
5th International Workshop on
Formal Methods for Blockchains

FMBC 2024, April 7, 2024, Luxembourg City, Luxembourg

Edited by

Bruno Bernardo
Diego Marmsoler

OASIcs – Vo l . 118 – FMBC 2024 www.dagstuh l .de/oas i c s

Editors

Bruno Bernardo
Nomadic Labs, Paris, France
bruno@nomadic-labs.com

Diego Marmsoler
University of Exeter, UK
D.Marmsoler@exeter.ac.uk

ACM Classification 2012
Security and privacy → Formal methods and theory of security; Security and privacy → Logic and
verification; Theory of computation → Program verification; Software and its engineering → Formal
software verification; Security and privacy → Distributed systems security; Computer systems organization
→ Peer-to-peer architectures

ISBN 978-3-95977-317-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-317-1.

Publication date
May, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.FMBC.2024.0

ISBN 978-3-95977-317-1 ISSN 1868-8969 https://www.dagstuhl.de/oasics

mailto:bruno@nomadic-labs.com
https://orcid.org/0000-0003-2859-7673
mailto:D.Marmsoler@exeter.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-317-1
https://www.dagstuhl.de/dagpub/978-3-95977-317-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.FMBC.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-317-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

FMBC 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Bruno Bernardo and Diego Marmsoler . 0:vii

Program Committee
. 0:ix

Supporting Reviewers
. 0:xi

Invited Talk

Deductive Verification of Smart Contracts
Franck Cassez . 1:1–1:1

Consensus

Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda
Andre Knispel, Orestis Melkonian, James Chapman, Alasdair Hill, Joosep Jääger,
William DeMeo, and Ulf Norell . 2:1–2:18

Formally Verifying the Safety of Pipelined Moonshot Consensus Protocol
M. Praveen, Raghavendra Ramesh, and Isaac Doidge . 3:1–3:16

Towards Mechanised Consensus in Isabelle
Elliot Jones and Diego Marmsoler . 4:1–4:22

Smart Contracts

Formalizing Automated Market Makers in the Lean 4 Theorem Prover
Daniele Pusceddu and Massimo Bartoletti . 5:1–5:13

Towards Benchmarking of Solidity Verification Tools
Massimo Bartoletti, Fabio Fioravanti, Giulia Matricardi, Roberto Pettinau, and
Franco Sainas . 6:1–6:15

Towards Formally Specifying and Verifying Smart Contract Upgrades in Coq
Derek Sorensen . 7:1–7:14

A Practical Notion of Liveness in Smart Contract Applications
Jonas Schiffl and Bernhard Beckert . 8:1–8:13

Securing Aptos Framework with Formal Verification
Junkil Park, Teng Zhang, Wolfgang Grieskamp, Meng Xu, Gerardo Di Giacomo,
Kundu Chen, Yi Lu, and Robert Chen . 9:1–9:16

Structured Contracts in the EUTxO Ledger Model
Polina Vinogradova, Orestis Melkonian, Philip Wadler, Manuel Chakravarty,
Jacco Krijnen, Michael Peyton Jones, James Chapman, and Tudor Ferariu 10:1–10:19

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Preface

The 5th International Workshop on Formal Methods for Blockchains (FMBC) took place
on April 7, 2024, as part of the European Joint Conferences on Theory and Practice of
Software (ETAPS 2024). FMBC’s purpose is to be a forum to identify theoretical and
practical approaches that apply formal methods to blockchain technology.

This fifth edition of FMBC attracted 17 submissions: 13 full papers, 1 short paper, and 3
extended abstracts. Each of these papers was reviewed by at least three program committee
members or appointed external reviewers. This led to a selection of 9 (full) papers that
were presented at the workshop as regular talks, as well as 2 extended abstracts that were
presented as lightning talks. Additionally, we were very pleased to have an invited keynote
by Franck Cassez (Head of Research at Mantle).

We thank all the authors that submitted a paper, as well as the program committee
members and external reviewers for their immense work. We are grateful to Maxime Cordy
and Renzo Gaston Degiovanni, Workshop Chairs of ETAPS 2024, for their help and guidance.
FMBC 2024 was financially supported by the Ethereum Foundation’s Ecosystem Support
Program and Mantle.

April 2024 Bruno Bernardo
Diego Marmsoler

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Program Committee

Massimo Bartoletti
University of Cagliari, Italy

Bernhard Beckert
Karlsruhe Institute of Technology, Germany

Bruno Bernardo
Nomadic Labs, France

Martin Ceresa
IMDEA Software Institute, Spain

Manuel Chakravarty
Tweag, France

Sylvain Conchon
Paris-Saclay University, France

Denisa Diaconescu
University of Bucharest, Romania

Fritz Henglein
University of Copenhagen, Denmark

Maurice Herlihy
Brown University, US

Florian Kammueller
Middlesex University London, UK

Diego Marmsoler
University of Exeter, UK

Baoluo Meng
GE Research, US

Ron Van Der Meyden
University of New South Wales, Australia

Burcu Kulahcioglu Ozkan
Delft University of Technology, Netherlands

Gordon J. Pace
University of Malta, Malta

Maria Potop-Butucaru
Sorbonne University, France

Vincent Rahli
University of Birmingham, UK

Sophie Rain
Vienna University of Technology, Austria

Albert Rubio
Complutense University of Madrid, Spain

Bas Spitters
Aarhus University, Denmark

Meng Sun
Peking University, China

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Supporting Reviewers 0:xi

Supporting Reviewers

Pablo Gordillo

Alejandro Hernández-Cerezo

Xiangyu Li

Xiaokun Luan

Saswata Paul

Sarat Chandra Varanasi

FMBC 2024

Deductive Verification of Smart Contracts
Franck Cassez #

Mantle R&D, Sydney, Australia

Abstract
At the core of the Ethereum network is the Ethereum Virtual Machine (EVM) which can execute
programs written in EVM bytecode. This remarkable feature empowers users to define complex
business logic that can be executed programmatically by programs called smart contracts. Smart
contracts are programs and may contain bugs. There are several examples of smart contract
vulnerabilities that have been exploited in the past: in 2016, a re-entrance vulnerability in the
Decentralised Autonomous Organisation (DAO) smart contract was exploited to steal more than
USD50 Million. The total value netted from DeFi hacks in 2023 is estimated to be more than $1.5
billion. In this talk I will discuss formal verification of smart contracts. The main technique is
deductive verification supported by the verification-friendly language Dafny. I will show how we can
use deductive verification to reason about smart contracts, from high-level specifications (Dafny), to
intermediate representation (Yul) and finally low-level EVM bytecode.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases Smart Contracts, Deductive Verification

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.1

Category Invited Talk

Bio

Dr. Franck Cassez is currently Head of Research at Mantle. From 2019 to April 2023, he was
Lead Researcher at Consensys in the R&D department. Before joining ConsenSys, he worked
as a research scientist/academic for 25 years, at the French National Centre for Scientific
Research (CNRS, France), National ICT Australia (NICTA now DATA61, Sydney AU) and
Macquarie University (Sydney AU). He received his dual Engineering Degree in Computer
Science/M.S. (1990) and a Ph.D. in Computer Science from from Ecole Centrale, Nantes,
France in 1993.

Franck has published papers at major conferences including CONCUR, CAV, TACAS,
ATVA, LPAR and several other venues. He was the recipient of several best paper awards
including LPAR 2015, FMICS 2022, a Test-of-Time Award at CONCUR’22, and a Marie
Curie Fellowship (2008-2011), an individual EU research excellence competitive grant. Franck
has collaborated with many research groups in Europe and Australia and is known for some
important results on timed automata (e.g. Test-of-Time Award at CONCUR’22 for the 2002
CONCUR paper The Impressive Power Of Stopwatches with Kim G. Larsen) and some
efficient algorithms for timed games and time Petri nets.

Franck’s contributions also include bringing research in practice, including static analysis
tools (Goanna at NICTA, patent on Analysis of Program code, Skink at the International
Software Verification Competition) or general purpose software packages (e.g. ScalaSMT
a Scala interface combining state-of-the-art SMT-solvers). Franck’s interest for blockchain
technology started in 2019 when he joined ConsenSys and worked on several Ethereum
research projects including the verification of the Deposit Contract, the formal verification
of Smart Contracts in Dafny(best paper award at FMICS’22), a semantics of the EVM in
Dafny, a semantics of Yul in Dafny. He has co-authored over 90 academic papers.

Franck’s research interests include smart contracts security and analysis, formal verification
techniques, programming languages, concurrent systems, zk-proof technology and rollups.

© Franck Cassez;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 1; pp. 1:1–1:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:franck.cassez@mantle.xyz
https://orcid.org/0000-0002-4317-5025
https://doi.org/10.4230/OASIcs.FMBC.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Formal Specification of the Cardano Blockchain
Ledger, Mechanized in Agda
Andre Knispel #

Input Output, Berlin, Germany
Orestis Melkonian #

Input Output, Kirkwall, UK

James Chapman #

Input Output, Glasgow, UK
Alasdair Hill #

Input Output, Bristol, UK

Joosep Jääger #

Input Output, Tartu, Estonia
William DeMeo #

Input Output, Boulder, US

Ulf Norell #

QuviQ, Göteborg, Sweden

Abstract
Blockchain systems comprise critical software that handle substantial monetary funds, rendering
them excellent candidates for formal verification. One of their core components is the underlying
ledger that does all the accounting: keeping track of transactions and their validity, etc.

Unfortunately, previous theoretical studies are typically confined to an idealized setting, while
specifications for real implementations are scarce; either the functionality is directly implemented
without a proper specification, or at best an informal specification is written on paper.

The present work expands beyond prior meta-theoretical investigations of the EUTxO model to
encompass the full scale of the Cardano blockchain: our formal specification describes a hierarchy of
modular transitions that covers all the intricacies of a realistic blockchain, such as fully expressive
smart contracts and decentralized governance.

It is mechanized in a proof assistant, thus enjoys a higher standard of rigor: type-checking prevents
minor oversights that were frequent in previous informal approaches; key meta-theoretical properties
can now be formally proven; it is an executable specification against which the implementation in
production is being tested for conformance; and it provides firm foundations for smart contract
verification.

Apart from a safety net to keep us in check, the formalization also provides a guideline for the
ledger design: one informs the other in a symbiotic way, especially in the case of state-of-the-art
features like decentralized governance, which is an emerging sub-field of blockchain research that
however mandates a more exploratory approach.

All the results presented in this paper have been mechanized in the Agda proof assistant and
are publicly available. In fact, this document is itself a literate Agda script and all rendered code
has been successfully type-checked.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Logic and verification; Theory of computation → Program specifications

Keywords and phrases blockchain, distributed ledgers, UTxO, Cardano, formal verification, Agda

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.2

Supplementary Material
Software (Agda Code): https://github.com/IntersectMBO/formal-ledger-specifications [19]

archived at swh:1:dir:085aefb014706c3ee4bcf1a9f85fcceaf10ba4cc

1 Introduction

This paper gives a high-level overview of the Cardano ledger specification in the Agda proof
assistant, which is one of three core pieces of the Cardano blockchain:

Networking: deals with sending messages across the internet.
Consensus: establishes a common order of valid blocks.
Ledger: decides whether a sequence of blocks is valid.

© Andre Knispel, Orestis Melkonian, James Chapman, Alasdair Hill, Joosep Jääger, William DeMeo,
and Ulf Norell;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 2; pp. 2:1–2:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andre.knispel@iohk.io
https://orcid.org/0000-0003-0068-3799
mailto:orestis.melkonian@iohk.io
https://orcid.org/0000-0003-2182-2698
mailto:james.chapman@iohk.io
https://orcid.org/0000-0001-9036-8252
mailto:alasdair.hill@iohk.io
mailto:joosep.jaager@iohk.io
mailto:william.demeo@iohk.io
https://orcid.org/0000-0003-1832-5690
mailto:ulf.norell@quviq.com
https://doi.org/10.4230/OASIcs.FMBC.2024.2
https://github.com/IntersectMBO/formal-ledger-specifications
https://archive.softwareheritage.org/swh:1:dir:085aefb014706c3ee4bcf1a9f85fcceaf10ba4cc;origin=https://github.com/IntersectMBO/formal-ledger-specifications;visit=swh:1:snp:5097bdc07a9030f7e251cb6529989d442bb82f35;anchor=swh:1:rev:002b7226a3af8e5e1068fd0c8fd1fcbb51bba64e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

Such separation of concerns is crucial to enable a rigidly formal study of each individual
component; the ledger is based on the Extended UTxO model (EUTxO), an extension of
Bitcoin’s model of unspent transaction outputs [20] – in contrast to Ethereum’s account-based
model [8] – to accommodate fully expressive smart contracts that run on the blockchain.
Luckily for us, EUTxO enjoys a well-studied meta-theory [9, 10] that is also mechanized
in Agda, albeit in a much simpler setting where a single ledger feature is considered at a
time, but not how multiple concurrent features interact. We take this to the next level by
scaling up these prior theoretical results to match the complexity of the real world: the
Cardano blockchain being one of the top ten cryptocurrencies today by market capitalization,
it handles gigabytes of transactions that transfer hundred of millions US dollars, while
simultaneously supporting all these features plus many more that have not been formally
studied before.

We are happy to report that the formalization overhead has proven minuscule compared
to the development effort of the actual implementation, measured either by lines of code (˜10
thousand lines of Agda formalization versus ˜200 thousand of Haskell implementation) or
by number of man hours put in so far (only a couple of full-time formal methods engineers
versus tens of production developers). The result is a mechanized document that leaves little
room for error, additionally proves crucial invariants of the overall system ,e.g., that the
global value carried by the system stays constant, formally stated in Section 4. It doubles as
an executable reference implementation that we can utilize in production for conformance
testing. All of our work, much like this paper, is mechanized in Agda and is publicly available:

https://github.com/IntersectMBO/formal-ledger-specifications

Scope. Cardano’s evolution proceeds in eras, each introducing a new vital feature to the
previous ones. While we would ideally want to provide a multitude of formal artifacts, each
describing a single era in full detail, the specification formalized here is that of the Voltaire
era that introduces decentralized governance as described in the Cardano Improvement
Proposal (CIP) 1694.1 This stems from the fact that the design of the blockchain happens in
tandem with the formal specification; one informs the other in an intricate, non-linear fashion.
Thus arises a pragmatic need to think of the process as an act of balance between keeping
up with the past, i.e., going back to previous eras and incrementally incorporating their
features, and co-evolving with the current design of the future ledger capabilities. Therefore,
we set aside details of the previous Byron, Shelley, and Alonzo eras while at the same
time missing orthogonal features related to smart contracts brought in the Babbage era.

Transitions as relations. The ledger can itself be conceptually divided into multiple sub-
components, each described by a transition between states that only contains the relevant
parts of the overarching ledger state and possibly some internal auxiliary information that is
discarded at the outer layer. These transitions are not independent, but form a hierarchy
of “state machines” where some higher-level transition might demand successful transition
of a sub-component down the dependency graph as one of its premises. Eventually, these
cascading transitions all get combined to dictate the top-level transition that handles an
individual block of transactions submitted to the blockchain.

Formally, we formulate such (labeled) transitions as relations X between the environment
Γ inherited from a higher layer, an initial state s, a signal b that acts as user input, and a
final state s′:

1 https://github.com/cardano-foundation/CIPs/blob/17771640/CIP-1694/README.md

https://github.com/IntersectMBO/formal-ledger-specifications
https://github.com/cardano-foundation/CIPs/blob/17771640/CIP-1694/README.md

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:3

Γ ⊢ s
b−→
X

s′

Environments
(Signals) States

Possible transitions
We will henceforth present such transitions as shown on the right; a triptych defining
environments and possibly signals (top left), states (top right), and the rules that inductively
define the transition (bottom).

Agda preliminaries
In Agda, the aforementioned ledger transitions are modeled as inductive families of type:

⊢⇀L_ M_ : Env → State → Signal → State → Type

Reflexive transitive closure. We will often need to apply a transition repeatedly until we
arrive at a final state, which corresponds to the standard mathematical construction of taking
the relation’s reflexive transitive closure:

data _⊢_⇀L_ M∗_ : Env → State → List Signal → State → Type where

base :

Γ ⊢ s ⇀L [] M∗ s

step :
• Γ ⊢ s ⇀L b M s’
• Γ ⊢ s’ ⇀L bs M∗ s”

Γ ⊢ s ⇀L b :: bs M∗ s”

Finite sets & maps. One particular trait we inherited from previous pen-and-paper iterations
of the ledger specification is a heavy use of set theory, which goes against Agda’s foundations
in Type Theory, both technically and in a philosophical sense. To remedy this, we have
developed an in-house library for conducting Axiomatic Set Theory within the type-theoretic
setting of Agda [18]; we stay in its finite fragment for this application. Crucially, the type of
sets is entirely abstract: there is no way to utilize proof-by-computation (e.g., as one would
do when modeling sets as lists of distinct elements), so that all proofs eventually resort to
the axioms and the library’s implementation details stay irrelevant. At the same time, when
extracting executable code the library provides a properly executable implementation – the
abstraction layer only exists at compile-time. Implementing this abstraction layer helped us
greatly reduce code complexity and size over a previous list-based approach. In fact, it is
highly encouraged to provide multiple implementations without affecting the formalization
and the validity of the established proofs therein.

Equipped with the axioms provided by the library, e.g., the ability to construct power
sets P, it is remarkably easy to define common set-theoretic concepts like set inclusion and
extensional equality of sets (left), as well as re-purpose sets of key-value pairs to model finite
maps2 by imposing uniqueness of keys (right):

⊆ : {A : Type} → P A → P A → Type
X ⊆ Y = ∀ {x} → x ∈ X → x ∈ Y

≈ : {A : Type} → P A → P A → Type
X ≈ Y = X ⊆ Y × Y ⊆ X

⇀ : Type → Type → Type
A ⇀ B = ∃ λ (ℜ : P (A × B)) →

∀ {a b b’} → (a , b) ∈ ℜ → (a , b’) ∈ ℜ → b ≡ b’

2 It is natural to think of maps as partial functions, but unrestricted Agda functions would not do here.

FMBC 2024

2:4 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

2 Fundamental entities

2.1 Cryptographic primitives
There are two types of credentials that can be used on Cardano: VKey and script credentials.
VKey credentials use a public key signing scheme (Ed25519) for verification. Some serialized
(Ser) data can be signed, and isSigned is the property that a public VKey signed some data
with a given signature (Sig). There are also other cryptographic primitives in the Cardano
ledger, for example KES and VRF used in the consensus layer, but we omit those here.

Script credentials correspond to a hash of a script that has to be executed by the ledger
as part of transaction validation. There are two different types of scripts, native and Plutus,
but the details of this are not relevant for the rest of this paper.

VKey Sig Ser : Type isSigned : VKey → Ser → Sig → Type

In the specification, all definitions that require these primitives must accept these as
additional arguments. To streamline this process, these definitions are bundled into a record
and, using Agda’s module system, are quantified only once per file. We are using this pattern
many times, either to introduce additional abstraction barriers or to effectively provide
foreign functions within a safe environment. Additionally, particularly fundamental interfaces
like the one presented above are sometimes re-bundled transitively into larger records, which
further streamlines the interface. This is in stark contrast to the Haskell implementation,
which often needs to repeat tens of type class constraints on many functions in a module.

2.2 Addresses
There are various types of addresses used for storing funds in the UTxO set, which all contain
a payment Credential and optionally a staking Credential. Addr is the union of all of those
types. A Credential is a hash of a public key or script, types for which are kept abstract. The
most common type of address is a BaseAddr which must include a staking Credential.

There is also a special type of address (not included in Addr) without a payment credential,
called a reward address. It is not used for interacting with the UTxO set, but instead used
to refer to reward accounts [32].

Credential = KeyHash ⊎ ScriptHash

record BaseAddr : Type where
pay : Credential
stake : Credential

record RwdAddr : Type where
stake : Credential

Addr = BaseAddr ⊎ . . .

2.3 Base types
The basic units of currency and time are Coin, Slot and Epoch, which we treat as natural
numbers, while an implementation might use isomorphic but more complicated types (for
example to represent the beginning of time in a special way).

Coin = Slot = Epoch = N

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:5

A Coin is the smallest unit of currency, a Slot is the smallest unit of time (corresponding to 1
second in the main chain), and an Epoch is a fixed number of slots (corresponding to 5 days
in the main chain). Every slot, a stake pool has a random chance to be able to mint a block,
and one block every five slots is expected [13].

3 Advancing the blockchain

3.1 Protocol parameters
We start with adjustable protocol parameters. In contrast to constants such as the length of
an Epoch, these parameters can be changed while the system is running via the governance
mechanism. They can affect various features of the system, such as minimum fees, maximum
and minimum sizes of certain components, and more.

The full specification contains well over 20 parameters, while we only list a few. The max-
imum sizes should be self-explanatory, while a and b are the coefficients of a polynomial used
in the calculation of the minimum fee for transactions (c.f., function minfee in Appendix B).

record PParams : Type where
maxBlockSize maxTxSize a b : N

3.2 Extending the blockchain block-by-block
CHAIN is the main state machine describing the ledger. Since it is not invoked from any
other state machine, it does not have an environment. It invokes two other state machines,
NEWEPOCH and LEDGER*, where the former detects if the new block b is in a new epoch.
In that case, NEWEPOCH takes care of various bookkeeping tasks, such as counting votes for
the governance system and updating stake distributions for consensus. For a basic version
that detects whether a new epoch has been entered, see Appendix C. The potentially updated
state is then given to LEDGER*, which is the reflexive-transitive closure of LEDGER and
applies all the transactions in the block in sequence. Finally, CHAIN updates ChainState with
the resulting states.

There is a key property about NEWEPOCH, which is that it never gets stuck, i.e. that
for all states, environments and signals it always transitions to a new state. This property is
proven in our development.

record Block : Type where
ts : List Tx
slot : Slot

record NewEpochState : Type where
lastEpoch : Epoch
acnt : Acnt
ls : LState
es : EnactState
fut : RatifyState

record ChainState : Type where
newEpochState : NewEpochState

CHAIN :
• mkNewEpochEnv s ⊢ s .newEpochState ⇀L epoch slot ,NEWEPOCH M nes
• J slot ⊗ constitution .proj1 .proj2 ⊗ pparams .proj1 ⊗ es K ⊢ nes .ls ⇀L ts ,LEDGER∗ M ls’

__

_ ⊢ s ⇀L b ,CHAIN M updateChainState s nes

FMBC 2024

2:6 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

3.3 Extending the ledger transaction-by-transaction

Transaction processing is broken down into three separate parts: accounting & witnessing
(UTXOW), application of certificates (CERT) and processing of governance votes & proposals
(GOV).

record LEnv : Type where
slot : Slot
ppolicy : Maybe ScriptHash
pparams : PParams
enactState : EnactState

record LState : Type where
utxoSt : UTxOState
govSt : GovState
certState : CertState

LEDGER :
• mkUTxOEnv Γ ⊢ utxoSt ⇀L tx ,UTXOW M utxoSt’
• J epoch slot ⊗ pparams ⊗ txvote ⊗ txwdrls K ⊢ certState ⇀L txcerts ,CERT∗ M certState’
• J txid ⊗ epoch slot ⊗ pparams ⊗ enactState K ⊢ govSt ⇀L txgov txb ,GOV∗ M govSt’

__

Γ ⊢ s ⇀L tx ,LEDGER M J utxoSt’ ⊗ govSt’ ⊗ certState’ K

(The notation J . . . ⊗ . . . K constructs records of any type by giving their fields in order.)

4 UTxO

4.1 Witnessing

Transaction witnessing checks that all required signatures are present and all required scripts
accept the validity of the given transaction. witsKeyHashes and witsScriptHashes is the set
of hashes of keys/scripts included in the transaction.

UTXOW-inductive :
• witsVKeyNeeded ppolicy utxo txb ⊆ witsKeyHashes
• scriptsNeeded ppolicy utxo txb ≡ witsScriptHashes
• ∀[(vk , σ) ∈ vkSigs] isSigned vk (txidBytes txid) σ

• ∀[s ∈ scriptsP1] validP1Script witsKeyHashes txvldt s
• Γ ⊢ s ⇀L tx ,UTXO M s’

__

Γ ⊢ s ⇀L tx ,UTXOW M s’

4.2 Accounting

Accounting is handled by the UTXO state machine. The preconditions for UTXO-inductive
ensure various properties or prevent attacks. For example, if txins was allowed to be empty,
one could make a transaction that only spends from reward accounts. This does not require a
specific hash to be present in the transaction body, so such a transaction could be repeatable in
certain scenarios. The equation between produced and consumed ensures that the transaction
is properly balanced. For details on some of these functions, see Appendix B.

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:7

record UTxOEnv : Type where
slot : Slot
pparams : PParams

Deposits = DepositPurpose ⇀ Coin

record UTxOState : Type where
utxo : UTxO
deposits : Deposits
fees donations : Coin

UTXO-inductive :
• txins ̸≡ ∅
• txins ⊆ dom utxo
• minfee pp tx ≤ txfee
• txsize ≤ maxTxSize pp
• consumed pp s txb ≡ produced pp s txb
• coin mint ≡ 0

__

Γ ⊢ s ⇀L tx ,UTXO M

J (utxo | txins) ∪ outs txb
⊗ updateDeposits pp txb deposits
⊗ fees + txfee
⊗ donations + txdonation K

▶ Property 4.1 (Value preservation). Let getCoin be the sum of all coins contained within a
UTxOState. Then, for all Γ ∈ UTxOEnv, s, s’ ∈ UTxOState and tx ∈ Tx, if tx .body .txid /∈
map proj1 (dom (s .UTxOState.utxo))and Γ ⊢ s ⇀L tx ,UTXO M s’then getCoin s ≡ getCoin s’.

Note that this is one of the most important properties of a UTxO-based ledger, as
evidenced by its central place in EUTxO’s meta-theory [9, 10].

5 Decentralized Governance

5.1 Entities and actions
The governance framework has three bodies of governance, the constitutional committee,
delegated representatives and stake pool operators, corresponding to the roles CC, DRep
and SPO. Proposals relevant to the governance system come in the form of Governance
Actions. They are identified by their GovActionID, which consists of the TxId belonging to
the transaction that proposed it and the index within that transaction (a transaction can
propose multiple governance actions at once).

GovActionID = TxId × N
data GovRole : Type where

CC DRep SPO : GovRole
data GovAction : Type where

NoConfidence : GovAction
NewCommittee : Credential ⇀ Epoch → P Credential → Q → GovAction
NewConstitution : DocHash → Maybe ScriptHash → GovAction
TriggerHF : ProtVer → GovAction
ChangePParams : PParamsUpdate → GovAction
TreasuryWdrl : (RwdAddr ⇀ Coin) → GovAction
Info : GovAction

For the meaning of these individual actions, see [12].

FMBC 2024

2:8 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

5.2 Votes and proposals

Before a Vote can be cast it must be packaged together with further information, such as
who is voting and for which governance action. This information is combined in the GovVote
record. To propose a governance action, a GovProposal needs to be submitted. Beside the
proposed action, it requires a deposit, which will be returned to returnAddr.

data Vote : Type where
yes no abstain : Vote

record GovVote : Type where
gid : GovActionID
role : GovRole
credential : Credential
vote : Vote

record GovProposal : Type where
action : GovAction
deposit : Coin
returnAddr : RwdAddr

5.3 Enactment

Enactment of a governance action is carried out via the ENACT state machine. We just show
two example rules for this state machine – there is one corresponding to each constructor of
GovAction. For an explanation of the hash protection scheme, see Appendix A.

record EnactEnv : Type where
gid : GovActionID
treasury : Coin
epoch : Epoch

record EnactState : Type where
cc : HashProtected (Maybe ((Credential ⇀ Epoch) × Q))
constitution : HashProtected (DocHash × Maybe ScriptHash)
pv : HashProtected ProtVer
pparams : HashProtected PParams
withdrawals : RwdAddr ⇀ Coin

Enact-NewConst :
__

J gid ⊗ t ⊗ e K ⊢ s ⇀L NewConstitution dh sh ,ENACT M record s { constitution = (dh , sh) , gid }

Enact-Wdrl :
let newWdrls = s .withdrawals ∪ wdrl in

∑
[x ← newWdrls] x ≤ t

__

J gid ⊗ t ⊗ e K ⊢ s ⇀L TreasuryWdrl wdrl ,ENACT M record s { withdrawals = newWdrls }

(The record keyword indicates a record update, i.e. we take the existing EnactState and
update one of its fields.)

5.4 Voting and Proposing

The order of proposals is maintained by keeping governance actions in a list – this acts as a
tie breaker when multiple competing actions might be able to be ratified at the same time.

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:9

record GovActionState : Type where
votes : (GovRole × Credential) ⇀ Vote
returnAddr : RwdAddr
expiresIn : Epoch
action : GovAction
prevAction : NeedsHash action

GovState = List (GovActionID × GovActionState)

record GovEnv : Type where
txid : TxId
epoch : Epoch
pparams : PParams
enactState : EnactState

GOV-Vote :
• (aid , ast) ∈ fromList s
• canVote pparams (action ast) role

__

(Γ , k) ⊢ s ⇀L sig ,GOV M addVote s aid role cred v

GOV-Propose :
• actionWellFormed a ≡ true
• d ≡ govActionDeposit

__

(Γ , k) ⊢ s ⇀L inj2 prop ,GOV M addAction s (govActionLifetime + epoch) (txid , k) addr a prev

5.5 Ratification
Governance actions are ratified through on-chain voting actions. Different kinds of governance
actions have different ratification requirements but always involve at least two of the three
governance bodies. The voting power of the DRep and SPO roles is proportional to the stake
delegated to them, while the constitutional committee has individually elected members
where each member has the same voting power.

Some actions take priority over others and, when enacted, delay all further ratification to
the next epoch boundary. This allows a changed government to reevaluate existing proposals.

record RatifyEnv : Type where
stakeDistrs : StakeDistrs
currentEpoch : Epoch
dreps : Credential ⇀ Epoch

record RatifyState : Type where
es : EnactState
removed : P (GovActionID × GovActionState)
delay : Bool

RATIFY-Accept :
• accepted Γ es st
• ¬ delayed action prevAction es d
• J a .proj1 ⊗ treasury ⊗ currentEpoch K ⊢ es ⇀L action ,ENACT M es’

__

Γ ⊢ J es ⊗ removed ⊗ d K ⇀L a ,RATIFY M
J es’ ⊗ { a } ∪ removed ⊗ delayingAction action K

RATIFY-Reject :
• ¬ accepted Γ es st
• expired currentEpoch st

FMBC 2024

2:10 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

__

Γ ⊢ J es ⊗ removed ⊗ d K ⇀L a ,RATIFY M J es ⊗ { a } ∪ removed ⊗ d K

RATIFY-Continue :
(• ¬ accepted Γ es st • ¬ expired currentEpoch st)

⊎ (• accepted Γ es st
• (delayed action prevAction es d

⊎ (∀ es’ → ¬ J a .proj1 ⊗ treasury ⊗ currentEpoch K ⊢ es ⇀L action ,ENACT M es’)))
__

Γ ⊢ J es ⊗ removed ⊗ d K ⇀L a ,RATIFY M J es ⊗ removed ⊗ d K

The main new ingredients for the rules of the RATIFY state machine are:
accepted, which is the property that there are sufficient votes from the required bodies to
pass this action;
delayed, which expresses whether an action is delayed;
expired, which becomes true a certain number of epochs after the action has been proposed.

The three RATIFY rules correspond to the cases where an action can be ratified and
enacted (in which case it is), or it is expired and can be removed, or, otherwise it will be
kept around for the future. This means that all governance actions eventually either get
accepted and enacted via RATIFY-Accept or rejected via RATIFY-Reject. It is not possible to
remove actions by voting against them, one has to wait for the action to expire.

6 Transactions

A transaction is made up of a transaction body and a collection of witnesses.

Ix TxId : Type
TxIn = TxId × Ix
TxOut = Addr × Value × Maybe DataHash
UTxO = TxIn ⇀ TxOut

record TxBody : Type where
txins : P TxIn
txouts : Ix ⇀ TxOut
txfee : Coin
txvote : List GovVote
txprop : List GovProposal
txsize : N
txid : TxId

record TxWitnesses : Type where
vkSigs : VKey ⇀ Sig
scripts : P Script

record Tx : Type where
body : TxBody
wits : TxWitnesses

Some key ingredients in the transaction body are:
A set of transaction inputs (txins), each of which identifies an output from a previous
transaction. A transaction input (TxIn) consists of a transaction ID and an index to
uniquely identify the output.
An indexed collection of transaction outputs (txouts). A transaction output (TxOut) is
an address paired with a multi-asset Value (see [10]).
A transaction fee (txfee), whose value will be added to the fee pot.

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:11

The size (txsize) and the hash (txid) of the serialized form of the transaction that was
included in the block. Cardano’s serialization is not canonical, so any information that is
necessary but lost during deserialisation must be preserved by attaching it to the data
like this.

7 Compiling to a Haskell implementation & Conformance testing

In order to deliver on our promise that the specification is also executable, there is still some
work to be done given that all transitions have been formulated as relations.

This is precisely the reason we also manually prove that each and every transition of the
previous sections is indeed computational:

record Computational (_⊢_⇀L_,X M_ : C → S → Sig → S → Type) : Type where
compute : C → S → Sig → Maybe S
compute-correct : compute Γ s b ≡ just s’ ⇔ Γ ⊢ s ⇀L b ,X M s’

The definition above captures what it means for a (small-step) relation to be accurately
computed by a function compute, which given as input an environment, source state, and
signal, outputs the resulting state or an error for invalid transitions. Most importantly, such
a function must be sound and complete: it does not return output states that are not related,
and, vice versa, all related states are successfully returned. An alternative interpretation is
that this rules out non-determinism across all ledger transitions, i.e., there cannot be two
distinct states arising from the same inputs.

There is one last obstacle that hinders execution: we have leveraged Agda’s module
system3 to parameterize our specification over some abstract types and functions that we
assume as given, e.g., the cryptographic primitives. As a final step, we instantiate these
parameters with concrete definitions, either by manually providing them within Agda, or
deferring to the Haskell foreign function interface to reuse existing Haskell ones that have no
Agda counterpart.

Equipped with a fully concrete specification and the Computational proofs for each relation,
it is finally possible to generate executable Haskell code using Agda’s MAlonzo compilation
backend.4 The resulting Haskell library is then deployed as part of the automated testing
setup for the Cardano ledger in production, so as to ensure the developers have faithfully
implemented the specification. This is made possible by virtue of the implementation
mirroring the specification’s structure to define transitions, which one can then test by
randomly generating environments/states/signals, and executing both state machines on
these same random inputs to compare the final results for conformance.

One small caveat remains though: production code might use different data structures,
mainly for reasons of performance, which are not isomorphic to those used in the specification
and might require non-trivial translation functions and notions of equality to perform
the aforementioned tests. In the future, we plan to also formalize these more efficient
representations in Agda and prove that soundness is preserved regardless.

3 https://agda.readthedocs.io/en/v2.6.4/language/module-system.html#parameterised-modules
4 https://agda.readthedocs.io/en/v2.6.4/tools/compilers.html#ghc-backend

FMBC 2024

https://agda.readthedocs.io/en/v2.6.4/language/module-system.html#parameterised-modules
https://agda.readthedocs.io/en/v2.6.4/tools/compilers.html#ghc-backend

2:12 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

8 Related Work

EUTxO. The approach we followed is a natural evolution of prior meta-theoretical results
on the EUTxO model [9, 10], but now employed at a much larger scale to cover all the
features of a realistic ledger: epochs, protocol parameters, decentralized governance, etc.

All this complexity does not come for free though: one has to be economical about
which properties to prove of the resulting system, and this might entail limiting oneself
to mechanizing just the core properties, such as global value preservation as we saw with
Property 4.1, otherwise the whole effort can quickly become practically infeasible to maintain
from a software-engineering perspective.

Formal Methods, generally. The overarching methodology – formally specifying the system
under design – is by no means particular to the blockchain space. A principal success story in
the wider computing world nowadays is definitely the WebAssembly language, an alternative
to Javascript to act as a compilation target for web applications with performance and
security in mind [16], which was designed in tandem with a formalization of its semantics [30].

Apart from keeping programming language designers honest by making sure no edge
cases are overlooked, it allows the language to evolve in a much more robust fashion: every
future extension has to pass through a rigorous process which eventually involves extending
the formalization itself.

While the WebAssembly line of work [30, 31] provided much inspiration for us, we believe
our approach to be even more radical by mitigating the need for informal processes altogether:
the formalization is the specification!

Formal Methods, specifically for blockchain. The work presented here fits well within
Cardano’s vision for agile formal methods [17], which strikes a good balance between a fully
certified implementation (too much effort, too few resources) and an informal, under-specified
product (quicker, easier, but far less trustworthy). Instead of demanding the impossible by
extracting the actual production from the formalization itself, we find the sweet spot lies in
the middle: extracting a reference implementation in Haskell and using conformance testing
to ensure the system in production behaves as it should (c.f., Section 7).

Apart from our work, there are very few mechanized results on UTxO-based blockchains
(modeled after Bitcoin [20]), and all of them invariably are formulated on a idealized
setting [27, 1, 9, 10], abstracting away the complexity that ensues when multiple features
interact. Thus, the mechanized specification presented here for the Cardano ledger is the
first of its kind, and we hope this sets a higher standard for subsequent work and pushes
forward a more formal agenda for blockchain research in the future.

Although not directly comparable to our use case, account-based blockchains (modeled
after Ethereum [8]) fair better in this respect, with plenty of formal method tools available,
ranging from model checking [15, 29] to full-blown formal verification [11, 7, 24]. Notable
blockchains that spearhead progress in this direction include Tezos [5, 6, 14], Ziliiqa and its
Scilla smart-contract language [26, 25], and Concordium [3, 22, 2, 28, 21]. The main difference
with our work lies in readability, partly due to the choice of tool (Agda being notorious for
its beautiful renderings but lack of proper support for practical “big” proofs that arise in
large scale software verification projects, where tactic-based proof assistants like Coq [4]
and Isabelle [23] are more common), and the point where mechanization is placed within
the development pipeline: most aforementioned work builds upon informal pen-and-paper
documents and some of its aspects are only mechanized a-posteriori. Having said that,

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:13

the fundamental split stems from a completely different target audience; our formalization
is meant to be read by researchers, formal methods engineers, compiler engineers, and
developers alike. In contrast, the majority of the aforementioned work is primarily targeted
at a select team of experts which complement other (informal) documentation and software.

9 Conclusion

We have outlined the mechanized specification of the EUTxO-based ledger rules of the
Cardano blockchain, by taking a bird’s-eye view of the hierarchy of transitions handling
different sub-components in a modular way.

Although space limitations preclude us from exhaustively fleshing out all the gory details
of our formalization, we hope to have conveyed the general design principles that will be
helpful to others when attempting to mechanize something of this kind and at this scale.
In the little space we could afford for more thorough details, we made a conscious choice
of putting emphasis on the most novel aspect of the current era of the Cardano blockchain:
decentralized governance. There, the introduction of the notions of voting, ratification, and
enactment complicate the ledger rules of previous eras – albeit in a fairly orthogonal way,
which we found particularly satisfying.

A mechanized formal artifact of this kind is rigid enough to eliminate any ambiguity
that would often arise in pen-and-paper specifications, all the while sustaining a readable
document that is accessible to a wide audience and allows for varied uses.

By virtue of conducting our work within a proof assistant based on constructive logic,
our result extends beyond a purely theoretical exercise to an executable resource that can be
leveraged as a reference implementation, against which a system-in-production can be tested
for conformance.

Last but not least, it is evident that developing a ledger on these foundations opens up
a plethora of opportunities for further formalization work, e.g., instantiating the abstract
notion of scripts with actual Plutus scripts brings us close to enabling practical smart
contract verification where developers write their programs immediately in Agda, prove
properties about their behavior, and then extract Plutus code they can deploy to the actual
Cardano blockchain. All these point to bright prospects for formal methods in UTxO-based
blockchains, which we are excited to explore in the future and hope that others do as well.

References
1 Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, and Anton Setzer. Verification of

Bitcoin Script in Agda using weakest preconditions for access control. In Henning Basold,
Jesper Cockx, and Silvia Ghilezan, editors, 27th International Conference on Types for Proofs
and Programs, TYPES 2021, June 14-18, 2021, Leiden, The Netherlands (Virtual Conference),
volume 239 of LIPIcs, pages 1:1–1:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.TYPES.2021.1.

2 Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. Extracting smart
contracts tested and verified in Coq. In Catalin Hritcu and Andrei Popescu, editors, CPP ’21:
10th ACM SIGPLAN International Conference on Certified Programs and Proofs, Virtual Event,
Denmark, January 17-19, 2021, pages 105–121. ACM, 2021. doi:10.1145/3437992.3439934.

3 Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. Concert: a smart contract
certification framework in Coq. In Jasmin Blanchette and Catalin Hritcu, editors, Pro-
ceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 215–228. ACM, 2020.
doi:10.1145/3372885.3373829.

FMBC 2024

https://doi.org/10.4230/LIPIcs.TYPES.2021.1
https://doi.org/10.1145/3437992.3439934
https://doi.org/10.1145/3372885.3373829

2:14 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

4 Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre,
Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The
Coq proof assistant reference manual: Version 6.1. PhD thesis, Inria, 1997.

