
A Practical Notion of Liveness in Smart Contract
Applications
Jonas Schiffl1 #

KASTEL - Institute of Information Security and Dependability, Karlsruhe Institute of Technology,
Germany

Bernhard Beckert #

KASTEL - Institute of Information Security and Dependability, Karlsruhe Institute of Technology,
Germany

Abstract
Smart contracts are programs which manage resources in blockchain networks in an automated
fashion. In this context, liveness properties are often essential: If I transfer money to a contract,
will I eventually get it back?

This kind of property can be hard to specify and verify, in particular because application-specific
fairness assumptions w.r.t. function invocation and the behavior of other parties are usually necessary
for any liveness proof to succeed. In this work, we analyze smart contract liveness properties discussed
in the literature. We find that the smart contract paradigm of decentralization and trustlessness
implies that “real” liveness properties do not usually occur. The properties that have been classified
as liveness can be more aptly described as enabledness, i.e., the ability of an agent to induce a state
change, such as a transfer of resources.

Our contribution in this work is a specification language based on LTL to capture this kind
of property. It features some special constructs to describe common properties in smart contracts,
such as transfers or ownership of cryptocurrency. We show how often-used examples of liveness
properties can be succinctly specified in our language. Moreover, we show how our notion of liveness
can simplify formal verification compared to existing approaches.
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1 Introduction

Smart contracts are programs which run in conjunction with blockchains. They typically
manage resources, especially cryptocurrency. Abstractly, a smart contract application can be
viewed as a set of functions and state variables. Actors in the network can call the functions
and thereby change an application’s state. Function calls are executed atomically in no
pre-defined order.

Due to their unique characteristics, it is very important that smart contracts are correct
upon deployment. In this work, we propose a novel perspective on an important and
challenging class of correctness properties, namely liveness, in the context of smart contracts.
In general, liveness properties can take many forms, depending on the application domain.
One classic example is termination: Given a function, we may ask whether it always finishes
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8:2 Liveness in Smart Contract Applications

execution. In other domains, especially in distributed or parallel settings, deadlock freedom
is essential: Is there always a way to continue execution, or is it possible to reach a situation
where no progress can be made?

In this work, we argue that in the domain of smart contracts, liveness properties typically
require that a certain functionality is (or becomes) accessible to an actor. In Section 2, we
substantiate this intuition by analyzing the examples given in existing literature on smart
contract liveness verification. In Section 3, we formalize our notion and develop a specification
language for smart contract application liveness properties, based on a subset of LTL. We
also sketch possibilities for verification. In Section 4, we demonstrate the use of the language
on some examples from literature.

Related Work

Formal verification of smart contracts is a very active field of research. Most of the work
targets smart contracts on the Ethereum platform. Many approaches focus on the detection
of pre-defined vulnerabilities, which are detected by various kinds of static analysis. Recent
overviews are given by He et al. [5] and Munir et al. [9].

Other tools also allow specification and verification of user-defined correctness properties.
Recent versions of the Solidity compiler itself include an SMT-based tool that checks the
validity of assertions [7], hinting at the high importance of formal verification for smart
contract development. Other tools allow even more powerful properties to be specified
and verified. In solc-verify[4] and Celestial [2], developers can specify invariants and
function contracts consisting of first-order logic pre- and postconditions as well as frame
conditions. VerX [12] introduces temporal operators and verification of safety properties.

Nam and Kil [10] present an approach for model-checking ATL properties of smart
contracts by translating Solidity to the language of the MCMAS model checker. Their
approach focuses on strategies and behaviors of actors, highlighting the need to consider
different agents and their interests.

In the approach of Godoy et. al. [3], Solidity smart contracts are manually translated
to the Alloy modelling language, providing an abstract, state transition based view of the
smart contract application for visualization and auditing purposes. The approach works with
the concept of enabledness of smart contract functions in the form of enabledness preserving
abstractions. requires statements in the code determine whether a function is enabled,
relating it to the notion of enabledness we develop in this work.

