ContractMorphism C1 C2 and g : ContractMorphism C2 C1

such that compose_cm g f = id_cm C1 and compose_cm f g = id_cm C2. This is an isomorph-
ism of contracts. Isomorphisms of contracts are particularly strong; the component functions
are equivalences of types and they induce a bisimulation of contracts in ConCert.

Since bisimulation is a strong and mathematically stable notion of equivalence [17], future
work could investigate proof transport over contract isomorphisms, building on recent work
in Coq-based formal methods. For example, we may wish to prove results on a contract
optimized for formal reasoning, and transport those onto a bisimlar, performant contract,
similar to the work of Cohen et al. [5]. This might include altering certain data types while
maintaining an equivalence; chosen data types have a strong influence on the structure of
proofs and can be nontrivial to transport [11, 15, 21].

6 Conclusion

Our goal in this paper was to provide a formal framework for formally specifying and verifying
smart contract upgrades in Coq. To do so we introduced the notion of a contract morphism,
which encodes a formal relationship between execution traces of two contracts. We argued
that this was a suitable, formal notion with which to reason about contract upgrades and
provided examples of contract upgrades which can be specified and verified with contract
morphisms. To our knowledge, this is the first time that the intent of an upgrade has been
articulated explicitly in formal specification, and is the first formal attempt at reasoning
explicitly about contract upgrades in a formal setting.

This work is intended to be a preliminary framework for reasoning about contract upgrades
in Coq. As such, there are practical questions to be asked, such as whether these tools
are even feasible on gas-optimized code, which can be difficult to formally reason about.
Even so we are optimistic, as the previously-mentioned work by Ringer et al. in proof
repair is practically useful and resembles our framework from a theoretical standpoint. Since
the status quo is to simply update the formal specification of a previous version into the
specification of the new, we hope that contract morphisms will be a strong start to efficient
and rigorous verification of contract upgrades.
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