5 Bruno Bernardo, Raphaël Cauderlier, Guillaume Claret, Arvid Jakobsson, Basile Pesin, and
Julien Tesson. Making tezos smart contracts more reliable with Coq. In Tiziana Margaria
and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and
Validation: Applications - 9th International Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part III, volume
12478 of Lecture Notes in Computer Science, pages 60–72. Springer, 2020. doi:10.1007/
978-3-030-61467-6_5.

6 Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. Mi-cho-coq,
a framework for certifying Tezos smart contracts. In Emil Sekerinski, Nelma Moreira, José N.
Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler,
José Creissac Campos, Troy Astarte, Laure Gonnord, Antonio Cerone, Luis Couto, Brijesh
Dongol, Martin Kutrib, Pedro Monteiro, and David Delmas, editors, Formal Methods. FM
2019 International Workshops - Porto, Portugal, October 7-11, 2019, Revised Selected Papers,
Part I, volume 12232 of Lecture Notes in Computer Science, pages 368–379. Springer, 2019.
doi:10.1007/978-3-030-54994-7_28.

7 Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges
Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil
Swamy, et al. Formal verification of smart contracts: Short paper. In Proceedings of the 2016
ACM Workshop on Programming Languages and Analysis for Security, pages 91–96, 2016.
doi:10.1145/2993600.2993611.

8 Vitalik Buterin. A next-generation smart contract and decentralized application platform
(white paper). https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_
Whitepaper_-_Buterin_2014.pdf, 2014.

9 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Mi-
chael Peyton Jones, and Philip Wadler. The Extended UTXO model. In Matthew Bernhard,
Andrea Bracciali, L. Jean Camp, Shin’ichiro Matsuo, Alana Maurushat, Peter B. Rønne, and
Massimiliano Sala, editors, Financial Cryptography and Data Security - FC 2020 International
Workshops, AsiaUSEC, CoDeFi, VOTING, and WTSC, Kota Kinabalu, Malaysia, February
14, 2020, Revised Selected Papers, volume 12063 of Lecture Notes in Computer Science, pages
525–539. Springer, 2020. doi:10.1007/978-3-030-54455-3_37.

10 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann
Müller, Michael Peyton Jones, Polina Vinogradova, and Philip Wadler. Native custom tokens
in the Extended UTXO model. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation: Applications - 9th International
Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,
October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes in Computer
Science, pages 89–111. Springer, 2020. doi:10.1007/978-3-030-61467-6_7.

11 Xiaohong Chen, Daejun Park, and Grigore Roşu. A language-independent approach to smart
contract verification. In International Symposium on Leveraging Applications of Formal
Methods, pages 405–413. Springer, 2018. doi:10.1007/978-3-030-03427-6_30.

12 Jared Corduan, Matthias Benkort, Kevin Hammond, Charles Hoskinson, Andre Knispel, and
Samuel Leathers. A first step towards on-chain decentralized governance. https://cips.
cardano.org/cip/CIP-1694, 2023.

13 Bernardo Machado David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
Praos: An adaptively-secure, semi-synchronous proof-of-stake protocol. IACR Cryptology
ePrint Archive, 2017:573, 2017 . URL: http://eprint.iacr.org/2017/573.

14 Christopher Goes. Compiling Quantitative Type Theory to Michelson for compile-time
verification and run-time efficiency in juvix. In Tiziana Margaria and Bernhard Steffen, editors,

https://doi.org/10.1007/978-3-030-61467-6_5
https://doi.org/10.1007/978-3-030-61467-6_5
https://doi.org/10.1007/978-3-030-54994-7_28
https://doi.org/10.1145/2993600.2993611
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-03427-6_30
https://cips.cardano.org/cip/CIP-1694
https://cips.cardano.org/cip/CIP-1694
http://eprint.iacr.org/2017/573

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:15

Leveraging Applications of Formal Methods, Verification and Validation: Applications - 9th
International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes,
Greece, October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes in Computer
Science, pages 146–160. Springer, 2020. doi:10.1007/978-3-030-61467-6_10.

15 Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis
Smaragdakis. Madmax: Surviving out-of-gas conditions in Ethereum smart contracts. Proceed-
ings of the ACM on Programming Languages, 2(OOPSLA):1–27, 2018. doi:10.1145/3276486.

16 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. Bringing the web up to speed with
WebAssembly. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 185–200. ACM, 2017. doi:10.1145/3062341.
3062363.

17 Philipp Kant, Kevin Hammond, Duncan Coutts, James Chapman, Nicholas Clarke, Jared
Corduan, Neil Davies, Javier Díaz, Matthias Güdemann, Wolfgang Jeltsch, Marcin Szamotulski,
and Polina Vinogradova. Flexible formality: Practical experience with agile formal methods.
In Aleksander Byrski and John Hughes, editors, Trends in Functional Programming - 21st
International Symposium, TFP 2020, Krakow, Poland, February 13-14, 2020, Revised Selected
Papers, volume 12222 of Lecture Notes in Computer Science, pages 94–120. Springer, 2020.
doi:10.1007/978-3-030-57761-2_5.

18 Andre Knispel. Constructive zf-style set theory in type theory. unpublished, 2023. URL:
https://whatisrt.github.io/papers/ZF-style-set-theory-in-type-theory.pdf.

19 Andre Knispel, Orestis Melkonian, James Chapman, Alasdair Hill, Joosep Jääger,
William DeMeo, and Ulf Norell. IntersectMBO/formal-ledger-specifications. swhId:
swh:1:dir:085aefb014706c3ee4bcf1a9f85fcceaf10ba4cc, (visited on 06/05/2024). URL:
https://github.com/IntersectMBO/formal-ledger-specifications.

20 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/en/
bitcoin-paper, oct 2008.

21 Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters. Formalising decentralised exchanges in
Coq. In Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic, editors,
Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2023, Boston, MA, USA, January 16-17, 2023, pages 290–302. ACM, 2023.
doi:10.1145/3573105.3575685.

22 Jakob Botsch Nielsen and Bas Spitters. Smart contract interactions in Coq. In Emil Sekerinski,
Nelma Moreira, José N. Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell, Matt
Luckcuck, Diego Marmsoler, José Creissac Campos, Troy Astarte, Laure Gonnord, Antonio
Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib, Pedro Monteiro, and David Delmas,
editors, Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11,
2019, Revised Selected Papers, Part I, volume 12232 of Lecture Notes in Computer Science,
pages 380–391. Springer, 2019. doi:10.1007/978-3-030-54994-7_29.

23 Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002. doi:10.1007/
3-540-45949-9.

24 George Pîrlea and Ilya Sergey. Mechanising blockchain consensus. In June Andronick and
Amy P. Felty, editors, Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages
78–90. ACM, 2018. doi:10.1145/3167086.

25 Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Temporal properties of smart contracts. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice - 8th International Symposium, ISoLA 2018,
Limassol, Cyprus, November 5-9, 2018, Proceedings, Part IV, volume 11247 of Lecture Notes
in Computer Science, pages 323–338. Springer, 2018. doi:10.1007/978-3-030-03427-6_25.

FMBC 2024

https://doi.org/10.1007/978-3-030-61467-6_10
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1007/978-3-030-57761-2_5
https://whatisrt.github.io/papers/ZF-style-set-theory-in-type-theory.pdf
https://archive.softwareheritage.org/swh:1:dir:085aefb014706c3ee4bcf1a9f85fcceaf10ba4cc;origin=https://github.com/IntersectMBO/formal-ledger-specifications;visit=swh:1:snp:5097bdc07a9030f7e251cb6529989d442bb82f35;anchor=swh:1:rev:002b7226a3af8e5e1068fd0c8fd1fcbb51bba64e
https://github.com/IntersectMBO/formal-ledger-specifications
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1145/3573105.3575685
https://doi.org/10.1007/978-3-030-54994-7_29
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3167086
https://doi.org/10.1007/978-3-030-03427-6_25

2:16 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

26 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken
Chan Guan Hao. Safer smart contract programming with Scilla. Proc. ACM Program. Lang.,
3(OOPSLA):185:1–185:30, 2019. doi:10.1145/3360611.

27 Anton Setzer. Modelling Bitcoin in Agda. CoRR, abs/1804.06398, 2018. doi:10.48550/arXiv.
1804.06398.

28 Søren Eller Thomsen and Bas Spitters. Formalizing Nakamoto-style proof of stake. In 34th
IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25,
2021, pages 1–15. IEEE, 2021. doi:10.1109/CSF51468.2021.00042.

29 Petar Tsankov. Security analysis of smart contracts in Datalog. In International Symposium
on Leveraging Applications of Formal Methods, pages 316–322. Springer, 2018. doi:10.1007/
978-3-030-03427-6_24.

30 Conrad Watt. Mechanising and verifying the WebAssembly specification. In June Andronick
and Amy P. Felty, editors, Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages
53–65. ACM, 2018. doi:10.1145/3167082.

31 Conrad Watt, Maja Trela, Peter Lammich, and Florian Märkl. Wasmref-isabelle: A verified
monadic interpreter and industrial fuzzing oracle for WebAssembly. Proc. ACM Program.
Lang., 7(PLDI):100–123, 2023. doi:10.1145/3591224.

32 Joachim Zahnentferner. Chimeric ledgers: Translating and unifying UTXO-based and account-
based cryptocurrencies. Cryptology ePrint Archive, Report 2018/262, 2018. URL: https:
//eprint.iacr.org/2018/262.

A Governance helper calculations

The design of the hash protection mechanism is elaborated here. The issue at hand is
that different actions of the same type may override each other, and they allow for partial
modifications to the state. So if arbitrary actions were allowed to be applied, the system
may end up in a particular state that was never intended and voted for.

In the original design of the governance system, the fix for this issue was to allow only a
single governance action of each type to be enacted per epoch. This restriction is a potentially
severe limitation and may open the door to some types of attacks.

The final design instead requires some types of governance actions to reference the ID of
the parent they are building on, similar to a Merkle tree. Then, in a single epoch the system
can take arbitrarily many steps down that tree, and since IDs are unforgeable, the system is
only ever in a state that was publically known prior to voting.

There are two governance actions where this mechanism is not required, because they
either commute naturally or they do not actually affect the state. For these it is more
convenient to not enforce dependencies.

NeedsHash : GovAction → Type
NeedsHash NoConfidence = GovActionID
NeedsHash (NewCommittee _ _ _) = GovActionID
NeedsHash (NewConstitution _ _) = GovActionID
NeedsHash (TriggerHF _) = GovActionID
NeedsHash (ChangePParams _) = GovActionID
NeedsHash (TreasuryWdrl _) = ⊤
NeedsHash Info = ⊤

HashProtected : Type → Type
HashProtected A = A × GovActionID

The two functions adjusting the state in GOV are addVote and addAction.

https://doi.org/10.1145/3360611
https://doi.org/10.48550/arXiv.1804.06398
https://doi.org/10.48550/arXiv.1804.06398
https://doi.org/10.1109/CSF51468.2021.00042
https://doi.org/10.1007/978-3-030-03427-6_24
https://doi.org/10.1007/978-3-030-03427-6_24
https://doi.org/10.1145/3167082
https://doi.org/10.1145/3591224
https://eprint.iacr.org/2018/262
https://eprint.iacr.org/2018/262

A. Knispel, O. Melkonian, J. Chapman, A. Hill, J. Jääger, W. DeMeo, and U. Norell 2:17

addVote inserts (and potentially overrides) a vote made for a particular governance action
by a credential in a role.
addAction adds a new proposed action at the end of a given GovState, properly initializing
all the requiered fields.

addVote : GovState → GovActionID → GovRole → Credential → Vote → GovState
addVote s aid r kh v = map modifyVotes s

where modifyVotes = λ (gid , s’) → gid , record s’
{ votes = if gid ≡ aid then insert (votes s’) (r , kh) v else votes s’}

addAction : GovState
→ Epoch → GovActionID → RwdAddr → (a : GovAction) → NeedsHash a
→ GovState

addAction s e aid addr a prev = s :: (aid , record
{ votes = ∅ ; returnAddr = addr ; expiresIn = e ; action = a ; prevAction = prev })

B UTxO

Some of the functions used to define the UTXO and UTXOW state machines are defined here;
inject is the function takes a Coin and turns it into a multi-asset Value [10].

outs : TxBody → UTxO
outs tx = mapKeys (tx .txid ,_) (tx .txouts)

minfee : PParams → Tx → Coin
minfee pp tx = pp .a * tx .body .txsize + pp .b

consumed : PParams → UTxOState → TxBody → Value
consumed pp st txb

= balance (st .utxo | txb .txins)
+ txb .mint
+ inject (depositRefunds pp st txb)

produced : PParams → UTxOState → TxBody → Value
produced pp st txb

= balance (outs txb)
+ inject (txb .txfee)
+ inject (newDeposits pp st txb)
+ inject (txb .txdonation)

credsNeeded : Maybe ScriptHash → UTxO → TxBody → P (ScriptPurpose × Credential)
credsNeeded p utxo txb

= map (λ (i , o) → (Spend i , payCred (proj1 o))) ((utxo | txins))
∪ map (λ a → (Rwrd a , RwdAddr.stake a)) (dom $ txwdrls .proj1)
∪ map (λ c → (Cert c , cwitness c)) (fromList txcerts)
∪ map (λ x → (Mint x , inj2 x)) (policies mint)
∪ map (λ v → (Vote v , GovVote.credential v)) (fromList txvote)
∪ (if p then (λ {sh} → map (λ p → (Propose p , inj2 sh)) (fromList txprop))

FMBC 2024

2:18 Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda

else ∅)
where open TxBody txb

witsVKeyNeeded : Maybe ScriptHash → UTxO → TxBody → P KeyHash
witsVKeyNeeded sh = mapPartial isInj1 ◦2 map proj2 ◦2 credsNeeded sh

scriptsNeeded : Maybe ScriptHash → UTxO → TxBody → P ScriptHash
scriptsNeeded sh = mapPartial isInj2 ◦2 map proj2 ◦2 credsNeeded sh

C Advancing epochs

The NEWEPOCH state machine is responsible for detecting epoch changes: either the epoch
remains unchanged (NEWEPOCH-Not-New), or the immediately next epoch is reached and
the state is updated subject to some ratification requirements (NEWEPOCH-New).

NEWEPOCH-New :
• e ≡ suc lastEpoch
• record { currentEpoch = e ; treasury = treasury ; GState gState ; NewEpochEnv Γ }

⊢ J es ⊗ ∅ ⊗ false K ⇀L govSt’ ,RATIFY∗ M fut’
__

Γ ⊢ nes ⇀L e ,NEWEPOCH M J e ⊗ acnt’ ⊗ ls’ ⊗ es ⊗ fut’ K

NEWEPOCH-Not-New :
e ̸≡ suc lastEpoch
__

Γ ⊢ nes ⇀L e ,NEWEPOCH M nes

Formally Verifying the Safety of Pipelined
Moonshot Consensus Protocol
M. Praveen #

Chennai Mathematical Institute, India
ReLaX, Chennai, India

Raghavendra Ramesh #

Supra Research, Brisbane, Australia

Isaac Doidge #

Supra Research, Brisbane, Australia

Abstract
Decentralized Finance (DeFi) has emerged as a contemporary competitive as well as complementary
to traditional centralized finance systems. As of 23rd January 2024, per Defillama [6] approximately
USD 55 billion is the total value locked on the DeFi applications on all blockchains put together.

A Byzantine Fault Tolerant (BFT) State Machine Replication (SMR) protocol, popularly known
as the consensus protocol, is the central component of a blockchain. If forks are possible in a consensus
protocol, they can be misused to carry out double spending attacks and can be catastrophic given
high volumes of finance that are transacted on blockchains. Formal verification of the safety of
consensus protocols is the golden standard for guaranteeing that forks are not possible. However, it
is considered complex and challenging to do. This is reflected by the fact that not many complex
consensus protocols are formally verified except for Tendermint [4] and QBFT [5].

We focus on Supra’s Pipelined Moonshot consensus protocol. Similar to Tendermint’s formal
verification, we too model Pipelined Moonshot using IVy and formally prove that for all network
sizes, as long as the number of Byzantine validators is less than 1/3, the protocol does not allow
forks, thus proving that Pipelined Moonshot is safe and double spending cannot be done using forks.
The IVy model and proof of safety is available on [1].

2012 ACM Subject Classification Networks → Protocol testing and verification; Theory of compu-
tation → Logic and verification; Theory of computation → Automated reasoning

Keywords and phrases Blockchain consensus, Safety, Formal verification

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.3

Supplementary Material Model (Source-code): https://github.com/Entropy-Foundation/
suprabft-fv/tree/master/suprabft

Funding M. Praveen: Funded by Supra

Acknowledgements We acknowledge and thank Chandradeep Dey and Namrata Reddy, who were
part of this project during its initial phase. We acknowledge Supra Research for funding M. Praveen,
the academic partner of this project and providing other support.

1 Introduction

Public blockchains are revolutionising modern society by rebranding traditional services
mainly the traditional finance based services, and offering them on a “decentralized trust”
platform. Here no single entity need be trusted as the network is typically open for permis-
sionless participation and tolerates malicious behaviour of the participants up to a certain
threshold. Though blockchains are being adopted by multiple domains of applications, finance
or Decentralised Finance (DeFi), happens to be the killer application that has shot the

© Supra. This work, as part of the collaborative efforts of M. Praveen, Raghavendra Ramesh and
Isaac Doidge, falls under the intellectual property rights asigned to Supra in accordance with their
agreements.;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 3; pp. 3:1–3:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:praveenm@cmi.ac.in
https://orcid.org/0000-0002-5734-7115
mailto:r.ramesh@supraoracles.com
https://orcid.org/0000-0002-6289-9723
mailto:i.doidge@supraoracles.com
https://orcid.org/0009-0008-3989-5901
https://doi.org/10.4230/OASIcs.FMBC.2024.3
https://github.com/Entropy-Foundation/suprabft-fv/tree/master/suprabft
https://github.com/Entropy-Foundation/suprabft-fv/tree/master/suprabft
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 Formally Verifying the Safety of Pipelined Moonshot Consensus Protocol

blockchain technology to fame as well as towards a popular adoption. As of 23rd January
2024, per Defillama [6] approximately USD 55 billion is the total value locked on the DeFi
applications on all blockchains put together.

Every node in a blockchain network runs a consensus protocol, more precisely known as
state machine replication (SMR) protocol, that enables that node to transition from one
blockchain state to the next in a consistent way so that no two nodes in the network end
up in different states after processing the same sequence of transitions. The transitions
are the clients’ submitted ledger transactions that are batched into a block. The sequence
of transitions form the chain of blocks, hence the name blockchain. We are interested in
consensus protocols in a partially synchronous network setting. In this setting it is well
known that an SMR protocol tolerates up to one-third of the network nodes being Byzantine
– nodes that may crash or deviate arbitrarily from the protocol but are assumed to be unable
to break cryptographic primitives like signatures.

Many such protocols have been proposed as well as successfully been adopted in practice
such as [10, 11, 27, 15, 20] but only a few protocols have been formally verified to the best
of our knowledge: Both the safety and liveness of Tendermint [4] have been formally verified
using Microsoft IVy [22]. The safety of QBFT (called IBFT earlier) has been verified [5]
using Microsoft’s Dafny [18].

Pipelined Moonshot [12] is a novel rotating leader-based Byzantine fault tolerant SMR
protocol that leverages optimistic proposals to achieve a high block throughput – one block
per network hop, and the lowest block finalization latency – 3 network hops, in the scenario
of a normal path. It is well known that designing protocols and proving them correct by hand
are notoriously prone to errors as many critical errors have been found even in peer-reviewed
distributed protocols (see [25] and references therein). In this paper, we focus on formally
proving the safety of this protocol.

Safety of a BFT SMR protocol is a critical requirement, ensuring that any two honest
processes agree on the set of transactions executed and the order in which they are executed.
Formally, if two honest processes have committed chains of blocks, then one of the chains
must be (not necessarily strict) prefix of the other one. When a protocol loses safety, forks
in the blockchain are possible, essentially yielding to the possibility of double spending which
is catastrophic to the finances built on top of this blockchain. Pipelined Moonshot protocol
is proved to be safe and live [12] with a handwritten proof. The goal of this project is to
provide a proof of safety in a formal verification tool.

Our Contributions.
We provide formal specification of the Pipelined Moonshot protocol in IVy [22], serving
as a reference for any implementation.
We formally verify safety of Pipelined Moonshot successfully. This makes the formal
specification a safety-error-free basis for any implementations to be developed.
We identify several invariants of the protocol to prove it safe. Invariants are useful in
generating test cases to test implementations of the protocol [30, 28].
We record our experience in the form of challenges faced and the corresponding mitigations
used. Learning from this experience we extend our wisdom as recommendations for
applying formal verification to large projects.

2 Related Work

In this section we detail various formal verification approaches for consensus protocol
verification and motivate our choice of IVy for verifying the safety of Pipelined Moonshot
protocol.

M. Praveen, R. Ramesh, and I. Doidge 3:3

Model checking approach typically models the protocol as some finite representation
of a state transition system and expresses the correctness properties in some logic and
enumerates exhaustively the state space validating against the given logical specifications.
Various model checking tools like SPIN [2], TLC [3], Apalache [16] etc are popular. Typically
for the consensus protocols of interest as long as the number of nodes in the system is not
fixed the state space is unbounded and generally does not yield a decidable algorithm to
model check. There are bounded model checking approaches where the number of nodes is
fixed typically and that yields a finite state machine against which the correctness properties
are checked. For instance, [9] model checks the block synchronization protocol of Tendermint
after fixing the number of nodes in the network using TLC and Apalache model checker.
We are focused on the general problem of safety of the Pipelined Moonshot with no bounds
on the network, hence model checking is not applicable and bounded model checking is not
satisfactory.

There are other approaches that identify a small model property in the given protocol
verification problem and apply model checking against the small model. The small model
property of a protocol P essentially is a bound on the number of nodes, say k, such that
the satisfaction of a property θ by P when run with k nodes imply that P satisfies θ for
all n ≥ k. The threshold automata approach of [17] leverages this and builds a counter
abstraction by counting the number of processes in each state. This has been applied to
the verification of DBFT [25] asynchronous consensus protocol. However this approach is
known to be hard and has not been applied so far for any of the partially synchronous BFT
consensus protocols, and we too could not find any direct ways of applying this approach to
the safety verification of Pipelined Moonshot.

We now turn to the deductive verification tools. In this approach, the protocol is modeled
in some logic (typically first-order logic, its fragments or extensions) and the properties to be
verified are also written in the same logic. From these, formulas called Verification Conditions
(VCs) are generated, whose unsatisfiability implies that the protocol has the desired property.
With interactive theorem provers, proof of unsatisfiability is developed in a proof system
(such as natural deduction system or its variants). With automated deductive verification
tools, proof of unsatisfiability is given by Satisfiability Modulo Theory solver (SMT solver).

TLA+ [3] supports a very expressive logic called TLA – Temporal Logic of Actions, for
specifying state machines and properties. We found that expressing the Pipelined Moonshot
protocol in TLA+ to be very complex and huge, and so also the verification in TLAPS –
TLA Proof System, to be effortful as each and every lemma has to be proven more or less
interactively. We were on the look out for solvers that push more automation and lessen
the interaction with the solver. Another requirement of us was that the formal specification
should be close to the real world programming languages so that the developer community
may be comfortable using the formal specification as the basis for their implementation. We
found the TLA+ specifications to be far from the interest of the developer community, unless
they are trained specifically towards verification.

Dafny [18] is a verification-aware programming language that facilitates specifying pre
and post conditions for procedures and verify at compile time. Correctness by construction is
the philosophy here. The code may also be compiled to regular programming languages like
C#, Java, JavaScript, Go and Python. The safety of QBFT (previously known as IBFT [20])
has been verified using Dafny.

It is also well known that the formal verification of distributed protocols is an arduous
effort. Hence we were on the look out for a tool that maximally uses automation in proof
building and we found IVy [22] to fit the bill. IVy is a language and a tool for the formal

FMBC 2024

3:4 Formally Verifying the Safety of Pipelined Moonshot Consensus Protocol

specification and verification of distributed systems. IVy supports deductive verification using
automated provers such as Z3 [8], model checking, automated testing, manual theorem proving
and generation of executable code. In order to achieve greater verification productivity, a
key design goal for IVy is to allow the engineer to apply automated provers in the realm in
which their performance is relatively predictable, stable and transparent. In particular IVy
focuses on the use of decidable fragments of first-order logic. IVy supports modularisation of
the specifications and proofs, aiding their readability and also ensuring that formulas passed
to provers are in decidable fragments. This helps to some extent in getting the provers to
return with answers quickly.

As IVy embodies an imperative language, the protocol specification in IVy serves as
a sound reference for any implementation. Note that the safety of Tendermint has been
verified using IVy [4]. For all these reasons we favoured IVy as the formal verification tool
for verifying the safety of Pipelined Moonshot.

To make proofs easier, Pretend Synchrony [26] takes another route of reducing the problem
of verifying asynchronous distributed protocols to the problem of verifying synchronous
distributed protocols. However it has been applied only in the setting of crash faults setting
but not in Byzantine faults setting, which is the focus of this paper.

3 Safety of Pipelined Moonshot Consensus

In this section we summarise Pipelined Moonshot and elucidate the scope of our formal
verification endeavour.

Pipelined Moonshot
Pipelined Moonshot [12] is a chain-based, rotating leader Byzantine Fault Tolerant (BFT)
State Machine Replication (SMR) protocol optimized for wide-area networks. It satisfies the
safety and liveness properties of SMR under the partially synchronous network model [13]
given at most f of the n total participants in the protocol (which we will call validators) are
Byzantine, such that f < n

3 . Without loss of generality, we assume that n = 3f + 1 for the
rest of the paper and use the term quorum to refer to a set of 2f + 1 validators. The full
details of Pipelined Moonshot’s setting are provided in [12].

The protocol, presented in Figure 1 as given in [12], constructs a chain of blocks of client
transactions (or some abstraction thereof) over a sequence of numbered views advanced by
quorum decisions in the form of certificates. In Pipelined Moonshot, a view, say v, may
produce two types of certificates; a Quorum Certificate Cv(Bk) comprised of 2f + 1 votes
for some block Bk (where k is the position or height of B in the blockchain) proposed for
v, or a Timeout Certificate T Cv comprised of 2f + 1 timeout messages for v. A Pipelined
Moonshot validator in view v votes for Bk when it receives Bk in a valid proposal (described
momentarily) and sends a timeout message for v, denoted Tv, that contains its locked QC –
i.e., the QC with the highest view that it has observed so far – when it fails to exit v before
its view timer expires or when it observes evidence that at least one honest validator has
already sent Tv. These rules together ensure that the protocol continually generates new
certificates, preventing it from halting.

A validator that receives a certificate for view v advances its local view to v + 1 and
resets its view timer. If it enters v + 1 via a QC then it also locks the QC and multicasts it
to ensure that its peers enter the view promptly. Otherwise, if it enters v + 1 via T Cv then
it unicasts this certificate to the designated leader for v + 1, denoted Lv+1, enabling it to
enter the view and propose promptly.

M. Praveen, R. Ramesh, and I. Doidge 3:5

A Pipelined Moonshot node Pi runs the following protocol whilst in view v:

1. Propose. Upon entering v, the leader Lv proposes using one of the following rules:
a. Normal Propose. If Lv entered v by receiving Cv−1(Bk−1), multicast

⟨propose, Bk, Cv−1(Bk−1), v⟩ such that Bk extends Bk−1.
b. Fallback Propose. If Lv entered v by receiving T Cv−1, multicast

⟨fb-propose, Bk, Cv′ (Bk−1), T Cv−1, v⟩ such that Cv′ (Bk−1) is the highest ranked cer-
tificate in T Cv−1 and Bk extends Bk−1.

2. Vote. Pi votes at most twice in view v when the following conditions are met:
a. Optimistic Vote. Upon receiving the first optimistic proposal ⟨opt-propose, Bk, v⟩ where

Bk extends Bk−1, if (i) timeout_viewi < v − 1, (ii) locki = Cv−1(Bk−1) and (iii) Pi has not
voted in v, multicast an optimistic vote ⟨opt-vote, H(Bk), v⟩i for Bk.

b. After executing Advance View and Lock with all embedded certificates, vote once when one
of the following conditions are satisfied:
i. Normal Vote. Upon receiving the first normal proposal ⟨propose, Bk, Cv−1(Bh), v⟩, if

(i) timeout_viewi < v, (ii) Bk directly extends Bh and (iii) Pi has not sent an optimistic
vote for an equivocating block B′

k′ in v, multicast ⟨vote, H(Bk), v⟩i for Bk.
ii. Fallback Vote. Upon receiving the first fallback proposal

⟨fb-propose, Bk, Cv′ (Bh), T Cv−1, v⟩ if (i) timeout_viewi < v and (ii) Bk directly
extends Bh and Cv′ (Bh) is the highest ranked certificate in T Cv−1, multicast
⟨fb-vote, H(Bk), v⟩i for Bk.

3. Optimistic Propose. If Pi is Lv+1 and voted for Bk in view v, multicast ⟨opt-propose, Bk+1, v+
1⟩ where Bk+1 extends Bk.

4. Timeout. If view-timeri expires and Pi has not already sent Tv, then multicast
⟨timeout, v, locki⟩i and set timeout_viewi = max(timeout_viewi, v). Additionally, upon re-
ceiving f + 1 distinct ⟨timeout, v′, _⟩∗ messages or T Cv′ such that v′ ≥ v and not having sent
Tv′ , multicast ⟨timeout, v′, locki⟩i and set timeout_viewi = max(timeout_viewi, v′).

5. Advance View. Pi enters v′ where v′ > v using one of the following rules:
Upon receiving Cv′−1(Bh). Also, multicast Cv′−1(Bh).
Upon receiving T Cv′−1. Also, unicast T Cv′−1 to Lv′ .

Finally, reset view-timeri to 3∆ and start counting down.

Pi additionally performs the following actions in any view:
1. Lock. Upon receiving Cv(Bk) whilst having locki = Cv′ (Bk′) such that v > v′, set locki to

Cv(Bk).
2. Direct Commit. Upon receiving Cv−1(Bk−1) and Cv(Bk) such that Bk extends Bk−1, commit

Bk−1.
3. Indirect Commit. Upon directly committing Bk−1, commit all of its uncommitted ancestors.

Figure 1 The Pipelined Moonshot Protocol [12].

Upon entering v +1, Lv+1 creates a new block, say Bl, and multicasts it in a proposal that
depends on the type of certificate it used to enter the view. If the view change was triggered
by Cv(Bk), then Bl directly extends Bk (i.e. l = k + 1 and Bl contains the hash digest of
Bk) and Lv+1 multicasts a Normal Proposal containing both Bl and Cv(B). Otherwise,
Bl extends the block certified by the QC with the highest view included in T Cv and Lv+1
multicasts a Fallback Proposal containing both Bl and T Cv. A validator in v +1 that receives
a proposal of either type from Lv+1 that is constructed as previously described and has
yet to either send a vote for an equivocating block (as described in Figure 1) or a timeout

FMBC 2024

3:6 Formally Verifying the Safety of Pipelined Moonshot Consensus Protocol

message for v + 1, multicasts a vote of the corresponding type for Bl for v + 1. Importantly,
Pipelined Moonshot ensures that votes cannot be aggregated into a QC unless they have the
same type.

Upon voting for Bl, if the validator is Lv+2 then it also creates an Optimistic Proposal
for v + 2 containing a new block that extends Bl, presuming that Bl will be certified. A
validator that receives this proposal votes for it once in v + 2 if it has not yet voted in
v + 2 and it entered the view via Cv+1(Bl) without having sent a timeout message for v + 1.
Optimistic Proposals, a distinguishing feature of Moonshot protocols, allow votes for the
current view to be disseminated in parallel with a proposal for the next view when both
leaders are honest. Comparatively, prior protocols require a leader to receive a certificate for
the previous view before proposing, inherently sequentializing these actions.

A validator that observes the certification of a block and its immediate successor in the
chain for adjacent views commits the block by permanently appending it to its local copy of
the blockchain.

Safety
An SMR protocol is safe if it ensures that no two validators commit divergent blockchains.
Let the local blockchain of validator Pi be denoted by Bi. More formally, the safety property
states that for every run of the protocol, and for each pair of honest validators (Pi, Pj) ∈ V ×V ,
either Bi is a (not necessarily strict) prefix of Bj or vice-versa.

The Pipelined Moonshot [12] paper contains the handwritten proof of safety and liveness.
As well established in the literature some errors may potentially be present in the handwritten
proofs that could go overlooked. A recent example is the Chord [24] protocol for distributed
hash tables which, despite having more than 6000 citations, was shown incorrect by Zave [29]
almost a decade after its publication. Since only formal verification can conclusively guarantee
the absence of errors in a protocol, we aimed at developing mechanically verifiable proofs of
the safety of Pipelined Moonshot.

4 Formal Specification and Verification using IVy

In this section, we first present some of the preliminaries of IVy modeling, secondly we present
an high level overview of the formal IVy specification of the Pipelined Moonshot consensus
protocol, and then finally present the structure of our safety proof.

4.1 IVy modeling setup
IVy is a language and a tool for the formal specification and verification of distributed
systems. Systems are represented as state transition machines. States are multi-sorted
first-order structures, with relations and functions. Transitions specify how the state is
mutated. Any update definable in first-order logic is supported. Update instructions can
be given in sequence one after another, giving the syntax the flavor of a developer-friendly
imperative programming language. Multiple update instructions can be grouped together
into an action, a keyword in IVy that is used to denote state transition specifications.

The system under consideration is typically split into multiple modules, with internal
states of a module not allowed to be modified directly by other modules. One module can call
actions of another module, passing parameters. Modules can reason about one another using
assume-guarantee specifications, which are formulas specifying properties of the modules’
states. Properties of the overall system has to be proved by writing inductive invariants,

M. Praveen, R. Ramesh, and I. Doidge 3:7

which are properties satisfying two conditions – initiation and inductiveness. Initiation means
that the initial state of the system satisfies the invariant. Inductiveness means that if any
of the actions are executed in any state that satisfies the invariant, the resulting state also
satisfies the invariant.

Modules in IVy, apart from modularising the protocol specification and proofs, serves
another deeper purpose. Multiple formulas used in the proof may together necessitate the use
of logics that are undecidable. Modules in IVy allow proving different properties in isolation,
ensuring that formulas supporting one invariant are invisible to other modules. This will
allow users to control which formulas are passed to the underlying SMT solvers together, so
that all calls to the SMT solver are within decidable fragments of first-order logic.

Only a high level abstract specification of the protocol is modeled and verified. Some
implementation details are hence modeled with Boolean abstractions. For example, timers
used in the protocol are replaced by Boolean propositions that indicate whether or not a
timer has expired. In the IVy model, the Boolean proposition can switch value anytime
non-deterministically to simulate a timer getting expired, instead of tracking the actual time
elapsed since the last reset. This is a sound abstraction for proving safety.

Another abstraction we have adapted from the literature is handling quorums [19]. The
protocol specification mandates that a validator needs to receive messages from a super
majority of all validators (two-thirds of the entire set) in order to achieve a quorum. Verifying
this detail would require having arithmetic in the formulas passed on to SMT solvers,
potentially affecting the solver’s performance. Instead, what is modeled is the quorum
intersection property [19] – any two quorums have at least one common honest validator. It
is this property of quorums that are mainly used in correctness proofs and is modeled in IVy
as an axiom, avoiding the usage of arithmetic.

Validators receive messages from the network and verify their authenticity by checking
digital signatures. It is assumed that Byzantine validators cannot break cryptographic
primitives and hence they cannot forge signatures of honest validators. Checking digital
signatures is not modeled in IVy – the model assumes messages sent by honest validators
are authentic. The model also disallows byzantine validators to send messages on behalf of
other honest validator, though they can send any kind of message on behalf of themselves or
other byzantine validators, even if such a message is not mandated to be sent by the protocol
specification.

4.2 Pipelined Moonshot Specification

We have published our IVy specification and the formal proof of safety of Pipelined Moonshot
online on GitHub [7]. Following are the main modules in our IVy specification of Pipelined
Moonshot:

Types. This module contains the declarations of the data types used in the IVy specification.
The types round_t, height_t are declared to be instances of ubd_seq, a small modification
of unbounded_sequence, which are finite but unbounded total linear orders. Round is the
technical term used in our IVy model for view as used in the protocol specification [12]. The
type process_index_t is declared to be an instance of iterable, which allows a collection of
validators to be iterated in a loop in IVy models. The above types are used conventionally
while modeling protocols in IVy. Other types declared correspond to message types specified
in the protocol specification: block_t, quorum_t, qc_t, tc_t. Common properties of these
types are also written in this module, including the quorum intersection axiom.

FMBC 2024

3:8 Formally Verifying the Safety of Pipelined Moonshot Consensus Protocol

Network. This module models the network through which validators interact. It is almost
same as the network model in Tendermint’s IVy model [4], except for the kind of messages
that can be sent. Here the kind of messages that can be sent are normal proposal, fallback
proposal, optimistic proposal, normal prepare, fallback prepare, optimistic prepare, quorum
certificate, timeout certificate, timeout and weak timeout certificate. A timeout certificate is
a collection of timeout messages from a two thirds majority of validators, whereas a weak
timeout certificate is a collection timeout messages from a number of validators at least
one more than the number of Byzantine validators. The network model is that of any
asynchronous one, where messages can be dropped or delivered multiple times and/or out of
order.

Moonshot. The IVy specification of the Pipelined Moonshot is provided in this module.
State variables of individual validators are declared and updates to the state variables are
performed in response to specific events as specified in Figure 1. The details of this module
are provided in Appendix A.

Quorum verification. In implementation, the integrity of a quorum of messages received by
a validator is verified by checking digital signatures accompanying the messages. Here, the
integrity is checked by verifying that all honest members of a quorum have actually sent the
corresponding messages. It is done in this module using the concept of monitors provided by
IVy – they are additional updates to state variables that are performed whenever an action is
performed by the protocol. This module contains monitors that record prepare and timeout
messages sent by the validators. When a validator receives a quorum or timeout certificate,
its integrity is checked by verifying from the records that all honest members of the quorum
have actually sent the corresponding prepare or timeout message. This can be thought of as
some kind of a central authority with a global view of all validators, who records all messages
sent by the validators. Of course there is no such central authority in real implementation; it
is only modeled here for the sake of proving safety.

Safety. The safety module specifies the desired safety property in the form of an inductive
invariant. Numerous supporting invariants are also included here, as detailed in the next
sub-section. Following is a code snippet, that states the main safety property.

isolate full_safety = {
relation blockchain_prefix(N1:process_index_t, N2:process_index_t)

the latest block committed to b_v by N1 is equal to or ancestor of the
latest block committed by N2. All blocks committed by N1 are also
committed by N2. Any block committed by N2 but not by N1 is a descendant
of the latest block committed by N1
definition blockchain_prefix(N1,N2) = ...

this is the full safety property of the pipelined moonshot protocol: for
any two honest processors N1,N2 the chain committed by N1 is a prefix of
N2 or vice versa
invariant forall N1,N2:process_index_t. is_good(N1) & is_good(N2) ->
(blockchain_prefix(N1,N2) | blockchain_prefix(N2,N1))

} with block_t, verify_quorum, certified_block_ancestor_m1,
all_ancestors_committed, committed_blocks_ancestors,
latest_committed_ancestors, commit_to_chain, commit_to_chain_m1

M. Praveen, R. Ramesh, and I. Doidge 3:9

The definition of the relation blockchain_prefix above is not shown fully due to lack of space,
but its intention is captured in the comment above. The with clause above lists the names of
other isolates, containing invariants supporting this one.

Table 1 provides some statistics of these modules. Note that a typical line in safety.ivy
is much longer than those in other files, since one whole invariant is written in one line of
safety.ivy. The files also have extensive comments serving the purpose of readability and
documentation. There are a total of 190 invariants and 23 monitors. A rough estimate of the
ratio of sizes of program code vs. proof is 1:3. Verifying the safety of Pipelined Moonshot
took about 140 man hours after the protocol specification itself was stabilized. About 10%
of this was needed to model the protocol and the rest to complete the proofs.

Table 1 Modules and their Lines of code.

Module Contents Lines
Types Extended data types 338
Network Network model 110
Moonshot Pipelined Moonshot SMR protocol 642
Quorum verification Validating messages sent by quorum members 165
Safety Inductive invariants proving safety 1309

Total 2564

4.3 Structure of the Safety Proof
Mechanically-checked proofs are developed interactively in a dialogue between a Verification
engineer and the proof assistant – IVy. The engineer gives the desired specification of the
model and of the property, IVy attempts to prove that the model satisfies the property. It
may prove, then all is well, it may fail showing a counterexample, or it may not come back for
a reasonable amount of time. When satisfiability fails it shows logical errors in the protocol.
When it takes an unreasonable amount of time, the engineer has to creatively craft some
lemmas that aids the machine in its proof search. This is the standard iterative approach of
building mechanised proof.

IVy could not prove the safety specification directly (as is typical). We had to write all
the intermediate lemmas given in [12] and many more. We first outline the main steps in the
handwritten safety proof.
1. If an honest validator executes direct commit of a block B as given in point 2 at the

bottom of Figure 1, then any subsequent block that achieves a quorum is a descendant of
B. This is proved in [12, Lemma 2, Lemma 3].

2. If an honest validator commits a block, it also commits all of its ancestors. This is implicit
in [12].

3. For any two blocks committed by an honest validator, one is an ancestor of the other.
This does not directly correspond to any result stated in [12], but essential in our IVy
proof.

4. If Bi (resp. Bj) is the latest block committed by an honest validator vi (resp. vj), then
Bi is an ancestor of Bj or vice-versa. This is a corollary of item 1 above.