Furthermore, to our knowledge, there are two tools for specification and verification of
liveness properties. Both are specific to the Solidity programming language. VeriSolid [8]
is a tool for developing Solidity smart contracts through modeling them as state transition
systems. The state of an application is modeled explicitly. Transitions are written directly in
the supported Solidity subset. This model is translated into a BIP (Behavior, Interaction,
Priority) model, which can be model-checked, e.g., for safety and liveness properties like
deadlock freedom. VeriSolid allows specification of liveness properties in CTL. However, the
properties that can be proven are concerned with successful termination after a function
is called. There is no notion of fairness assumptions or the ability of an actor to effect a
transfer.

SmartPulse [14] is a tool for checking safety and liveness properties of a given Solidity
smart contract. Properties are specified in SmartLTL, which contains primitives for functions
being called, functions finishing execution, reverting, and sending Ether (Ethereum’s built-
in cryptocurrency). Fairness assumptions can be specified if necessary to prove liveness
properties. In addition to source code and property specifications, an environment is
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specified, consisting of an attacker model (e.g., bounds on the number of re-entrant calls)
and a blockchain model (e.g., gas costs of function calls). The SmartPulse paper provides a
number of example liveness properties which we will discuss in the next section.

2 Liveness Properties in Smart Contracts

Smart contract platforms have several characteristics that influence what kind of liveness
properties are important in a smart contract application. First, smart contracts exist in an
open world: As a matter of principle, anyone can call any function and thereby trigger a
transaction. Furthermore, smart contract platforms specifically exist for use cases where
participants in the network do not necessarily trust each other. Therefore, participants
generally cannot be assumed to behave in any particular way, at least in the absence of
incentives.

A second defining characteristic of smart contracts is money: Most smart contract
platforms have some form of cryptocurrency built in, and transferring currency or tokens is a
part of almost all real-world smart contract applications. This means that there are usually
financial incentives.

These characteristics lead to a special kind of liveness property which is highly common
in smart contracts: “If I transfer money to a smart contract, will I get it back?” Or, more
generally: Will some desired state change eventually happen? We elaborate on this kind of
liveness property via a few simple examples, and demonstrate its pervasiveness by a brief
review of example liveness properties in the literature.

2.1 Simple Bank Example

An example often used to showcase basic functionality is a simple smart contract version of
a bank, which allows other accounts to deposit money, logs the balance of each account, and
enables withdrawing funds according to the caller’s balance (which is stored in a mapping
bals). There are only two public functions, deposit and withdraw. They both have no
precondition. The postcondition is that money is transferred from the caller to the bank
contract (or vice versa for withdraw) and that the bals mapping is updated accordingly.

One major correctness property of this application can be viewed as a liveness property:
If I deposit money in the bank, I will eventually get it back.

2.2 Escrow Example

Another common example is an escrow, where a smart contract application acts as an
intermediary for a purchase2. For a successful purchase, the application proceeds through
a succession of predefined states, according to the actions of buyer and seller. There are
several liveness properties integral to the correctness of the application, depending on the
exact implementation. For example, after the buyer confirms they received the purchased
item, the seller should eventually be refunded their deposit.

2 https://docs.soliditylang.org/en/latest/solidity-by-example.html#safe-remote-purchase
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2.3 Auction Example
Another example3 is a smart contract implementing an auction. Here, we consider an
application consisting of a single contract which has three state variables: a boolean variable
state which records the state of the auction (open, closed, or finalized), a mapping bids
which records the bids made by each actor resp. account, and highestBidder which stores
the current leader of the auction. Furthermore, the contract has four functions: bid()
transfers some amount of currency (specified by the caller) from the caller to the auction
contract. If the amount is higher than the current leading bid, the highestBidder variable
is overwritten with the caller’s address, and their bid is recorded in bids. The function
close() sets the state variable to closed and then assigns ownership of the auction item
to the current highest bidder. The function claim requires that the auction is closed, but not
finalized. It transfers the amount of the winning bid to the auctioneer. Finally, withdraw()
can be called by all losing bidders. It transfers the corresponding amount (as recorded in
bids) to the caller.

Like in the bank example, a crucial correctness property of this application is a liveness
property: If an actor makes a bid, that actor will eventually either win the auction and be
assigned ownership of the desired item, or they will get their money back.