5. If there were two blocks that were divergent, one would be an ancestor of the other (by
item 3 above) and both would be ancestors of the latest committed block (by item 4
above). Hence, both would be committed by all honest validators (by item 2 above),
contradicting the hypothesis that they are divergent. This argument is essentially the
proof of [12, Theorem 3].

FMBC 2024

3:10 Formally Verifying the Safety of Pipelined Moonshot Consensus Protocol

IVy verifies that properties are inductive invariants by generating formulas in Finite
Almost Uninterpreted (FAU) fragment of first-order logic and passing them on to Z3 [19].
Trying to prove too many properties in one step often degrades the performance of the SMT
solver. To overcome this, IVy allows to group together a small number of properties in
an isolate, specifying other isolates as supporting invariants. When verifying one isolate,
other isolates that it depends on are assumed to be true. The dependencies can be checked
later. The safety invariants in our model are structured into several isolates. The top level
of this structure follows the structure of the handwritten proof that is summarized above,
and is illustrated below. Here, (5, full_safety) means that the point 5 above is proved in
the isolate full_safety, likewise for other nodes. The arrow from (5, full_safety) to (3,
committed_blocks_ancestors) means that the isolate full_safety depends on other isolates:
committed_blocks_ancestors being one of them.

(5, full_safety)

(4, latest_committed_ancestors)

(3, committed_blocks_ancestors) (2, all_ancestors_committed)

(1, quorum_after_ldc_descendant)

The isolate quorum_after_ldc_descendant is technically the most involved result in both
the handwritten proof and IVy proof. This result is proved in IVy by induction on rounds.
The principle of induction is taken to be an axiom and applied to the main invariant in
the isolate quorum_after_ldc. It states that if a block B is committed directly by an honest
validator, then any block proposed in later rounds that achieves a quorum has a parent
proposed in the same round as B or later rounds. Proving the invariants in the isolate
quorum_after_ldc itself is lengthy, indirectly involving around 30 other isolates.

5 Challenges

The development and handwritten proof of safety and liveness of the pipelined Moonshot
protocol underwent many cycles (some modifications to ensure liveness and some for sim-
plifying the specification and proofs). This naturally resulted in iterating and refining the
IVy specification too. The process of formally verifying safety (including analyzing counter
examples given by IVy) uncovered some points in the specifications and proofs that were
ambiguous and helped better understand many details that were implicit in the handwritten
proofs.

Here we document some of the challenges faced in such a verification effort.

Transitive closure

Ancestor relation is the binary transitive closure of the parent relation. For a validator to
commit a block to its canonical chain, the block and its ancestors must have got quorums.
The statement and proof of the property in the isolate quorum_after_ldc_descendant uses
the ancestor relation. Thus, many crucial parts of the model and safety proof depend on
the ancestor relation. However, transitive closure of binary relations are not definable in
first-order logic. To overcome this, we adapted a known technique [19]. If a binary relation
is known to be the transitive closure of another base relation, then under some conditions
the base relation can be defined from its transitive closure in first-order logic. To use this

M. Praveen, R. Ramesh, and I. Doidge 3:11

technique, a monitor in the isolate certified_block_ancestor_m1 tracks when blocks get
quorums and records the ancestor relation among them. Whenever a block gets quorum, the
monitor updates the record, making the newly certified block a descendant of its parent block
and all the parent block’s ancestors. In the isolate certified_block_ancestor_m5, we verify
that the base relation obtained from the relation recorded by certified_block_ancestor_m1
is indeed the parent relation. This challenge is not there for verifying Tenderming [4], where
cross dependencies between isolates is lesser.

Nested subroutine calls

As in most programming languages, actions in IVy can invoke other actions, which can
themselves invoke more actions and so on. We observed empirically that with higher depth of
nesting of action invocations, the performance of the IVy verifier slows down considerably. The
protocol specification use subroutines that are called from multiple sites and the natural way
to model it would be to have similar actions in IVy called from multiple actions. However, the
slowdown in performance was significant enough that we resorted to inlining the subroutine
calls. Further work is needed to understand the causes and more elegant workarounds.

IVy verifier getting stuck without giving an answer

This challenge took up most of the time for executing this project. While verifying properties
that were expected to be true, the IVy verifier would call the Z3 SMT solver, which would
run for a long time without giving any answer. Such behaviour from SMT solvers cannot be
entirely avoided, since they try to solve problems that have quite bad complexity theoretical
lower bounds. There is no fixed template for handling this. Experience with using the tool
and familiarity with the protocol being verified help a little bit. This is a challenge faced by
most formal verification efforts; we felt it more since we had many invariants to prove, due
to the complexity of the underlying protocol. Here are a few rules of thumb we resorted to,
devised from trial and error.
Isolating the cause in the protocol. If the property being verified involved multiple steps

in the protocol, we tried commenting out parts of the protocol and trying to verify the
property. If the property was proved to be true/false after a particular section was
commented out, then we could concentrate on that part to see what can be causing the
SMT solver to diverge. This strategy helped us identify some subtle points that were
implicitly assumed in the handwritten proof.

Explicitly writing intermediate results. We illustrate this with an example. In the isolate
quorum_after_ldc_descendant_m7, the third invariant states that under some conditions,
the block Bp is an ancestor of B. IVy could not prove this in a reasonable amount of
time, so it was not clear whether it is due to lack of supporting invariants or because
the SMT solver is diverging. We then added the first two invariants. The first one
says that under the same condition, Bp is an ancestor of Bp1 and the second one
says that additionally, Bp1 is an ancestor of B. With the first two invariants added,
IVy successfully verifies all the three in short time. There are many more examples
like this. The main invariant of quorum_after_ldc_descendant_m7 is inferred from a
similar series of intermediate invariants, starting from quorum_after_ldc_descendant_m1,
ending at quorum_after_ldc_descendant_m8 and then finally proving the invariant in
quorum_after_ldc_descendant.

FMBC 2024

3:12 Formally Verifying the Safety of Pipelined Moonshot Consensus Protocol

6 Recommendations

In this section we consolidate our experience with the safety verification of Pipelined Moonshot
and attempt to distill some recommendations for applying formal verification techniques in
proving the correctness of distributed systems.

Compared to semi-interactive theorem provers like Coq, the manual effort required with
IVy is lesser. The proofs had to be flattened out into small steps manageable by SMT
solvers, as explained in the last challenge. More research efforts like [14] are needed to
reduce the burden of manually working out minute details, letting users concentrate on
understanding protocols and correctness proofs intuitively.
With complex protocols involving correctness proofs using hundreds of invariants, the
success of deductive verifications tools that call SMT solvers in the background depends
crucially on modularization of the proof, so that every SMT call is restricted to a small
number of closely related formulas. For this, it is important at the outset to have a good
idea of how the modules are going to be structured and which modules are meant for what.
If this is lacking during the initial phase, chasing minute details during the verification
process can quickly lead to huge, monolithic, incomprehensible and unmanageable pile
of candidate invariants. In earlier attempts at verifying Pipelined Moonshot, we were
sometimes in situations where we changed an invariant written earlier to suitably support
a newly written invariant, only to realize later that this change affected an earlier
dependency. We had lost track of which invariants supported which others and small
changes in one invariant affected seemingly unrelated ones elsewhere.
A related point is to be disciplined while establishing inter-dependencies among modules,
specifically isolates in IVy. If invariant 1 in isolate 1 needs invariant 2 in isolate 2 for
support, it is tempting to mention the whole of isolate 2 as a dependency for isolate 1,
instead of mentioning just invariant 2 of isolate 2. This may seem to be a time saver in the
short term, but will result in unnecessary formulas (invariants in isolate 2 different from
invariant 2) being passed to the SMT solver. Such unnecessary formulas can drastically
degrade the performance of SMT solvers. Due to this, isolate 1 may pass all verification
conditions in a short time currently but may not be able to do so in the future if additional
invariants are added to isolate 2. If there is a group of invariants that are always together
supporting other invariants, they should be recognized as such and grouped into an isolate,
which is why this is related to the previous point of starting with well organized modules.
The state of the art for formal verification of this scale very much requires experts
with advanced knowledge of logic and related topics, who also need to understand the
protocol being verified. An ideal team for formal verification would consist of experts
with experience in using logic based verification tools on the one hand, and designers who
understand the workings of the protocol at both abstract level and minute detail level on
the other hand.

7 Conclusion

We have successfully verified the safety of a high performance and complex consensus protocol,
namely Pipelined Moonshot, in IVy. This conclusively proves the absence of design or logic
errors with respect to the protocol safety. Proving liveness is future work, possibly using [21]
to reduce liveness to safety.

This effort has yielded a developer friendly formal specification of the Pipelined Moonshot
protocol that helps for any implementation of Pipelined Moonshot to safely base on.

M. Praveen, R. Ramesh, and I. Doidge 3:13

We recorded our experience in the form of challenges faced and the mitigations employed
during this project. Learning from this experience we enumerate some recommendations for
applying formal verification for large distributed protocols.

References
1 IVy modeling of Pipelined Moonshot and its proof of safety. https://github.com/

Entropy-Foundation/suprabft-fv/tree/master/suprabft.
2 SPIN. https://spinroot.com/spin/whatispin.html.
3 TLA+. https://lamport.azurewebsites.net/tla/tla.html.
4 Defillama. https://galois.com/blog/2021/07/formally-verifying-the-tendermint-

blockchain-protocol/, 2021.
5 Formal Verification of QBFT Safety. https://github.com/Consensys/

qbft-formal-spec-and-verification, 2021.
6 Defillama. https://defillama.com, 2024.
7 Moonshot Formal Verification in IVy - GitHub Repository. https://github.com/

Entropy-Foundation/suprabft-fv/tree/master/suprabft, 2024.
8 Z3 SMT Solver. https://www.microsoft.com/en-us/research/project/z3-3/, 2024.
9 Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina Stoilkovska, Josef

Widder, and Anca Zamfir. Formal Specification and Model Checking of the Tendermint
Blockchain Synchronization Protocol. In Bruno Bernardo and Diego Marmsoler, editors,
2nd Workshop on Formal Methods for Blockchains (FMBC 2020), volume 84 of Open Access
Series in Informatics (OASIcs), pages 10:1–10:8, Dagstuhl, Germany, 2020. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.FMBC.2020.10.

10 Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis,
University of Guelph, 2016.

11 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999. URL: https://dl.acm.org/citation.cfm?id=296824.

12 Isaac Doidge, Raghavendra Ramesh, Nibesh Shrestha, and Joshua Tobkin. Moonshot: Op-
timizing chain-based rotating leader bft via optimistic proposals, 2024. doi:10.48550/arXiv.
2401.01791.

13 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, apr 1988. doi:10.1145/42282.42283.

14 Yotam MY Feldman, James R Wilcox, Sharon Shoham, and Mooly Sagiv. Inferring inductive
invariants from phase structures. In Computer Aided Verification: 31st International Confer-
ence, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II 31, pages
405–425. Springer, 2019. doi:10.1007/978-3-030-25543-5_23.

15 Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun
Xiang. Jolteon and ditto: Network-adaptive efficient consensus with asynchronous fallback. In
FC, pages 296–315, 2022. doi:10.1007/978-3-031-18283-9_14.

16 Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. Tla+ model checking made symbolic. Proc.
ACM Program. Lang., 3(OOPSLA), oct 2019. doi:10.1145/3360549.

17 Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A short counterexample
property for safety and liveness verification of fault-tolerant distributed algorithms. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL ’17, pages 719–734, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3009837.3009860.

18 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, pages 348–370, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-17511-4_20.

FMBC 2024

https://github.com/Entropy-Foundation/suprabft-fv/tree/master/suprabft
https://github.com/Entropy-Foundation/suprabft-fv/tree/master/suprabft
https://spinroot.com/spin/whatispin.html
https://lamport.azurewebsites.net/tla/tla.html
https://galois.com/blog/2021/07/formally-verifying-the-tendermint-blockchain-protocol/
https://galois.com/blog/2021/07/formally-verifying-the-tendermint-blockchain-protocol/
https://github.com/Consensys/qbft-formal-spec-and-verification
https://github.com/Consensys/qbft-formal-spec-and-verification
https://defillama.com
https://github.com/Entropy-Foundation/suprabft-fv/tree/master/suprabft
https://github.com/Entropy-Foundation/suprabft-fv/tree/master/suprabft
https://www.microsoft.com/en-us/research/project/z3-3/
https://doi.org/10.4230/OASIcs.FMBC.2020.10
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.48550/arXiv.2401.01791
https://doi.org/10.48550/arXiv.2401.01791
https://doi.org/10.1145/42282.42283
https://doi.org/10.1007/978-3-030-25543-5_23
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1145/3360549
https://doi.org/10.1145/3009837.3009860
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

3:14 Formally Verifying the Safety of Pipelined Moonshot Consensus Protocol

19 Kenneth L. McMillan and Oded Padon. Deductive verification in decidable fragments with ivy.
In Andreas Podelski, editor, Static Analysis, pages 43–55, Cham, 2018. Springer International
Publishing. doi:10.1007/978-3-319-99725-4_4.

20 Henrique Moniz. The istanbul bft consensus algorithm, 2020. doi:10.48550/arXiv.2002.
03613.

21 Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon
Shoham. Reducing liveness to safety in first-order logic. Proc. ACM Program. Lang., 2(POPL),
2017. doi:10.1145/3158114.

22 Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. Ivy:
safety verification by interactive generalization. SIGPLAN Not., 51(6):614–630, jun 2016.
doi:10.1145/2980983.2908118.

23 Supra Research. Moonshot: Optimistic proposal for blockchain-based state machine replication.
URL: https://supraoracles.com/news/moonshot-consensus/.

24 Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications, SIGCOMM ’01, pages 149–160, New York, NY, USA, 2001. Association for
Computing Machinery. doi:10.1145/383059.383071.

25 Pierre Tholoniat and Vincent Gramoli. Formal Verification of Blockchain Byzantine Fault
Tolerance, pages 389–412. Springer International Publishing, Cham, 2022. doi:10.1007/
978-3-031-07535-3_12.

26 Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander Bakst, Deian Stefan, and Ranjit Jhala.
Pretend synchrony: synchronous verification of asynchronous distributed programs. Proc.
ACM Program. Lang., 3(POPL), jan 2019. doi:10.1145/3290372.

27 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham.
Hotstuff: Bft consensus with linearity and responsiveness. In PODC, pages 347–356, 2019.
doi:10.1145/3293611.3331591.

28 Yuan Yuan, Zeng Fanping, Zhu Guanmiao, Deng Chaoqiang, and Xiong Neng. Test case
generation based on program invariant and adaptive random algorithm. In Advances in
Information Technology and Education: International Conference, CSE 2011, Qingdao, China,
July 9-10, 2011, Proceedings, Part I, pages 274–282. Springer, 2011.

29 Pamela Zave. Using lightweight modeling to understand chord. SIGCOMM Comput. Commun.
Rev., 42(2):49–57, mar 2012. doi:10.1145/2185376.2185383.

30 Fanping Zeng, Qing Cao, Liangliang Mao, and Zhide Chen. Test case generation based on
invariant extraction. In 2009 5th International Conference on Wireless Communications,
Networking and Mobile Computing, pages 1–4. IEEE, 2009.

A IVy Specification of the Pipelined Moonshot Protocol

The IVy specification of the Pipelined Moonshot is provided in the module Moonshot. The
white paper [23] by Supra research describes the same protocol as [12] but in a format that is
better suited to serve as a starting point for implementation. The structure of our IVy model
closely follows the description in [23], so we use it in the following to explain the orgnization
of the IVy model.

The Moonshot module consists of declarations of state variables to be maintained by
honest validators as given in [23, Table II]. These are then followed by actions, the keyword
in IVy used to denote updates to the state variables performed in response to specific events.
Below we list the actions and the corresponding events specified in [23]. Here, f is the
maximum number of Byzantine validators tolerated.

https://doi.org/10.1007/978-3-319-99725-4_4
https://doi.org/10.48550/arXiv.2002.03613
https://doi.org/10.48550/arXiv.2002.03613
https://doi.org/10.1145/3158114
https://doi.org/10.1145/2980983.2908118
https://supraoracles.com/news/moonshot-consensus/
https://doi.org/10.1145/383059.383071
https://doi.org/10.1007/978-3-031-07535-3_12
https://doi.org/10.1007/978-3-031-07535-3_12
https://doi.org/10.1145/3290372
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/2185376.2185383

M. Praveen, R. Ramesh, and I. Doidge 3:15

Table 2 IVy actions and their corresponding subroutine in the specification.

Action Subroutine in [23] Triggering event
qc_processing Algorithm 2 line 27 Receiving a quorum certificate
optimistic_proposal_processing Algorithm 2 line 37 Receiving an

optimistic proposal
normal_proposal_processing Algorithm 2 line 49 Receiving a normal proposal
timer_expire Algorithm 3 line 73 Timer expires
timeout_sync Algorithm 3 line 76 Receiving timeout messages

from f + 1 validators
tc_processing Algorithm 3 line 80 Receiving a timeout certificate
fallback_proposal_processing Algorithm 3 line 89 Receiving a fallback proposal

Following is a code snippet from the action normal_proposal_processing, broadcasting a
prepare message.

This function encodes the conditions necessary
for processing a normal proposal
function send_prepare_n_condition(B_pr:block_t, QC:qc_t) : bool
definition send_prepare_n_condition(B_pr, QC) = block_t.round(B_pr,r_c)
& a_f < r_c & t_l < r_c & (a_o < r_c | b_o = B_pr) &
(forall B:block_t. forall R:round_t. qc_t.block(QC,B) &
block_t.round(B,R) -> block_t.parent(B_pr,B) & round_t.succ(R, r_c))

The procedure in Line 49 of Algorithm 2, executed upon receiving
a normal proposal
action normal_proposal_processing(b_pr:block_t, qc:qc_t) = {

require received_proposal_n(b_pr, leader(r_c));
require received_qc(qc);
require block_t.cstd(b_pr);

Require that the timer has not yet expired for this round
require ~ t_r;
require ~ possessed_normal_for_round(r_c);

#require that the parent of the proposed block b_pr is certified by
the accompanying QC qc
require forall B:block_t. qc_t.block(qc,B) ->
block_t.parent(b_pr,B);

possessed_normal_for_round(r_c) := true;

If the accompanying qc is not yet processed yet, do that first
if some b:block_t. qc_t.block(qc,b) & ~ processed_qc(b) {

call qc_processing(qc);
}

FMBC 2024

3:16 Formally Verifying the Safety of Pipelined Moonshot Consensus Protocol

After processing the accompanying the qc, require that the
conditions in lines 50-56 of Algorithm are met
require send_prepare_n_condition(b_pr,qc);

This condition verified by IVy ensures that the parent of the
proposed block b_pr is for a strictly lesser round
ensure block_t.parent(b_pr,Bp) & block_t.round(Bp,Rp) ->
Rp < r_c;

#Line 58: propose optimistic
proposeOptimistic
Line 7,8 of Algorithm 1
var rs := round_t.next(r_c);
if leader(rs) = id & b_o ~= b_pr{

#Lines 10-11 of Algorithm 1
var b := block_t.block(rs,b_pr);
var m : msg;
m.kind := msg_kind.proposal_o;
m.block := b;
m.src := id;

call shim.broadcast(id, m);
}

if send_prepare_n_condition(b_pr,qc) {

Line 59 of Algorithm 2: broadcast prepare normal message
var m : msg;
m.kind := msg_kind.prepare_n;
m.block := b_pr;
m.src := id;

call shim.broadcast(id, m);

Line 60 of Algorithm 2: a_n is updated to the current
round
a_n := r_c;

}
}

Towards Mechanised Consensus in Isabelle
Elliot Jones
Department of Computer Science, University of Exeter, UK

Diego Marmsoler # Ñ

Department of Computer Science, University of Exeter, UK

Abstract
A blockchain acts as a universal ledger for digital transactions between two parties that require no
moderation from a third party. Such transactions are cheaper, quicker, and more secure with high
traceability and transparency, with the decentralised structure of a blockchain network allowing
for greater scalability and availability. For these reasons, blockchain is at the forefront of emerging
technologies, with a wide variety of industries investing billions into the technology. A blockchains
consensus protocol is what allows a blockchain network to be decentralised but can be subject
to malicious behaviour and faults in its design and implementation that can lead to catastrophic
effects like the DAO hack that resulted in a loss of $60 million. From this it is clear to see that
the verifications of these protocols are paramount to ensure the safe use of blockchain. In this
research, we formally verify the Proof-of-Work consensus protocol, used by Bitcoin, in Isabelle/HOL
by modelling the blockchain as the longest branch in a binary tree and proving that the common
prefix property holds with the assumption that the network is in majority honest. In this paper,
we discuss the validity of our approach, key functions and lemmas we used to complete the proof,
advantages and drawbacks of the model, related work and how this research can be taken further.

2012 ACM Subject Classification Security and privacy → Logic and verification

Keywords and phrases Formal Methods, Blockchain, Isabelle/HOL, Consensus, Verification, Theorem
Provers

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.4

Supplementary Material Software (Theory Files): https://doi.org/10.5281/zenodo.10479776 [16]

Funding Diego Marmsoler : This work was supported by the Engineering and Physical Sciences
Research Council [grant number EP/X027619/1].

Acknowledgements We would like to thank the FMBC 2024 reviewers for the careful reading and
constructive suggestions on the paper and the formalisation.

1 Introduction

Blockchain was first introduced to the world in 2008, when the illusive Satoshi Nakamoto
published his paper on Bitcoin [27]. Using cryptographic hash functions and consensus
protocols, blockchain allows parties to carry out digital transactions ‘peer-to-peer’, meaning
no third-party is required to mediate and requires no trust between parties. This allows
transactions to be faster, cheaper, and more secure with high traceability and transparency.
Furthermore, the decentralised structure of blockchain allows for greater scalability and
availability. Whilst its original purpose was for cryptocurrencies, blockchain has since been
identified as a means to transform a variety of industries such as finance, healthcare and
energy [25]. It is for these reasons that blockchain has become one of the most promising
emerging technologies, with worldwide spending expected to grow from $6.6 billion in 2021
to an estimated $19 billion by 2024 [34].

However, blockchain presents its own unique challenges. The consensus protocol of a
blockchain is what allows it to be decentralised and Byzantine Fault Tolerant (BFT), but
these protocols can act as a vector of attack for malicious users. For example, a 51% attack is

© Elliot Jones and Diego Marmsoler;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 4; pp. 4:1–4:22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.marmsoler@exeter.ac.uk
http://marmsoler.com
https://orcid.org/0000-0003-2859-7673
https://doi.org/10.4230/OASIcs.FMBC.2024.4
https://doi.org/10.5281/zenodo.10479776
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Towards Mechanised Consensus in Isabelle

when an attacker controls most of the computing power of a blockchain network, giving the
attacker the opportunity to alter transactions on the blockchain and use the same money for
multiple transactions in a double spending attack. An example of this was when Ethereum
Classic suffered 51% attacks in 2019 and 2020, losing approximately $1.1 million [26] and
$5.6 million [11] in double spending.

Moreover, the design and implementation of a blockchain and its consensus protocol led
to challenges themselves, with the infamous DAO hack stemming from a smart contract flaw
and resulting in a loss of $60 million [8]. Furthermore, A faulty consensus protocol would
mean nodes would not be able to agree on the correct chain, allowing malicious actors to
potentially change history and double spend without most of the network being malicious.
Consequently, the need to verify blockchain consensus protocols is paramount to ensure the
security of users. The birth of blockchain has caused a surge of investment into software
verification. No organisation showcases this better than CertiK, founded in 2018 and now
the world’s leading company in Web3 security auditing. With a valuation of $2 billion and
annual revenue of $40 million [13], Certik uses cutting-edge formal verification techniques to
audit blockchains and smart contracts. The most popular consensus protocol in the world is
Proof-of-Work (PoW) due to its usage by Bitcoin, the largest cryptocurrency in the world
with a market capitalisation of over $700 billion [9]. PoW assumes that the majority of the
network’s computing power is acting honestly, making it susceptible to a 51% attack. Despite
this, it is still important to verify that the protocol works as expected in the presence of
a majority honest network. In doing so, we ensure that consensus will continue to hold as
the blockchain network progresses through time and block stability will remain. A verified
consensus protocol will promote confidence and encourage participation in the network by
minimising faults and malicious behaviour.

In this paper, we formalise a general PoW protocol in Isabelle/HOL [29] and verify
consensus by proving the common prefix property [12]. To this end, the paper provides the
following main contributions:

1. We describe a general model for blockchain and its formalisation in Isabelle/HOL. A
blockchain is modeled as a tree and accompanied by a function to check its validity
(Subsubsection 3.2.4). The model provides abstract characterizations of minings (Subsec-
tion 3.3) and honest minings (Subsection 3.4) as special types thereof. The protocol is
modeled as an inductively defined set of valid event traces, where each event is either a
honest or dishonest mining (definition traces in Listing 11).

2. We formalise and discuss the common prefix property in Isabelle/HOL (Listing 13). This
is an important safety property for consensus protocols which asserts that, once confirmed,
blocks cannot be modified anymore.

3. We verify the property from our model. Thereby we discover important assumptions
which are required for consensus, such as b1 and b2 in Listing 11 or the preconditions for
dishonest_induct in Listing 11.

In Section 2, we highlight key blockchain properties that are essential to understand our
verification. In Section 3, we explain our model, the functions and datatypes we have used,
and the mining locales. In Section 4, we describe the blockchain locale and the proof of
our consensus property. We conclude the paper with a discussion (Section 5) in which we
highlight the simplifications and assumptions we have made for our model.

E. Jones and D. Marmsoler 4:3

2 Background

As described in [27], a blockchain is a sequence of blocks, where each block contains a
collection of transactions between parties in a network. A blockchain is initialised by a
genesis block, a block that contains no transactions but has a unique hash value. To add a
new block to the chain, a network participant must first assemble enough transactions into a
block, then find the Merkle root hash of these transactions and combine it with the previous
block’s hash and a nonce to produce its own hash that meet the network’s hash requirements.
Once the participant finds a nonce that produces a suitable hash, it can link its block to
the chain.

However, through a process called forking, a blockchain can split into two or more chains.
This happens when two or more blocks are linked to the same block. A blockchain network’s
consensus protocol allows participants to decide which chain is the ‘correct’ chain so that
they can continue to add blocks to that chain. This mitigates the need for a central authority
to decide which chain is the correct chain. A violation of consensus will halt the progress of
the blockchain as participants cannot decide where to add a block.

The PoW consensus protocol works on the rule that the longest chain is the correct chain.
It does this by assuming that the majority of the network’s computing power is honest,
meaning that it should be able to solve block hashes quicker than dishonest computing power
and keep the correct chain the longest chain. If there are two or more longest chains of the
same length, participants will randomly select a chain to work on until one of the chains has
a block added and prevails as the longest chain.

Garay et al. identifies the two fundamental properties of PoW consensus as the common
prefix and chain quality properties that ensure consensus if they hold [12]. The common
prefix property states that honest network participants agree on the longest chain up to k
blocks where k is a variable set by the network. The chain quality property states that the
number of blocks produced from dishonest participants will not be very large. As part of our
model, we make the assumption of majority honesty, which mitigates the need for the chain
quality property. Because of this, the objective of our verification is to prove the common
prefix property which subsequently proves consensus.

3 Model

3.1 Binary Tree
As mentioned previously, we will model the blockchain as the longest branch in a binary
tree. The rationale behind this is that the tree structure offers an effective way to model the
stages a blockchain has as it progresses through time. In a binary tree, each node represents
a block of the blockchain, with the root node acting as the genesis block as all branches stem
from the root node the same way all blockchains stem from the genesis block. Additionally,
the different branches of the binary tree model represent the different competing chains at
different stages of the network. It is possible to contain data of an arbitrary type within the
tree nodes in Isabelle but it is not necessary for our verification as we are only considering
the general construction of a blockchain so there is no need to consider the transactions
inside each block.

For each node in a binary tree, there can be zero, one or two child nodes. If there are
no child nodes, then we are at the end of a branch and it is either the longest chain or was
competing to be the longest chain at an earlier point in time, known as a stale block. If
there is a single child node, then this means a block was added to the chain at this point. If

FMBC 2024

4:4 Towards Mechanised Consensus in Isabelle

Figure 1 Binary Tree Progression.

1 datatype ’a tree =
2 Tip | Node "’a tree" ’a "’a tree"
3
4 definition exampleTree :: "nat tree" where
5 "exampleTree = Node
6 (Node
7 (Node
8 (Node Tip 5 Tip)
9 2

10 Tip)
11 1
12 (Node Tip 3 Tip))
13 0
14 (Node Tip 4 Tip)"

Figure 2 Binary Tree in Isabelle.

there are two child nodes, this is when two blocks are solved simultaneously, so there are now
competing chains. Figure 1 showcases each case of binary tree progression. We start with
the root node (genesis block), then two nodes (blocks) are added to the tree simultaneously.
We now have two valid chains. Eventually, a block is added to the left chain, so we have a
single longest chain. Figure 2 shows how we construct a binary tree in Isabelle/HOL with a
visual representation of the example tree.

As part of our model, we have made the assumption that all participants in the network are
synchronised, meaning they all share the same view of the blockchain. In reality, there is no
global view of the blockchain, and each participant has their own copy of the blockchain which
may not always be the same for every participant. In our model we only consider a single
binary tree for each network so we must assume that participants views are synchronised.

An alternative method for modelling a PoW blockchain network is using a list. Here each
entry acts as a block in the longest chain, with the ith entry being the ith block in the chain.
However, a list would only keep track of the longest chain and so would not give us a full
picture of the network. As a result, we cannot consider a scenario in which a chain that is
not the longest chain eventually becoming the longest chain as we would not be keeping a
list for it. In reality, this situation would arise from a 51% attack on the network.

E. Jones and D. Marmsoler 4:5

3.2 Isabelle Functions
In this section, we will detail the key functions and datatypes that are used to verify the
consensus property. We will explain what each function does, how it is encoded into Isabelle,
give an example, and showcase any relevant proofs that were later used in the verification.
For the functions that require a binary tree as an input, we will use the example binary tree
from Figure 2 to show the effect the function has.

3.2.1 Nodes
The nodes function counts the number of nodes in the inputted binary tree. In Listing 1
we can see its usage to count six nodes in the example tree. There were no relevant proofs
associated with this function.

Listing 1 nodes Function in Isabelle.

1 primrec nodes :: "’a tree ⇒ nat" where
2 "nodes Tip = 0"
3 | "nodes (Node l e r) = Suc (nodes l + nodes r)"
4
5 value "nodes exampleTree"
6 "6" :: "nat"

3.2.2 Height
The height function calculates the height of the inputted binary tree. In Listing 2 we can
see its definition in Isabelle and its usage to calculate that the example tree has a height of
four. The height function satisfies some monotonicity properties which can be found in the
appendix A.

Listing 2 height Function in Isabelle.

1 primrec height :: "’a tree ⇒ nat" where
2 "height Tip = 0"
3 | "height (Node l e r) = Suc (max (height l) (height r))"
4
5 value "height exampleTree"
6 "4" :: "nat"

3.2.3 Longest
The longest function returns a set of lists of node data where each list represents a longest
chain. In Listing 3 we can see its definition as well as its usage to calculate the longest chain
of the example tree. In the example, we have used natural numbers as the node data. There
were no relevant proofs associated with this function.

Listing 3 longest Function in Isabelle.

1 primrec longest:: "’a tree ⇒ (’a list) set" where
2 "longest Tip = {[]}"
3 | "longest (Node l e r) =
4 { e # p | p. p ∈

FMBC 2024

4:6 Towards Mechanised Consensus in Isabelle

5 (if height l > height r then longest l
6 else if height r > height l then longest r
7 else longest l ∪ longest r)}"
8
9 value "longest exampleTree"

10 "{[0, 1, 2, 5]}" :: "nat list set"

3.2.4 Check
The check function checks for input tree t that no other branch is within d nodes of one
of the longest chains, up to depth n of the tree, returning true if it holds. We call d our
difference value. In Listing 4 we can see its definition and its usage to show that the example
tree does hold up to depth 1 with a difference value of 1 but does not hold at a depth of 2.

Listing 4 check Function in Isabelle.

1 fun check :: "nat ⇒ nat ⇒ ’a tree ⇒ bool" where
2 "check 0 d t = True"
3 | "check (Suc n) d Tip = False"
4 | "check (Suc n) d (Node l e r) =
5 (((height l - height r > d) ∧ (check n d l)) ∨
6 ((height r - height l > d) ∧ (check n d r)))"
7
8 value "check 1 1 exampleTree"
9 "True" :: "bool"

10
11 value "check 2 1 exampleTree"
12 "False" :: "bool"

Furthermore, the first two properties we prove are the weakened statements of the depth
and difference values, stating that if the check function is true for a given depth or difference
value x then it will also be true for all values less than x. These statements are proven by
structural induction over the tree parameter t as well as the depth parameter n. The common
prefix lemma states that given a tree t that returns true on the check function for depth n

and difference value d, all longest chains will have the same first n nodes. Listing 5 shows
these properties in Isabelle, with the proof of the common prefix property in appendix A.

Listing 5 check Function Properties in Isabelle.

1 lemma check_weaken_distance:
2 assumes "check n (Suc x) t"
3 shows "check n x t"
4 using assms by (induction rule: check.induct, auto)
5
6 proposition check_weaken_depth:
7 assumes "check (Suc x) d t"
8 shows "check x d t"
9 using assms by (induction rule: check.induct, auto)

10
11 lemma common_prefix[rule_format]:
12 "∀p p’. check n d t ∧ p ∈ longest t
13 ∧ p’ ∈ longest t −→ take n p = take n p’"

E. Jones and D. Marmsoler 4:7

The common prefix lemma shows that the common prefix property holds for an arbitrary
tree t that passes the check function. To prove consensus, we must now show that this
property holds for the set of trees that can occur in our majority honest PoW network.

3.2.5 Event
We model our blockchain network as a sequence of events, where an event is the pair consisting
of the Honest and State variable and describes an action carried out on a binary tree. The
Honest field is of type Boolean and it is used to distinguish between honest and dishonest
mining events, whilst the State field contains the state of the binary tree after the event
has occurred. We then define a function count which can be used to count the number of
honest or dishonest events in a list of events. We prove properties for adding events to a list
of events in appendix A in Listing 16. The definitions can be seen in Listing 6.

Listing 6 Event Properties in Isabelle.

1 record ’a event =
2 Honest :: bool
3 State :: "’a tree"
4
5 definition count::"bool ⇒ (’a event) list ⇒ nat" where
6 "count b = List.length ◦ filter (λx. Honest x = b)"

3.3 Mining
The mining locale is used to describe how we mine blocks and add them to the blockchain
using add functions. It has two key properties:
1. Mining on top of an empty tree results in a tree with one node.
2. Mining on top of a non-empty tree adds the new block either to the left or the right

branch.

From this, we prove the lemmas mining_cases and height_add. mining_cases is used
to describe the cases of mining on either the left or right branch of a tree and follows easily
from property 2 of the locale. height_add shows that the height of a tree either stays
the same or increases by 1 after mining on it and is proved by induction on the binary
tree variable. Listing 7 shows these properties in Isabelle, with the proof of height_add in
appendix B.

Listing 7 Mining Locale in Isabelle.

1 locale mining =
2 fixes add :: "’a tree ⇒ ’a tree"
3 assumes m1: "∃e. add Tip = Node Tip e Tip"
4 and m2: "

∧
l e r. add (Node l e r) = Node (add l) e r

5 ∨ add (Node l e r) = Node l e (add r)"
6
7 lemma mining_cases:
8 fixes l e r
9 obtains (l) "add (Node l e r) = Node (add l) e r"

10 | (r) "add (Node l e r) = Node l e (add r)"
11 using m2 by auto

FMBC 2024

4:8 Towards Mechanised Consensus in Isabelle

12
13 lemma height_add:"height (add t) = height t
14 ∨ height (add t) = Suc (height t)"

From these lemmas, we derive the lemma check_add which shows the three possible cases
a tree can be after applying an add function to it, assuming the original tree passes the check
function with difference value d + 1 and depth n. The three cases are as follows:
1. We have mined on one of the longest chains. Here, the height of the new tree is higher

than the original tree and can pass the check function with difference value d + 2 and
depth n.

2. We have mined on one of the second-longest chains. Here, the height of the new tree is
equal to the original tree and can pass the check function with difference value d and
depth n.

3. We have mined on one of the chains that is not one of the longest or second longest
chains. Here, the height of the new tree is equal to the original tree and can pass the
check function with difference value d + 1 and depth n.

We prove this statement by structural induction over the tree variable. It can be seen in
Listing 8 with its proof in appendix B.

Listing 8 check_add Lemma in Isabelle.

1 lemma check_add[rule_format]:
2 "check n (Suc d) t −→
3 height t < height (add t) ∧ check n (Suc (Suc d)) (add t)
4 ∨ height t = height (add t) ∧ check n (Suc d) (add t)
5 ∨ height t = height (add t) ∧ check n d (add t)"

Lastly, we create the corollary check_add_cases to distinguish between the cases of
mining on a tree. This follows directly from check_add and can be seen in Listing 9.

Listing 9 check_add_cases Lemma in Isabelle.

1 corollary check_add_cases:
2 assumes "check n (Suc d) t"
3 obtains "check n (Suc (Suc d)) (add t)"
4 | "check n (Suc d) (add t)"
5 | "check n d (add t)"
6 using check_add[OF assms] by auto

3.4 Honest Mining
The honest locale is used to describe how honest participants mine blocks and add them to
the blockchain. It has the same properties as the mining locale with the additional property
that a mined block is always added to the longest chain of the network. Like in the mining
locale, we prove similar mining_cases, height_add and check_add lemmas.

The cases for honest minings are adding to the left or right branch of a tree depending
on which branch is longer. This follows from the new locale property. height_add shows
that the height of the tree always increases by 1 when the mining is honest and is proved by
induction on the binary tree variable. From these lemmas, we derive the check_add lemma
which shows the only possible cases a tree can be after applying an honest add function to it,

E. Jones and D. Marmsoler 4:9

assuming the original tree passes the check function with difference value d and depth n, is
that the new tree passes the check function with difference value d + 1 and depth n. This
is the same as case 1 for the check_add lemma in the mining locale as we have mined on
the longest chain. Listing 10 shows the locale in Isabelle, with the proofs of check_add and
height_add found in Appendix C.

Listing 10 Honest Mining Locale in Isabelle.

1 locale honest = mining +
2 assumes h1:
3 "

∧
l e r. height l ≥ height r ∧ add (Node l e r) = Node (add l) e r

4 ∨ height r ≥ height l ∧ add (Node l e r) = Node l e (add r)"
5
6 lemma mining_cases:
7 fixes l e r
8 obtains (l) "height l ≥ height r ∧ add (Node l e r) = Node (add l) e r"
9 | (r) "height r ≥ height l ∧ add (Node l e r) = Node l e (add r)"

10 using h1 by auto
11
12 lemma height_add: "height (add t) = Suc (height t)"
13
14 lemma check_add[rule_format]:
15 "check n d t −→ check n (Suc d) (add t)"

4 Verification

For the verification, we fix the state of the blockchain at a particular point in time, then
define all possible future progressions of the tree structure and then show that all of them
preserve the common prefix property.

To this end, we introduce a new locale blockchain which uses the mining locale for
dishonest miners and the locale for honest miners. In addition, we introduce two new
parameters to provide context to the model:

A fixed tree t0 which represents the blockchain at a particular point in time.
A natural number depth, which determines the length of the prefix which is considered
stable, i.e., which should not change in the future.

In addition to these parameters, we assume two more properties:
1. The initial tree, t0 passes the check function for a threshold equal to the difference

between its height and the depth value (property b1 in Listing 11).
2. The height of the initial chain is greater than the depth (property b2 in Listing 11).

We then define the set traces, which contains all possible event sequences which can
occur in a network with the majority of miners being honest. The set is defined inductively
and each sequence can be of one of the following cases:
1. The list with one event that is honest and applies an honest add function to t0 (Line 9 in

Listing 11).
2. The list with one event that is dishonest and applies a dishonest add function to t0

(Line 10 in Listing 11).
3. A list of events that is already in traces, that is prepended with an honest event (Line 11

in Listing 11).

FMBC 2024

4:10 Towards Mechanised Consensus in Isabelle

4. A list of events that is already in traces, with less dishonest events than the sum of
the number of honest events and the threshold value, prepended with a dishonest event
(Line 13 in Listing 11).

Listing 11 shows the blockchain locale and traces set in Isabelle.

Listing 11 Blockchain Locale in Isabelle.

1 locale blockchain =
2 honest hadd + mining dadd
3 for hadd::"’a tree ⇒ ’a tree" and dadd::"’a tree ⇒ ’a tree" +
4 fixes depth::nat and t0::"’a tree"
5 assumes b1: "check depth (Suc (height t0 - depth)) t0"
6 and b2: "height t0 > depth"
7
8 inductive_set traces :: "(’a event list) set" where
9 honest_base: "[LHonest = True, State = hadd t0M] ∈ traces"

10 | dishonest_base: "[LHonest = False, State = dadd t0M] ∈ traces"
11 | honest_induct: "Jt ∈ tracesK
12 =⇒ LHonest = True, State = hadd (State (hd t))M # t ∈ traces"
13 | dishonest_induct:
14 "Jt ∈ traces; count False t < count True t + (height t0 - depth)K
15 =⇒ LHonest = False, State = dadd (State (hd t))M # t ∈ traces"

Using traces, we create the lemmas bounded_dishonest_mining and bounded_check.
bounded_dishonest_mining shows that given a list of events from traces, the sum of the
number of honest events and the threshold value is greater than or equal to the number of
dishonest events. This follows from assumption 2 of the blockchain locale. bounded_check
states that given a list of events from traces then the most recent tree from that list passes
the check function with a depth of depth and a difference value equal to the sum of number
of honest events and the threshold value minus the number of dishonest events plus one.
This statement is proven by induction of the tree variable for each case in traces. Listing 12
shows these lemmas in Isabelle with their proofs found in appendix D.

Listing 12 Blockchain Locale in Isabelle.

1 lemma bounded_dishonest_mining:
2 fixes t assumes "t ∈ traces"
3 shows "count True t + (height t0 - depth) ≥ count False t"
4
5 lemma bounded_check:
6 fixes t assumes "t ∈ traces"
7 shows "check depth
8 (Suc (count True t + (height t0 - depth) - count False t))
9 (State (hd t))"

We prove the consensus theorem within the blockchain locale. It states that given a list
of events from traces and lists of the longest chains nodes, then the lists of these chains are
the same up to index depth. This can be seen in Listing 13.

E. Jones and D. Marmsoler 4:11

Listing 13 Consensus Theorem in Isabelle.

1 theorem consensus:
2 fixes t assumes "t ∈ traces"
3 and "p ∈ longest (State (hd t))"
4 and "p’ ∈ longest (State (hd t))"
5 shows "take depth p = take depth p’"
6 using assms(2,3)
7 common_prefix[of depth
8 "Suc (count True t + (height t0 - depth) - count False t)"
9 "(State (hd t))"]

10 bounded_check[OF assms(1)] by blast

The theorem is similar to the common_prefix lemma we proved earlier in Listing 5
with the key differences being that tree t is in the traces set and we use the depth value
for parameter n in the check function. The common_prefix lemma was defined before we
established any of our locales and so is just a lemma for the check function itself and does
not consider anything related to consensus. The consensus theorem applies this lemma to the
context of consensus and is essentially a proof of the common prefix property. As mentioned
previously, we do not require the chain quality property under our assumption of majority
honesty so the common prefix property is enough to show that consensus holds.

5 Discussion

Our verification of consensus in this model required us to make simplifications to how
a blockchain network works. As mentioned in Section 3, we assume majority honesty
and synchronisation of the network. Despite PoW assuming majority honesty, this is not
always the case and so consensus can break down in the presence of a 51% attack. As
for synchronisation, a blockchain network can become asynchronous because of dishonest
behaviour or a fault within the network such as a participant having connectivity issues and
not being able to update their private copy of the blockchain. As a result of this, consensus
can still break down in a majority honest network.

Outside of these assumptions, we also made design choices for the model that lead to
simplifications. The first of these is the use of a binary tree instead of an n-ary tree. With
a binary tree, we can model forking at a node that can result in two chains. However, it
is possible for there to be more than one fork at a node, resulting in three or more chains
branching from a single node. A binary tree cannot be used to consider such an event, but in
reality the likelihood of this event occurring is very unlikely as it would require three or more
block hashes to be solved simultaneously and added to the chain at the same time. Using an
n-ary tree in our verification would also make the process far more complicated as we would
have to consider an arbitrary amount of branches for each node. It is for these reasons that
we did not believe using a n-ary tree instead of binary tree was worth the effort required.

The main simplification of our model is that it is not probabilistic. Blocks are added to
the blockchain by solving its hash which introduces a probabilistic element into the network
as we cannot be absolutely sure how long such a brute force exercise will take. Because
of this, majority honesty may not always hold as dishonest participants could get lucky in
their hash searching whilst honest participants could get unlucky. Mining also plays a key
role in the common prefix and chain quality properties described in [12], with their actual
definitions being probabilistic in nature as a result. Specifically, these properties only have
to hold with high probability but we show they always hold in our deterministic model.

FMBC 2024

4:12 Towards Mechanised Consensus in Isabelle

6 Related Work

There is some work formalising traditional consensus protocols and some has even been
mechanized in theorem provers. For example there exists a formalisation of Paxos [19] and
Disk Paxos [15] in Isabelle, HotStuff [6] in Agda [3], and Velisarios [33] in Coq [35]. When
it comes to blockchain, however, we usually do have less control over the actual network
participants. Thus, verification of consensus in blockchain poses additional challenges
compared to the verification of traditional BFT protocols.

There has been some early work on the verification of consensus in blockchain. In
particular, blockchain in general [31, 22], the Bitcoin backbone protocol [12], general proof-
of-stake [18], or a custom proof-of-work protocol known as Snow White [10]. While all these
studies provide useful insides into blockchain consensus they are not mechanized and thus
may contain mistakes.

More recently there has been some work on mechanizing blockchain consensus. For
example there is a formalisation of Tendermint [4] using TLA+ and a formalisation of the
Ethereum Beacon Chain [7] in Dafny. Moreover, there are formalisations of Casper [14],
CBC Casper [28], Stellar [20], and general inter-blockchain Protocols [17] in Isabelle. Finally,
there exists formalisations of Casper [30] (based on [14]), CKB [21, 5], Algorand [1], and
Gasper [2] in Coq [35]. While all these works formalise various types of consensus protocols
and some even verify certain properties for these protocols, none of them verify consistency
in terms of common prefix which is the focus of our work.

There are three exceptions to this. First, there is the work of Pîrlea and Sergey [32] in
which they formalise a general blockchain protocol in Coq. Similarly to our work, they model
a blockchain as a tree (although implicitly as part of a forest). They then verify eventual
ledger consistency, which is a property similar to the one we verify. The main difference to
our work, however, is that they do not consider dishonest nodes in their analysis. Thus, by
allowing for nodes with arbitrary behaviour, we complement their work.

In addition, Marmsoler formalised a type of general proof of work [23] in FACTum [24].
Similar to our work, the author considers honest as well as dishonest nodes in his model.
Different to this work, however, a blockchain is modeled in terms of a list which does not
allow to investigate forks. Thus, by modeling a blockchain as a tree instead of a list, we
complement his work.

Finally, Thomsen and Spitters formalize a general, Nakamoto-Style Proof of Stake
protocol in Coq [36]. They then verify a safety property similar to the common prefix
property discussed in this paper. The main difference to our work lies in the type of
considered consensus mechanism. While Thomsen and Spitters work is based on a general
Proof of Stake consensus mechanism, our work focuses more on Proof of Work consensus.

7 Conclusion

In this paper, we have formally verified that consensus holds in a blockchain network that uses
PoW and is assumed to be majority honest. This verification was carried out in Isabelle/HOL
by modelling the blockchain as the longest chain in a binary tree. We have described the key
functions and lemmas required to carry out this verification and outlined our assumptions of
honesty and synchronisation for consensus to hold in our model. Lastly, we identify the key
limitation of our model in that it is not probabilistic to account for probabilistic elements
that occur within a PoW network such as mining. The successful verification of this paper
serves as motivation for the implementation of the verified consensus protocol.

E. Jones and D. Marmsoler 4:13

This paper could be expanded on in further research by aiming to address this limitation
and developing a probabilistic verification of PoW using a different mathematical model such
as state machines. Alternatively, a similar verification could be carried out on a different
consensus protocol such as Proof of Stake (PoS) which is used by the Ethereum blockchain.
However, PoS also has probabilistic elements that would need to be accounted for such
as validator selection that would need to be considered or mitigated under a simplifying
assumption.

References
1 Musab A Alturki, Jing Chen, Victor Luchangco, Brandon Moore, Karl Palmskog, Lucas

Peña, and Grigore Roşu. Towards a verified model of the algorand consensus protocol in
coq. In Formal Methods. FM 2019 International Workshops: Porto, Portugal, October 7–
11, 2019, Revised Selected Papers, Part I 3, pages 362–367. Springer, 2020. doi:10.1007/
978-3-030-54994-7_27.

2 Musab A Alturki, Elaine Li, Daejun Park, Brandon Moore, Karl Palmskog, Lucas Pena, and
Grigore Roşu. Verifying gasper with dynamic validator sets in coq. Technical report, 2020.

3 Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of agda–a functional language with
dependent types. In Theorem Proving in Higher Order Logics: 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings 22, pages 73–78. Springer,
2009. doi:10.1007/978-3-642-03359-9_6.

4 Sean Braithwaite, Ethan Buchman, Igor V. Konnov, Zarko Milosevic, Ilina Stoilkovska,
Josef Widder, and Anca Zamfir. Formal specification and model checking of the tendermint
blockchain synchronization protocol (short paper). In FMBC@CAV, 2020. doi:10.4230/
OASIcs.FMBC.2020.10.

5 Hao Bu and Meng Sun. Towards modeling and verification of the ckb block synchronization
protocol in coq. In Formal Methods and Software Engineering: 22nd International Conference
on Formal Engineering Methods, ICFEM 2020, Singapore, Singapore, March 1–3, 2021,
Proceedings 22, pages 287–296. Springer, 2020. doi:10.1007/978-3-030-63406-3_17.

6 Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo, and Lisandra Silva. Towards
formal verification of hotstuff-based byzantine fault tolerant consensus in agda. In Jyotirmoy V.
Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal Methods, pages 616–635,
Cham, 2022. Springer International Publishing. doi:10.1007/978-3-031-06773-0_33.

7 Franck Cassez, Joanne Fuller, and Aditya Asgaonkar. Formal verification of the ethereum 2.0
beacon chain. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 167–182. Springer, 2022. doi:10.1007/978-3-030-99524-9_9.

8 Coindesk. How the dao hack changed ethereum and crypto, 2023. [Accessed
December 2023]. URL: https://www.coindesk.com/consensus-magazine/2023/05/09/
coindesk-turns-10-how-the-dao-hack-changed-ethereum-and-crypto/.

9 CoinMarketCap. Bitcoin market capitalization, 2023. [Accessed December 2023]. URL:
https://coinmarketcap.com/currencies/bitcoin/.

10 Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Ian Goldberg and Tyler Moore, editors,
Financial Cryptography and Data Security, pages 23–41, Cham, 2019. Springer International
Publishing. doi:10.1007/978-3-030-32101-7_2.

11 Forkast. How ethereum classic’s 51ethereum, 2020. [Ac-
cessed December 2023]. URL: https://forkast.news/video-audio/
ethereum-classic-repeat-hacks-etc-labs-ceo-terry-culver-ben-sauter/.

12 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual international conference on the theory and applications of
cryptographic techniques, pages 281–310. Springer, 2015. doi:10.1007/978-3-662-46803-6_
10.

FMBC 2024

https://doi.org/10.1007/978-3-030-54994-7_27
https://doi.org/10.1007/978-3-030-54994-7_27
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.4230/OASIcs.FMBC.2020.10
https://doi.org/10.4230/OASIcs.FMBC.2020.10
https://doi.org/10.1007/978-3-030-63406-3_17
https://doi.org/10.1007/978-3-031-06773-0_33
https://doi.org/10.1007/978-3-030-99524-9_9
https://www.coindesk.com/consensus-magazine/2023/05/09/coindesk-turns-10-how-the-dao-hack-changed-ethereum-and-crypto/
https://www.coindesk.com/consensus-magazine/2023/05/09/coindesk-turns-10-how-the-dao-hack-changed-ethereum-and-crypto/
https://coinmarketcap.com/currencies/bitcoin/
https://doi.org/10.1007/978-3-030-32101-7_2
https://forkast.news/video-audio/ethereum-classic-repeat-hacks-etc-labs-ceo-terry-culver-ben-sauter/
https://forkast.news/video-audio/ethereum-classic-repeat-hacks-etc-labs-ceo-terry-culver-ben-sauter/
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

4:14 Towards Mechanised Consensus in Isabelle

13 Growjo. Certik revenue and competitors, 2022. [Accessed December 2023]. URL: https:
//growjo.com/company/CertiK.

14 Yoichi Hirai. A repository for pos related formal methods. https://github.com/palmskog/pos,
2018.

15 Mauro Jaskelioff and Stephan Merz. Proving the correctness of disk paxos. Archive of
Formal Proofs, jun 2005. , Formal proof development. URL: https://isa-afp.org/entries/
DiskPaxos.html.

16 Elliot Jones and Diego Marmsoler. Towards Mechanised Consensus in Isabelle. version 1.0.,
(visited on 02/05/2024). URL: https://doi.org/10.5281/zenodo.10479776.

17 Florian Kammüller and Uwe Nestmann. Inter-Blockchain Protocols with the Isabelle Infra-
structure Framework. In Bruno Bernardo and Diego Marmsoler, editors, 2nd Workshop on
Formal Methods for Blockchains (FMBC 2020), volume 84 of Open Access Series in Informatics
(OASIcs), pages 11:1–11:12, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/OASIcs.FMBC.2020.11.

18 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual international cryptology
conference, pages 357–388. Springer, 2017. doi:10.1007/978-3-319-63688-7_12.

19 Philipp Küfner, Uwe Nestmann, and Christina Rickmann. Formal verification of distributed
algorithms. In Jos C. M. Baeten, Tom Ball, and Frank S. de Boer, editors, Theoretical
Computer Science, pages 209–224, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-33475-7_15.

20 Giuliano Losa and Mike Dodds. On the Formal Verification of the Stellar Consensus Protocol.
In Bruno Bernardo and Diego Marmsoler, editors, 2nd Workshop on Formal Methods for
Blockchains (FMBC 2020), volume 84 of Open Access Series in Informatics (OASIcs), pages
9:1–9:9, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/OASIcs.FMBC.2020.9.

21 Xiaokun Luan and Meng Sun. Modeling and verification of ckb consensus protocol in coq.
In 2021 IEEE 21st International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 660–667. IEEE, 2021. doi:10.1109/QRS-C55045.2021.00100.

22 Bojan Marinković, Paola Glavan, Zoran Ognjanović, Dragan Doder, and Thomas Studer. Prob-
abilistic consensus of the blockchain protocol. In Gabriele Kern-Isberner and Zoran Ognjanović,
editors, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 469–480,
Cham, 2019. Springer International Publishing. doi:10.1007/978-3-030-29765-7_39.

23 Diego Marmsoler. Towards verified blockchain architectures: A case study on interactive
architecture verification. In Formal Techniques for Distributed Objects, Components, and
Systems: 39th IFIP WG 6.1 International Conference, FORTE 2019, Held as Part of the 14th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2019,
Kongens Lyngby, Denmark, June 17–21, 2019, Proceedings, pages 204–223, Berlin, Heidelberg,
2019. Springer-Verlag. doi:10.1007/978-3-030-21759-4_12.

24 Diego Marmsoler and Habtom Kashay Gidey. Interactive verification of architectural
design patterns in factum. Form. Asp. Comput., 31(5):541–610, nov 2019. doi:10.1007/
s00165-019-00488-x.

25 Ahmed Afif Monrat, Olov Schelén, and Karl Andersson. A survey of blockchain from the
perspectives of applications, challenges, and opportunities. IEEE Access, 7:117134–117151,
2019. doi:10.1109/ACCESS.2019.2936094.

26 Neptune Mutual. Ethereum classic 51 [Accessed December 2023]. URL: https://
neptunemutual.com/blog/ethereum-classic-51-attacks/.

27 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business
review, 2008.

28 R. Nakamura, T. Jimba, and D. Harz. Refinement and verification of cbc casper. In 2019
Crypto Valley Conference on Blockchain Technology (CVCBT), pages 26–38, Los Alamitos,
CA, USA, jun 2019. IEEE Computer Society. doi:10.1109/CVCBT.2019.00008.

https://growjo.com/company/CertiK
https://growjo.com/company/CertiK
https://isa-afp.org/entries/DiskPaxos.html
https://isa-afp.org/entries/DiskPaxos.html
https://doi.org/10.5281/zenodo.10479776
https://doi.org/10.4230/OASIcs.FMBC.2020.11
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-642-33475-7_15
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://doi.org/10.1109/QRS-C55045.2021.00100
https://doi.org/10.1007/978-3-030-29765-7_39
https://doi.org/10.1007/978-3-030-21759-4_12
https://doi.org/10.1007/s00165-019-00488-x
https://doi.org/10.1007/s00165-019-00488-x
https://doi.org/10.1109/ACCESS.2019.2936094
https://neptunemutual.com/blog/ethereum-classic-51-attacks/
https://neptunemutual.com/blog/ethereum-classic-51-attacks/
https://doi.org/10.1109/CVCBT.2019.00008

E. Jones and D. Marmsoler 4:15

29 Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer, 2002. doi:10.1007/3-540-45949-9.

30 Karl Palmskog, Milos Gligoric, Lucas Pena, Brandon Moore, and Grigore Roşu. Verification of
casper in the coq proof assistant. Technical report, University of Illinois at Urbana-Champaign,
2018.

31 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, pages 643–673, Cham, 2017. Springer International Publishing. doi:
10.1007/978-3-319-56614-6_22.

32 George Pîrlea and Ilya Sergey. Mechanising blockchain consensus. In Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pages 78–90,
2018. doi:10.1145/3167086.

33 Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Esteves-Verissimo. Velisarios: Byzantine
fault-tolerant protocols powered by coq. In Amal Ahmed, editor, Programming Languages
and Systems, pages 619–650, Cham, 2018. Springer International Publishing. doi:10.1007/
978-3-319-89884-1_22.

34 Statista. Blockchain - statistics and facts, 2023. [Accessed December 2023]. URL: https:
//www.statista.com/statistics/800426/worldwide-blockchain-solutions-spending/.

35 The Coq Development Team. The Coq reference manual – release 8.18.0. https://coq.inria.
fr/doc/V8.18.0/refman, 2023.

36 Søren Eller Thomsen and Bas Spitters. Formalizing nakamoto-style proof of stake. In
2021 IEEE 34th Computer Security Foundations Symposium (CSF), pages 1–15. IEEE, 2021.
doi:10.1109/CSF51468.2021.00042.

A Functions

Listing 14 Monotonic Properties of height Function in Isabelle.

1 proposition height_mono_l:
2 "height r ≤ height l =⇒ height l < height l’ =⇒
3 height (Node l e r) < height (Node l’ e r)"
4 by (induction l; simp)
5
6 proposition height_mono_r:
7 "height l ≤ height r =⇒ height r < height r’ =⇒
8 height (Node l e r) < height (Node l e r’)"
9 by (induction r; simp)

Listing 15 Proof of the common prefix lemma in Isabelle.

1 lemma common_prefix[rule_format]:
2 "∀p p’. check n d t ∧ p∈longest t ∧ p’∈longest t −→
3 take n p = take n p’"
4 proof (induction rule: check.induct)
5 case (1 d t)
6 then show ?case by simp
7 next
8 case (2 n d)
9 then show ?case by simp

10 next
11 case (3 n d l e r)

FMBC 2024

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1145/3167086
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/978-3-319-89884-1_22
https://www.statista.com/statistics/800426/worldwide-blockchain-solutions-spending/
https://www.statista.com/statistics/800426/worldwide-blockchain-solutions-spending/
https://coq.inria.fr/doc/V8.18.0/refman
https://coq.inria.fr/doc/V8.18.0/refman
https://doi.org/10.1109/CSF51468.2021.00042

4:16 Towards Mechanised Consensus in Isabelle

12 show ?case
13 proof (rule+, (erule conjE)+)
14 fix p p’
15 assume a1: "check (Suc n) d (Node l e r)"
16 and a2: "p ∈ longest (Node l e r)"
17 and a3: "p’ ∈ longest (Node l e r)"
18 from a1 consider (1) "d < height l - height r ∧ check n d l"
19 | (2) "d < height r - height l ∧ check n d r" by auto
20 then show "take (Suc n) p = take (Suc n) p’"
21 proof cases
22 case 1
23 then have "height r < height l" by auto
24 then have "tl p ∈ longest l" and "tl p’ ∈ longest l"
25 using a2 a3 by auto
26 then have "take n (tl p) = take n (tl p’)" using 1 3 by blast
27 moreover have "take (Suc n) p = hd p # take n (tl p)"
28 using a2 by auto
29 moreover have "take (Suc n) p’ = hd p’ # take n (tl p’)"
30 using a3 by auto
31 moreover have "hd p = hd p’" using a2 a3 by auto
32 ultimately show ?thesis by simp
33 next
34 case 2 (*symmetric*)
35 qed
36 qed
37 qed

Listing 16 Proofs for Adding Events to Lists of Events in both Honest and Dishonest Cases.

1 lemma count_true_base[simp]:
2 "count True [] = 0" unfolding count_def by simp
3 lemma count_false_base[simp]:
4 "count False [] = 0" unfolding count_def by simp
5
6 lemma count_honest_true_ind[simp]:
7 assumes "Honest e"
8 shows "count True (e#es) = Suc (count True es)"
9 unfolding count_def using assms by simp

10 lemma count_honest_false_ind[simp]:
11 assumes "Honest e"
12 shows "count False (e#es) = count False es"
13 unfolding count_def using assms by simp
14
15 lemma count_dhonest_false_ind[simp]:
16 assumes "¬ Honest e"
17 shows "count False (e#es) = Suc (count False es)"
18 unfolding count_def using assms by simp
19 lemma count_dhonest_true_ind[simp]:
20 assumes "¬ Honest e"
21 shows "count True (e#es) = count True es"
22 unfolding count_def using assms by simp

E. Jones and D. Marmsoler 4:17

B Mining Locale

Listing 17 Mining height_add Proof in Isabelle.

1 lemma height_add:
2 "height (add t) = height t ∨ height (add t) = Suc (height t)"
3 proof (induction t)
4 case Tip
5 then show ?case using m1 by auto
6 next
7 case (Node l e r)
8 show ?case
9 proof (cases rule: mining_cases)

10 case l
11 moreover from this have
12 "height (add (Node l e r)) = height (Node (add l) e r)" by simp
13 ultimately show ?thesis using Node(1) by auto
14 next
15 case r
16 moreover from this have
17 "height (add (Node l e r)) = height (Node l e (add r))" by simp
18 ultimately show ?thesis using Node(2) by auto
19 qed
20 qed

Listing 18 Mining check_add Proof in Isabelle.

1 lemma check_add[rule_format]:
2 "check n (Suc d) t −→
3 height t < height (add t) ∧ check n (Suc (Suc d)) (add t)
4 ∨ height t = height (add t) ∧ check n (Suc d) (add t)
5 ∨ height t = height (add t) ∧ check n d (add t)"
6 proof (induction rule: check.induct)
7 case (1 d t)
8 then show ?case using height_add by auto
9 next

10 case (2 n d)
11 then show ?case by simp
12 next
13 case (3 n d l e r)
14 show ?case
15 proof
16 assume "check (Suc n) (Suc d) (Node l e r)"
17 then consider (l) "Suc d < height l - height r ∧ check n (Suc d) l"
18 | (r) "Suc d < height r - height l ∧ check n (Suc d) r" by auto
19 then show "height (Node l e r) < height (add (Node l e r))
20 ∧ check (Suc n) (Suc (Suc d)) (add (Node l e r))
21 ∨ height (Node l e r) = height (add (Node l e r))

FMBC 2024

4:18 Towards Mechanised Consensus in Isabelle

22 ∧ check (Suc n) (Suc d) (add (Node l e r))
23 ∨ height (Node l e r) = height (add (Node l e r))
24 ∧ check (Suc n) d (add (Node l e r))"
25 proof (cases)
26 case l
27 then consider
28 "height l < height (add l) ∧ check n (Suc (Suc d)) (add l)"
29 | "height l = height (add l) ∧ check n (Suc d) (add l)"
30 | "height l = height (add l) ∧ check n d (add l)" using 3 by auto
31 then show ?thesis
32 proof cases
33 case 1
34 then show ?thesis
35 proof (cases rule: mining_cases)
36 case l2: l
37 moreover from 1 l have
38 "check (Suc n) (Suc (Suc d)) (Node (add l) e r)" by auto
39 moreover from 1 l l2 have
40 "height (Node l e r) < height (add (Node l e r))" by auto
41 ultimately show ?thesis by simp
42 next
43 case r
44 consider "height (add r) = height r"
45 | "height (add r) = Suc (height r)" using height_add by auto
46 then show ?thesis
47 proof cases
48 case l1: 1
49 then have "height (Node l e r) = height (add (Node l e r))"
50 using r by simp
51 moreover have "check (Suc n) (Suc d) (add (Node l e r))"
52 using l l1 r by auto
53 ultimately show ?thesis by simp
54 next
55 case x: 2
56 moreover have "height l > Suc (height r)" using l by auto
57 ultimately have
58 "height (Node l e r) = height (add (Node l e r))"
59 using r by simp
60 moreover have "check (Suc n) d (add (Node l e r))"
61 proof -
62 have "d < height l - height (add r)" using x l by auto
63 moreover have "check n d l"
64 using l check_weaken_distance by simp
65 ultimately show ?thesis using r by simp
66 qed
67 ultimately show ?thesis by simp
68 qed
69 qed

E. Jones and D. Marmsoler 4:19

70 next
71 case 2
72 then show ?thesis
73 proof (cases rule: mining_cases)
74 case l2: l
75 moreover have "check (Suc n) (Suc d) (Node (add l) e r)"
76 using 2 l by auto
77 moreover have
78 "height (Node l e r) = height (add (Node l e r))"
79 using 2 l2 by auto
80 ultimately show ?thesis by simp
81 next
82 case r
83 consider "height (add r) = height r"
84 | "height (add r) = Suc (height r)" using height_add by auto
85 then show ?thesis
86 proof cases
87 case l1: 1
88 then have "height (Node l e r) = height (add (Node l e r))"
89 using r by simp
90 moreover have "check (Suc n) (Suc d) (add (Node l e r))"
91 using l l1 r by auto
92 ultimately show ?thesis by simp
93 next
94 case x: 2 (*symmetric to 1*)
95 qed
96 qed
97 next
98 case 3 (*symmetric to 2*)
99 qed

100 next
101 case r (*symmetric to l*)
102 qed
103 qed
104 qed

C Honest Mining Locale

Listing 19 Honest Mining height_add Proof in Isabelle.

1 lemma height_add: "height (add t) = Suc (height t)"
2 proof (induction t)
3 case Tip
4 then show ?case using m1 by auto
5 next
6 case (Node l e r)
7 show ?case
8 proof (cases rule: mining_cases)

FMBC 2024

4:20 Towards Mechanised Consensus in Isabelle

9 case l
10 moreover from this have
11 "height (add (Node l e r)) = height (Node (add l) e r)" by simp
12 ultimately show ?thesis using Node(1) by simp
13 next
14 case r
15 moreover from this have
16 "height (add (Node l e r)) = height (Node l e (add r))" by simp
17 ultimately show ?thesis using Node(2) by simp
18 qed
19 qed

Listing 20 Honest Mining check_add Proof in Isabelle.

1 lemma height_add: "height (add t) = Suc (height t)"
2 proof (induction t)
3 case Tip
4 then show ?case using m1 by auto
5 next
6 case (Node l e r)
7 show ?case
8 proof (cases rule: mining_cases)
9 case l

10 moreover from this have
11 "height (add (Node l e r)) = height (Node (add l) e r)" by simp
12 ultimately show ?thesis using Node(1) by simp
13 next
14 case r
15 moreover from this have
16 "height (add (Node l e r)) = height (Node l e (add r))" by simp
17 ultimately show ?thesis using Node(2) by simp
18 qed
19 qed

D Blockchain Locale

Listing 21 bounded_dishonest_mining Proof in Isabelle.

1 lemma bounded_dishonest_mining:
2 fixes t
3 assumes "t ∈ traces"
4 shows "count True t + (height t0 - depth) ≥ count False t"
5 using assms b2 by (induction rule:traces.induct; simp)

Listing 22 bounded_check Proof in Isabelle.

1 lemma bounded_check:
2 fixes t
3 assumes "t ∈ traces"

E. Jones and D. Marmsoler 4:21

4 shows "check depth
5 (Suc (count True t + (height t0 - depth) - count False t))
6 (State (hd t))"
7 using assms
8 proof (induction rule:traces.induct)
9 case honest_base

10 define t where "t = [LHonest = True, State = hadd t0M]"
11 then have "Suc (count True t + (height t0 - depth) - count False t)
12 = Suc (Suc (height t0 - depth))" by simp
13 moreover from b1 have "check depth
14 (Suc (Suc (height t0 - depth))) (hadd t0)"
15 using honest.check_add by (simp add: honest_axioms)
16 ultimately show ?case unfolding t_def by simp
17 next
18 case dishonest_base
19 define t where "t = [LHonest = False, State = dadd t0M]"
20 then have *: "Suc (count True t + (height t0 - depth) - count False t)
21 = (height t0 - depth)" using b2 by simp
22 show ?case
23 proof (cases rule: check_add_cases[OF b1])
24 case 1
25 then have "check depth (Suc (height t0 - depth)) (dadd t0)"
26 using * unfolding t_def using check_weaken_distance by simp
27 then show ?thesis using * unfolding t_def
28 using check_weaken_distance by simp
29 next
30 case 2
31 then show ?thesis using * unfolding t_def
32 using check_weaken_distance by auto
33 next
34 case 3
35 then show ?thesis using * unfolding t_def by simp
36 qed
37 next
38 case (honest_induct t)
39 define t’ where "t’ = LHonest = True, State = hadd (State (hd t))M # t"
40 moreover have "Suc (count True t + (height t0 - depth)) > count False t"
41 using honest_induct bounded_dishonest_mining[OF honest_induct(1)]
42 by simp
43 ultimately have "count True t’ + (height t0 - depth) - count False t’
44 = Suc (count True t + (height t0 - depth) - count False t)" by simp
45 moreover from honest_induct have "check depth
46 (Suc (Suc (count True t + (height t0 - depth) - count False t)))
47 (hadd (State (hd t)))" using honest.check_add[OF honest_axioms]
48 by (simp add: honest_axioms)
49 ultimately show ?case unfolding t’_def
50 using check_weaken_distance by simp
51 next

FMBC 2024

4:22 Towards Mechanised Consensus in Isabelle

52 case (dishonest_induct t)
53 define t’ where "t’ = LHonest = False, State = dadd (State (hd t))M # t"
54 then have *: "count True t’ + (height t0 - depth) - count False t’
55 = count True t + (height t0 - depth) - Suc (count False t)" by simp
56 have "check depth
57 (Suc (count True t’ + (height t0 - depth) - count False t’))
58 (State (hd t’))"
59 proof (cases rule: check_add_cases[OF dishonest_induct(3)])
60 case 1
61 then have "check depth
62 (Suc ((count True t + (height t0 - depth) - (count False t))))
63 (dadd (State (hd t)))" using check_weaken_distance by simp
64 then have "check depth
65 (((count True t + (height t0 - depth) - (count False t))))
66 (dadd (State (hd t)))" using check_weaken_distance by simp
67 moreover have "count True t + (height t0 - depth) > (count False t)"
68 using dishonest_induct(2) by simp
69 ultimately have "check depth
70 (Suc (count True t + (height t0 - depth) - Suc (count False t)))
71 (dadd (State (hd t)))" using Suc_diff_Suc by simp
72 then show ?thesis using * unfolding t’_def by simp
73 next
74 case 2
75 then have "check depth
76 (((count True t + (height t0 - depth) - (count False t))))
77 (dadd (State (hd t)))" using check_weaken_distance by simp
78 moreover have "count True t + (height t0 - depth) > (count False t)"
79 using dishonest_induct(2) by simp
80 ultimately have "check depth
81 (Suc (count True t + (height t0 - depth) - Suc (count False t)))
82 (dadd (State (hd t)))" using Suc_diff_Suc by simp
83 then show ?thesis using * unfolding t’_def by simp
84 next
85 case 3
86 moreover have "count True t + (height t0 - depth) > (count False t)"
87 using dishonest_induct(2) by simp
88 ultimately have "check depth
89 (Suc (count True t + (height t0 - depth) - Suc (count False t)))
90 (dadd (State (hd t)))" using Suc_diff_Suc by simp
91 then show ?thesis using * unfolding t’_def by simp
92 qed
93 then show ?case unfolding t’_def by simp
94 qed

Formalizing Automated Market Makers in the
Lean 4 Theorem Prover
Daniele Pusceddu #

ETH Zurich, Switzerland
University of Cagliari, Italy

Massimo Bartoletti # Ñ

University of Cagliari, Italy

Abstract
Automated Market Makers (AMMs) are an integral component of the decentralized finance (DeFi)
ecosystem, as they allow users to exchange crypto-assets without the need for trusted authorities
or external price oracles. Although these protocols are based on relatively simple mechanisms, e.g.
to algorithmically determine the exchange rate between crypto-assets, they give rise to complex
economic behaviours. This complexity is witnessed by the proliferation of models that study their
structural and economic properties. Currently, most of theoretical results obtained on these models
are supported by pen-and-paper proofs. This work proposes a formalization of constant-product
AMMs in the Lean 4 Theorem Prover. To demonstrate the utility of our model, we provide
mechanized proofs of key economic properties like arbitrage, that at the best of our knowledge have
only been proved by pen-and-paper before.

2012 ACM Subject Classification Software and its engineering → Formal methods; Software and its
engineering → Formal software verification

Keywords and phrases Smart contracts, Ethereum, Verification, Blockchain

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.5

Supplementary Material Software: https://github.com/danielepusceddu/lean4-amm/tree/
paper, archived at swh:1:dir:090eb97d11848e5615172481ca6d55537974261c

Funding Massimo Bartoletti : Partially supported by project SERICS (PE00000014) and PRIN 2022
DeLiCE (F53D23009130001) under the MUR National Recovery and Resilience Plan funded by the
European Union – NextGenerationEU.

1 Introduction

Automated Market Makers (AMMs) are one of the key applications in the Decentralized
Finance (DeFi) ecosystem, as they allow users to trade crypto-assets without the need for
trusted intermediaries [13]. Unlike traditional order-book exchanges, where buyers and sellers
must find a counterpart, AMMs enable traders to autonomously swap assets deposited in
liquidity pools contributed by other users, who are incentivized to provide liquidity by a
complex reward mechanism. At the time of writing, there are multiple AMM protocols
controlling several billions of dollars worth of assets1. This has made AMMs an appealing
target for attacks, resulting in losses worth billions of dollars over time2.

The security of AMMs depends on several factors: besides the absence of traditional
programming bugs, it is crucial that their economic mechanism gives rise to a rational
behaviour of its users that aligns with the AMM ideal functionality, i.e. providing an
algorithmic exchange rate coherent with the one given by trusted price oracles. Therefore, it

1 https://defillama.com/protocols/Dexes
2 https://chainsec.io/defi-hacks/

© Daniele Pusceddu and Massimo Bartoletti;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 5; pp. 5:1–5:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dpusceddu@student.ethz.ch
mailto:bart@unica.it
http://blockchain.unica.it
https://orcid.org/0000-0003-3796-9774
https://doi.org/10.4230/OASIcs.FMBC.2024.5
https://github.com/danielepusceddu/lean4-amm/tree/paper
https://github.com/danielepusceddu/lean4-amm/tree/paper
https://archive.softwareheritage.org/swh:1:dir:090eb97d11848e5615172481ca6d55537974261c;origin=https://github.com/danielepusceddu/lean4-amm;visit=swh:1:snp:c22b69152874676bea709ca7934848b8331206e3;anchor=swh:1:rev:9cd8e62bbacc908f4569241a37bfbcc45478b145
https://defillama.com/protocols/Dexes
https://chainsec.io/defi-hacks/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Formalizing Automated Market Makers in the Lean 4 Theorem Prover

is important to obtain strong guarantees about the economic mechanisms of these protocols.
While formal verification tools for smart contracts based on model-checking are useful in
detecting programming bugs and even in proving some structural properties of AMMs [6, 8],
they are not suitable for verifying, or even expressing more complex properties regarding
the economic mechanism of AMMs. These economic mechanisms have been studied in
several research works, which, in most cases, provide pen-and-paper proofs of the obtained
properties. Given the complexity of the studied models, it would be desirable to also provide
machine-verified proofs, so that we may rely on the proven properties beyond any reasonable
doubt. To the best of our knowledge, existing mechanized formalizations [11] focus on
verifying relevant structural properties of AMMs like their state consistency, and not on
studying the economic mechanism of AMMs (see Section 4 for a detailed comparison).

Contributions

In this paper we formalize Automated Market Makers in the Lean 4 theorem prover. Our
model is based on a slightly simplified version of the Uniswap v2 protocol (one of the leading
AMMs), which was studied in [5] with a pen-and-paper formalization. We provide a Lean
specification of blockchain states, abstracted from any factors that are immaterial to the study
of AMMs. Then, we model the fundamental interactions that users may have with AMMs as
well as the economic notions of price, networth and gain. Finally, we build machine-checked
proofs of economic properties of constant-product AMMs. In particular, we derive an explicit
formula for the economic gain obtained by a user after an exchange with an AMM. Building
upon this formula we prove that, from a trader’s perspective, aligning a constant-product
AMM’s internal exchange rate with the rate given by the trader’s price oracle implies the
optimal gain from that AMM. This results in the fundamental property of AMMs acting as
price oracles themselves [1]. We then construct the optimal swap transaction that a rational
user can perform to maximize their gain, solving the arbitrage problem. Our formalization
and proofs3 are made available in a public GitHub repository. At the best of our knowledge,
this is the first mechanized formalization of the economic mechanism of AMMs. We finally
discuss some open issues, and alternative design choices for formalizing AMMs.

2 Formalization

An Automated Market Maker implements a decentralized exchange between two different
token types. The exchange rate is determined by a smart contract, which also takes care of
performing the exchange itself: namely, the contract receives from a trader some amount of
the input token type, and sends back the correct amount of the output token type, which
is taken from the AMM reserves. A single smart contract can control many instances of
AMMs (also called AMM pairs): we may have a pair for each possible unordered pair of
token types. To create an AMM instance, a user must provide the initial liquidity for the
reserves of that pair of tokens. Liquidity providers are rewarded with a type of token that
specifically represents shares in that AMM’s reserves: we call these minted token types, while
any other token type will be called atomic.

3 https://github.com/danielepusceddu/lean4-amm

https://github.com/danielepusceddu/lean4-amm

D. Pusceddu and M. Bartoletti 5:3

Blockchain state

We begin by formalizing the blockchain state, abstracting from the details that are immaterial
to the study of AMMs. Then, our model includes the users’ wallets, the AMMs and their
reserves (see Listing 1). We formalize the universes of users and atomic token types as the
types A and T, respectively, as structures that encapsulate a natural number. Hereafter,
we use a, b, . . . to denote users in A, and τ, τ0, τ1, . . . to denote tokens in T. Minted token
types are pairs of T. We represent the funds owned by a user by a wallet that maps token
types to non-negative reals. To rule out wallets with infinite tokens, we use Mathlib’s finitely
supported functions4: in general, given any type α and any type M with a 0 element,
f ∈ α →0 M if supp (f) = {x ∈ α | f (x) ̸= 0} is finite.

We define the type W0 of wallets of atomic tokens as a structure encapsulating T →0 R≥0.
This definition induces an element 0 ∈ W0 such that supp (0) = ∅: this is the empty wallet,
which enables us to form the type T →0 W0. We define the type W1 of wallets of minted tokens
as a structure that encapsulates a function bal ∈ T →0 W0. The intuition is that bal τ0 τ1
gives the owned amount of the minted token type created by the AMM pair with tokens τ0
and τ1. Consistently, the function bal must satisfy two conditions: bal τ0 τ1 = bal τ1 τ0,
meaning that the order of atomic tokens is irrelevant, and bal τ τ = 0, meaning that the
two token types in an AMM must be distinct. Our definition of W1 encapsulates proofs of
these two properties, called unord and distinct, respectively.

We map users to their wallets with the types S0 and S1, which account for the atomic
tokens and for the minted tokens, respectively. Finally, we formalize sets of AMM pairs
with the type AMMs. The definition is strikingly similar to that of W1, but with a changed
constraint. The intuition is that res τ0 τ1 gives the reserves of τ0 in the AMM pair (τ0, τ1),
while res τ1 τ0 gives the reserves of τ1 in the same AMM pair. For uninitialized AMM pairs,
the obtained reserves must be 0. The property posres ensures that either an AMM pair
has no reserves of both token types (i.e., the AMM has not been created yet), or both token
types have strictly positive reserves (i.e., one cannot deplete the reserves of a single token
type in an AMM pair). We combine the previous definitions in the type Γ, which represents
the state of a blockchain (note that Γ abstracts from all the details immaterial for AMMs).

Token supply

Given a blockchain state s ∈ Γ, we define the supply of an atomic token type τ0 as:

atomsupplys (τ0) =
∑

a∈supp(s.atoms)

(s.atoms a) τ0 +
∑

τ1∈supp(s.amms τ0)

(s.amms τ0) τ1

where the partial application s.amms τ0 gives a map with all AMM pairs with τ0 as one of
their token types. We define the supply of a minted token type (τ0, τ1) as follows:

mintsupplys (τ0, τ1) =
∑

a∈supp(s.mints)

(s.mints a) τ0 τ1

The corresponding Lean definitions (in Listing 2) have been split in order to facilitate
theorem proving and, in particular, the use of Lean’s simplifier.