2.4 Examples from Literature
The SmartPulse paper [14] lists 23 safety and liveness properties of 10 applications that can
be verified with their tool. Of these, 13 are liveness properties, signified by the eventually
keyword. All of them fall into one of two categories: In the first category are properties that
represent postconditions of a function, like the following: “If a user withdraws funds after
refunds are enabled, they will eventually be sent the sum of their deposits.” The paper on
VeriSolid [11] only gives a single example of a liveness property, which also falls into this
category.

The second category is of the type described in the beginning of this section, stating
that some desired action will happen eventually. One of the examples in this category is
an auction smart contract exactly like the one described above. Another example is the
following statement about a crowdfunding application: “If the campaign fails, the backers
can eventually get their refund.”

In SmartPulse, liveness properties can be specified in a variant of LTL. Properties of
the second category require a fairness assumption about the actors’ behavior in order for
verification to succeed: If a withdraw functionality is available, but never called, then losing
bidders will not get their money back, although they could! The fairness assumption in this
auction scenario is that any losing bidder will eventually call the withdraw function.

2.5 Observations
From the examples above, we note several important points. First, many liveness properties
in smart contract applications can be reduced to postconditions and termination of a single
function. Since there are several tools for specifying and verifying function postconditions,
we focus on the other kind of liveness property, which states that a desired state change will
happen eventually.

3 used, e.g., in the documentation of the Solidity programming language:
https://docs.soliditylang.org/en/stable/solidity-by-example.html#simple-open-auction
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Concerning this kind of “real” liveness property, we observe that the crucial point about
a desirable state change is whether an actor is able to effect it. There is a subtle difference:
Liveness in smart contracts is not about whether something will definitely happen, but about
whether someone can make it happen. In the auction example, what we want to prove is not
whether every losing bidder actually gets their money back, it is that they can get it back (if
they take the appropriate action).

This phrasing leads to the insight that in the context of smart contracts, it should
be possible to specify liveness properties without having to specify assumptions regarding
behavior, at all. What should be specified is enabledness, i.e., the ability to effect a desired
result. This ability often pertains to a specific actor (or set of actors). Furthermore, on
some examples, the desired change can only be effected after some fixed amount of time has
elapsed, or if some other condition is met.

One last observation is that liveness is usually connected to resources, e.g., the built-in
cryptocurrency of a blockchain network. Often, liveness corresponds to ownership: If an actor
is able to effect a transfer of an amount of currency from a smart contract to themselves,
then they own this amount, even though it is not stored in their own account.

3 Formalization of Smart Contract Liveness

In this section, we formalize the insights from the previous section and propose a practical
way of specifying liveness properties for smart contract applications.

3.1 A Model of Smart Contract Applications
Our goal is a specification language that is independent of a concrete smart contract platform.
Therefore, we assume a very generic model of smart contract applications (model elements
in italics): First, we have a notion of Accounts identified by a name (e.g., an address). These
can be either External Accounts (representing human actors) or Contracts. Each account has
an integer-valued balance.

An application is a set of Contracts. Each Contract consists of a set of Functions and
a set of State Variables. State Variables have a name and a type. The overall state of an
application is determined by the values of all state variables (including account balances).
The state only changes as a consequence of a function call, after a function has executed
successfully.

Functions consist of a name, a set of parameters, and a set of return values. Each function
call happens within a call context. For our purposes, this context consists of the account
making the call, the amount of money transferred, and the list of parameter values at call
time.

Crucially, each function also has a function contract consisting of a Precondition and a
Postcondition, which are first-order predicates over the execution context and the application
state. The intended semantics is as follows: When a function is called in a context that
does not satisfy the precondition, the function reverts and no state change occurs. When
a function is called in a state and context that satisfies its precondition, it terminates in a
state which satisfies the postcondition4.

4 Note how this differs from preconditions e.g. in JML [6] or ACSL [1], where a function contract does
not specify the behavior if the precondition is not fulfilled. These semantics would not make sense in
the open, adversarial smart contracts setting.

FMBC 2024
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For a given smart contract application a, we say that F is the set of all functions of all
contracts in a, V the set of all state variables (qualified with the name of the contract where
they are defined), and Vals the set of all possible values of the variables. Then the state
S : V → Vals is a function which assigns each state variable a value.