4 https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Finsupp/Defs.html

FMBC 2024

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Data/Finsupp/Defs.html

5:4 Formalizing Automated Market Makers in the Lean 4 Theorem Prover

Listing 1 Fundamental Lean definitions for the state of an AMM system.

structure A where
n: N

structure T where
n: N

structure W0 where
bal: T →0 R≥0

structure S0 where
map: A →0 W0

structure W1 where
bal: T →0 W0

unord: ∀ (τ0 τ1:
T),
bal τ0 τ1 = f τ1

τ0

distinct: ∀ (τ: T),
bal τ τ = 0

structure S1 where
map: A →0 W1

structure AMMs where
res: T →0 W0

distinct: ∀ (τ: T),
res τ τ = 0

posres: ∀ (τ0 τ1: T),
res τ0 τ1 ̸= 0 ↔ f τ1 τ0 ̸=

0

structure Γ where
atoms: S0

mints: S1

amms: AMMs

Listing 2 Supply of atomic token types and of minted token types.

1 noncomputable def S0.supply (s: S0) (τ: T): R≥0 := s.map.sum (λ _ w => w τ)
2

3 noncomputable def S1.supply (s: S1) (τ0 τ1: T): R≥0 :=
4 s.map.sum (λ _ w => w.get τ0 τ1)
5

6 noncomputable def AMMs.supply (amms: AMMs) (τ: T): R≥0 :=
7 (amms.res τ).sum λ _ x => x
8

9 noncomputable def Γ.atomsupply (s: Γ) (τ: T): R≥0 :=
10 (s.atoms.supply τ) + (s.amms.supply τ)
11

12 noncomputable def Γ.mintsupply (s: Γ) (τ0 τ1: T): R≥0 := s.mints.supply τ0 τ1

AMM reserves

Given a blockchain state s and two token types τ0, τ1, the terms s.amms τ0 τ1 and s.amms τ1 τ0
denote, respectively, the reserves of τ0 and τ1 in the AMM pair (τ0, τ1). This way of accessing
the AMM reserves is a bit impractical: when writing proofs, using s.amms τ0 τ1 carries an
obligation to provide the functions distinct and posres. In particular, this requires the
user to explicitly add, in any theorem using the reserves, the assumption that the reserves
are strictly positive to indicate the AMM pair has been created. Furthermore, this way of
accessing the reserves hides the fact that when one of the reserves is strictly positive, also
the other one is such, which again should be made explicit when writing proofs.

To cope with these issues, we build a Lean API that allows for hiding these implementation
details (see Listing 3). For example, given an AMM pair (τ0, τ1) in a state s, the expression
s.amms.r0 τ0 τ1 init gives the reserves of token τ0 in the AMM, which are guaranteed to be
strictly positive under the initialization precondition init ∈ (s.amms.init).

Transactions

Our model encompasses all the main types of transactions supported by AMMs: creating an
AMM, adding/removing liquidity, and swapping a token for another. Swaps are parameterised
by a swap rate function, which determines the exchange rate. We use the formalization of
swap transactions (Listing 4) to exemplify the scheme we used for all the transaction types.

D. Pusceddu and M. Bartoletti 5:5

Listing 3 Fragment of the AMM API: AMM reserves.

1 def AMMs.init (amms: AMMs) (τ0 τ1: T): Prop := amms.res τ0 τ1 ̸= 0
2

3 def AMMs.r0 (amms: AMMs) (τ0 τ1: T) (h: amms.init τ0 τ1): R>0 := ⟨ amms.res τ0 τ1,
4 by unfold init at h; exact NNReal.neq_zero_imp_gt h ⟩
5

6 def AMMs.r1 (amms: AMMs) (τ0 τ1: T) (h: amms.init τ0 τ1): R>0 := ⟨ amms.res τ1 τ0,
7 by unfold init at h; exact NNReal.neq_zero_imp_gt ((amms.posres τ0 τ1).mp h) ⟩

The type Swap (sx, s, a, τ0, τ1, x) represents valid swap transactions in a blockchain state
s, with the swap rate function sx, performed by user a to exchange x amount of the input
token τ0 for a certain amount of the output token τ1 (Line 2). Each element of this type
is a structure containing a proof of the validity of the transaction. For example, for swap
transactions we must prove that the user has enough amount of τ0 (condition enough), that
the AMM pair with tokens τ0 and τ1 exists (condition exi), and it has enough reserves
of τ1 to give as output (condition nodrain). Since the type Swap (· · ·) is empty when the
parameters do not satisfy the above conditions, invalid transactions are not really expressible
in our model. Instead, if Swap (· · ·) represents a valid transaction, it will be a singleton type
due to proof irrelevance (i.e., any two proofs of the same proposition are equal).

Each transaction is equipped with an apply function that yields the state reached by
executing the transaction in the given state. For example, for sw ∈ Swap (sx, s, a, τ0, τ1, x),
apply sw yields a state where:

a’s atomic tokens wallet is updated by removing x units of τ0 and adding sw.y units of
τ1 (Line 12), where sw.y is the amount of tokens outputted by the AMM pair;
accordingly, the AMM reserves are updated by removing sw.y units of τ1 and adding x

units of τ0 (Line 14);
the minted token wallets is unchanged (Line 13).

These definitions use functions and proofs not included in Listing 4 for brevity, such as sub
and sub_r1. These are designed with the same spirit of allowing only valid operations, and
so require suitable proofs. For example, sub_r1 requires a proof of the existence of the AMM
we are removing liquidity from, and a proof that the AMM pair has enough liquidity to
retain a positive amount of reserves. We build these proofs inline using those contained in
the structure: for instance, the parameter sw.exi passed to sub_r1 at line 11 is a proof that
the AMM pair exists. Then, at line 16 we define the constant-product swap rate function,
that is the swap rate function used by Uniswap v2. From Lemma 5 onwards, our results will
focus on AMMs using this swap rate function.

Price, networth and gain

An important aim of our model is to state and prove economic properties of AMMs related
to the networth of their users. The fundamental definitions are in Listing 5. Given a wallet
w ∈ W0 and an atomic token price oracle o ∈ T → R>0, we define the value of w in Line 2 as:

value (w, o) =
∑

τ∈supp(w)

w (τ) · o (τ)

The value of a wallet of minted tokens w ∈ W1 is defined similarly, except that:
the summation ranges over supp (w.u), with w.u ∈ T2 →0 R≥0 representing the uncurrying
of w;
the summation is divided by 2 since, if (τ0, τ1) is in the support of w, then also (τ1, τ0) is
in its support.

FMBC 2024

5:6 Formalizing Automated Market Makers in the Lean 4 Theorem Prover

Listing 4 Definition of the swap transaction type and of its application, as well as the constant-
product swap rate function.

1 abbrev SX := R>0 → R>0 → R>0 → R>0
2 structure Swap (sx: SX) (s: Γ) (a: A) (τ0 τ1: T) (x: R>0) where
3 enough: x ≤ s.atoms.get a τ0 -- user a has at least x τ0

4 exi: s.amms.init τ0 τ1 -- AMM pair τ0 τ1 exists in s
5 nodrain: x*(sx x (s.amms.r0 τ0 τ1 exi) (s.amms.r1 τ0 τ1 exi))
6 < (s.amms.r1 τ0 τ1 exi) -- AMM has enough output tokens
7

8 def Swap.y (sw: Swap sx s a τ0 τ1 x): R>0 :=
9 x*(sx x (s.amms.r0 τ0 τ1 sw.exi) (s.amms.r1 τ0 τ1 sw.exi))

10

11 noncomputable def Swap.apply (sw: Swap sx s a τ0 τ1 x): Γ := {
12 atoms := (s.atoms.sub a τ0 x sw.enough).add a τ1 sw.y,
13 mints := s.mints,
14 amms := (s.amms.sub_r1 τ0 τ1 sw.exi sw.y sw.nodrain).add_r0 τ0 τ1 (by

simp[sw.exi]) x }
15

16 noncomputable def SX.constprod: SX := λ (x r0 r1: R+) => r1/(r0 + x)

For uniformity with the definition of value of atomic wallets, also here we assume an oracle
that gives the price of (minted) tokens. However, while for pricing atomic tokens we indeed
resort to an oracle, for minted tokens this oracle is instantiated to a specific function,
coherently with [5]:

mintedprices(o, τ0, τ1) = (s.amms.r0 τ0 τ1) · o(τ0) + (s.amms.r1 τ0 τ1) · o(τ1)
mintsupplys(τ0, τ1)

where we have omitted the initialization precondition h for brevity.
We then define the networth of a user as the sum of the value of their two types of wallets

(Line 12). The gain of a user upon an update of the blockchain state is the difference between
the networth in the new state and that in the old state (Line 16).

Reachable states

To formalize reachable states, we begin by defining sequences of transactions (Listing 6).
Tx (sx, s, s′) is the type of sequences of valid transactions (of any kind) starting from state s

and leading to s′. The parameter sx is the swap rate function used in swap transactions.
Technically, Tx (sx, s, s′) is an instance of the indexed family of dependent types Tx, dependent
on sx and s, and indexed by s′. In practice, this means that the constructors must preserve
the values of sx and s (building upon the sequence of transactions does not change the
swap rate function being used nor the originating state), while s′ may change after each
construction (the state resulting from the sequence changes with each transaction that is
added to it). A state s′ is reachable if there exists a valid sequence of transactions that
reaches s′ starting from a valid initial state s, i.e. a state with no initialized AMMs or minted
token types in circulation.

D. Pusceddu and M. Bartoletti 5:7

Listing 5 Users’ networth and gain.

1 noncomputable def W0.value (w: W0) (o: T → R>0): R≥0 :=
2 w.sum (λ τ x => x*(o τ))
3

4 noncomputable def W1.value (w: W1) (o: T → T → R≥0): R≥0 :=
5 (w.u.sum (λ p x => x*(o p.fst p.snd))) / 2
6

7 noncomputable def Γ.mintedprice (s: Γ) (o: T → R>0) (τ0 τ1: T): R≥0 :=
8 if h:s.amms.init τ0 τ1 then
9 ((s.amms.r0 τ0 τ1 h)*(o τ0)+(s.amms.r1 τ0 τ1 h)*(o τ1)) / (s.mints.supply τ0 τ1)

10 else 0 -- price is zero if AMM is not initialized
11

12 noncomputable def Γ.networth (s: Γ) (a: A) (o: T → R>0): R≥0 :=
13 (W0.value (s.atoms.get a) o) + (W1.value (s.mints.get a) (s.mintedprice o))
14

15 noncomputable def A.gain (a: A) (o: T → R>0) (s s’: Γ): R :=
16 ((s’.networth a o): R) - ((s.networth a o): R)

Listing 6 Sequences of transactions and reachable states.

1 inductive Tx (sx: SX) (init: Γ): Γ → Type where
2 | empty: Tx sx init init
3

4 | swap (s’: Γ) (rs: Tx sx init s’)
5 (sw: Swap sx s’ a τ0 τ1 v0):
6 Tx sx init sw.apply
7 -- Other constructors omitted for brevity
8

9 def validInit (s: Γ): Prop :=
10 (s.amms = AMMs.empty ∧ s.mints = S1.empty)
11

12 def reachable (sx: SX) (s: Γ): Prop :=
13 ∃ (init: Γ) (tx: Tx sx init s), validInit init

3 Results

We now present some noteworthy properties of AMMs that we have proven in Lean.
Proposition 1 ensures that, in any reachable state, there exists an AMM with token types

τ0 and τ1 if and only if the minted token type (τ0, τ1) is in circulation, i.e. it has a strictly
positive supply. This result showcases the validity of our model with regards to reasoning
about reachable states. Technically, it also allows us to prove that mintedprices(o, τ0, τ1) is
strictly positive for any initialized AMM pair (τ0, τ1) in any reachable state s.

▶ Proposition 1 (Existence of AMMs vs. minted token supply). Let s′ ∈ Γ be a reachable
blockchain state. Then, for any minted token type (τ0, τ1), its supply in s′ is strictly positive
if and only if s′ has an AMM with token types τ0 and τ1.

Proof. By induction on the length of the sequence of transactions leading to s′:
Base case: empty transaction sequence. The proof is trivial for both directions, since a
valid starting state has no initialized AMMs and no minted tokens in circulation.

FMBC 2024

5:8 Formalizing Automated Market Makers in the Lean 4 Theorem Prover

Inductive case: there are several subcases depending on the last transaction fired in the
sequence. Here we consider the creation of the AMM (τ ′

0, τ ′
1) in reachable state s′. We

proceed by cases on the truth of the equality {τ0, τ1} = {τ ′
0, τ ′

1}. If it is a different token
pair, then the supply remains unchanged along with the initialization status, and we
can conclude by the induction hypothesis. If it is the same token pair, then we just
incremented its minted token supply (which is non-negative, so after incrementing it, it
must be strictly positive), and we just initialized the AMM.
See source code for the other cases. AMMLib/Transaction/Trace.lean:275 ◀

Lemma 2 allows us to determine the change in the value of a wallet after it has been
updated in some way: the resulting equality is the basis for all the subsequent proofs. To
illustrate it, we briefly introduce two definitions that have been omitted before: drain0(w0, τ0)
is the atomic token wallet such that drain0(w0, τ0)(τ0) = 0 and drain0(w0, τ0)(τ1) = w0(τ1)
for every other token τ1 ̸= τ0. We define drain1(w1, (τ0, τ0)) ∈ W1 similarly.

▶ Lemma 2 (Value expansion). Let w0 ∈ W0, o0 ∈ T → R>0, and τ0, τ1 ∈ T. Then,

value (w0, o0) = w0(τ0) · o(τ0) + value (drain0(w0, τ0), o0)

and, with w1 ∈ W1 and o1 ∈ T2 → R>0 such that o1(τ0, τ1) = o1(τ1, τ0),

value (w1, o1) = w1(τ0, τ1) · o1(τ0, τ1) + value (drain1(w1, τ0, τ1), o1)

Proof. By definition of value and by properties of the sum over a finite support. Full Lean
proof at AMMLib/State/AtomicWall.lean:116 ◀

Lemma 3 gives an explicit formula for the gain obtained by a user upon firing a swap
transaction. It is fundamental to all proofs involving gain.

▶ Lemma 3 (Gain of a swap). Let sw ∈ Swap (sx, s, a, τ0, τ1, x) and let o ∈ T → R>0. Then,

gain (a, o, s, apply sw) = (sw.y · o (τ1) − x · o (τ0)) ·
(

1 − (s.mints a τ0 τ1)
mintsupplys (τ0, τ1)

)
Proof. By repeated application of Lemma 2 in order to isolate the value contributed by
the token types involved in the swap, and by use of Mathlib’s ring_nf simplifier tactic.
AMMLib/Transaction/Swap/Networth.lean:55 ◀

Lemma 4 establishes a correspondence between the profitability of a swap transaction
(i.e., a positive or negative gain) and the order between the swap rate and the exchange rate
given by the price oracle. In particular, assuming a trader a who is not a liquidity provider
(i.e., a has no minted tokens for the AMM pair targeted by the swap), Lemma 4 states that:

gain (a, o, s, apply sw) < 0 ⇐⇒ sx (x, r0, r1) < o(τ0)/o(τ1)

gain (a, o, s, apply sw) = 0 ⇐⇒ sx (x, r0, r1) = o(τ0)/o(τ1)

gain (a, o, s, apply sw) > 0 ⇐⇒ sx (x, r0, r1) > o(τ0)/o(τ1)

Technically, to formalize this result it is convenient to use Mathlib’s cmp5, which gives the
order between the two parameters.

5 https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Data/Ordering/Basic.
html#cmp

https://github.com/danielepusceddu/lean4-amm/blob/paper/AMMLib/Transaction/Trace.lean#L275
https://github.com/danielepusceddu/lean4-amm/blob/paper/AMMLib/State/AtomicWall.lean#L116
https://github.com/danielepusceddu/lean4-amm/blob/paper/AMMLib/Transaction/Swap/Networth.lean#L55
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Data/Ordering/Basic.html#cmp
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Init/Data/Ordering/Basic.html#cmp

D. Pusceddu and M. Bartoletti 5:9

▶ Lemma 4 (Swap rate vs. exchange rate). Let sw ∈ Swap (sx, s, a, τ0, τ1, x) be a swap
transaction, and let o ∈ T → R>0 be a price oracle. For i ∈ {0, 1}, let ri = s.amms.ri (τ0, τ1).
If s.mints (a) (τ0, τ1) = 0, then

cmp (gain (a, o, s, apply sw) , 0) = cmp
(

sx (x, r0, r1) ,
o (τ0)
o (τ1)

)
Proof. By term manipulation and Lemma 3. AMMLib/Transaction/Swap/Networth.lean:86

◀

Lemma 5 establishes that, in a constant-product AMM, there exists only one profitable
direction for a swap. Namely, if swapping τ0 for τ1 gives a positive gain, then swapping in
the other direction (i.e., τ1 for τ0) will give a negative gain. Note that the inverse does not
hold: a negative gain in a direction does not imply a positive gain in the other direction.

▶ Lemma 5 (Unique direction for swap gain). Let sw ∈ Swap (constprod, s, a, τ0, τ1, x) and
sw′ ∈ Swap (constprod, s, a, τ1, τ0, x′) be two swap transactions in opposite directions, and
let o ∈ T → R>0. If gain (a, o, s, apply sw) > 0, then gain (a, o, s, apply sw) < 0.

Proof. By Lemma 4. AMMLib/Transaction/Swap/Constprod.lean:160 ◀

▶ Example 6. Consider a blockchain state s and atomic tokens τ0 and τ1, and assume that:
a is a trader with no minted tokens, i.e. (s.mints a) τ0 τ1 = 0;
the AMM pair for (τ0, τ1) has been initialized in s and has reserves r0 = (s.amms τ0 τ1) = 18
and r1 = (s.amms τ1 τ0) = 6;
all the AMMs in s use the constant-product swap rate function;
o is a price oracle such that o τ0 = 3 and o τ1 = 4.

Assume that a wants to sell 6 units of τ1 for some units of τ0 with the swap transaction
sw ∈ Swap(constprod, s, a, τ1, τ0, 6). Then, by Lemma 3, a’s gain is given by 9·3−24 = 3 > 0.
Coherently with Lemma 5, any swap in the opposite direction would give a negative gain:
e.g., if a sells 6 units of τ0, her gain would be 3/2 · 4 − 18 = −12.

We say that a swap transaction sw ∈ Swap (constprod, s, a, τ0, τ1, x) is optimal for a
given price oracle o when, for all sw′ ∈ Swap (constprod, s, a, τ0, τ1, x′) with x′ ≠ x we have

gain (a, o, s, apply sw′) < gain (a, o, s, apply sw)

Theorem 7 gives a sufficient condition for the optimality of swaps in constant-product
AMMs: it suffices that the ratio of the AMM’s reserves after the swap is equal to the
exchange rate given by the price oracle. Intuitively, the condition in Theorem 7 means that
the exchange rate between the two token types induced by the AMM (i.e., the ration between
the token reserves) is aligned with the exchange rate given by the price oracle, and so further
swaps would yield a negative gain. Note that, by definition, if a swap is optimal then it is
also unique, i.e. swapping any other amount would yield a suboptimal gain.

▶ Theorem 7 (Sufficient condition for optimal swaps). Let sw ∈ Swap (constprod, s, a, τ0, τ1, x)
be a swap transaction on a constant-product AMM, and let o ∈ T → R>0 be a price oracle.
For i ∈ {0, 1}, let r′

i = (apply sw) .amms.ri (τ0, τ1) be the AMM reserves after the swap. If
r′

1/r′
0 = o(τ0)/o(τ1), then sw is optimal.

Proof. By cases on x < x′ and by application of Lemma 4. AMMLib/Transaction/Swap/-
Constprod.lean:184 ◀

FMBC 2024

https://github.com/danielepusceddu/lean4-amm/blob/paper/AMMLib/Transaction/Swap/Networth.lean#L86
https://github.com/danielepusceddu/lean4-amm/blob/paper/AMMLib/Transaction/Swap/Constprod.lean#L160
https://github.com/danielepusceddu/lean4-amm/blob/paper/AMMLib/Transaction/Swap/Constprod.lean#L184
https://github.com/danielepusceddu/lean4-amm/blob/paper/AMMLib/Transaction/Swap/Constprod.lean#L184

5:10 Formalizing Automated Market Makers in the Lean 4 Theorem Prover

▶ Example 8. Under the assumptions of Example 6, the exchange rate between τ1 and τ0
given by the price oracle is (o τ0)/(o τ1) = 3/4, while the exchange rate induced by the
AMM (i.e., the ratio between the reserves) is r1/r0 = 1/3. Hence, to satisfy the equality
in Theorem 7 we must perform a swap that increases r1 and decreases r0, i.e. a must sell
units of τ1 to buy units of τ0, coherently with the necessary condition for a positive gain
in Example 6. Theorem 9 below will establish exactly how many units of τ1 must be traded.

Theorem 9 gives an explicit formula for the input amount x that yields an optimal swap
transaction for a given AMM pair, under the assumption that the user firing the transaction
does not hold the AMM’s minted token type. The other implicit assumption is that the user
a firing the swap has the needed amount x of units of the sold token, i.e. x ≤ (s.atoms a) τ1.
In practice, this assumption can always be satisfied with flash loans, which allow a to borrow
the amount x, perform the swap, and then return the loan in a single, atomic transaction.

▶ Theorem 9 (Arbitrage for constant-product AMMs). Let sw ∈
Swap (constprod, s, a, τ0, τ1, x) be a swap transaction on a constant-product AMM,
and let o ∈ T → R>0 be a price oracle. For i ∈ {0, 1}, let ri = s.amms.ri (τ0, τ1) be the AMM
reserves. If a has no minted tokens (i.e., s.mints (a) (τ0, τ1) = 0) then sw is optimal if the
amount of traded units of τ0 is:

x =

√
o(τ1) · r0 · r1

o(τ0) − r0

Proof. By algebraic manipulation and Theorem 7. AMMLib/Transaction/Swap/Const-
prod.lean:316 ◀

▶ Example 10. Under the assumptions of Example 8, we know that to perform a profitable
swap the trader must sell units of τ1, i.e. fire a transaction Swap (constprod, s, a, τ1, τ0, x).
Theorem 9 gives the optimal input value x, i.e., the number of sold units of τ1:

x =
√

3 · 6 · 18
4 − 6 = 3

Then, the output amount is given by sw.y = 3 ·18/(6+3) = 6 and, by Lemma 3, the gain of a

is 6 · 3 − 3 · 4 = 6, which maximizes it. Note that, in the new state, the exchange rate given by
the AMM coincides with that given by the price oracle: (r1 + x)(r0 − sw.y) = (o τ0)/(o τ1).

4 Related work

The closest work to ours is [11], which proposes a methodology for developing and verifying
AMMs in the Coq proof assistant. In this approach, an AMM is decomposed into multiple
interacting smart contract: e.g., each minted token is modelled as a single smart contract,
following the way fungible tokens are encoded in blockchains platforms that do not provide
custom tokens natively, as e.g. in Ethereum and Tezos. These smart contracts are then
implemented as Coq functions on top of ConCert [3], a generic model of blockchain platforms
and smart contracts mechanized in Coq. Concert is used to verify behavioural properties
of smart contracts, either in isolation or composed with other smart contracts: this is
fundamental for [11], where AMMs are specified as compositions of multiple contracts.

https://github.com/danielepusceddu/lean4-amm/blob/paper/AMMLib/Transaction/Swap/Constprod.lean#L316
https://github.com/danielepusceddu/lean4-amm/blob/paper/AMMLib/Transaction/Swap/Constprod.lean#L316

D. Pusceddu and M. Bartoletti 5:11

More specifically, [11] applies the proposed methodology to the Dexter2 protocol, which
implements a constant-product AMM based on Uniswap v1 on the Tezos blockchain6. The
main properties of AMMs proved in [11] are correspondences between the state of AMMs
and the sequences of transactions executed on the blockchain. In particular, they prove that:

the balance recorded in the main AMM contract is coherent with the actual balance
resulting from the execution of the sequence of transactions;
the supply of the minted token recorded in the main AMM contract is equal to the actual
supply resulting from the execution;
the state of the minted token contract is coherent with the execution.

Furthermore, starting from the Coq specification of the Dexter2 AMM, [11] extracts verified
CamlLigo code, which is directly deployable on the Tezos blockchain.

Although both our work and [11] involve AMM formalizations within a proof assistant,
the ultimate goals are quite different. The formalization in [11] closely follows the concrete
implementation of a particular AMM instance (Dexter2) and produces a deployable imple-
mentation that is provably coherent with the proposed Coq specification. By contrast, we
start from a more abstract specification of AMM, with the goal of studying the properties
that must be satisfied by any implementation coherent with the specification. An advantage
of our approach over [11] is that it provides a suitable level of abstraction where proving
properties about the economic mechanisms of AMMs, i.e. properties about the gain of users
and of equilibria among users’ strategies. In particular, Theorem 9 establishes a paradigmatic
property of AMMs, which explains the economic mechanism underlying their design.

Besides these main differences, our AMM model and that in [11] have several differences.
A notable difference is that our model is based on Uniswap v2, while [11] is based on
Uniswap v1. In particular, this means that our AMMs can handle arbitrary token pairs,
while in Dexter2 any AMM pairs a token with the blockchain native crypto-currency.

At the best of our knowledge, [11] and ours are currently the only mechanized formaliza-
tions of AMMs in a proof assistant. Many other works study economic properties of AMMs
that go beyond those proved in this paper. The works [2] and [1] study, respectively, an
AMM model based on Uniswap similar to ours, and a generalization of the model where the
AMM is parameterised over a trading function of the AMM reserves, which must remain
constant before and after any swap transactions (in Uniswap v1 and v2, the trading function
is just the product between the AMM reserves). The work [5] studies another generalization
of Uniswap v2, where the relation between input and output tokens of swap transactions
is determined by an arbitrary swap rate function, studying the properties of this function
that give rise to a sound economic mechanism of AMMs. While both [1] and [5] share
the common goal of providing general models of AMMs wherein to study their economic
behaviour, they largely diverge on the formalization: [1] is based on concepts related to
convex optimization problems, while [5] borrows formalization and reasoning techniques from
concurrency theory. The Lean 4 model proposed in this paper follows the formalization in [5],
which has the advantage of requiring far less mathematical dependencies: although Mathlib
is equipped to reason about convex sets and functions7, it is currently lacking in advanced
convex optimization definitions and results as those used in [1].

Our AMM model is based on Uniswap v2, one of the most successful AMMs so far. We
briefly discuss some alternative AMM constructions. Balancer [4] generalizes the constant-
product function used by Uniswap to a constant (weighted geometric) mean f(r1, · · · , rn) =

6 https://gitlab.com/dexter2tz/dexter2tz/-/tree/master/
7 https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/Convex/Function

FMBC 2024

https://gitlab.com/dexter2tz/dexter2tz/-/tree/master/
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Analysis/Convex/Function

5:12 Formalizing Automated Market Makers in the Lean 4 Theorem Prover

∏n
i=1 rwi

i , where the weight wi reflects the relevance of a token τi in a tuple (τ1, · · · , τn).
Curve [7] mixes constant-sum and constant-product functions, aiming at a swap rate with
small fluctuations for large amounts of swapped tokens. The work [9] studies a variant of the
constant-product swap rate invariant, where the rate adjusts dynamically based on oracle
prices, with the goal of reducing the need for arbitrage transactions. Other approaches
aiming at the same goal are studies in [12, 9], and implemented in [10]. Extending our Lean
formalization and results to these alternative AMM designs would require a substantial
reworking of our model and proofs.

5 Conclusions

In this work we have provided a formalization of AMMs in Lean. Blockchain states are
represented as structures containing wallets and AMMs, and transactions as dependent types
equipped with a function that defines the state resulting from firing the transaction. Based
on this, we have modeled the key economic notions of price, networth and gain. We have
then focused on the economic properties of AMMs, constructing machine-checkable proofs.
In Lemma 3 we have given an explicit formula for the economic gain of a user after firing a
swap transaction. In Theorem 7 we have proved that the rational strategy for traders leads
to the alignment between the AMM internal exchange rate and that given by price oracles.
Finally, in Theorem 9 we have derived the amount of tokens that a trader should sell to
maximize the gain from a constant-product AMM.

Design choices

Before coming up with our Lean formalization, we have experimented with a few alternative
definitions. Currently, we use the two pairs of atomic token types (τ0, τ1) and (τ1, τ0) to
represent the same minted token type. Initially, we used the type M of sets of atomic tokens
of cardinality 2, and modeled wallets of minted tokens by the type M →0 R≥0. However,
using M in the definition of AMMs turned out not to be as easy. The type M →0 R2

≥0 would
obviously not work since we would not know which value corresponds to the reserve of which
token. On the other hand, the dependent type (m : M) →0 Option (m → R>0) would work
after defining 0 := None, at the cost of losing the straightforward definition for supply of
atomic tokens. We have opted for the custom subtype R>0 to represent the positive reals,
since they simplify writing certain definitions and proof passages (e.g., avoiding the use of
garbage outputs in the definitions where negative inputs would not make sense). This choice
however turned out to have some cons, since it makes using Mathlib more complex, and in
some cases we have to coerce back to the reals anyway (e.g. when reasoning about the gain).
Using Mathlib’s reals would perhaps lead to a smoother treatment.

Limitations

Compared to real-world AMM implementations, our Lean formalization introduces a few
simplifications, that overall contribute to keeping our proofs manageable. Bridging the gap
with real AMMs would require several extensions, which we discuss below as directions for
future work. AMMs typically implement a trading fee ϕ ∈ [0, 1] that represents the portion
of the swap amount kept by the AMM. While modeling the fee would be easy (ϕ would be an
additional parameter to SX functions, to Swap types, and to transactions Tx), it would require
a major reworking of all the results that deal with swaps. Our swaps have zero-slippage, in
that either a swap gives exactly the amount of tokens required by a user, or they are aborted.

D. Pusceddu and M. Bartoletti 5:13

While on the one hand this is desirable (e.g., it rules out sandwich attacks), on the other
hand it has drawbacks related to liveness, since a user may need to repeatedly send swap
transactions until one is accepted. Real-world AMM implementations allow users to specify
a slippage tolerance in the form of the minimum amount of tokens they expect from a swap.
Extending our model to encompass slippage tolerance would require to add a parameter to
each transaction type, and a minor reworking of the results. Some AMM implementations
allow users to create AMMs pairs involving minted token types. Consequently, the tokens
minted by these AMMs in general are “nestings” of token types. Extending our model in this
direction would require to replace price oracles in our results with a suitable price function.

References
1 Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market

makers. In ACM Conference on Advances in Financial Technologies (AFT), pages 80–91.
ACM, 2020. doi:10.1145/3419614.3423251.

2 Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An analysis
of Uniswap markets. Cryptoeconomic Systems, 1(1), 2021. doi:10.21428/58320208.c9738e64.

3 Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. Concert: a smart contract certifica-
tion framework in Coq. In ACM SIGPLAN International Conference on Certified Programs
and Proofs (CPP), pages 215–228. ACM, 2020. doi:10.1145/3372885.3373829.

4 Balancer whitepaper, 2019. URL: https://balancer.finance/whitepaper/.
5 Massimo Bartoletti, James Hsin yu Chiang, and Alberto Lluch-Lafuente. A theory of automated

market makers in DeFi. Logical Methods in Computer Science, Volume 18, Issue 4, dec 2022.
doi:10.46298/lmcs-18(4:12)2022.

6 Certora. Formal verification of Compound’s open-oracle with Uniswap anchor. https://files.
safe.de.fi/safe/files/audit/pdf/CompoundUniswapAnchoredOpenOracleAug2020.pdf,
2020.

7 Michael Egorov. Stableswap - efficient mechanism for stablecoin, 2019. URL: https://curve.
fi/files/stableswap-paper.pdf.

8 Uri Kirstein. Detecting corner cases in Compound V3
with formal specifications. https://medium.com/certora/
detecting-corner-cases-in-compound-v3-with-formal-specifications-b7abf137fb15,
2022.

9 Bhaskar Krishnamachari, Qi Feng, and Eugenio Grippo. Dynamic curves for decentralized
autonomous cryptocurrency exchanges. In International Symposium on Foundations and
Applications of Blockchain (FAB), volume 92 of OASIcs, pages 5:1–5:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/OASIcs.FAB.2021.5.

10 Mooniswap whitepaper, 2020. URL: https://mooniswap.exchange/docs/
MooniswapWhitePaper-v1.0.pdf.

11 Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters. Formalising decentralised exchanges in
Coq. In ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP),
pages 290–302. ACM, 2023. doi:10.1145/3573105.3575685.

12 Improving frontrunning resistance of x*y=k market makers, 2018. URL: https://ethresear.
ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281.

13 Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. Sok: Decentralized exchanges
(DEX) with automated market maker (AMM) protocols. ACM Comput. Surv., 55(11):238:1–
238:50, 2023. doi:10.1145/3570639.

FMBC 2024

https://doi.org/10.1145/3419614.3423251
https://doi.org/10.21428/58320208.c9738e64
https://doi.org/10.1145/3372885.3373829
https://balancer.finance/whitepaper/
https://doi.org/10.46298/lmcs-18(4:12)2022
https://files.safe.de.fi/safe/files/audit/pdf/CompoundUniswapAnchoredOpenOracleAug2020.pdf
https://files.safe.de.fi/safe/files/audit/pdf/CompoundUniswapAnchoredOpenOracleAug2020.pdf
https://curve.fi/files/stableswap-paper.pdf
https://curve.fi/files/stableswap-paper.pdf
https://medium.com/certora/detecting-corner-cases-in-compound-v3-with-formal-specifications-b7abf137fb15
https://medium.com/certora/detecting-corner-cases-in-compound-v3-with-formal-specifications-b7abf137fb15
https://doi.org/10.4230/OASIcs.FAB.2021.5
https://mooniswap.exchange/docs/MooniswapWhitePaper-v1.0.pdf
https://mooniswap.exchange/docs/MooniswapWhitePaper-v1.0.pdf
https://doi.org/10.1145/3573105.3575685
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281
https://doi.org/10.1145/3570639

Towards Benchmarking of Solidity Verification
Tools
Massimo Bartoletti # Ñ

University of Cagliari, Italy

Fabio Fioravanti #

University of Chieti-Pescara, Italy

Giulia Matricardi #

University of Chieti-Pescara, Italy

Roberto Pettinau #

Technical University of Denmark, Lyngby, Denmark

Franco Sainas #

EPFL, Lausanne, Switzerland

Abstract
Formal verification of smart contracts has become a hot topic in academic and industrial research,
given the growing value of assets managed by decentralized applications and the consequent incentive
for adversaries to tamper with them. Most of the current research on the verification of contracts
revolves around Solidity, the main high-level language supported by Ethereum and other leading
blockchains. Although bug detection tools for Solidity have been proliferating almost since the
inception of Ethereum, only in the last few years we have seen verification tools capable of proving
that a contract respects some desirable properties. An open issue is how to evaluate and compare
the effectiveness of these tools: indeed, the existing benchmarks for general-purpose programming
languages cannot be adapted to Solidity, given substantial differences in the programming model
and in the desirable properties. We address this problem by proposing an open benchmark for
Solidity verification tools. By exploiting our benchmark, we compare two leading tools, SolCMC
and Certora, discussing their completeness, soundness and expressiveness limitations.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases Smart contracts, Ethereum, Verification, Blockchain

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.6

Supplementary Material Software: https://github.com/fsainas/contracts-verification-ben
chmark, archived at swh:1:dir:5452a36f0c58435ad4b7dadb7e7563653ffc25b6

Funding Massimo Bartoletti : Partially supported by project SERICS (PE00000014) and PRIN 2022
DeLiCE (F53D23009130001) under the MUR National Recovery and Resilience Plan funded by the
European Union – NextGenerationEU.

1 Introduction

The rapid growth of decentralized applications based on blockchain technologies have emphas-
ized the importance of ensuring the security of smart contracts – the basic building blocks
of these applications. The research on smart contracts security has been proliferating since
2016, leading on the one side to the discovery of a variety of attacks, and on the other side
to the development of several tools to detect vulnerabilities of smart contracts before they
are deployed. Despite the increasing breadth and precision of these analysis tools, attacks to
smart contracts have caused financial losses worth several billions of dollars so far, and are
unlikely to be eradicated anytime soon.

© Massimo Bartoletti, Fabio Fioravanti, Giulia Matricardi, Roberto Pettinau, and Franco Sainas;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 6; pp. 6:1–6:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bart@unica.it
http://blockchain.unica.it
https://orcid.org/0000-0003-3796-9774
mailto:fabio.fioravanti@unich.it
mailto:giulia.matricardi@unich.it
mailto:roberto.pettinau99@gmail.com
mailto:franco@sainas.me
https://doi.org/10.4230/OASIcs.FMBC.2024.6
https://github.com/fsainas/contracts-verification-benchmark
https://github.com/fsainas/contracts-verification-benchmark
https://archive.softwareheritage.org/swh:1:dir:5452a36f0c58435ad4b7dadb7e7563653ffc25b6;origin=https://github.com/fsainas/contracts-verification-benchmark;visit=swh:1:snp:8c3e356fef534cf5ee05fd6cc7c20a17156075b9;anchor=swh:1:rev:9b712c267e3aa09d4c3ae18a1bdaf597e893fd9b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 Towards Benchmarking of Solidity Verification Tools

A large class of analysis tools for smart contracts are focused on detecting known
vulnerability patterns in contracts code. Even though tools of this type can detect many
nefarious bugs, statistically the vast majority of the losses due to real-world attacks are
caused by logic errors in the contract code, which cannot be prevented by only checking for
fixed vulnerability patterns [14]. In this context, a contract can be considered secure when its
executions are coherent with some ideal behaviour, even in the presence of adversaries trying
to subvert it. Only a few tools support this kind of security analysis, allowing developers
to specify the ideal properties the contract is expected to satisfy. In this work we focus on
SolCMC and Certora, two leading verification tools for contracts written in Solidity, the
main smart contract language for Ethereum and EVM-compatible blockchains. Both tools
allow the developer to specify desirable contract properties, and use SMT solvers to verify
whether the contract satisfies them, showing a counterexample when detecting a violation.
Although both tools have been independently tested by their developers [1, 10], no public
comparison exists so far to assess their effectiveness and limitations in practice.

Our long-term goal is a comprehensive, publicly available benchmark to evaluate the
effectiveness of verification tools for Solidity contracts. As an initial step towards this goal,
in this paper we present a benchmark comprising 323 verification tasks, each one made of
a Solidity contract and a property it is expected to satisfy.1 A crucial component of our
benchmark is a manually crafted ground truth of the verification tasks, encompassing multiple
versions of each smart contract in order to cover different ways of satisfying or violating
its associated properties. To foster the reproducibility of the results, we make available a
toolchain that automatises the construction of the verification tasks, their processing with
SolCMC and Certora, and the summarisation of the results. Based on these artifacts, we
present a preliminary evaluation of SolCMC and Certora, comparing their completeness,
soundness, and expressiveness. Finally, we introduce a scoring scheme for Solidity verification
tools, which is inspired by schemes used in software verification competitions [7], but taking
into account the peculiarities of the smart contracts context.

2 Background and related work

Over the years, several dozens of tools have been developed to analyse Ethereum contracts
(see e.g. [26, 23, 21] for systematic surveys). The vast majority of these tools focus on
specific types of contract vulnerabilities, such as reentrancy, integer overflow and underflow,
mishandled exceptions, transaction ordering dependence, etc. [19]. Some tools focus on
runtime verification of contracts [4], to force failures when some property violation is detected
at run-time. More recent tools give users more control on the properties to be verified, in
principle enabling the verification of contract implementations against an ideal, abstract
description of their behaviour.

A prominent tool in this category is SolCMC [2], a symbolic model checker integrated
in the Solidity compiler since 2019. Specifying properties in SolCMC requires developers
to instrument the contract code with assert statements, which are treated as verification
targets. Failure of an assert means that the desired property is not satisfied by the contract.
For example, consider a method deposit that receives ETH from any user, recording the
sent amount in a balances mapping. The property “after a successful deposit, the balance
entry of msg.sender is increased by msg.value” can be encoded as the function in Listing 1:

1 https://github.com/fsainas/contracts-verification-benchmark

https://github.com/fsainas/contracts-verification-benchmark

M. Bartoletti, F. Fioravanti, G. Matricardi, R. Pettinau, and F. Sainas 6:3

Listing 1 SolCMC encoding of a safety property.

function deposit_user_balance () public payable {
uint old_user_balance = balances [msg. sender];
deposit ();
uint new_user_balance = balances [msg. sender];
assert (new_user_balance == old_user_balance + msg. value);

}

This defines a contract invariant that must be true for any reachable contract state: the
balance of a user after a successful call is equal to the previous balance plus the deposit.
SolCMC transforms the instrumented contract into a set of Constrained Horn Clauses (CHC)
[8, 16] which is fed to a CHC satisfiability solver (Spacer [25], integrated in Z3 [17], or
Eldarica [22]) to check if any assert can fail. If so, it produces a trace witnessing the violation.

Certora [24, 6] is another leading formal verification tool for Solidity. Unlike SolCMC, it
decouples the specification of the properties from the contract code. Properties, written in
the Certora Verification Language (CVL), roughly can take the form of assert statements
(“for all contract runs, the condition holds”) or satisfy statements (“there exists a run
where the condition holds”). For instance, the CVL specification of the deposit property
seen before is shown in Listing 2. Certora compiles the Solidity contract and its associated
properties into a logical formula, and sends it to an SMT solver. Another key difference
between Certora and SolCMC is that in SolCMC verification is done locally (since it is part
of the Solidity compiler stack), while in Certora it is executed remotely on a cloud service.

Listing 2 Certora encoding of a safety property.

rule deposit_user_balance {
env e; // an arbitrary transaction and context
address sender = e.msg. sender ;
mathint old_user_balance = getBalanceEntry (sender);
deposit (e); // calls deposit with context e
mathint new_user_balance = getBalanceEntry (sender);
mathint deposit_amount = to_mathint (e.msg.value);
assert new_user_balance == old_user_balance + deposit_amount ;

}

Besides SolCMC and Certora, other tools for verifying user-defined properties of Solidity
contracts have been proposed (see [2] for a comparison). VerX [29] models properties in a
variant of past linear temporal logic. This allows to verify safety properties of contracts,
while liveness properties are not expressible. SmartACE [34] verifies properties written in
Scribble [15]: contracts are annotated with Scribble annotations (i.e., contract invariants and
method postconditions). Scribble transforms the annotated contract into a contract with
asserts, which are used as verification targets. SmartACE uses local bundle abstractions to
reduce the state explosion caused by having to deal with many users interacting with the
contract, factorising users into a representative few. It models each contract in LLVM-IR
and integrates existing analysers such as SeaHorn and Klee to facilitate verification. Notably,
SmartAce has been applied to verify some contracts from the OpenZeppelin library [35].

Comparing verification tools

A primary source of comparison among different verification tools is given by the research
papers where these tools were introduced [20, 33, 30]. A problem here is that each comparison
is based on an ad-hoc dataset of contracts and properties, which makes it difficult to compare

FMBC 2024

6:4 Towards Benchmarking of Solidity Verification Tools

the effectiveness of different tools. The work [3] provides a unifying view of these datasets,
by collecting their verification tasks and judgements, and mapping them to a uniform scheme
based on the Smart Contract Weakness Classification [19]. A main difference between this
dataset and ours is in the nature of the properties in the verification tasks: the ones in [3]
are specific vulnerabilities (e.g., reentrancy, overflows, etc.), while ours are ideal properties of
the analysed contract (e.g., “after calling foo, the sender receives 1 ETH”).

A few works compare different analysis tools without introducing their own. The work [14]
evaluates five tools based on their ability to identify vulnerabilities that have been actually
exploited by attacks in the wild. Perhaps surprisingly, the conclusion is that tools that detect
specific vulnerability patterns are ineffective against real attacks, being able to counter only
∼12% to the economic damage in the considered dataset, while offering no protection against
the remaining part of the damage, which exceeds 2 billion dollars. This is a strong motivation
for research on analysis techniques and tools that can also detect logic-related bugs, which
are the focus of our benchmark. The work [18] proposes a vulnerability classification scheme
that extends [19], and evaluates the effectiveness of three bug detection tools. We note
that both works [18, 14] focus on tools that detect specific vulnerabilities: at the best of
our knowledge, ours is the first comparison between general verification tools for Solidity.
Another main difference between our work and [18] is that the comparison in [18] is based
on a quantitative evaluation of the tool outcomes (in the form of a confusion matrix), while
we also devise a qualitative comparison that explains the reason behind these results, and in
particular the causes of unsoundness (false positives) and incompleteness (false negatives).

3 Our benchmark

The benchmark is logically organized in the following components:
a collection of informal specifications of use cases for smart contracts, each accompanied
by a set of desirable properties. We deliberately choose not to use a formal language to
write the smart contract specifications and the associated properties, since we want to be
free to express properties that go beyond those expressible by current verification tools.
Solidity implementations of the use cases and specifications of their properties in the
languages supported by SolCMC and Certora. For each use case we provide multiple
Solidity implementations, either respecting the given properties or violating them (in
obvious or subtle ways). A verification task comprises the implementation of a use case
and that of a related property.
a ground truth that assesses, for each verification task, whether the implementation
satisfies the associated property or not.

Our toolchain processes these data to construct the verification task and runs SolCMC
and Certora on each of them.

The way we construct the verification tasks is tool-specific:
for SolCMC, each property is encoded in Solidity within the associated smart contract.
Although, in general, these asserts can be scattered throughout the contract code, in
our benchmark we keep the definitions of the properties separated from the contracts,
in order to automatize the verification of multiple properties on multiple version of the
contract. Accordingly, we provide two ways to write a property:

as a function that is added to the contract. This function may assert invariants on the
contract state, and may call other contract methods as a property wrapper.
as a set of fragments of ghost code that are injected in the contract methods.

M. Bartoletti, F. Fioravanti, G. Matricardi, R. Pettinau, and F. Sainas 6:5

In this way, whoever extends the benchmark can write these properties without affecting
the behaviour of the original contract, so that the instrumented contract satisfies the
considered properties if and only if the original one does. In practice, this can be achieved
by preventing ghost code from writing the state of the original contract and from changing
its control flow except to signal the violation of the desired property. Future versions of
the toolchain will give warnings when detecting potential discrepancies.
for Certora, we write properties in the Certora Verification Language (CVL) [9]. The
syntax of CVL extends Solidity with a set of meta-programming primitives that allow to
express complex contract properties. We encode a contract property as a CVL invariant
when the property involves facts about the state of the smart contract that should be true
in any execution, while we encode it as a rule when the property concerns the expected
behavior of calling one or more contract methods. In general, a rule is a sequence of
commands that describe an execution trace of the contract, together with preconditions
(require) and postconditions. There are two kinds of postconditions: assert, which
must hold for any trace, and satisfy, which can be satisfied (i.e., it is possible to find
a trace that makes them true). Unlike SolCMC, in Certora ghost code can be encoded
directly within the properties, without altering the contract being verified.

Scoring the results of the tools

After constructing the verification tasks, the toolchain runs SolCMC (locally) and Certora
(remotely) on each of them. The execution outcome on a verification task is summarised
and scored according to the schema reported in Table 1. The overall design goal is that
a tool that does nothing will have a null score, a tool that provides correct answers when
verifying or detecting violation of the properties will have a positive score, and a tool that
tricks the user into believing false results (e.g., claiming that a property holds when it is not
the case, or viceversa) will have a negative score. We assign a null score in three cases: when
the property is not expressible in the tool, when the tool fails to provide an output (e.g.,
because of aborts, timeouts, or memory exhaustion), and when the tool does not provide a
definite answer about the validity of a property. The ratio for assigning the same score here
is that it would be easy to make the property expressible by a tool that always diverges.

Our viewpoint is that tools are aimed at certifying that desirable properties are satisfied
by a given Solidity implementation. Therefore, our scoring schema privileges soundness over
completeness, as a false positive may create much bigger problems to users, as they will be
convinced that their contract satisfies a property that in practice does not hold, while a false
negative will only make the user doubt of the correctness of the contract.

The basis of our scoring schema is standard: we have two cases (P/N) depending on
whether the property in the verification task is satisfied or not, and two cases (T/F) depending
on whether the tool answers correctly to the task or not. We slightly deviate from this
standard classification, in that we additionally classify the outputs of a tool as strong claims
(e.g., “the property holds”, “the property is violated”) or weak claims (e.g., “the property
might hold”, “the property might be violated”). More specifically, we use the following
criteria to distinguish between weak and strong claims of the tools at hand:

in SolCMC, when verification terminates, the output has one of the following forms:
“Assertion violation check is safe!”. We consider this as a strong claim that the tool
has verified the property, hence we classify the output as a P!
“Assertion violation happens here”. In this case, the tool outputs the line of code where
the asserted property is violated, and shows a sequence of method calls that lead to
the violation. Hence, we consider this as a strong claim, and classify it as an N!

FMBC 2024

6:6 Towards Benchmarking of Solidity Verification Tools

Table 1 Scoring schema for Solidity verification tools.

Result Points Description
ND 0 Property not expressible in the tool
UNK 0 Timeout / Memory exhaustion
TN! 2 Property violated, tool claims violation
TN 1 Property violated, tool conjectures violation
FN! -8 Property holds, tool claims violation
FN 0 Property holds, tool conjectures violation
TP! 2 Property holds, tool claims correctness
TP 1 Property holds, tool conjectures correctness
FP! -16 Property violated, tool claims correctness
FP -1 Property violated, tool conjectures correctness

“Assertion violation might happen here”. Here the tool has not been able to verify
neither the violation, nor the correctness of the property, and (to stay on the safe side)
it states that a violation is possible. We classify this output as an N.

in Certora the classification depends both on the tool output and how the property is
modelled in CVL. For an assert, the output is classified as P! when Certora returns ok,
and N when it rejects the property. We do not put the “!” in the negative case as Certora
may reject the property because of an unreachable counterexample, while we put the “!”
in the positive case because it has been able to prove that no state (reachable or not)
leads to a violation. The case satisfy is dealt with dually: we classify as P when Certora
returns ok, and N! when it rejects the property.2 Since our benchmark only admits rules
that do not use both assert and satisfy, this criterion is always applicable.

The scoring schema is displayed in Table 1. Coherently with our design choices, we assign
FP! the lowest score, because the tool is falsely claiming that a desirable property is true.
Strong false negatives FN! (i.e., false alarms) are considered “half as dangerous” than false
positives. False weak accepts (FP) have only a mildly negative score, since we treat them as
mere conjectures: in fact, when conjecturing a result, the tool is just conveying the fact that
it is not convinced of the truth of the opposite result. The asymmetry between FP! and FN!
is mimicked on weak judgements by assigning false weak rejects (FN) a null score.

4 Evaluation: SolCMC vs. Certora

We discuss in this section what we have learnt by using SolCMC and Certora in the design and
application of our benchmark. Here we focus on completeness, soundness and expressiveness
of the two tools: their scoring as per Table 1 is presented at the end of the section. As a
disclaimer, we note that our evaluation is based on the current versions of the tools3. Since
they are moving targets, with multiple updates released during the writing of this paper, it
is likely that some of the weaknesses discussed below may be fixed in future releases.

Completeness

SolCMC and Certora share some sources of incompleteness, i.e. properties that are true but
that the provers do not manage to prove. This is the case e.g. for contracts containing external
calls, i.e. calls from the analysed contract to another account [32] (e.g., the Deposit/ERC20

2 It is possible to limit the set of considered starting states by refining the implementation with a set of
invariants. We do this in a best effort manner.

3 Versions: solc v0.8.24, Eldarica v2.0.9, Z3 v4.12.2, certora-cli v6.3.1

https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/deposit_erc20

M. Bartoletti, F. Fioravanti, G. Matricardi, R. Pettinau, and F. Sainas 6:7

use case). By default, called contracts are considered untrusted by SolCMC and Certora, and
accordingly these tools over-approximate their behaviour (even when their code is known).
This basically makes the provers fail to verify any property that depends on the behaviour of
the called contract, so leading to false negatives. For example, the assert in Listing 3 always
passes, but SolCMC detects a possible violation (the same happens with Certora). SolCMC
has an option to change the default behaviour by considering external calls to be trusted,
but a known drawback of this option is a substantial computational overhead. For instance,
checking the invalidity of the assertion c.n()==0 in the contract C2 of Listing 3 takes ∼ 8
minutes using the Z3 solver in our experimental setting, despite the contract being just a few
lines of code (by contrast, it takes a few seconds with the untrusted option). In general, even
with the default option about untrusted calls, non-termination is not uncommon (see Table 2).
This is a general problem related to Z3, which can be easily misled to divergence even with
apparently harmless sets of constraints. Even in real-world use cases not specifically crafted to
make verification burdensome, computation times sometimes occur to explode unexpectedly.

Listing 3 SolCMC: untrusted external calls.

contract C1 {
uint n;
constructor () { n=0; }

function set () external { n=1; }

// n could be either 0 or 1
}

contract C2 {
C1 public c;
constructor () { c=new C1(); }

function inv () public view {
assert (c.n() <=1);

}
}

Many desirable properties of accounts, like e.g. that the balance is updated according to
certain rules, are often broken on contract accounts. For instance, consider a contract with
a method that allows the sender to withdraw funds, and the property “after a successful
call to withdraw, the balance of msg.sender has increased”. This property may be violated
when the sender is a contract account, which fallbacks on the withdraw by giving away all
its balance. While properties of this kind do not hold, in general, for contract accounts,
they are expected to hold for externally-owned accounts (EOAs), which do not have code
(e.g., withdraw-sender-rcv-EOA in the bank use case). In general, properties of EOAs are
not even expressible, since it is not possible to discriminate EOAs from contract accounts
(see the discussion below about expressiveness). A property about EOAs is expressible
only if the account under scrutiny is the msg.sender. In this case, it is possible to tell
that the account is an EOA by comparing it to tx.origin (the transaction originator):
namely, the two addresses are equal iff msg.sender is an EOA. The property above can
then be refined as “if msg.sender is an EOA, then after a call to withdraw, the balance
of msg.sender has increased”. Both SolCMC and Certora fail however to verify that the
amended property is satisfied. No alternative encodings of EOAs seem to exist that allow
the provers to successfully verify non-trivial properties about them.

Further cases of incompleteness include map invariants (e.g., the sum of a map is preserved),
which are unlikely to be proved by both tools, and the over-approximation of the possible
environments. E.g., Certora includes the contract in the approximation for msg.sender,
even if the contract has no calls (e.g., deposit-contract-balance in the bank).

FMBC 2024

https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/bank
https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/bank

6:8 Towards Benchmarking of Solidity Verification Tools

Listing 4 Unsoundness in SolCMC: selfdestruct.

contract CallWrapper is
ReentrancyGuard {

function callwrap (address called)
public nonReentrant {

called .call ("");
}
...

}

// SolCMC invariant
function inv(address a) public {

uint b = address (this). balance ;
callwrap (a);

// contract balance is preserved
assert (b== address (this). balance);

}

Soundness

Analysing the results of our benchmark, we have spotted a few sources of unsoundness
(i.e., the property does not hold but the tool falsely claims it is true) for both SolCMC and
Certora. In SolCMC, false positives may happen when reasoning about the contract balance
in case of external calls and reentrancy guards, as shown in Listing 4 (see the bal property in
the CallWrapper use case). The contract CallWrapper has a single method, which performs
a low-level call to an arbitrary address; the nonReentrant modifier by OpenZeppelin ensures
that this call is non-reentrant. Now, consider the property: “the contract balance is preserved
by callwrap”. Apparently, it might seem to hold, because the contract has no payable
nor receive methods. However, there are other asynchronous events that can make the
contract balance increase: e.g., it can receive ETH from a coinbase transaction (i.e., the first
transaction in a block, which collects the block reward), or from a selfdestruct (i.e., an action
performed by a contract to destroy itself and transfer the remaining ETH to another account)
[31]. Therefore, the property does not hold, since the address called by callwrap can be
a contract that triggers a selfdestruct. SolCMC here produces a false positive, claiming
that the invariant inv is always satisfied. We conjecture that this output derives from
an under-approximation of SolCMC, which believes that the absence of reentrant methods
implies that the call cannot affect the contract state, including the balance. Note instead that,
when removing the nonReentrant modifier, SolCMC correctly detects that the invariant
may be violated. Certora instead correctly classifies the property as false, but it produces
a false positive on an extension of CallWrapper with a variable s that can be updated by
the method set, and the property “s is preserved by callwrap” (see Listing 5 and the stor
property in the CallWrapper use case). This property is false, since the account called by
callwrap can perform a reentrant call to set. Certora fails to understand that a call to an
address may lead to additional code execution, including a further call to one of the methods
of the contract. Hence, Certora claims that the property holds, hereby being unsound [13].

Listing 5 Unsoundness in Certora: untracked reentrant calls.

contract CallWrapper {
uint s;
...
function set(uint snew) public {

s = snew;
}

}

rule P(address a) {
env e;
uint s0 = currentContract .s;
callwrap (e, a);
uint s1 = currentContract .s;
assert s1 == s0;

}

Certora has some further documented under-approximations that may lead to unsound-
ness [11, 12]. When dealing with invariants, Certora checks that the invariant is preserved
after the execution of each contract method, neglecting the effect of selfdestruct or coinbase

https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/call-wrapper
https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/call-wrapper

M. Bartoletti, F. Fioravanti, G. Matricardi, R. Pettinau, and F. Sainas 6:9

transactions. These transactions may increase the ETH balance of the analysed contract,
which has no way of preventing this unexpected incoming ETH: therefore, if the invariant
depends on the contract balance, it may be broken at any time. As an example, consider
the contract DoNothing in Listing 6 , which just saves its initial balance in a variable bal0,
and does nothing afterwards. The associated CVL property is an invariant checking that
the contract balance is always equal to the stored initial balance. Certora claims that the
invariant holds, since it holds at creation and it is preserved after the execution of each
method (balanceOf). This is unsound, since e.g. a coinbase transaction can send ETH to
the contract, making the actual balance exceed bal0.

Listing 6 Unsoundness in Certora: untracked selfdestruct and coinbase transactions.

contract DoNothing {
uint bal0;
constructor () {

bal0 = address (this). balance ;
}
function balanceOf (address a)

public view returns (uint) {
return a. balance ;

}
}

// Certora invariant specification

invariant inv ()
balanceOf (currentContract)
==
currentContract .bal0;

Besides the artificial example in Listing 5, false positives may occur in real-world use
cases when reasoning about the state after a low-level call. For instance, in our benchmark
this is the case for a simple bank contract allowing users to deposit and withdraw ETH, and
the property requiring that after a successful withdraw, the balance entry of the sender is
decreased of the right amount. Apart from these glitches, both SolCMC Certora perform
comparably well regarding false positives on our benchmark (see Table 2).

Expressiveness limitations

One of the main categories of properties that cannot be encoded in SolCMC are liveness
properties (e.g., wd-fin-before in the vault use case). For a minimal example, consider
Listing 7 and the property “foo never reverts”. Intuitively, we can call foo inside of a try-
catch statement, making sure that the method does not revert by checking that the catch
is not reachable. However, this encoding is unsound, since the invariant is satisfied by some
implementations of foo that actually revert. Specifically, this is the case of implementations
of foo that never revert when the method is called by the contract itself, like the one
in Listing 7, left. The invariant passes, but if foo is called from any account different from
Liveness, then foo reverts. This is not the only way to trick SolCMC into verifying a false
liveness property, as any assumption made by having the contract call itself can be used
(e.g., reentrancy). In general, when expressing a property in SolCMC, any external call made
in the invariant does not faithfully capture the intended property, as it does not model a call
made by an arbitrary user, but only by the contract itself. The same problem exists when we
use a low-level call instead of an external call within a try-catch. Attempting to encode the
liveness property as the success of the invariant itself does not work either: any command in
the body of the invariant cannot ensure that a certain line of it is always reached.

Even restricting to safety, expressing properties that involve two or more method calls
in sequence is tricky, and in particular it cannot be done by using invariants, only. E.g.,
the invariant in Listing 8 (right) is a seemingly reasonable (but unsound) encoding of the
property “bar cannot be called twice in a row” (see also the property wd-twice in the vault).

FMBC 2024

https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/bank
https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/vault
https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/vault

6:10 Towards Benchmarking of Solidity Verification Tools

Listing 7 Completeness in SolCMC: a wrong encoding of a liveness property.

contract Liveness {
function foo () {

require (msg. sender ==
address (this));

}
...

}

// wrong encoding of "foo succeeds "

function inv () public {
try this.foo () {} catch {

assert (false);
}

}

Consider e.g. the implementation of bar in the contract Sequence: here, two consecutive
calls to bar are possible whenever the callers are distinct: hence, the property is violated.
Notice instead that the invariant is satisfied, because the sender of both calls to bar is
the same, since coincides with the sender of inv. A sound encoding is still possible, but
at the cost of instrumenting the contract with ghost code, which although supported by
our toolchain, is a complex and error-prone operation in general. By contrast, Certora can
express smoothly this kind of properties as CVL rules, whenever the number of calls in the
sequence is fixed. Properties involving unbounded sequences are instead not expressible even
in Certora (see e.g. the property always-wd-all-many in the tokenless bank use case).

Listing 8 Completeness in SolCMC: multiple sequential calls.

contract Sequence {
address last;
function foo () { ... }
function bar () {

require (msg. sender != last);
last = msg. sender ;

}
...

}

function inv () public {
bar ();
bar ();
assert (false);

}

The property specification language supported by Certora is quite powerful, allowing us
to express most of the properties in our benchmark. Still, there are interesting classes of
properties that cannot be expressed. This is the case e.g. for properties of the form “for
all reachable states, some user can do something that eventually produces some desirable
effect”. For example, consider the Deposit contract in Listing 9. The contract allows anyone
to withdraw any fraction of its balance through the method pay, unless the variable frozen
is true. Now, frozen is controlled by the contract owner through the method freeze: hence,
the owner at any point can freeze the contract balance, preventing anyone from withdrawing.
A desirable property contracts, in general, is that the funds stored in the contract cannot be
frozen forever, a property often referred to as liquidity [33, 5, 27]. A tentative formalization
of the liquidity property is the CVL rule in Listing 9. The rule is satisfied if there exists some
starting state such that, for all sender address and value v, sender can fire a transaction
pay(v) that increases their balance by v. This however is not a correct way to encode our
liquidity property: indeed, Certora says that the property is satisfied, since there exists
a trace that makes the condition in the satisfy statement true (this is the trace where
the owner has not set frozen). Note that an alternative formalization where the satisfy
is replaced by an assert does not work too. In this case, we would require that, for all
reachable states, a transaction pay(v) is never reverted, for all choices of the amount v.
Certora would correctly state that the property is false, because there are some values v
that make the transaction fail (e.g., when v exceeds the contract balance). Although in this

https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/zerotoken_bank

M. Bartoletti, F. Fioravanti, G. Matricardi, R. Pettinau, and F. Sainas 6:11

simple case it would be easy to fix the property by requiring that the transaction is not
reverted for all values v less than the contract balance and when frozen is false, in general
for liquidity we would like to know if there exist parameters that make the desirable property
true, which is not expressible in CVL.

Listing 9 Expressiveness of Certora: along all paths, eventually.

contract Deposit {
address owner;
bool frozen ;
constructor () payable {

owner = msg. sender ;
}
function freeze () public {

require (msg. sender == owner);
frozen = true;

}
function pay(uint v) public {

require (! frozen);
(bool succ ,) = msg. sender .call{

value : v }("");
require (succ);

}
}

// Certora rule specification

rule P(address sender , uint v) {
// sender initial balance
mathint b0 = bal(sender);
env e;

require e.msg. sender == sender ;

pay(e, v);

// sender balance after pay(v)
mathint b1 = bal(sender);

// looking for a positive example
satisfy (b1 == b0 + v);

}

Another category of properties that are not easily expressible, are those that reason about
transfers of funds from the contract. For example, consider the property “the method pay
calls the sender, transferring 10 wei from the contract to it”, which is trivially satisfied by
the contract in Listing 10 (see also arbitrate-send in the escrow use case). It might seem
reasonable to express this property as a simple check on the balance of the contract and of
the sender, as the invariant in Listing 10 (right). This however would not be correct: in fact,
a contract that sends 10 wei to a middle man who forwards the sum to the sender would
satisfy the invariant but violate the property. Indeed, we do not believe that properties of
this kind are expressible in SolCMC. In CVL instead we can express a property very similar
to the above, in which the required called contract is not the sender, but a specific account.
This is possible with the use of hooks (this would require using hooks). It is unclear whether
the exact property above is expressible in Certora.

As mentioned before, neither SolCMC nor Certora can, in general, express properties
that are specific to EOAs. This derives from the fact that EOAs are not always discernible
from contract accounts [28]. Other classes of properties that seem beyond the expressiveness
boundaries of existing Solidity verification tools are those about game-theoretic interactions
between users and adversaries, and fairness and probabilistic properties (see, respectively,
the properties rkey-no-wd and okey-rkey-private-wd in the vault use case).

Scoring

We display in Table 2 the results obtained by running SolCMC and Certora on the verification
tasks in our benchmark. As expected, Certora is able to express more properties than SolCMC;
despite that, SolCMC’s score is close to Certora’s, which is penalized by its seemingly better
behaviour with respect to soundness, the causes of which are exactly those discussed before
in Listings 5 and 6. Regarding the two CHC solvers used by SolCMC, we note that Z3 has
several UNK entries more than Eldarica due to its propensity to timeout. This explains
the difference in score between Z3 and Eldarica: the latter performs worse because of its

FMBC 2024

https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/escrow
https://github.com/fsainas/contracts-verification-benchmark/tree/main/contracts/vault

6:12 Towards Benchmarking of Solidity Verification Tools

Listing 10 Expressiveness of SolCMC: a wrong attempt of reasoning about received ETH.

contract Deposit {
// pay 10 wei to the sender
function pay () public {

(bool succ ,) = msg. sender .call
{value : 10}("") ;

require (succ);
}

}

function invariant () public {
uint s0 = msg. sender . balance ;
uint c0 = address (this). balance ;

pay ();

uint s1 = msg. sender . balance ;
uint c1 = address (this). balance ;
assert (s1== s0 +10 && c1==c0 -10);

}

tendency to terminate with the wrong answer (getting -16 for the FP!), whereas Z3 just
diverges (getting 0 for the UNK). Besides that, we do not note significant differences between
these two CHC solvers. We highlight the absence of weak false positives (FP) in our results:
SolCMC never claims that a property holds unless it is sure of it, while Certora only does so
when the properties are encoded using satisfy statements (which have not been used in
our current use cases).

Table 2 Scoring of SolCMC and Certora (323 verification tasks).

ND UNK TP(!) TN(!) FP(!) FN(!) Score
Certora 60 0 97(97) 94(0) 7(7) 65(0) 176
SolCMC (Z3) 153 22 86(86) 49(48) 2(2) 11(9) 165
SolCMC (Eldarica) 153 5 88(88) 54(52) 7(7) 16(10) 90

5 Conclusions

We have discussed an ongoing collaborative effort towards the construction of a benchmark for
comparing formal verification tools for Solidity. Once completed, the benchmark will serve as
a valuable resource for developers, providing guidance in choosing the appropriate tool based
on project requirements and contract complexity. In the meanwhile, we have given a first
qualitative evaluation of SolCMC and Certora by discussing their soundness, completeness
and expressiveness limitations based on our experience on developing the benchmark.

Constructing the ground truth was perhaps the most difficult task we encountered while
developing the benchmark. In particular, while it is often easy to tell that an intentionally
bugged contract violates a property, ensuring that a property is satisfied is error-prone.
Indeed, Solidity has a few semantical quirks that make manual reasoning about contracts
quite burdensome (reentrancy, in particular, may be very tricky). For this reason, it could
make sense to simplify the construction of the ground truth by reducing the number of
verification tasks for each use case: for instance, we could provide just a contract version
that satisfies all the desirable properties, and just one version witnessing the violation of
each property. While we are not able to certify the correctness of our ground truth beyond
any reasonable doubt, we expect that the open-source nature of our benchmark can foster
the collaboration with the community of experts. To consolidate our ground truth (at least,
for negative properties), we plan to add, in future versions of the benchmark, references to
actual contracts in the Ethereum testnet that violate the property. In this regard, we note
that the counterexamples outputted by SolCMC and Certora when they find a violation are

M. Bartoletti, F. Fioravanti, G. Matricardi, R. Pettinau, and F. Sainas 6:13

rarely informative about its causes. Incorporating other datasets of ground truth, like e.g. [3],
into ours, would also allow us to extend the comparison between SolCMC and Certora, at
least for the kind of specific contract weaknesses considered in these datasets.

In the choice of the use cases in our benchmark, one of our primary criteria was simplicity:
this is clearly motivated by the need of manually constructing the ground truth. One
meaningful criterion to extend the benchmark could be to find use cases that depend on
corner cases of the semantics of Solidity, to test which approximations are made in these cases
by the verification tools. Extending the benchmark with more complex use cases, including
more convoluted ways to violate properties, and experimenting it on other verification tools
beyond SolCMC and Certora are also viable directions for future work.

References
1 Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina. Solcmc: Cav

2022 artifact. https://github.com/leonardoalt/cav_2022_artifact/tree/main, 2022.
2 Leonardo Alt, Martin Blicha, Antti E. J. Hyvärinen, and Natasha Sharygina. Solcmc: Solidity

compiler’s model checker. In Computer Aided Verification (CAV), volume 13371 of LNCS,
pages 325–338. Springer, 2022. doi:10.1007/978-3-031-13185-1_16.

3 Monika Di Angelo and Gernot Salzer. Consolidation of ground truth sets for weakness detection
in smart contracts. In Financial Cryptography Workshops, volume 13953 of LNCS, pages
439–455. Springer, 2023. doi:10.1007/978-3-031-48806-1_28.

4 Shaun Azzopardi, Joshua Ellul, and Gordon J. Pace. Monitoring smart contracts: Contract-
Larva and open challenges beyond. In Runtime Verification, volume 11237 of LNCS, pages
113–137. Springer, 2018. doi:10.1007/978-3-030-03769-7_8.

5 Massimo Bartoletti, Stefano Lande, Maurizio Murgia, and Roberto Zunino. Verifying liquidity
of recursive Bitcoin contracts. Log. Methods Comput. Sci., 18(1), 2022. doi:10.46298/LMC
S-18(1:22)2022.

6 Thomas Bernardi, Nurit Dor, Anastasia Fedotov, Shelly Grossman, Neil Immerman, Daniel
Jackson, Alexander Nutz, Lior Oppenheim, Or Pistiner, Noam Rinetzky, Mooly Sagiv, Marcelo
Taube, John A. Toman, and James R. Wilcox. WIP: Finding bugs automatically in smart
contracts with parameterized invariants. https://groups.csail.mit.edu/sdg/pubs/2020/s
bc2020.pdf, 2020.

7 Dirk Beyer. Competition on software verification and witness validation: SV-COMP 2023.
In International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 13994 of LNCS, pages 495–522. Springer, 2023. doi:10.1007/97
8-3-031-30820-8_29.

8 N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko. Horn clause solvers for
program verification. In Fields of Logic and Computation (II), volume 9300 of LNCS, pages
24–51. Springer, 2015. doi:10.1007/978-3-319-23534-9_2.

9 Certora. The Certora Verification Language. https://docs.certora.com/en/latest/docs/
cvl/index.html, 2022.

10 Certora. Formal verification of OpenZeppelin (may-june 2022). https://github.com/OpenZ
eppelin/openzeppelin-contracts/blob/master/certora/reports/2022-05.pdf, 2022.

11 Certora. Certora prover documentation: invariants. https://docs.certora.com/en/latest
/docs/cvl/invariants.html, 2023.

12 Certora. Certora prover documentation: Prover approximations. https://docs.certora.com
/en/latest/docs/prover/approx/index.html, 2023.

13 Certora report: CallWrapper. https://prover.certora.com/output/95211/e265c818d1
76463cbaa6f53e4d0fe394?anonymousKey=7d67af6ba7eedc4f099a133a04f4d36953f377dc,
2024.

14 Stefanos Chaliasos, Marcos Antonios Charalambous, Liyi Zhou, Rafaila Galanopoulou, Arthur
Gervais, Dimitris Mitropoulos, and Ben Livshits. Smart contract and DeFi security: Insights

FMBC 2024

https://github.com/leonardoalt/cav_2022_artifact/tree/main
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/978-3-031-48806-1_28
https://doi.org/10.1007/978-3-030-03769-7_8
https://doi.org/10.46298/LMCS-18(1:22)2022
https://doi.org/10.46298/LMCS-18(1:22)2022
https://groups.csail.mit.edu/sdg/pubs/2020/sbc2020.pdf
https://groups.csail.mit.edu/sdg/pubs/2020/sbc2020.pdf
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-319-23534-9_2
https://docs.certora.com/en/latest/docs/cvl/index.html
https://docs.certora.com/en/latest/docs/cvl/index.html
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/certora/reports/2022-05.pdf
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/certora/reports/2022-05.pdf
https://docs.certora.com/en/latest/docs/cvl/invariants.html
https://docs.certora.com/en/latest/docs/cvl/invariants.html
https://docs.certora.com/en/latest/docs/prover/approx/index.html
https://docs.certora.com/en/latest/docs/prover/approx/index.html
https://prover.certora.com/output/95211/e265c818d176463cbaa6f53e4d0fe394?anonymousKey=7d67af6ba7eedc4f099a133a04f4d36953f377dc
https://prover.certora.com/output/95211/e265c818d176463cbaa6f53e4d0fe394?anonymousKey=7d67af6ba7eedc4f099a133a04f4d36953f377dc

6:14 Towards Benchmarking of Solidity Verification Tools

from tool evaluations and practitioner surveys. In ICSE, pages 60:1–60:13, 2024. doi:
10.1145/3597503.3623302.

15 Consensys. Write smart contract specifications using Scribble. https://consensys.io/dilig
ence/scribble/, 2023.

16 E. De Angelis, F. Fioravanti, J. P. Gallagher, M. V. Hermenegildo, A. Pettorossi, and
M. Proietti. Analysis and transformation of constrained Horn clauses for program verification.
Theory Pract. Log. Program., 22(6):974–1042, 2022. doi:10.1017/S1471068421000211.

17 L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 4963 of
LNCS, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

18 Bruno Dias, Naghmeh Ivaki, and Nuno Laranjeiro. An empirical evaluation of the effectiveness
of smart contract verification tools. In Pacific Rim International Symposium on Dependable
Computing (PRDC), pages 17–26, 2021. doi:10.1109/PRDC53464.2021.00013.

19 Enterprise Ethereum Alliance. Smart contract weakness classification (SWC). https://swcr
egistry.io/, 2020.

20 Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis framework for
smart contracts. In Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pages 8–15. IEEE/ACM, 2019. doi:10.1109/WETSEB.2019.00008.

21 Ikram Garfatta, Kais Klai, Walid Gaaloul, and Mohamed Graiet. A survey on formal verification
for Solidity smart contracts. In Australasian Computer Science Week Multiconference, pages
3:1–3:10. ACM, 2021. doi:10.1145/3437378.3437879.

22 Hossein Hojjat and Philipp Rümmer. The ELDARICA Horn solver. 2018 Formal Methods in
Computer Aided Design (FMCAD), pages 1–7, 2018. doi:10.23919/FMCAD.2018.8603013.

23 Nikolay Ivanov, Chenning Li, Qiben Yan, Zhiyuan Sun, Zhichao Cao, and Xiapu Luo. Se-
curity threat mitigation for smart contracts: A comprehensive survey. ACM Comput. Surv.,
55(14s):326:1–326:37, 2023. doi:10.1145/3593293.

24 Daniel Jackson, Chandrakana Nandi, and Mooly Sagiv. Certora technology white paper.
https://docs.certora.com/en/latest/docs/whitepaper/index.html, 2022.

25 Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. SMT-based Model Checking for
Recursive Programs. Formal Methods in System Design, pages 175–225, 2016. doi:10.1007/
s10703-016-0249-4.

26 Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh, Manjit Kaur, and Heung-No Lee.
Ethereum smart contract analysis tools: A systematic review. IEEE Access, 10:57037–57062,
2022. doi:10.1109/ACCESS.2022.3169902.

27 Cosimo Laneve. Liquidity analysis in resource-aware programming. J. Log. Algebraic Methods
Program., 135:100889, 2023. doi:10.1016/J.JLAMP.2023.100889.

28 OpenZeppelin. Utilities / address. https://docs.openzeppelin.com/contracts/4.x/api/
utils#Address, 2024.

29 Anton Permenev, Dimitar K. Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and Martin T.
Vechev. VerX: Safety verification of smart contracts. In IEEE Symposium on Security and
Privacy, pages 1661–1677. IEEE, 2020. doi:10.1109/SP40000.2020.00024.

30 Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. eThor: Practical
and provably sound static analysis of Ethereum smart contracts. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 621–640. ACM, 2020. doi:10.114
5/3372297.3417250.

31 The Solidity Authors. SMTChecker and formal verification: contract balance. https:
//docs.soliditylang.org/en/v0.8.24/smtchecker.html#contract-balance, 2023.

32 The Solidity Authors. SMTChecker and formal verification: untrusted calls and reentrancy.
https://docs.soliditylang.org/en/latest/smtchecker.html#trusted-external-calls,
2023.

33 Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli,
and Martin T. Vechev. Securify: Practical security analysis of smart contracts. In ACM

https://doi.org/10.1145/3597503.3623302
https://doi.org/10.1145/3597503.3623302
https://consensys.io/diligence/scribble/
https://consensys.io/diligence/scribble/
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/PRDC53464.2021.00013
https://swcregistry.io/
https://swcregistry.io/
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1145/3437378.3437879
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1145/3593293
https://docs.certora.com/en/latest/docs/whitepaper/index.html
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1109/ACCESS.2022.3169902
https://doi.org/10.1016/J.JLAMP.2023.100889
https://docs.openzeppelin.com/contracts/4.x/api/utils#Address
https://docs.openzeppelin.com/contracts/4.x/api/utils#Address
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://docs.soliditylang.org/en/v0.8.24/smtchecker.html#contract-balance
https://docs.soliditylang.org/en/v0.8.24/smtchecker.html#contract-balance
https://docs.soliditylang.org/en/latest/smtchecker.html#trusted-external-calls

M. Bartoletti, F. Fioravanti, G. Matricardi, R. Pettinau, and F. Sainas 6:15

SIGSAC Conference on Computer and Communications Security (CCS), pages 67–82. ACM,
2018. doi:10.1145/3243734.3243780.

34 Scott Wesley, Maria Christakis, Jorge A. Navas, Richard J. Trefler, Valentin Wüstholz, and
Arie Gurfinkel. Verifying Solidity smart contracts via communication abstraction in SmartACE.
In Verification, Model Checking, and Abstract Interpretation (VMCAI), volume 13182 of LNCS,
pages 425–449. Springer, 2022. doi:10.1007/978-3-030-94583-1_21.

35 Scott Wesley and Valentin Wüstholz. Verify OpenZeppelin. https://github.com/contrac
t-ace/verify-openzeppelin, 2022.

FMBC 2024

https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1007/978-3-030-94583-1_21
https://github.com/contract-ace/verify-openzeppelin
https://github.com/contract-ace/verify-openzeppelin

Towards Formally Specifying and Verifying Smart
Contract Upgrades in Coq
Derek Sorensen # Ñ

Department of Computer Science and Technology, University of Cambridge, UK

Abstract
Smart contract upgrades are costly from a verification perspective and can be a meaningful source
of vulnerabilities when done incorrectly. Unfortunately, there is no established, formal framework
through which one can reason about contracts as they undergo upgrades, though much work has
been done to verify standalone smart contracts. Instead, one must repeat the full verification process
for each contract upgrade, something which relies heavily on fallible intuition, can lead to unexpected
vulnerabilities, and drives up the cost of formally verifying smart contracts. We propose a formal
framework for contract upgrades in ConCert, a Coq-based smart contract verification tool. Central
to this framework is our notion of a contract morphism, a theoretical tool which we introduce to
formally encode structural relationships between smart contracts, and with which we can formally
specify and verify an upgraded contract relative to its previous versions. We argue that ours is
a natural framework for specifying and verifying contract upgrades, and hope to offer a first step
towards rigorous, efficient specification and verification of contract upgrades.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases smart contract verification, formal methods, interactive theorem prover,
smart contract upgrades

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.7

Supplementary Material Software (Source Code): https://github.com/dhsorens/FinCert [19]
archived at swh:1:dir:a0d8499f935e75e7076b33b666898752e27cbf3d

1 Introduction

Faulty upgrades are a meaningful source of smart contract vulnerabilities. Costly attacks
such as those on Uranium Finance (2021) [8], NowSwap (2021) [4], and Nomad (2022) [7, 9],
totaling 241 million USD in lost assets, are a few of many examples of contracts attacked
after an erroneous upgrade. Furthermore, because verifying software is time, labor, and
resource intensive, it can be difficult to justify formally verifying software which may be
upgraded quickly or frequently – a problem shared with other verified software, e.g. [16, 22].
Both of these factors limit the effectiveness of formal methods to address security issues in
real-world software, inhibiting verification as business and security propositions [18].

What is needed is a practical and formal framework through which to specify and verify
contract upgrades. As it stands we have no such framework apart from repeating the formal
specification and verification process on a new contract version. Not only are upgrades costly
from a verification perspective, as we have no good way of reusing much of the verification
work on previous contract versions, but incorrect specifications are themselves a meaningful
source of contract vulnerabilities [20]. Thus each time a specification is made from scratch
we risk introducing errors of incorrect specification.

To mitigate these issues we introduce a formal framework for specifying and verifying
contract upgrades, through which we can reuse formal specification and proof on previous
contract versions. This framework relies on the notion of a contract morphism, a theoretical
tool we introduce that formally encodes structural relationships between smart contracts,
and with which we can specify and reason about the structure and behavior of an upgraded

© Derek Sorensen;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 7; pp. 7:1–7:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ds885@cam.ac.uk
https://derekhsorensen.com/
https://orcid.org/0000-0003-4937-6984
https://doi.org/10.4230/OASIcs.FMBC.2024.7
https://github.com/dhsorens/FinCert
https://archive.softwareheritage.org/swh:1:dir:a0d8499f935e75e7076b33b666898752e27cbf3d;origin=https://github.com/dhsorens/FinCert;visit=swh:1:snp:0cbe1a324310e49b943e1e64ae9a3df868a009a6;anchor=swh:1:rev:5fe1e6d94ac519890d1dac0d283b3969fc84bb1a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 Smart Contract Upgrades in Coq

contract relative to its previous versions. We argue that this is a natural framework for
specifying and verifying contract upgrades, one which could decrease the cost of formally
verifying contract upgrades as well as the risk of introducing vulnerabilities due to incorrect
specification.

We proceed as follows. In §2, we survey related work. In §3, we introduce contract
morphisms as a formal tool to specify and verify contract upgrades. In §4 we give two
examples of formally specifying a contract upgrade with contract morphisms. In §5 we
discuss formal verification with contract morphisms. We conclude in §6.