For a function f ∈ F , Pf is the set of all possible concrete parameter lists for f .
Furthermore, we say that A is the set of all accounts, and the set Ctx = A × Pf × N is the
set of all call contexts. A call context c ∈ Ctx is a triple consisting of the calling account,
parameters, and amount of currency transferred. We write c.params, c.caller, and c.amt,
respectively.

Function pref : S × Ctx → B is the precondition of f , a predicate over the application
state, the caller, and the parameters. Likewise, postf : S × S × Ctx → B is a predicate over
the state before and after the execution of a function, as well as the caller and the parameters
of the call.

3.2 Specification Language
In this section, we develop a specification language, based on a subset of Linear Temporal
Logic, which captures our main observation about smart contract liveness properties: That
is, in the context of smart contract applications, it does not make sense to specify that
something “will eventually happen”. Rather, one should specify that a desired functionality
or state change is enabled.

Abstractly, the execution of a smart contract application can be viewed as a trace of
transactions, each initiated by an account calling a function with some parameters in a way
that fulfills the function’s precondition. Our language enables developers to write down
properties that are expected to be true in all possible execution traces.

3.2.1 LTL
Linear temporal logic (LTL, first introduced in 1977 by Pnueli [13]) is a widely used logic for
describing and verifying properties of execution traces. In its original form, LTL formulas
consist of a set of propositional variables, the standard boolean connectors, and some temporal
operators that enable statements about traces.

The Next operator Xϕ states that some formula ϕ holds in the next step of the trace.
The Until operator ϕ U ψ states that eventually, ψ will hold, and ϕ must hold in every
step until that point. ♢ (“eventually”) with the meaning ♢ϕ ::= trueU ϕ and □(“globally”,
with □ϕ ::= ¬♢¬ϕ) are commonly used derivations. Furthermore, the Weak Until operator
ϕUW ψ states that ϕ must be true until a state is reached where ψ holds, but unlike U, ψ
does not necessarily have to become true at some point. The Releases operator R is the dual
of U with ϕR ψ ::= ¬(¬ϕU ¬ψ). Note that both U and R, in combination with negation,
form a basis for the other LTL operators.

Every LTL formula can be transformed into Negation Normal Form (NNF), where the
only operators are U, R, and X, and where only atomic formulas are negated [15].

3.2.2 Restrictions
We adapt LTL as follows: Instead of atomic propositions, we allow predicates in first-order
logic with arithmetic over the state of an application. This includes quantification over arrays
and mappings, as well as over sets of accounts.
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Figure 1 Our trace model of a single smart contract application execution. Each node τi contains
the application state (si), the system time ti when this state was reached, and the transaction that
led to it (with each transaction consisting of the called function fi, and the call context ctxi).

s0, t0, f0,

ctx0

s1, t1, f1,

ctx1

s2, t2, f2,

ctx2
...

τ0 τ1 τ2

As for the modal operators, we restrict our language in two ways: First, we omit the Next
operator, which expresses that some condition holds in the following state. In the context of
a smart contract network, it is never possible to predict which transaction is going to be
executed next, as no single entity has control over this. Therefore, properties which require
that something must happen exactly in the next state (as opposed to some other time) do
not make sense in this domain.

Furthermore, we allow only formulas which are Until-free in NNF. This fragment of LTL
has been called Safety LTL ([15]). Intuitively, every formula in Safety LTL rules out traces
based on some finite prefix which violates the formula. This syntactic restriction captures
our intuition that for smart contracts, “classical” liveness conditions (as expressed by the ♢
and U operators) do not make sense.

3.2.3 Domain-specific Constructs
For this restricted form of LTL, we now introduce some specification constructs which capture
important “liveness” properties relevant in the smart contract domain.

We view an execution of a smart contract application as a trace (cf. Figure 1). For
our purposes, each node τi of a trace τ consists of the application state si as well as the
transaction which led to τi and the time of the transaction ti. The transaction description
consists of the name of the called function as well as the call context (caller, parameters, and
transferred amount) with which it was called (we write fi and ctxi, respectively).