2 Related Work

In the realm of smart contracts there is limited formal work on formal reasoning about
contract upgrades. Previous work [3, 6] proposes paradigm-shifting methods to either attach
formal proofs to smart contracts and their upgrades, which are verified by the chain, or to
trust a canonical third party to verify all contract upgrades before deployment. Unfortunately
this work is likely impractical, as both solutions require substantial paradigm shifts or re-
engineering of blockchain ecosystems. The latter also arguably contradicts the permissionless
ethos of blockchain ecosystems by mandating a trusted third party.

In the context of software more generally, much work has gone into ensuring that software
upgrades are carried out safely with formal methods [10, 12, 22]. Recent work has begun
to address the issue of adapting formal proofs in a proof assistant to changes in software in
order to lower the cost of formally verified software which may undergo regular upgrades [16].
This problem is complicated by the computable nature of proofs in proof assistants like Coq;
chosen data types strongly influence the structure of proofs, making adaptation difficult [11].
A notable contribution to this work is Ringer et al.’s work on proof repair [14, 15], which
seeks to relate a new program version to the old – by type equivalences or by comparing
inductive structures – and thereby reuse previously-completed proofs on the updated code.

Drawing on this previous work, particularly Ringer et al.’s idea of reusing formal proofs
by way of structural similarities between programs, our goal is to provide a framework for
using formal methods to formally specify and verify smart contract upgrades. Contract
morphisms (§3) will be our primary theoretical tool for specifying and verifying contract
upgrades. Their purpose is to formally encode a structural relationship between smart
contracts which can be used for both formal specification and proof reuse. With contract
morphisms we address the problem of formal reasoning about contract upgrades, but in
contrast to previous work on the subject our proposed framework does not require the
paradigm-shifting reengineering of blockchain systems in order to be used.

Finally, we note that for smart contracts there is a distinction between contract upgrades
and contract upgradeability. Some contracts come with a predefined logic to handle up-
grades and avoid hard forks, the most popular of these on Ethereum being the Diamond
framework [13]. However, they are complicated contracts as their specifications include the
upgradeability functionality and governance, as well as the functionality of a given version
of the contract. We will only consider upgrades via hard forks in this paper, leaving the
question of rigorous formal specification and verification of upgradeable contracts to future
work.

3 Contract Morphisms

In what follows we define contract morphisms, a theoretical tool which codifies formal
relationships between smart contracts. In later sections we use them to formally specify and
verify contract upgrades. We argue that this provides our desired formal framework.

D. Sorensen 7:3

3.1 Morphisms of Pure Functions
Before focusing on the specific case of smart contracts, we consider the more general case
of programs formalized as pure functions. Take types A, A′ and B, B′, and two functions
p : A → B and q : A′ → B′. A morphism from p to q is a pair of functions fi and fo which
form a commutative square,

A A′

B B′

fi

p q

fo

i.e. for which

q ◦ fi = fo ◦ p.

Together, we call fi and fo the morphism

f : p → q.

Via fi and fo, the commutative square like the above maps inputs and outputs of p to
inputs and outputs of q. If p and q are programs (in particular, pure functions), we can also
interpret this as execution traces of p to execution traces of q, such that transforming the
inputs of p into those of q with fi, and then applying q is the same as applying p first and
then transforming the outputs over fo.

We can define composition of morphisms easily as the composition of commutative squares.
That is, given functions p, q, and r, and morphisms

f ′ : p → q and f ′′ : q → r,

we can define a morphism f := f ′′ ◦ f ′ : p → r by the outer square of the following diagram,

A A′ A′′

B B′ B′′

f ′
i

p q

f ′′
i

r

f ′
o f ′′

o

which is commutative if each of the inner squares are commutative. Note that composition is
associative, assuming the underlying functions are associative, and that we have the obvious
identity morphism fid : p → p given by fi, fo := id,

A A

B B

id

p p

id

which commutes trivially. Thus given a well-defined class of functions, which in our case will
be smart contracts modeled in Coq by pure functions, we have a category on those functions
with morphisms given by commutative squares on those pure functions.

In the coming sections, given a morphism f : p → q, we might consider the case that q

is an upgraded version of p. Because f relates execution traces of q to those of p, we will
see this can be used to reason formally about q in terms of p, both in specification and
verification.

FMBC 2024

7:4 Smart Contract Upgrades in Coq

3.2 Contract Morphisms in ConCert
In ConCert, a Coq-based tool for smart contract verification which models the execution
semantics of third-generation blockchains [2] and features verified extraction to various
blockchains [1], smart contracts are formalized with a Contract type as a pair of pure, stateful
functions init and receive. The init function governs contract initialization and the receive
function governs contract calls. The Contract type is polymorphic, parameterized by four
types: Setup, Msg, State, and Error which, respectively, govern the data necessary for contract
initialization, contract calls, contract storage, and contract errors.

For a contract

C : Contract Setup Msg State Error

the type signatures of each component function (init C) and (receive C) are given as follows,
where the types Chain and ContractCallContext are ConCert-specific types used to model
the underlying blockchain and context.

Listing 1 Type signature of the init and receive functions, respectively, of a smart contract in
ConCert.
init C : Chain → ContractCallContext → Setup → result State Error.

receive C : Chain → ContractCallContext → State → option Msg →
result (State ∗ list ActionBody) Error.

Now consider contracts C1 and C2,

C1 : Contract Setup1 Msg1 State1 Error1

C2 : Contract Setup2 Msg2 State2 Error2.

We define a data type of morphisms between contracts C1 and C2,

ContractMorphism C1 C2.

This data type consists firstly of four component functions between the contract types of C1
and C2 – the Setup, Msg, State, and Error types respectively.

setup_morph : Setup1 -> Setup2
msg_morph : Msg1 -> Msg2
state_morph : State1 -> State2
error_morph : Error1 -> Error2.

We can use these component functions to make commutative squares like those we saw in §3.1
for each of the init and receive functions. For init, the horizontal arrows of the squares are
given by the functions mA_init and mB_init. For receive, the horizontal arrows are given
by the functions mA_recv and mB_recv. See Listing 2 for the definition of these functions in
terms of the four component functions given above.

Ainit A′
init Arecv A′

recv

Binit B′
init Brecv B′

recv

mA_init

init init′

mA_recv

receive receive′

mB_init mB_recv

The functions defined above give us squares, but to finish the definition of contract
morphisms we need these squares to commute. Thus our definition includes two coherence
conditions, one for the init square and one for the receive square, which are given as follows.

D. Sorensen 7:5

Listing 2 The functions which we use for the horizontal arrows of a pair of commutative squares
f_init : init C1 -> init C2 and f_recv : receive C1 -> receive C2, respectively, in the
definition of a contract morphism.
(* functions to form a commutative square on init *)
mA_init :=

fun (c : Chain) (ctx : ContractCallContext) (s : Setup) ⇒
(c, ctx, setup_morph s).

mB_init := fun (res : result State Error) ⇒
match res with
| Ok init_st ⇒ Ok (state_morph init_st)
| Err e ⇒ Err (error_morph e)
end.

(* functions to form a commutative square on receive *)
mA_recv := fun (c : Chain) (ctx : ContractCallContext)

(st : State) (op_msg : option Msg) ⇒
(c, ctx, state_morph st, option_map msg_morph op_msg).

mB_recv := fun (res : result (State ∗ list ActionBody) Error) ⇒
match res with
| Ok (init_st, nacts) ⇒ Ok (state_morph init_st, nacts)
| Err e ⇒ Err (error_morph e)
end.

(* The coherence condition that makes the init square commute *)
init_coherence: forall c ctx s,
(match (init C1 c ctx s) with

| Ok init_st ⇒ Ok (state_morph init_st)
| Err e ⇒ Err (error_morph e)
end) =

(init C2 c ctx (setup_morph s)).

(* The coherence condition that makes the receive square commute *)
recv_coherence : forall c ctx st op_msg,
(match (receive C1 c ctx st op_msg) with

| Ok (new_st, new_acts) ⇒ Ok (state_morph new_st, new_acts)
| Err e ⇒ Err (error_morph e)
end) =

(receive C2 c ctx (state_morph st) (option_map msg_morph op_msg)).

Thus a contract morphism

m : ContractMorphism C1 C2

is defined as a pair of commutative squares, each of which are morphisms between the
respective init and receive functions of each contract. We give the formal definition of a
contract morphism in Listing 3.

As the name morphism suggests, we should expect contract morphisms to behave like
morphisms in a well-defined category. That is, we should have an associative composition
operation on morphisms, and for every contract C should have an identity morphism

id_C : ContractMorphism C C

with which composition is trivial.

FMBC 2024

7:6 Smart Contract Upgrades in Coq

Listing 3 The formal definition of a contract morphism in ConCert, consisting of four component
functions and two coherence conditions, which together give a pair of commutative squares.
Record ContractMorphism

(C1 : Contract Setup1 Msg1 State1 Error1)
(C2 : Contract Setup2 Msg2 State2 Error2) :=
build_contract_morphism {

(* the components of a morphism *)
setup_morph : Setup1 → Setup2 ;
msg_morph : Msg1 → Msg2 ;
state_morph : State1 → State2 ;
error_morph : Error1 → Error2 ;
(* coherence conditions *)
init_coherence : forall c ctx s,

result_functor state_morph error_morph (init C1 c ctx s) =
init C2 c ctx (setup_morph s) ;

recv_coherence : forall c ctx st op_msg,
result_functor (fun ’(st, l) ⇒ (state_morph st, l))

error_morph
(receive C1 c ctx st op_msg) =

receive C2 c ctx (state_morph st)
(option_map msg_morph op_msg) ;

}.

Indeed, this is the case. We can compose morphisms by composing the morphism
component functions. We have two results,

compose_init_coh and compose_recv_coh,

which show that coherence of the composed morphism follows from the coherence conditions
of each individual morphism. These results simply show that commutative squares compose,
as we saw in §3.1, giving us a well-defined composition function compose_cm.

compose_cm : forall C1 C2 C3
(g : ContractMorphism C2 C3) (f : ContractMorphism C1 C2) : ContractMorphism C1 C3.

We also have a proof that composition is associative, drawing on the associativity of component
functions, and we have the obvious identity morphism, given by four identity component
functions, such that composition with the identity is trivial.

Definition id_cm (C : Contract Setup Msg State Error) :
ContractMorphism C C := {|

(* components *)
setup_morph := id ;
msg_morph := id ;
state_morph := id ;
error_morph := id ;
(* coherence conditions *)
init_coherence := init_coherence_id C ;
recv_coherence := recv_coherence_id C ;

|}.

This gives us a well-defined category Contracts of smart contracts, with objects given by
the Contract type and morphisms given by the ContractMorphism type.

D. Sorensen 7:7

Note that in many categories, e.g. the categories of sets, topological spaces, or groups,
morphisms are structure-preserving functions. So too for us. The existence of a morphism

f : ContractMorphism C1 C2

indicates a structural and mathematical relationship between contracts C1 and C2, in particular
relating their execution traces via the four component morphisms. As we will see, this
relationship can be exploited to prove theorems about one contract in terms of another
contract, something which we will do here in the case of contract upgrades and upgradeability.

In many categories there are also different classes of morphisms, including injections
(embeddings, monomorphisms), surjections (quotients, epimorphisms), and isomorphisms.
Injections, or embeddings, typically preserve the structure of the domain faithfully within
the codomain, essentially identifying a copy of the domain within the codomain. Surjections
typically represent a compression of some kind, and the information lost in the compression
can frequently be described by a kernel object. As we will see, we also have injective and
surjective contract morphisms, which are given when the four component functions are,
respectively, injective or surjective, and which follow analogous intuitions.

4 Morphisms to Formally Specify and Verify Contract Upgrades

Our goal now is to use contract morphisms as a tool to formally specify and verify contract
upgrades in ConCert. Consider a contract upgrade from the perspective of a formal spe-
cification. Contracts are usually upgraded with a goal that relates the new to the previous
contract version, whether it be to patch a bug, add functionality, or improve contract fea-
tures. Thus the new specification relates to the old – it should eliminate a vulnerability
but preserve all other functionality, be backwards compatible while adding functionality, or
make improvements such as greater gas-efficiency without deviating from the behavior of
the previous contract version. Of course, in practice an upgraded contract is not formally
specified in relation to an older version, but rather by altering the old specification into the
new, or simply starting from scratch and writing a new specification by hand. As discussed
in §1, this can be a source of vulnerabilities.

In this section, we will formally specify contract upgrades in two examples using contract
morphisms. The advantage of using morphisms is that we are able to clearly articulate
the intent of an upgrade in the formal specification by way of a morphism in such a way
that formal verification consists of producing a morphism between the updated contract
implementation and a previous version which meets the required specification.

▶ Example 1 (Swap Contract Upgrade). Consider a smart contract C1 that prices and executes
trades, e.g. a decentralized exchange (DEX) or an automated market maker (AMM) [23].
Suppose that we wish to upgrade C1 to a contract C2 so that it calculates trades at higher
precision by a factor of ten, meaning that the internal token balances in storage have one
more decimal place, and the trade calculation is able to calculate at one decimal place greater
in precision. Then in ConCert our contract C1 will have a storage type which keeps track of
internal token balances, exposed by a function get_bal.

Context { storage : Type } { get_bal : storage → N }.

It will also have a TRADE entrypoint which accepts a payload of some type, trade_data,
characterized by an entrypoint type, entrypoint, and an associated typeclass, Msg_Spec.

FMBC 2024

7:8 Smart Contract Upgrades in Coq

Listing 4 We assume an entrypoit type entrypoint, characterized by a typeclass Msg_Spec,
which includes a trade function trade.
Class Msg_Spec (T : Type) := {

(* the trade entrypoint *)
trade : trade_data → T ;
(* for any other entrypoint types *)
other : other_entrypoint → option T ;

}.

(* We assume an entrypoint conforming to Msg_Spec *)
Context { entrypoint : Type } ‘{ e_msg : Msg_Spec entrypoint }.

Now assume that C1 has some internal function calculate_trade that it uses to calculate
how many tokens will be traded out for a given contract call to the TRADE entrypoint. The
trade quantity, internal token balances, and the calculate_trade function will all be accurate
up to some decimal place, commonly 9 in the wild, formalized in the following specification,
spec_trade, of C1.

Listing 5 The formalized proposition that C1 uses calculate_trade to price trades.
(* the specification of C1’s trading functionality with regards to the

calculate_trade function *)
Definition spec_trade : Prop :=

forall cstate chain ctx trade_data cstate’ acts,
(* for any successful call to C1’s trade entrypoint, *)
receive C1 chain ctx cstate (Some (trade trade_data)) =
Ok(cstate’, acts) →
(* the balance in storage updates according to the

calculate_trade function *)
get_bal cstate’ =
get_bal cstate + calculate_trade (trade_qty trade_data).

The property of Listing 5, spec_trade, is a specification with regards to which C1 is assumed
to be correct.

Now we wish to upgrade C1 to a new contract C2 such that C2 calculates trades and keeps
balances at one decimal place higher of accuracy. We will first have a specification for C2
which is analogous to spec_trade in Listing 5, which says that C2 uses some new function,
calc_trade_precise, to calculate its trades.

Listing 6 The formalized proposition that C2 uses calculate_trade_precise to price trades.
(* The specification of C2’s trading functionality with regards to the

calculate_trade_precise function. This is analogous to spec_trade *)
Definition spec_trade_precise : Prop :=

forall cstate chain ctx trade_data cstate’ acts,
(* for a successful call to C2’s trade entrypoint, *)
receive C2 chain ctx cstate (Some (trade trade_data)) = Ok (cstate’, acts) →
(* the balance in storage updates according to the

calculate_trade_precise function *)
get_bal cstate’ =
get_bal cstate +
calculate_trade_precise (trade_qty trade_data).

D. Sorensen 7:9

Our goal now is to use a contract morphism to complete the formal specification of C2 in
terms of C1. Our specification is this: A correct implementation of the upgraded contract C2
must satisfy spec_trade_precise and be accompanied by a contract morphism

f : ContractMorphism C2 C1

with the following five properties, stated formally in Listing 7:
1. msg_morph f rounds down the precision of messages to trade by a factor of 10
2. msg_morph f is the identity morphism on all messages aside from messages to trade
3. state_morph f rounds down on the balances kept in storage exposed by get_bal
4. error_morph f and setup_morph f are the respective identity functions

Listing 7 The formal specification of the upgrade from C1 to C2.
(* FORMAL SPECIFICATION:

An upgrade C2 must admit a morphism
f : ContractMorphism C2 C1
with the following properties: *)

(* 1. msg_morph f rounds trades down when it maps inputs of the receive function *)
Definition f_recv_input_rounds_down

(f : ContractMorphism C2 C1) : Prop :=
forall t’, exists t,
(msg_morph C2 C1 f) (trade t’) = trade t ∧
trade_qty t = (trade_qty t’) / 10.

(* 2. msg_morph f only affects the trade entrypoint *)
Definition f_recv_input_other_equal

(f : ContractMorphism C2 C1) : Prop :=
forall msg o,
(* for calls to all other entrypoints, *)
msg = other o →
(* f is the identity *)
option_map (msg_morph C2 C1 f) (other o) = other o.

(* 3. state_morph f rounds down on the storage *)
Definition f_state_morph (f : ContractMorphism C2 C1) : Prop :=

forall st, get_bal (state_morph C2 C1 f st) = (get_bal st) / 10.

(* 4. error_morph f and setup_morph f are the identity functions *)
Definition f_recv_output_err (f : ContractMorphism C2 C1) : Prop :=

(error_morph C2 C1 f) = id.

Definition f_init_id (f : ContractMorphism C2 C1) : Prop :=
(setup_morph C2 C1 f) = id.

The meaning of a morphism f satisfying the above conditions, as a specification, is in
the coherence conditions of f. We know that every possible execution trace of C2 has a
corresponding execution trace in C1, and we know that the input messages are identical
except that C2 accepts trades at a higher level of precision. The coherence conditions also
tell us that the state of C2 is always related to the analogous state of C1, expressed in the
function state_morph. With regards to the trading functionality of our new contract C2, we
know that the balance kept in the storage of C2, which is affected by trades, will always be
identical to the analogous balance of C1 after rounding down, which we can formally prove.

FMBC 2024

7:10 Smart Contract Upgrades in Coq

Listing 8 All reachable states of C2 round down to their corresponding states in C1.
Theorem rounding_down_invariant bstate caddr

(trace : ChainTrace empty_state bstate):
(* Forall reachable states with contract at caddr, *)
env_contracts bstate caddr = Some (C2 : WeakContract) →
(* cstate is the state of the contract AND *)
exists (cstate’ cstate : storage),
contract_state bstate caddr = Some cstate’ ∧
(* cstate is contract-reachable for C1 AND *)
cstate_reachable C1 cstate ∧
(* such that for cstate, the state of C1 in bstate,

the balance in cstate is rounded-down from the
balance of cstate’ *)

get_bal cstate = (get_bal cstate’) / 10.

Most importantly, f guarantees a relationship between the trading functionality of C2 and
that of C1: C2 emulates the exact same trading behavior as C1 after rounding down one
decimal place in precision. This means that C2 does not introduce any novel vulnerabilities
relating to trades and balances not extant to C1. In particular, a proof of this fact would
have prevented the attacks on Uranium Finance [8], NowSwap [4], and Nomad [7].

Moving on, note that f of Example 1 was directed from C2 to C1. The coherence conditions
of f forced all execution traces of C2 to conform to a pattern set by C1, which is precisely
what lets us make the claim that we haven’t introduced any new behaviors regarding trading
functionality to C2 aside from the increase in precision. Morphisms directed in the opposite
direction can also be used in specification. Rather than classifying all possible execution
traces of the upgrade, in this case a morphism proves that certain desired behavior exists
within the contract. We illustrate with an example of specifying backwards compatibility.

▶ Example 2 (Backwards Compatibility). Consider contracts C1 and C2, where C2 is again an
upgrade of C1, and suppose that we wish to show that C2 is backwards compatible with C1.
The intent of this upgrade is that the full functionality of C1 be present within C2. We show
this by embedding C1 into C2 via an injective contract morphism.

We illustate with a simple example of a counter contract C1 which keeps some n : N in
storage and has one entrypoint incr that increments the natural number in storage by 1. C1
is upgraded to C2, which in addition to an entrypoint to increment the natural number in
storage also includes a decr entrypoint to decrement the natural number in storage by 1.

Listing 9 The entrypoint types of C1 and C2, respectively.
Inductive entrypoint1 := | incr (u : unit).
Inductive entrypoint2 := | incr’ (u : unit) | decr (u : unit).

We prove that C2 is backwards compatible with C1 by defining a contract morphism

f : ContractMorphism C1 C2

with the following component functions.

Definition msg_morph (e : entrypoint1) : entrypoint2 :=
match e with | incr _ ⇒ incr’ tt end.

Definition setup_morph : setup → setup := id.
Definition state_morph : storage → storage := id.
Definition error_morph : error → error := id.

D. Sorensen 7:11

These component functions do the obvious thing – send calls to the increment entrypoint of
C1 to the increment entrypoint of C2 with the same payload, and do nothing otherwise. And
f is an embedding since each of its component functions are manifestly injective, which we
can formally prove.

Lemma f_is_embedding : is_inj_cm f.

Again, the meaning of f as a specification is in its coherence conditions. Any reachable
state of C1 necessarily has an analagous reachable state of C2 which is fully structure preserving:
if we were to only use the functionality of C2 which it inherits from C1, we would get identical
contract behavior to C1. We have a formal proof of this result.

Listing 10 C2 is backwards compatible with C1 via the embedding f.
Theorem injection_invariant bstate caddr

(trace : ChainTrace empty_state bstate):
env_contracts bstate caddr = Some (C1 : WeakContract) →
(* Forall reachable states cstate of C1,

there’s a corresponding reachable state
cstate’ of C2, related by the injection *)

exists (cstate’ cstate : storage),
contract_state bstate caddr = Some cstate ∧
(* cstate’ is a contract-reachable state of C2 *)
cstate_reachable C2 cstate’ ∧
(* .. equal to cstate *)
cstate’ = cstate.

This is a toy example, but in practice specifying a new contract which is backwards compatible
to the old in this strong sense may not be straightforward. Via contract embeddings, contract
morphisms give us a way of formally specifying and verifying backwards compatibility.

5 Further Applications of Morphisms in Formal Verification

Contract morphisms establish a relationship between contracts which makes them suitable
for specifying and verifying upgrades. For that same reason, contract morphisms may also
have applications in proof reuse, or proof transport, more generally. The special case of
contract isomorphism may also provide a stronger relationship between formal specification
and proof on the associated contracts.

5.1 Hoare Properties and Contract Morphisms
First we consider properties that transport over a morphism, in particular those that we
can pull back over a morphism. Hoare properties are a particularly strong example: they
relate pre-conditions to post-conditions, which is relevant to morphisms because morphisms
relate inputs and outputs of contract executions. As contracts are formalized in ConCert,
constraints on on inputs amount to pre-conditions, and constraints on outputs amount to
post-conditions. Thus for contracts C1 and C2 and a morphism f : ContractMorphism C1 C2,
we might expect to be able to transport Hoare properties of one contract over f to the other.

Indeed, any Hoare property proved for C2 will always have an analogous result on C1,
mediated by f. We proved this in two results which relate all reachable states of C1 to those
of C2, and those of C2 to those of C1, via the state_morph component of f. These results,
left_cm_induction and right_cm_induction, are collectively called morphism induction, as

FMBC 2024

7:12 Smart Contract Upgrades in Coq

they allow us to induct along the execution trace of one contract in relation to that of another.
In particular, morphism induction says that properties of the state of C2 which are invariant
over state_morph must hold for all states of C1.

As a toy example of this relationship, suppose that we can prove that if a certain boolean
in the storage of C2 is set at true, a given entrypoint e2 of C2 can be successfully called, and
that it fails otherwise. Suppose further that the msg_morph component of f sends all calls
to an entrypoint e1 of C1 to calls to e2, and that the state_morph component of f sends a
state of C1 with an analogous boolean set at true to one of C2 with the boolean set at false,
and visa versa. Then by morphism induction on the trace of C1, we get for free that calls to
e1 succeed only when the analogous boolean in the state of C1 is set at false, rather than
true. The relationship encoded by f between contracts C1 and C2 shows that C1 and C2 use
opposing, but predictably related, logic for execution, which allows us to reuse proofs on C2
to prove analogous results on C1.

5.2 Isomorphisms and Propositional Indistinguishability
This relationship between contracts strengthens when we have a pair of morphisms

f : ContractMorphism C1 C2 and g : ContractMorphism C2 C1

such that compose_cm g f = id_cm C1 and compose_cm f g = id_cm C2. This is an isomorph-
ism of contracts. Isomorphisms of contracts are particularly strong; the component functions
are equivalences of types and they induce a bisimulation of contracts in ConCert.

Since bisimulation is a strong and mathematically stable notion of equivalence [17], future
work could investigate proof transport over contract isomorphisms, building on recent work
in Coq-based formal methods. For example, we may wish to prove results on a contract
optimized for formal reasoning, and transport those onto a bisimlar, performant contract,
similar to the work of Cohen et al. [5]. This might include altering certain data types while
maintaining an equivalence; chosen data types have a strong influence on the structure of
proofs and can be nontrivial to transport [11, 15, 21].

6 Conclusion

Our goal in this paper was to provide a formal framework for formally specifying and verifying
smart contract upgrades in Coq. To do so we introduced the notion of a contract morphism,
which encodes a formal relationship between execution traces of two contracts. We argued
that this was a suitable, formal notion with which to reason about contract upgrades and
provided examples of contract upgrades which can be specified and verified with contract
morphisms. To our knowledge, this is the first time that the intent of an upgrade has been
articulated explicitly in formal specification, and is the first formal attempt at reasoning
explicitly about contract upgrades in a formal setting.

This work is intended to be a preliminary framework for reasoning about contract upgrades
in Coq. As such, there are practical questions to be asked, such as whether these tools
are even feasible on gas-optimized code, which can be difficult to formally reason about.
Even so we are optimistic, as the previously-mentioned work by Ringer et al. in proof
repair is practically useful and resembles our framework from a theoretical standpoint. Since
the status quo is to simply update the formal specification of a previous version into the
specification of the new, we hope that contract morphisms will be a strong start to efficient
and rigorous verification of contract upgrades.

D. Sorensen 7:13

References
1 Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. Extracting smart

contracts tested and verified in Coq. In Proceedings of the 10th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2021, pages 105–121, New York, NY, USA,
jan 2021. Association for Computing Machinery. doi:10.1145/3437992.3439934.

2 Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. ConCert: A smart contract
certification framework in Coq. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2020, pages 215–228, New York, NY, USA,
jan 2020. Association for Computing Machinery. doi:10.1145/3372885.3373829.

3 Pedro Antonino, Juliandson Ferreira, Augusto Sampaio, and A. W. Roscoe. Specification is Law:
Safe Creation and Upgrade of Ethereum Smart Contracts. In Software Engineering and Formal
Methods: 20th International Conference, SEFM 2022, Berlin, Germany, September 26–30,
2022, Proceedings, pages 227–243. Springer, 2022. doi:10.1007/978-3-031-17108-6_14.

4 Rob Behnke. Explained: The NowSwap Protocol Hack. https://halborn.com/explained-the-
nowswap-protocol-hack-september-2021/, sep 2021. Accessed January 2024.

5 Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for free! In International
Conference on Certified Programs and Proofs, pages 147–162. Springer, 2013. doi:10.1007/
978-3-319-03545-1_10.

6 Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, Vikram Saraph, and Eric Koskinen. Proof-
Carrying Smart Contracts. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea
Bracciali, Federico Pintore, and Massimiliano Sala, editors, Financial Cryptography and Data
Security, Lecture Notes in Computer Science, pages 325–338, Berlin, Heidelberg, 2019. Springer.
doi:10.1007/978-3-662-58820-8_22.

7 etherscan.io. Nomad Bridge Exploit.
Transaction 0xa5fe9d044e4f3e5aa5bc4c0709333cd2190cba0f4e7f16bcf73f49f83e4a5460, 2022.

8 Uranium Finance. Uranium Finance Exploit. https://uraniumfinance.medium.com/exploit-
d3a88921531c, apr 2021. Accessed January 2024.

9 Immunefi. Hack Analysis: Nomad Bridge, August 2022. https://medium.com/immunefi/hack-
analysis-nomad-bridge-august-2022-5aa63d53814a, jan 2023.

10 Oussama Jebbar, Ferhat Khendek, and Maria Toeroe. Upgrade of highly available systems:
Formal methods at the rescue. In 2017 IEEE International Conference on Information Reuse
and Integration (IRI), pages 270–274. IEEE, 2017. doi:10.1109/IRI.2017.66.

11 Nicolas Magaud and Yves Bertot. Changing data structures in type theory: A study of
natural numbers. In International Workshop on Types for Proofs and Programs, pages 181–196.
Springer, 2000. doi:10.1007/3-540-45842-5_12.

12 Stephen McCamant and Michael D Ernst. Predicting problems caused by component upgrades.
In Proceedings of the 9th European software engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of software engineering, pages 287–296,
2003. doi:10.1145/940071.940110.

13 Nick Mudge. EIP-2535: Diamonds, Multi-Facet Proxy. https://eips.ethereum.org/EIPS/
eip-2535. Accessed January 2024.

14 Talia Ringer. Proof Repair. University of Washington, 2021. URL: https://hdl.handle.net/
1773/47429.

15 Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. Proof
repair across type equivalences. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, pages 112–127, 2021.
doi:10.1145/3453483.3454033.

16 Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Adapting proof automation to
adapt proofs. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, pages 115–129, 2018. doi:10.1145/3167094.

17 Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures in Computer
Science, 8(5):447–479, oct 1998. doi:10.1017/S0960129598002527.

FMBC 2024

https://doi.org/10.1145/3437992.3439934
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1007/978-3-031-17108-6_14
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/978-3-662-58820-8_22
https://doi.org/10.1109/IRI.2017.66
https://doi.org/10.1007/3-540-45842-5_12
https://doi.org/10.1145/940071.940110
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535
https://hdl.handle.net/1773/47429
https://hdl.handle.net/1773/47429
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3167094
https://doi.org/10.1017/S0960129598002527

7:14 Smart Contract Upgrades in Coq

18 Amritraj Singh, Reza M Parizi, Qi Zhang, Kim-Kwang Raymond Choo, and Ali Dehghantanha.
Blockchain smart contracts formalization: Approaches and challenges to address vulnerabilities.
Computers & Security, 88:101654, 2020. doi:10.1016/j.cose.2019.101654.

19 Derek Sorensen. FinCert. swhId: swh:1:dir:a0d8499f935e75e7076b33b666898752e27cbf3d,
(visited on 02/05/2024). URL: https://github.com/dhsorens/FinCert.

20 Derek Sorensen. (In)Correct Smart Contract Specifications. IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), 2024.

21 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. Equivalences for free: univalent
parametricity for effective transport. Proceedings of the ACM on Programming Languages,
2(ICFP):1–29, 2018. doi:10.1145/3236787.

22 Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas
Anderson. Planning for change in a formal verification of the raft consensus protocol. In
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP
2016, pages 154–165, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2854065.2854081.

23 Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. SoK: Decentralized Exchanges
(DEX) with Automated Market Maker (AMM) Protocols. ACM Computing Surveys, 55(11):1–
50, 2023. doi:10.1145/3570639.

https://doi.org/10.1016/j.cose.2019.101654
https://archive.softwareheritage.org/swh:1:dir:a0d8499f935e75e7076b33b666898752e27cbf3d;origin=https://github.com/dhsorens/FinCert;visit=swh:1:snp:0cbe1a324310e49b943e1e64ae9a3df868a009a6;anchor=swh:1:rev:5fe1e6d94ac519890d1dac0d283b3969fc84bb1a
https://github.com/dhsorens/FinCert
https://doi.org/10.1145/3236787
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3570639

A Practical Notion of Liveness in Smart Contract
Applications
Jonas Schiffl1 #

KASTEL - Institute of Information Security and Dependability, Karlsruhe Institute of Technology,
Germany

Bernhard Beckert #

KASTEL - Institute of Information Security and Dependability, Karlsruhe Institute of Technology,
Germany

Abstract
Smart contracts are programs which manage resources in blockchain networks in an automated
fashion. In this context, liveness properties are often essential: If I transfer money to a contract,
will I eventually get it back?

This kind of property can be hard to specify and verify, in particular because application-specific
fairness assumptions w.r.t. function invocation and the behavior of other parties are usually necessary
for any liveness proof to succeed. In this work, we analyze smart contract liveness properties discussed
in the literature. We find that the smart contract paradigm of decentralization and trustlessness
implies that “real” liveness properties do not usually occur. The properties that have been classified
as liveness can be more aptly described as enabledness, i.e., the ability of an agent to induce a state
change, such as a transfer of resources.

Our contribution in this work is a specification language based on LTL to capture this kind
of property. It features some special constructs to describe common properties in smart contracts,
such as transfers or ownership of cryptocurrency. We show how often-used examples of liveness
properties can be succinctly specified in our language. Moreover, we show how our notion of liveness
can simplify formal verification compared to existing approaches.

2012 ACM Subject Classification Software and its engineering → Formal methods

Keywords and phrases Smart Contracts, Formal Verification, Security, Safety and Liveness

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.8

Funding This work was supported by funding from the topic Engineering Secure Systems of the
Helmholtz Association (HGF) and by KASTEL Security Research Labs.

1 Introduction

Smart contracts are programs which run in conjunction with blockchains. They typically
manage resources, especially cryptocurrency. Abstractly, a smart contract application can be
viewed as a set of functions and state variables. Actors in the network can call the functions
and thereby change an application’s state. Function calls are executed atomically in no
pre-defined order.

Due to their unique characteristics, it is very important that smart contracts are correct
upon deployment. In this work, we propose a novel perspective on an important and
challenging class of correctness properties, namely liveness, in the context of smart contracts.
In general, liveness properties can take many forms, depending on the application domain.
One classic example is termination: Given a function, we may ask whether it always finishes

1 Corresponding author

© Jonas Schiffl and Bernhard Beckert;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 8; pp. 8:1–8:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jonas.schiffl@kit.edu
https://orcid.org/0000-0002-9882-8177
mailto:beckert@kit.edu
https://orcid.org/0000-0002-9672-3291
https://doi.org/10.4230/OASIcs.FMBC.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2 Liveness in Smart Contract Applications

execution. In other domains, especially in distributed or parallel settings, deadlock freedom
is essential: Is there always a way to continue execution, or is it possible to reach a situation
where no progress can be made?

In this work, we argue that in the domain of smart contracts, liveness properties typically
require that a certain functionality is (or becomes) accessible to an actor. In Section 2, we
substantiate this intuition by analyzing the examples given in existing literature on smart
contract liveness verification. In Section 3, we formalize our notion and develop a specification
language for smart contract application liveness properties, based on a subset of LTL. We
also sketch possibilities for verification. In Section 4, we demonstrate the use of the language
on some examples from literature.

Related Work

Formal verification of smart contracts is a very active field of research. Most of the work
targets smart contracts on the Ethereum platform. Many approaches focus on the detection
of pre-defined vulnerabilities, which are detected by various kinds of static analysis. Recent
overviews are given by He et al. [5] and Munir et al. [9].

Other tools also allow specification and verification of user-defined correctness properties.
Recent versions of the Solidity compiler itself include an SMT-based tool that checks the
validity of assertions [7], hinting at the high importance of formal verification for smart
contract development. Other tools allow even more powerful properties to be specified
and verified. In solc-verify[4] and Celestial [2], developers can specify invariants and
function contracts consisting of first-order logic pre- and postconditions as well as frame
conditions. VerX [12] introduces temporal operators and verification of safety properties.

Nam and Kil [10] present an approach for model-checking ATL properties of smart
contracts by translating Solidity to the language of the MCMAS model checker. Their
approach focuses on strategies and behaviors of actors, highlighting the need to consider
different agents and their interests.

In the approach of Godoy et. al. [3], Solidity smart contracts are manually translated
to the Alloy modelling language, providing an abstract, state transition based view of the
smart contract application for visualization and auditing purposes. The approach works with
the concept of enabledness of smart contract functions in the form of enabledness preserving
abstractions. requires statements in the code determine whether a function is enabled,
relating it to the notion of enabledness we develop in this work.

Furthermore, to our knowledge, there are two tools for specification and verification of
liveness properties. Both are specific to the Solidity programming language. VeriSolid [8]
is a tool for developing Solidity smart contracts through modeling them as state transition
systems. The state of an application is modeled explicitly. Transitions are written directly in
the supported Solidity subset. This model is translated into a BIP (Behavior, Interaction,
Priority) model, which can be model-checked, e.g., for safety and liveness properties like
deadlock freedom. VeriSolid allows specification of liveness properties in CTL. However, the
properties that can be proven are concerned with successful termination after a function
is called. There is no notion of fairness assumptions or the ability of an actor to effect a
transfer.

SmartPulse [14] is a tool for checking safety and liveness properties of a given Solidity
smart contract. Properties are specified in SmartLTL, which contains primitives for functions
being called, functions finishing execution, reverting, and sending Ether (Ethereum’s built-
in cryptocurrency). Fairness assumptions can be specified if necessary to prove liveness
properties. In addition to source code and property specifications, an environment is

J. Schiffl and B. Beckert 8:3

specified, consisting of an attacker model (e.g., bounds on the number of re-entrant calls)
and a blockchain model (e.g., gas costs of function calls). The SmartPulse paper provides a
number of example liveness properties which we will discuss in the next section.

2 Liveness Properties in Smart Contracts

Smart contract platforms have several characteristics that influence what kind of liveness
properties are important in a smart contract application. First, smart contracts exist in an
open world: As a matter of principle, anyone can call any function and thereby trigger a
transaction. Furthermore, smart contract platforms specifically exist for use cases where
participants in the network do not necessarily trust each other. Therefore, participants
generally cannot be assumed to behave in any particular way, at least in the absence of
incentives.

A second defining characteristic of smart contracts is money: Most smart contract
platforms have some form of cryptocurrency built in, and transferring currency or tokens is a
part of almost all real-world smart contract applications. This means that there are usually
financial incentives.

These characteristics lead to a special kind of liveness property which is highly common
in smart contracts: “If I transfer money to a smart contract, will I get it back?” Or, more
generally: Will some desired state change eventually happen? We elaborate on this kind of
liveness property via a few simple examples, and demonstrate its pervasiveness by a brief
review of example liveness properties in the literature.

2.1 Simple Bank Example

An example often used to showcase basic functionality is a simple smart contract version of
a bank, which allows other accounts to deposit money, logs the balance of each account, and
enables withdrawing funds according to the caller’s balance (which is stored in a mapping
bals). There are only two public functions, deposit and withdraw. They both have no
precondition. The postcondition is that money is transferred from the caller to the bank
contract (or vice versa for withdraw) and that the bals mapping is updated accordingly.

One major correctness property of this application can be viewed as a liveness property:
If I deposit money in the bank, I will eventually get it back.

2.2 Escrow Example

Another common example is an escrow, where a smart contract application acts as an
intermediary for a purchase2. For a successful purchase, the application proceeds through
a succession of predefined states, according to the actions of buyer and seller. There are
several liveness properties integral to the correctness of the application, depending on the
exact implementation. For example, after the buyer confirms they received the purchased
item, the seller should eventually be refunded their deposit.

2 https://docs.soliditylang.org/en/latest/solidity-by-example.html#safe-remote-purchase

FMBC 2024

https://docs.soliditylang.org/en/latest/solidity-by-example.html#safe-remote-purchase

8:4 Liveness in Smart Contract Applications

2.3 Auction Example
Another example3 is a smart contract implementing an auction. Here, we consider an
application consisting of a single contract which has three state variables: a boolean variable
state which records the state of the auction (open, closed, or finalized), a mapping bids
which records the bids made by each actor resp. account, and highestBidder which stores
the current leader of the auction. Furthermore, the contract has four functions: bid()
transfers some amount of currency (specified by the caller) from the caller to the auction
contract. If the amount is higher than the current leading bid, the highestBidder variable
is overwritten with the caller’s address, and their bid is recorded in bids. The function
close() sets the state variable to closed and then assigns ownership of the auction item
to the current highest bidder. The function claim requires that the auction is closed, but not
finalized. It transfers the amount of the winning bid to the auctioneer. Finally, withdraw()
can be called by all losing bidders. It transfers the corresponding amount (as recorded in
bids) to the caller.

Like in the bank example, a crucial correctness property of this application is a liveness
property: If an actor makes a bid, that actor will eventually either win the auction and be
assigned ownership of the desired item, or they will get their money back.

2.4 Examples from Literature
The SmartPulse paper [14] lists 23 safety and liveness properties of 10 applications that can
be verified with their tool. Of these, 13 are liveness properties, signified by the eventually
keyword. All of them fall into one of two categories: In the first category are properties that
represent postconditions of a function, like the following: “If a user withdraws funds after
refunds are enabled, they will eventually be sent the sum of their deposits.” The paper on
VeriSolid [11] only gives a single example of a liveness property, which also falls into this
category.

The second category is of the type described in the beginning of this section, stating
that some desired action will happen eventually. One of the examples in this category is
an auction smart contract exactly like the one described above. Another example is the
following statement about a crowdfunding application: “If the campaign fails, the backers
can eventually get their refund.”

In SmartPulse, liveness properties can be specified in a variant of LTL. Properties of
the second category require a fairness assumption about the actors’ behavior in order for
verification to succeed: If a withdraw functionality is available, but never called, then losing
bidders will not get their money back, although they could! The fairness assumption in this
auction scenario is that any losing bidder will eventually call the withdraw function.