We define enabledness as a specification construct that is evaluated in one state of an
execution. For a function f (with precondition pref over the state and the execution context)
and an account a, we define that enabled[a, par, amt](f) is true in a node τi iff a can
call f successfully with parameters par and amount amt in the state represented by that
node:

τi |= enabled[a, par, amt](f) :⇔ pref (si, (a, par, amt))

The context, or parts of it, can be left out to indicate universal quantification, i.e., enabledness
for all callers regardless of the parameters and the amount transferred with the call:

τi |= enabled[](f) :⇔ ∀a ∈ A ∀par ∈ Pf : pref (si, (a, par, amt))

We extend this notion to predicates over the state: For a predicate over the application state
p, we say that p is enabled in node τi if there exists a function that is enabled, and which
results in a state that implies the desired state:

τi |= enabled[a, par,amt](c)

:⇔ ∃f ∈ F : τi |= enabled[a, par, amt](f) ∧ postf (si−1, si, (a, par, amt)) → c

FMBC 2024
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This construct includes two-state predicates, i.e., predicates which relate two states of the
application by expressing a condition over the new state in terms of the previous state. Since
function postconditions can also reference the state before the function was executed, the
semantics are exactly the same as for enabledness of one-state predicates.

The transfer of currency from one account to another can be described in terms of a
two-state predicate. This is so predominant in the smart contract domain that we create a
special abbreviation.

For accounts from and to, transfer(from, to, amt) is true in node τi iff the balances
of from and to changed accordingly in the step from τi−1 to τi:

τi |= transfer(from, to, amt) :⇔
si(from.balance) = si−1(from.balance) − amt

∧ si(to.balance) = si−1(to.balance) + amt

Since liveness properties in smart contract applications are often about resource ownership,
we introduce a special construct to express that an account a owns some amount of currency.
We formalize ownership as the ability of an account to effect a transfer of currency to itself
from the contract where the property is specified (this):

τi |= owns(a, amt) :⇔ τi |= □enabled[a]()transfer(this, a, amt)

This property only makes sense when the amt expression refers to a variable which stores the
amount, and which is updated in case of a transfer. One example is the mapping storing the
balances in the Bank contract. We think this pattern is prevalent enough to justify the owns
abbreviation.

Furthermore, we introduce a way to express that a transaction happened in a given
step τi:

τi |= f[ctx] :⇔ f = fi ∧ ctx = ctxi

As with enabled[](), the calling account and the parameters can be left out: tx[] is true
in τi iff tx = fi. This is useful for example when specifying that a certain condition always
holds after some function was called.

Lastly, we provide a construct which describes that something (e.g., a transaction or state
change) is always possible at least until it actually happens:

τi |= enabledUntil[ctx](f) :⇔ τi |= enabled[ctx](f) UW f[ctx]

As above, the calling account and the parameters can be left out to indicate universal
quantification, and the construct can also be used with a predicate instead of a transaction.

Thus, if p is a predicate over the application state, f ∈ F a function of the application,
par ∈ Pf a list of parameters for f , amt an integer expression, and a, b ∈ A accounts, the
syntax of our language is as follows:

ϕ ::= true | false
| p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2

| ϕ1 R ϕ2 | ϕ1 UW ϕ2 | □ϕ

| enabled[a? par? amt?]([p | f ])
| enabledU[a? par? amt?]([p | f ])
| transfer(a,b,amt)

| f[a? par?]

| owns(a, amt)
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Note that for the enabled and enabledU expressions, the account and the parameter list
are optional, and the argument can be either a transaction or a predicate.

Our choice of LTL operators hints at our intentions to only care about Safety LTL
formulas. As described above, we only admit formulas which are Until-free in NNF.

3.3 Verification

While the main focus of this work is on specification, we also want to point out that viewing
smart contract liveness as a matter of enabledness can simplify the verification task.

For each property specified in an application model, the verification goal is to show that
all possible executions of this application fulfill the property. For real liveness properties, as
expressed by the ♢ operator, this requires additional assumptions, e.g., about the behavior
of the actors in an applications. Because we restrict our specification language to safety
formulas, we can, in principle, prove them by showing that the desired property is an inductive
invariant.

The enabledness of a function in some context is equivalent to whether its precondition is
fulfilled by that context. Likewise, the enabledness of a state or state change is equivalent to
whether an enabled function exists that leads to the desired state or state change. To show
that a function is always enabled, it is sufficient to show that it is enabled in the application’s
initial state, and that every possible call again results in a state where the function is enabled.
By extension, to show that a state or state change is always enabled, it suffices to show that
a function which leads to the desired state or state change is always enabled.

4 Prototypical Implementation and Evaluation

We have implemented a metamodel of smart contract applications which conforms to the
model assumed for this work (cf. Section 3.1). The metamodel can be used by developers to
model an application, and specify and verify the kind of liveness properties introduced in
this work on the model level. Verification of application liveness properties is based on the
function contracts.

Then, code skeletons consisting of function headers and function contracts (pre- and
postconditions) can be generated for a specific smart contract platform (and a verification
tool for this platform). After the developer completes the implementation in a way that each
function conforms to its contract, the application automatically also conforms to the liveness
specification.

While this model-driven approach is not the main topic of this work, we use it for a
light-weight evaluation of our approach.

4.1 Implementation of Model-driven Approach

We developed a small XML-like language to describe smart contract applications consisting
of several contracts. Each contract, in turn, consists of a set of state variables and functions.
Our type system is inspired by Solidity, which we envision to be the main target language for
our approach, but it is flexible enough to accommodate other languages as well. The type
system comprises the primitive types Account, Integer (signed and unsigned), Boolean, and
String. Furthermore, there are arrays and key-value mappings. Lastly, there are also the
user-defined Struct and Enum types.

FMBC 2024



8:10 Liveness in Smart Contract Applications

Each function defined by the developer has a name, a list of typed parameters, and
a return type. Furthermore, we also developed a language for writing function contracts,
consisting of a precondition, a postcondition, and a frame condition, which specifies which
part of the application state a function may modify.

From a model written in this language, we can translate into smart contract programming
languages. For evaluation, we translate into Solidity. Translating the contracts, state variables
and function headers is straightforward, because the structure of our metamodel fits the
structure of a Solidity application, and all of our types have an equivalent in Solidity.

The function contracts are translated to the specification language of solc-verify[4], a
tool for deductive functional verification of Solidity smart contracts. The developer provides
an implementation of the generated function headers. If solc-verifyis able to prove the
implementation correct against the generated formal specification, we can transfer this result
back to the model, and reasonably assume that any property we can verify based on the
model’s function contracts is also true of the implementation.

The verification of liveness properties is not yet implemented in an automated fashion.
We have developed a translation from the function contracts to an SMT encoding. For simple
examples, our prototypical approach suffices to prove that a function is enabled in a given
state (e.g., after initialization or after a given transaction), and that it will remain enabled,
by proving that its precondition is an invariant.

4.2 Evaluation
In this section, we describe how to specify the liveness properties of the examples discussed
in Section 2. We also sketch how the properties can be verified and discuss the limitations
and advantages of our approach in general.

4.2.1 Bank
The main correctness property of the simple bank application (cf. Section 2.1) is that every
customer can withdraw all their funds whenever they want. The customer balances are
stored in a key-value mapping bals.

∀a ∈ A : □enabled[a](a.balance == old{a.balance} + old{bals[a]})

In this case, we can also specify where the money comes from, and use the transfer
shorthand:

∀a ∈ A : □enabled[a](transfer(this, a, bals[a])

For this, we can also use the owns abbreviation and simply write

∀a ∈ A : owns(a, balances[a])

Verification is straightforward: The withdraw function does not have a precondition. It is
therefore always enabled for every caller, and the postcondition matches the desired property
exactly.

4.2.2 Escrow
In the escrow example (Section 2.2), one liveness property is that the seller can get their
deposit back after the buyer confirms the reception of the item. In our approach, this can be
modeled as follows:

confirmPurchase[buyer] → enabledUntil[seller](transfer(this, seller, deposit))
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This means that after the confirmPurchase method is called successfully, the seller is able
to effect a refund of their deposit - of course, only until this actually happens.

This can be verified by showing that the only function that is enabled after the successful
call to confirmPurchase is refundSeller, and that its postcondition implies the desired
effect.

4.2.3 Auction
For the auction example (Section 2.3), we consider two properties: Bidders must be refunded
if they do not win, and the seller should be able to claim the winning bid after the auction
closes.

For the losing bidders, the property is similar to that of the bank, with the difference
being that the current highest bidder can not withdraw:

∀a ∈ A : □(a == highestBidder ∨ enabled[a](transfer(this, a, bals[a]))

Note that in this example, we cannot use the owns shortcut, because it includes a □ operator,
so that the resulting property might actually not be true: After all, a losing bidder might
increase their bid to become the highest bidder again.

Verification is also similar to the bank example. The withdraw function has only one
precondition, which is that the caller must not be the current highest bidder. Therefore, it
is always enabled for all other accounts. From this, it follows that the desired property is
indeed an invariant.

For the seller in the auction, the desired property is that after the auction is closed, they
get paid. This can be specified in two steps. First, after the auction ends, it can be closed:

time > endTime → □enabled[](close)

Second, after the auction is closed, the seller can call the claim function to be paid the
auction price from the contract:

close[] → enabledUntil[seller](claim())

Another correct formalization of this second property can be expressed with the application
state instead of a transaction expression:

state == closed → enabledUntil[seller](claim())

Other possible formalizations could express the ability to effect a transfer, instead of the
enabledness of the claim function. In this example, there are many different reasonable ways
of specifying the desired property.

Verification relies on the fact that after the close() function is successfully executed,
the state variable is in the state closed (as implied by the postcondition). This means that
the claim() function is enabled for the seller. Since no other function is enabled, we derive
that the enabledness of the claim() function is an invariant until it is actually called.

At first glance, it seems that the seller property it would be easier to specify with a ♢
operator, like this:

♢enabled[seller](claim)

This property holds, but additional assumptions about the seller’s behavior would have to
be given in order to be able to prove this.

FMBC 2024
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4.2.4 General Remarks
Our specification language can be used to express all properties yielded by our literature
research on smart contract liveness properties. This shows that the restrictions in our
language (no Next, and only Until-free formulas) are actually not needed to specify properties
which are commonly perceived to be liveness properties.

In some cases, our restrictions force the specification to be explicit about how a de-
sirable state can be reached: e.g., in the auction, the specification cannot just state
♢enabled[](close), but has to show the way: time > end → enabledUntil[](close).
This not only simplifies verification, but also forces clarity in the specification. If a complex
sequence of function calls is necessary to reach some goal, this might point to an overly
complex implementation and possible simplification. At the very least, our approach will
force the developer to document the necessary steps.

There are plausible scenarios where our notion of liveness fails to express all relevant
properties. One example would be a vote with a quorum: Some desirable action will be taken
according to a vote, but only after a fixed percentage of those entitled to vote have cast their
vote. Will the action be taken eventually? Whether or not the participants are incentivized
to vote depends on the specifics of the application. If they are sufficiently incentivized, this
would constitute a case where a fairness condition makes sense, and our simpler notion would
not be sufficient to specify and verify that any action will be taken. However, cases like this
do not seem to be common in the smart contract world, and deciding whether a fairness
assumption is plausible can be very challenging. We leave this kind of question to future
research.

Our model-driven approach for specification and verification enables developers to specify
liveness properties on a level where the implementation of the functions is abstracted via
function contracts. Therefore, we cannot rely on the implementation itself for verification.
Working on the abstraction means that, in general, the properties that can be proven
in our approach are a subset of the properties that would be provable directly on the
implementation. However, since verification in our approach is straightforward for all
example liveness properties we could find in the literature, we argue that this limitation
hopefully does not matter much in practice.

5 Conclusion and Future Work

In this paper, we analyze the concept of liveness properties for smart contract applications.
We find that all properties commonly perceived as liveness in the literature are not classical
liveness, but can be expressed as an actor’s access to some functionality. Based on this
finding, we suggest a specification language based on a subset of LTL, which contains concise
constructs for specifying typical properties. We also sketch how this perspective simplifies
the verification task, and evaluate our approach on some typical examples.

In the future, we will look to automate the verification task. Furthermore, we will develop
processes for different platforms to achieve implementations which adhere to the liveness
properties specified in the model. Conversely it would be possible to translate an annotated
smart contract implementation to a model, and use our approach to specify and verify
liveness properties on it.
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