2.5 Observations
From the examples above, we note several important points. First, many liveness properties
in smart contract applications can be reduced to postconditions and termination of a single
function. Since there are several tools for specifying and verifying function postconditions,
we focus on the other kind of liveness property, which states that a desired state change will
happen eventually.

3 used, e.g., in the documentation of the Solidity programming language:
https://docs.soliditylang.org/en/stable/solidity-by-example.html#simple-open-auction

https://docs.soliditylang.org/en/stable/solidity-by-example.html#simple-open-auction

J. Schiffl and B. Beckert 8:5

Concerning this kind of “real” liveness property, we observe that the crucial point about
a desirable state change is whether an actor is able to effect it. There is a subtle difference:
Liveness in smart contracts is not about whether something will definitely happen, but about
whether someone can make it happen. In the auction example, what we want to prove is not
whether every losing bidder actually gets their money back, it is that they can get it back (if
they take the appropriate action).

This phrasing leads to the insight that in the context of smart contracts, it should
be possible to specify liveness properties without having to specify assumptions regarding
behavior, at all. What should be specified is enabledness, i.e., the ability to effect a desired
result. This ability often pertains to a specific actor (or set of actors). Furthermore, on
some examples, the desired change can only be effected after some fixed amount of time has
elapsed, or if some other condition is met.

One last observation is that liveness is usually connected to resources, e.g., the built-in
cryptocurrency of a blockchain network. Often, liveness corresponds to ownership: If an actor
is able to effect a transfer of an amount of currency from a smart contract to themselves,
then they own this amount, even though it is not stored in their own account.

3 Formalization of Smart Contract Liveness

In this section, we formalize the insights from the previous section and propose a practical
way of specifying liveness properties for smart contract applications.

3.1 A Model of Smart Contract Applications
Our goal is a specification language that is independent of a concrete smart contract platform.
Therefore, we assume a very generic model of smart contract applications (model elements
in italics): First, we have a notion of Accounts identified by a name (e.g., an address). These
can be either External Accounts (representing human actors) or Contracts. Each account has
an integer-valued balance.

An application is a set of Contracts. Each Contract consists of a set of Functions and
a set of State Variables. State Variables have a name and a type. The overall state of an
application is determined by the values of all state variables (including account balances).
The state only changes as a consequence of a function call, after a function has executed
successfully.

Functions consist of a name, a set of parameters, and a set of return values. Each function
call happens within a call context. For our purposes, this context consists of the account
making the call, the amount of money transferred, and the list of parameter values at call
time.

Crucially, each function also has a function contract consisting of a Precondition and a
Postcondition, which are first-order predicates over the execution context and the application
state. The intended semantics is as follows: When a function is called in a context that
does not satisfy the precondition, the function reverts and no state change occurs. When
a function is called in a state and context that satisfies its precondition, it terminates in a
state which satisfies the postcondition4.

4 Note how this differs from preconditions e.g. in JML [6] or ACSL [1], where a function contract does
not specify the behavior if the precondition is not fulfilled. These semantics would not make sense in
the open, adversarial smart contracts setting.

FMBC 2024

8:6 Liveness in Smart Contract Applications

For a given smart contract application a, we say that F is the set of all functions of all
contracts in a, V the set of all state variables (qualified with the name of the contract where
they are defined), and Vals the set of all possible values of the variables. Then the state
S : V → Vals is a function which assigns each state variable a value.

For a function f ∈ F , Pf is the set of all possible concrete parameter lists for f .
Furthermore, we say that A is the set of all accounts, and the set Ctx = A × Pf × N is the
set of all call contexts. A call context c ∈ Ctx is a triple consisting of the calling account,
parameters, and amount of currency transferred. We write c.params, c.caller, and c.amt,
respectively.

Function pref : S × Ctx → B is the precondition of f , a predicate over the application
state, the caller, and the parameters. Likewise, postf : S × S × Ctx → B is a predicate over
the state before and after the execution of a function, as well as the caller and the parameters
of the call.

3.2 Specification Language
In this section, we develop a specification language, based on a subset of Linear Temporal
Logic, which captures our main observation about smart contract liveness properties: That
is, in the context of smart contract applications, it does not make sense to specify that
something “will eventually happen”. Rather, one should specify that a desired functionality
or state change is enabled.

Abstractly, the execution of a smart contract application can be viewed as a trace of
transactions, each initiated by an account calling a function with some parameters in a way
that fulfills the function’s precondition. Our language enables developers to write down
properties that are expected to be true in all possible execution traces.

3.2.1 LTL
Linear temporal logic (LTL, first introduced in 1977 by Pnueli [13]) is a widely used logic for
describing and verifying properties of execution traces. In its original form, LTL formulas
consist of a set of propositional variables, the standard boolean connectors, and some temporal
operators that enable statements about traces.

The Next operator Xϕ states that some formula ϕ holds in the next step of the trace.
The Until operator ϕ U ψ states that eventually, ψ will hold, and ϕ must hold in every
step until that point. ♢ (“eventually”) with the meaning ♢ϕ ::= trueU ϕ and □(“globally”,
with □ϕ ::= ¬♢¬ϕ) are commonly used derivations. Furthermore, the Weak Until operator
ϕUW ψ states that ϕ must be true until a state is reached where ψ holds, but unlike U, ψ
does not necessarily have to become true at some point. The Releases operator R is the dual
of U with ϕR ψ ::= ¬(¬ϕU ¬ψ). Note that both U and R, in combination with negation,
form a basis for the other LTL operators.

Every LTL formula can be transformed into Negation Normal Form (NNF), where the
only operators are U, R, and X, and where only atomic formulas are negated [15].

3.2.2 Restrictions
We adapt LTL as follows: Instead of atomic propositions, we allow predicates in first-order
logic with arithmetic over the state of an application. This includes quantification over arrays
and mappings, as well as over sets of accounts.

J. Schiffl and B. Beckert 8:7

Figure 1 Our trace model of a single smart contract application execution. Each node τi contains
the application state (si), the system time ti when this state was reached, and the transaction that
led to it (with each transaction consisting of the called function fi, and the call context ctxi).

s0, t0, f0,

ctx0

s1, t1, f1,

ctx1

s2, t2, f2,

ctx2
...

τ0 τ1 τ2

As for the modal operators, we restrict our language in two ways: First, we omit the Next
operator, which expresses that some condition holds in the following state. In the context of
a smart contract network, it is never possible to predict which transaction is going to be
executed next, as no single entity has control over this. Therefore, properties which require
that something must happen exactly in the next state (as opposed to some other time) do
not make sense in this domain.

Furthermore, we allow only formulas which are Until-free in NNF. This fragment of LTL
has been called Safety LTL ([15]). Intuitively, every formula in Safety LTL rules out traces
based on some finite prefix which violates the formula. This syntactic restriction captures
our intuition that for smart contracts, “classical” liveness conditions (as expressed by the ♢
and U operators) do not make sense.

3.2.3 Domain-specific Constructs
For this restricted form of LTL, we now introduce some specification constructs which capture
important “liveness” properties relevant in the smart contract domain.

We view an execution of a smart contract application as a trace (cf. Figure 1). For
our purposes, each node τi of a trace τ consists of the application state si as well as the
transaction which led to τi and the time of the transaction ti. The transaction description
consists of the name of the called function as well as the call context (caller, parameters, and
transferred amount) with which it was called (we write fi and ctxi, respectively).

We define enabledness as a specification construct that is evaluated in one state of an
execution. For a function f (with precondition pref over the state and the execution context)
and an account a, we define that enabled[a, par, amt](f) is true in a node τi iff a can
call f successfully with parameters par and amount amt in the state represented by that
node:

τi |= enabled[a, par, amt](f) :⇔ pref (si, (a, par, amt))

The context, or parts of it, can be left out to indicate universal quantification, i.e., enabledness
for all callers regardless of the parameters and the amount transferred with the call:

τi |= enabled[](f) :⇔ ∀a ∈ A ∀par ∈ Pf : pref (si, (a, par, amt))

We extend this notion to predicates over the state: For a predicate over the application state
p, we say that p is enabled in node τi if there exists a function that is enabled, and which
results in a state that implies the desired state:

τi |= enabled[a, par,amt](c)

:⇔ ∃f ∈ F : τi |= enabled[a, par, amt](f) ∧ postf (si−1, si, (a, par, amt)) → c

FMBC 2024

8:8 Liveness in Smart Contract Applications

This construct includes two-state predicates, i.e., predicates which relate two states of the
application by expressing a condition over the new state in terms of the previous state. Since
function postconditions can also reference the state before the function was executed, the
semantics are exactly the same as for enabledness of one-state predicates.

The transfer of currency from one account to another can be described in terms of a
two-state predicate. This is so predominant in the smart contract domain that we create a
special abbreviation.

For accounts from and to, transfer(from, to, amt) is true in node τi iff the balances
of from and to changed accordingly in the step from τi−1 to τi:

τi |= transfer(from, to, amt) :⇔
si(from.balance) = si−1(from.balance) − amt

∧ si(to.balance) = si−1(to.balance) + amt

Since liveness properties in smart contract applications are often about resource ownership,
we introduce a special construct to express that an account a owns some amount of currency.
We formalize ownership as the ability of an account to effect a transfer of currency to itself
from the contract where the property is specified (this):

τi |= owns(a, amt) :⇔ τi |= □enabled[a]()transfer(this, a, amt)

This property only makes sense when the amt expression refers to a variable which stores the
amount, and which is updated in case of a transfer. One example is the mapping storing the
balances in the Bank contract. We think this pattern is prevalent enough to justify the owns
abbreviation.

Furthermore, we introduce a way to express that a transaction happened in a given
step τi:

τi |= f[ctx] :⇔ f = fi ∧ ctx = ctxi

As with enabled[](), the calling account and the parameters can be left out: tx[] is true
in τi iff tx = fi. This is useful for example when specifying that a certain condition always
holds after some function was called.

Lastly, we provide a construct which describes that something (e.g., a transaction or state
change) is always possible at least until it actually happens:

τi |= enabledUntil[ctx](f) :⇔ τi |= enabled[ctx](f) UW f[ctx]

As above, the calling account and the parameters can be left out to indicate universal
quantification, and the construct can also be used with a predicate instead of a transaction.

Thus, if p is a predicate over the application state, f ∈ F a function of the application,
par ∈ Pf a list of parameters for f , amt an integer expression, and a, b ∈ A accounts, the
syntax of our language is as follows:

ϕ ::= true | false
| p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2

| ϕ1 R ϕ2 | ϕ1 UW ϕ2 | □ϕ

| enabled[a? par? amt?]([p | f])
| enabledU[a? par? amt?]([p | f])
| transfer(a,b,amt)

| f[a? par?]

| owns(a, amt)

J. Schiffl and B. Beckert 8:9

Note that for the enabled and enabledU expressions, the account and the parameter list
are optional, and the argument can be either a transaction or a predicate.

Our choice of LTL operators hints at our intentions to only care about Safety LTL
formulas. As described above, we only admit formulas which are Until-free in NNF.

3.3 Verification

While the main focus of this work is on specification, we also want to point out that viewing
smart contract liveness as a matter of enabledness can simplify the verification task.

For each property specified in an application model, the verification goal is to show that
all possible executions of this application fulfill the property. For real liveness properties, as
expressed by the ♢ operator, this requires additional assumptions, e.g., about the behavior
of the actors in an applications. Because we restrict our specification language to safety
formulas, we can, in principle, prove them by showing that the desired property is an inductive
invariant.

The enabledness of a function in some context is equivalent to whether its precondition is
fulfilled by that context. Likewise, the enabledness of a state or state change is equivalent to
whether an enabled function exists that leads to the desired state or state change. To show
that a function is always enabled, it is sufficient to show that it is enabled in the application’s
initial state, and that every possible call again results in a state where the function is enabled.
By extension, to show that a state or state change is always enabled, it suffices to show that
a function which leads to the desired state or state change is always enabled.

4 Prototypical Implementation and Evaluation

We have implemented a metamodel of smart contract applications which conforms to the
model assumed for this work (cf. Section 3.1). The metamodel can be used by developers to
model an application, and specify and verify the kind of liveness properties introduced in
this work on the model level. Verification of application liveness properties is based on the
function contracts.

Then, code skeletons consisting of function headers and function contracts (pre- and
postconditions) can be generated for a specific smart contract platform (and a verification
tool for this platform). After the developer completes the implementation in a way that each
function conforms to its contract, the application automatically also conforms to the liveness
specification.

While this model-driven approach is not the main topic of this work, we use it for a
light-weight evaluation of our approach.

4.1 Implementation of Model-driven Approach

We developed a small XML-like language to describe smart contract applications consisting
of several contracts. Each contract, in turn, consists of a set of state variables and functions.
Our type system is inspired by Solidity, which we envision to be the main target language for
our approach, but it is flexible enough to accommodate other languages as well. The type
system comprises the primitive types Account, Integer (signed and unsigned), Boolean, and
String. Furthermore, there are arrays and key-value mappings. Lastly, there are also the
user-defined Struct and Enum types.

FMBC 2024

8:10 Liveness in Smart Contract Applications

Each function defined by the developer has a name, a list of typed parameters, and
a return type. Furthermore, we also developed a language for writing function contracts,
consisting of a precondition, a postcondition, and a frame condition, which specifies which
part of the application state a function may modify.

From a model written in this language, we can translate into smart contract programming
languages. For evaluation, we translate into Solidity. Translating the contracts, state variables
and function headers is straightforward, because the structure of our metamodel fits the
structure of a Solidity application, and all of our types have an equivalent in Solidity.

The function contracts are translated to the specification language of solc-verify[4], a
tool for deductive functional verification of Solidity smart contracts. The developer provides
an implementation of the generated function headers. If solc-verifyis able to prove the
implementation correct against the generated formal specification, we can transfer this result
back to the model, and reasonably assume that any property we can verify based on the
model’s function contracts is also true of the implementation.

The verification of liveness properties is not yet implemented in an automated fashion.
We have developed a translation from the function contracts to an SMT encoding. For simple
examples, our prototypical approach suffices to prove that a function is enabled in a given
state (e.g., after initialization or after a given transaction), and that it will remain enabled,
by proving that its precondition is an invariant.

4.2 Evaluation
In this section, we describe how to specify the liveness properties of the examples discussed
in Section 2. We also sketch how the properties can be verified and discuss the limitations
and advantages of our approach in general.

4.2.1 Bank
The main correctness property of the simple bank application (cf. Section 2.1) is that every
customer can withdraw all their funds whenever they want. The customer balances are
stored in a key-value mapping bals.

∀a ∈ A : □enabled[a](a.balance == old{a.balance} + old{bals[a]})

In this case, we can also specify where the money comes from, and use the transfer
shorthand:

∀a ∈ A : □enabled[a](transfer(this, a, bals[a])

For this, we can also use the owns abbreviation and simply write

∀a ∈ A : owns(a, balances[a])

Verification is straightforward: The withdraw function does not have a precondition. It is
therefore always enabled for every caller, and the postcondition matches the desired property
exactly.

4.2.2 Escrow
In the escrow example (Section 2.2), one liveness property is that the seller can get their
deposit back after the buyer confirms the reception of the item. In our approach, this can be
modeled as follows:

confirmPurchase[buyer] → enabledUntil[seller](transfer(this, seller, deposit))

J. Schiffl and B. Beckert 8:11

This means that after the confirmPurchase method is called successfully, the seller is able
to effect a refund of their deposit - of course, only until this actually happens.

This can be verified by showing that the only function that is enabled after the successful
call to confirmPurchase is refundSeller, and that its postcondition implies the desired
effect.

4.2.3 Auction
For the auction example (Section 2.3), we consider two properties: Bidders must be refunded
if they do not win, and the seller should be able to claim the winning bid after the auction
closes.

For the losing bidders, the property is similar to that of the bank, with the difference
being that the current highest bidder can not withdraw:

∀a ∈ A : □(a == highestBidder ∨ enabled[a](transfer(this, a, bals[a]))

Note that in this example, we cannot use the owns shortcut, because it includes a □ operator,
so that the resulting property might actually not be true: After all, a losing bidder might
increase their bid to become the highest bidder again.

Verification is also similar to the bank example. The withdraw function has only one
precondition, which is that the caller must not be the current highest bidder. Therefore, it
is always enabled for all other accounts. From this, it follows that the desired property is
indeed an invariant.

For the seller in the auction, the desired property is that after the auction is closed, they
get paid. This can be specified in two steps. First, after the auction ends, it can be closed:

time > endTime → □enabled[](close)

Second, after the auction is closed, the seller can call the claim function to be paid the
auction price from the contract:

close[] → enabledUntil[seller](claim())

Another correct formalization of this second property can be expressed with the application
state instead of a transaction expression:

state == closed → enabledUntil[seller](claim())

Other possible formalizations could express the ability to effect a transfer, instead of the
enabledness of the claim function. In this example, there are many different reasonable ways
of specifying the desired property.

Verification relies on the fact that after the close() function is successfully executed,
the state variable is in the state closed (as implied by the postcondition). This means that
the claim() function is enabled for the seller. Since no other function is enabled, we derive
that the enabledness of the claim() function is an invariant until it is actually called.

At first glance, it seems that the seller property it would be easier to specify with a ♢
operator, like this:

♢enabled[seller](claim)

This property holds, but additional assumptions about the seller’s behavior would have to
be given in order to be able to prove this.

FMBC 2024

8:12 Liveness in Smart Contract Applications

4.2.4 General Remarks
Our specification language can be used to express all properties yielded by our literature
research on smart contract liveness properties. This shows that the restrictions in our
language (no Next, and only Until-free formulas) are actually not needed to specify properties
which are commonly perceived to be liveness properties.

In some cases, our restrictions force the specification to be explicit about how a de-
sirable state can be reached: e.g., in the auction, the specification cannot just state
♢enabled[](close), but has to show the way: time > end → enabledUntil[](close).
This not only simplifies verification, but also forces clarity in the specification. If a complex
sequence of function calls is necessary to reach some goal, this might point to an overly
complex implementation and possible simplification. At the very least, our approach will
force the developer to document the necessary steps.

There are plausible scenarios where our notion of liveness fails to express all relevant
properties. One example would be a vote with a quorum: Some desirable action will be taken
according to a vote, but only after a fixed percentage of those entitled to vote have cast their
vote. Will the action be taken eventually? Whether or not the participants are incentivized
to vote depends on the specifics of the application. If they are sufficiently incentivized, this
would constitute a case where a fairness condition makes sense, and our simpler notion would
not be sufficient to specify and verify that any action will be taken. However, cases like this
do not seem to be common in the smart contract world, and deciding whether a fairness
assumption is plausible can be very challenging. We leave this kind of question to future
research.

Our model-driven approach for specification and verification enables developers to specify
liveness properties on a level where the implementation of the functions is abstracted via
function contracts. Therefore, we cannot rely on the implementation itself for verification.
Working on the abstraction means that, in general, the properties that can be proven
in our approach are a subset of the properties that would be provable directly on the
implementation. However, since verification in our approach is straightforward for all
example liveness properties we could find in the literature, we argue that this limitation
hopefully does not matter much in practice.

5 Conclusion and Future Work

In this paper, we analyze the concept of liveness properties for smart contract applications.
We find that all properties commonly perceived as liveness in the literature are not classical
liveness, but can be expressed as an actor’s access to some functionality. Based on this
finding, we suggest a specification language based on a subset of LTL, which contains concise
constructs for specifying typical properties. We also sketch how this perspective simplifies
the verification task, and evaluate our approach on some typical examples.

In the future, we will look to automate the verification task. Furthermore, we will develop
processes for different platforms to achieve implementations which adhere to the liveness
properties specified in the model. Conversely it would be possible to translate an annotated
smart contract implementation to a model, and use our approach to specify and verify
liveness properties on it.

J. Schiffl and B. Beckert 8:13

References
1 Patrick Baudin, Vincent Prevosto, Jean-Christophe Filliâtre, Yannick Moy, Benjamin Monate,

and Claude Marché. ANSI/ISO C Specification Language (version 1.4), 2008.
2 Samvid Dharanikota, Suvam Mukherjee, Chandrika Bhardwaj, Aseem Rastogi, and Akash

Lal. Celestial: A Smart Contracts Verification Framework. In 2021 Formal Methods in
Computer Aided Design (FMCAD), pages 133–142, oct 2021. doi:10.34727/2021/isbn.
978-3-85448-046-4_22.

3 Javier Godoy, Juan Pablo Galeotti, Diego Garbervetsky, and Sebastian Uchitel. Predicate
abstractions for smart contract validation. In Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, MODELS ’22, pages 289–299, New
York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3550355.3552462.

4 Akos Hajdu and Dejan Jovanovic. Solc-verify: A modular verifier for solidity smart contracts.
In Supratik Chakraborty and Jorge A. Navas, editors, Verified Software. Theories, Tools, and
Experiments, pages 161–179, Cham, 2020. doi:10.1007/978-3-030-41600-3_11.

5 Daojing He, Rui Wu, Xinji Li, Sammy Chan, and Mohsen Guizani. Detection of Vulnerabilities
of Blockchain Smart Contracts. IEEE Internet of Things Journal, pages 1–1, 2023. doi:
10.1109/JIOT.2023.3241544.

6 Gary T Leavens, Albert L Baker, and Clyde Ruby. JML: A Java modeling language. In
Formal Underpinnings of Java Workshop (at OOPSLA’98), pages 404–420, 1998.

7 Matteo Marescotti, Rodrigo Otoni, Leonardo Alt, Patrick Eugster, Antti E. J. Hyvärinen,
and Natasha Sharygina. Accurate Smart Contract Verification Through Direct Modelling. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation: Applications, LNCS, pages 178–194, Cham, 2020. doi:10.1007/
978-3-030-61467-6_12.

8 Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Abhishek Dubey. Ver-
iSolid: Correct-by-Design Smart Contracts for Ethereum. In Ian Goldberg and Tyler
Moore, editors, Financial Cryptography and Data Security, pages 446–465, Cham, 2019.
doi:10.1007/978-3-030-32101-7_27.

9 Sundas Munir and Walid Taha. Pre-deployment Analysis of Smart Contracts – A Survey, jan
2023. doi:10.48550/arXiv.2301.06079.

10 Wonhong Nam and Hyunyoung Kil. Formal verification of blockchain smart contracts via atl
model checking. IEEE Access, 10:8151–8162, 2022. doi:10.1109/ACCESS.2022.3143145.

11 Keerthi Nelaturu, Anastasia Mavridou, Andreas Veneris, and Aron Laszka. Verified Develop-
ment and Deployment of Multiple Interacting Smart Contracts with VeriSolid. In 2020 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9, may 2020.
doi:10.1109/ICBC48266.2020.9169428.

12 Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and Martin
Vechev. VerX: Safety Verification of Smart Contracts. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1661–1677, may 2020. doi:10.1109/SP40000.2020.00024.

13 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. ieee, 1977. doi:10.1109/SFCS.1977.32.

14 Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dillig. SmartPulse:
Automated Checking of Temporal Properties in Smart Contracts. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 555–571, may 2021. doi:10.1109/SP40001.2021.00085.

15 Shufang Zhu, Lucas M Tabajara, Jianwen Li, Geguang Pu, and Moshe Y Vardi. A symbolic
approach to safety ltl synthesis. In Hardware and Software: Verification and Testing: 13th
International Haifa Verification Conference, HVC 2017, Haifa, Israel, November 13-15, 2017,
Proceedings 13, pages 147–162. Springer, 2017. doi:10.1007/978-3-319-70389-3_10.

FMBC 2024

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_22
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_22
https://doi.org/10.1145/3550355.3552462
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1109/JIOT.2023.3241544
https://doi.org/10.1109/JIOT.2023.3241544
https://doi.org/10.1007/978-3-030-61467-6_12
https://doi.org/10.1007/978-3-030-61467-6_12
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.48550/arXiv.2301.06079
https://doi.org/10.1109/ACCESS.2022.3143145
https://doi.org/10.1109/ICBC48266.2020.9169428
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SP40001.2021.00085
https://doi.org/10.1007/978-3-319-70389-3_10

Securing Aptos Framework with Formal Verification
Junkil Park #

Aptos Labs, Palo Alto, CA, USA
Teng Zhang #

Aptos Labs, Palo Alto, CA, USA

Wolfgang Grieskamp #

Aptos Labs, Palo Alto, CA, USA
Meng Xu #

University of Waterloo, Canada

Gerardo Di Giacomo #

Aptos Labs, Palo Alto, CA, USA
Kundu Chen #

MoveBit, Hong Kong, China

Yi Lu #

Bitslab, Singapore, Singapore
Robert Chen #

OtterSec, Bellevue, WA, USA

Abstract
The Aptos Framework is a collection of smart contracts written in the Move language that define
standard and common on-chain actions for the Aptos Network. As the security and safety of the
Aptos Framework is of utmost importance, it has continuously undergone rigorous testing and
comprehensive auditing. To further increase the level of assurance, we have formally verified its
security and correctness. This involves identifying critical security requirements for each module,
creating formal specifications, and subsequently verifying them using the Move Prover. To the best
of our knowledge, this represents one of the first instances of formal verification being applied on
such a large scale in a smart contract framework. This paper discusses how this rigorous effort
ensures a high level of quality assurance for the Aptos Framework.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases Formal verification, Smart contracts, Aptos Network, The Move language,
The Move Prover

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.9

Supplementary Material Software: https://github.com/aptos-labs/aptos-core/tree/fmbc-24/
aptos-move/framework, archived at swh:1:dir:050dbcc5f78aa16d957074b4238327df8437e422

1 Introduction

The Aptos Network [1] is a safe, scalable, and upgradeable layer-1 blockchain with built-in
support for the Move language designed for fast and secure transaction execution. The
Aptos Framework1, similar to an operating system for a computer, serves as the foundational
platform for the Aptos Network, defining its core functionalities, managing on-chain resources,
and offering a standardized environment for the development of user smart contracts. It
comprises a suite of Move smart contract modules that define standard and common on-chain
actions for the Aptos Network, such as prologue and epilogue of transactions, the staking
mechanism, and Aptos Digital Asset Standard. It is imperative to ensure the correctness and
security of the Aptos Framework because the unexpected behavior of such foundational Move
modules could cause substantial asset loss or disrupt the normal functioning of the network.
For this reason, the Aptos Framework has continuously undergone rigorous testing and
comprehensive auditing. To further increase the level of assurance, we have formally verified
its security and correctness against formal specifications derived from our comprehensive
and systematic methodology. We identified critical security requirements for each module
and created formal specifications for large parts of the Aptos Framework, which were then
verified with the Move Prover.2

1 https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework
2 Notice that a preliminary summary of this paper has been published on Medium [2]

© Junkil Park, Teng Zhang, Wolfgang Grieskamp, Meng Xu, Gerardo Di Giacomo, Kundu Chen, Yi Lu,
and Robert Chen;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 9; pp. 9:1–9:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jpark@aptoslabs.com
mailto:teng@aptoslabs.com
mailto:wg@aptoslabs.com
mailto:meng.xu.cs@uwaterloo.ca
mailto:gerardo@aptoslabs.com
mailto:zorrot@movebit.xyz
mailto:y@movebit.xyz
mailto:r@osec.io
https://doi.org/10.4230/OASIcs.FMBC.2024.9
https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework
https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework
https://archive.softwareheritage.org/swh:1:dir:050dbcc5f78aa16d957074b4238327df8437e422;origin=https://github.com/aptos-labs/aptos-core;visit=swh:1:snp:c6b0fc38d7a9e983d9b03bd950906bffeb7067f9;anchor=swh:1:rev:66d9efb7d30b7c6916f79b6ef65f0bdcbe9c6acb
https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2 Securing Aptos Framework with Formal Verification

This rigorous approach has significantly enhanced the security and correctness assurance
of the Aptos Framework. For instance, block_prologue is a critical Move function since it
is executed at the beginning of each block. More importantly, block_prologue should never
abort because any abort will effectively halt the network by preventing it from generating new
blocks. As part of the liveness assurance of Aptos Network, we formally proved the absence
of abort in block_prologue, despite that this function involves complex execution across 96
Move functions in 22 different Move modules. During this process, we identified and fixed
some potential arithmetic overflows that may potentially trigger an abort in block_prologue
(e.g., the calculate_rewards_amount function in the stake module).

Moreover, specifications form an integral part of the Aptos Framework documentation,
which is in fact automatically generated based on the specifications and hence, provides an
unambiguous and detailed account of the expected behavior for each function and module.
Finally, integrating the Move Prover into the Continuous Integration (CI) process significantly
reduces the time and cost associated with code auditing – once the specifications are pinned
down, problematic code changes will likely trigger verification failure in the CI before manual
auditing happens.

This paper will explain how we have secured the Aptos Framework through formal
verification using the Move Prover. Section 2 introduces the Move language, Move Prover,
and Aptos Framework. In Section 3, we will explain our methodology to verification of the
Aptos Framework. Section 4 will discuss important findings and lessons learned from this
effort. After describing the related work in Section 5, we will conclude in Section 6.

2 Background

2.1 Move as A Programming Language for Smart Contracts
The Aptos Network natively supports Move as its smart contract language. A Move program
is essentially a sequence of updates that try to evolve a global persistent memory state, which
we just call the (global) memory. Similar to other blockchains, updates are a series of atomic
transactions. All runtime errors result in a transaction abort, which does not change the
blockchain state except to transfer some currency (“gas”) from the account that sent the
transaction to pay for the cost of executing the transaction.

The global memory is organized as a collection of resources described by Move structures
(i.e., data types). A resource in memory is indexed by a ⟨type, address⟩ pair. An address
is a unique identifier in the Aptos Network that typically represents the address of a user
account. For instance, the expression exists<Coin<USD>>(addr) will be true if there is a
value of type Coin<USD> stored at addr. As seen in this example, Move uses type generics,
and working with generic functions and types is rather idiomatic for Move.

A Move package consists of a set of modules. Each module defines a set of Move
functions. These functions update the global memory and may emit events. The execution
of these functions can abort explicitly because of an abort instruction (failure of an assert)
or implicitly because of a runtime error such as an out-of-bounds vector read or integer
overflows. For instance, the coin module provides the foundation for coins on Aptos. As one
of the core public APIs defined in it, the function deposit is shown in Listing 1:
1. checks whether the coin with type CoinType is registered under the recipient’s account

with the address account_addr;
2. retrieves a mutable reference to the corresponding resource CoinStore from the account;
3. if the store is not frozen, deposits the input coin to the CoinStore by calling the merge

function and emits an Deposit event.

J. Park et al. 9:3

If the function executes successfully, the borrowed global resource CoinStore in
account_addr will be updated after the transaction is committed. Otherwise, the transaction
will abort without any changes to the global memory.

Listing 1 The deposit function of the coin module.
public fun deposit <CoinType >(

account_addr :address ,
coin:Coin <CoinType >

) acquires CoinStore {
assert !(

is_account_registered <CoinType >(account_addr),
error :: not_found (ECOIN_STORE_NOT_PUBLISHED)

);
let coin_store = borrow_global_mut <CoinStore <CoinType >>(account_addr);
assert !(! coin_store .frozen , error :: permission_denied (EFROZEN));
event :: emit(

Deposit <CoinType > { account : account_addr , amount : coin. value }
);
merge (& mut coin_store .coin , coin);

}

2.2 Move Prover
The Move Prover (MVP for short) [21] is a formal verification tool for smart contracts that
are written in the Move language. The Move language is tightly coupled and integrated
with MVP because they have been developed and are evolving together. Move features an
expressive specification language designed to define the intended behaviors of a Move smart
contract. The architecture of MVP is shown in Figure 1. Move code (with the specification) is
given as input to the tool chain, which produces two artifacts: an abstract syntax tree (AST)
of the specifications, and the generated bytecode. They are merged into a unified object
model and input to the Prover Compiler. After a series of bytecode transformations such
as reference elimination, specification instrumentation and monomorphization, Boogie [14]
IR is generated which is further lowered into the SMT language and subsequently fed to
an SMT solver such as Z3 [6] or CVC5 [18]. MVP checks whether the code satisfies the
user-given specification for all possible program variable assignments. If not, MVP generates
a counterexample, that is an assignment to program variables such that the specification
does not hold. The Move Prover takes great care of translating the counter-example back
into the Move representation, hiding the intrinsic details of the SMT solver. MVP is fast
and reliable [8], and can be used routinely during smart contract development, making the
experience of running MVP similar to the experience of running compilers, linters, type
checkers, and other development tools.

2.3 Move Specification Language
The Move specification language allows developers to specify the properties of their smart
contracts, leveraging MVP to guarantee they behave as specified without adding any runtime
cost on-chain. In the specification language, developers can provide pre- and post-conditions
for functions, which include conditions over input parameters and global memory. Developers
may also provide invariants over data structures as well as the contents of the global memory.
The language also supports universal and existential quantification over bounded domains,
such as the indices of a vector, as well as effectively unbounded domains, such as memory
addresses and integers (e.g., forall a: address: P(a), and exists i: u64: Q(i), for
some predicates P and Q). While quantifiers can render the verification problem undecidable

FMBC 2024

9:4 Securing Aptos Framework with Formal Verification

Figure 1 Architecture of the Move Prover.

and lead to timeout or an “unknown” response from SMT solvers, they offer a practical
advantage: they allow for a more direct formalization of various properties, enhancing the
clarity of specifications.

As an example, the spec block in Listing 2 shows the specification of the deposit function
described in Section 2.1, which is the mathematical representation of the expected behavior
of the function. Two aborts_if clauses specify that the function aborts if and only if at least
one of the following conditions are satisfied: (1) the CoinStore resource for the coin with the
type CoinType does not exist under the account account_addr; (2) the CoinStore resource
is frozen. The ensures clause specifies that the value of the coin stored under account_addr
is increased by the value of the input coin after execution. MVP guarantees that function
implementation satisfies this specification for all input values and all coin types. MVP ’s
formal verification contrasts with testing, where a single test case only covers a specific
instance of input and coin type. Moreover, once a specification for MVP is defined, it enables
MVP to automatically check the specification thereafter (through CI). This automation
significantly reduces the costs associated with repetitive manual audits for every modification
of the smart contract.

Listing 2 The spec of the deposit function.
spec deposit <CoinType >(

account_addr : address ,
coin: Coin <CoinType >

) {
aborts_if !exists <CoinStore <CoinType >>(account_addr);
aborts_if global <CoinStore <CoinType >>(account_addr). frozen ;
ensures global <CoinStore <CoinType >>(account_addr)).coin. value ==

old(global <CoinStore <CoinType >>(account_addr)).coin. value +
coin. value;

}

2.4 Aptos Framework
The Aptos Framework defines standard actions performed on-chain. For instance, the genesis
module defines operations to be executed during genesis such as initializing the core account
and core modules on chain. The block_prologue function in the block module defines the
actions to execute before each transaction, updating the current block’s metadata and the
on-chain performance scores of validators. Beyond system-related actions, the framework
establishes standards for coins and staking, math libraries, efficient data structures (e.g.,

J. Park et al. 9:5

smart vectors which adapt depending on their size), and cryptographic algorithms (e.g.,
ed25519). Given its essential role in the Aptos Network, security and safety of the framework
are of utmost importance: bugs can cause network disruptions or lead to significant financial
losses. We conducted thorough testing and auditing of the Aptos Framework, however, it is
well-known that these measures cannot guarantee the complete absence of bugs [7]. Formal
verification, in contrast, can provide rigorous proofs of critical properties. In the next section,
we will present how to apply this technique effectively to the Aptos Framework.

3 Formal Verification of the Aptos Framework

Formal verification has received significant attention in the blockchain industry due to
the critical importance of smart contract assurance [15, 19]. However, applying formal
verification to a smart contract framework is challenging, especially when it encompasses
tens of thousands of lines of code and undergoes constant evolution. Moreover, a formally
verified smart contract is only as correct as its specifications. Therefore, how to devise a
comprehensive set of specifications for large and evolving codebase is the key to maximize
the return on investment (ROI) in formal methods.

To address this challenge, we have adopted two approaches to devising specification
from distinct directions. First, we adopted a top-down approach, starting from high-level
requirements to detailed specifications. Inspired by prior work of the authors [10], we
established a traceability framework that enables the tracking of how high-level requirements
are tested, audited, and verified. The high-level requirements and the traceability information
are thoroughly documented within the Move spec files, including the links between high-level
requirements and their respective formal specs. This ensures that all critical safety properties
are covered in specifications with provenance. In addition, we pursued a bottom-up approach
– systematically deriving specifications from individual functions and modules. This approach
allowed us to uncover, verify, and document functional properties of the Aptos Framework.
This section explains this combined effort in more detail.

3.1 From Security Requirement to Verification
In collaboration with our audit firm, we identified critical security requirements for each
module within the Aptos Framework. These requirements were systematically documented
with details covering their definition, criticality, implementation approach, and enforcement
methods. The enforcement methods include audit, test, and, where appropriate, formal
verification. For each requirement that can be enforced by formal verification, we created
the corresponding formal specifications and verified them with MVP.

For example, a high-critical security requirement for the coin module is shown in Table 1.
It states that the supply of a coin can be changed only by certain operations, such as burn
and mint. This requirement is in place to ensure that coins cannot be created arbitrarily,
which could potentially result in significant financial loss. The implementation has been
audited manually, and the property has been further specified and verified.

Shown in Listing 3, this requirement is encoded as a post-condition to be applied to all
functions in the coin module except for the mint and burn functions.

Listing 3 Post condition to enforce the high-level requirement in Table 1.
spec module {

apply TotalSupplyNoChange <CoinType > to *<CoinType >
except mint , burn , burn_from ;

}

FMBC 2024

9:6 Securing Aptos Framework with Formal Verification

Table 1 A high-level requirement of the coin module.

No. Requirement Criticality Implementation Enforcement
4 The supply of a coin is

only affected by burn
and mint operations.

High Only mint and burn
operations on a coin

alter the total supply
of coins.

Formally verified in
TotalSupplyNoChange

The definition of the post-condition TotalSupplyNoChange is given in Listing 4. The
condition explicitly states that the supply value remains unchanged when comparing its
values before and after execution. It uses two concepts not seen so far: specification functions
which allow to work on state and appear in old(..) expressions, as well as specification
schemas which allow to group and later inject properties:

Listing 4 Definition of TotalSupplyNoChange.
spec fun supply <CoinType >(addr: address): u128 {

option :: spec_borrow (global <CoinType >(addr)). supply
}
spec schema TotalSupplyNoChange <CoinType > {

coin_type_address : address ;
ensures option :: is_some (global <CoinType >(coin_type_address)) ==> supply

(coin_address) == old(supply (coin_address))
}

We have authored the high-level requirements for over 40 modules, and most of the re-
quirements are formally verified (see Appendix A). We also integrated these high-level
requirement artifacts into the Aptos Framework reference documentation. Additionally,
we’ve implemented a traceability framework that establishes connections between high-level
requirements and their associated formal specifications, facilitating the mapping of formal
specifications back to their originating high-level requirements. For example, the high-level
requirements of the coin module can be found in the link3. For other modules, please see
Appendix A.

3.2 Systematic Functional Specification
By verifying high-level requirements, we ensure that the Aptos Framework satisfies the
critical security properties identified during the audit. It is also important to ensure the
functionally correct behavior of the Aptos Framework. To ensure functional correctness, we
have systematically inferred the specifications from the code and comments of Move functions
and modules through a thorough manual process. This involves examining each Move
function to identify its abort conditions and post-conditions. Additionally, we meticulously
examined every struct to determine its data invariants and, by synthesizing these findings,
also established global invariants for each module.

3.2.1 Abort conditions
aborts_if specifications cover important classes of properties, such as access control checks,
input validation, and state validation. Move functions are normally designed to abort
when they are called (1) by an account without permission, (2) with an input argu-
ment outside of an expected range, or (3) on an unexpected global state. For example,

3 https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-frame
work/doc/coin.md#high-level-req

https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-framework/doc/coin.md#high-level-req
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-framework/doc/coin.md#high-level-req

J. Park et al. 9:7

in the Aptos Framework’s staking config contract, only the aptos_framework account
(i.e., 0x1) can call update_recurring_lockup_duration_secs. Also, the input parameter
new_recurring_lockup_duration_secs should be non-zero. It should be called only when
the resource StakingConfig is published under the aptos_framework address. These expec-
ted behaviors are captured by the specification in Listing 5.

Listing 5 Specification of update_recurring_lockup_duration_secs.
spec update_recurring_lockup_duration_secs (

aptos_framework : &signer ,
new_recurring_lockup_duration_secs : u64

){
aborts_if signer :: address_of (aptos_framework) != @aptos_framework ;
aborts_if new_recurring_lockup_duration_secs == 0;
aborts_if !exists < StakingConfig >(@aptos_framework);
...

}

Given this aborts_if specification, MVP verifies two things. First, it verifies that the
function indeed aborts when any one of the conditions holds. Second, MVP verifies that the
function does not abort on any other condition. This verification is important because it
allows developers to understand the complete set of conditions under which the function
can abort, thus the specifications also serve as precise documentation. Notice that abort
condition verification works very smoothly with MVP in practice, as finding a particular
program point that aborts is a simpler problem for the solver than general post-conditions.
In virtually any case we have encountered, a missed abort is quickly identified and pointed
to in the Move source.

For certain functions, it is critical that they do not abort. For instance, the
block_prologue function must never abort since it is executed with each block, and a
malfunction can bring the entire network down. The block prologue complex execution
involves 96 Move functions in 22 different Move modules. We formally specified all these
modules and proved that the block prologue execution would never fail (or abort) in an
unexpected condition (see Appendix A). The top-level specification of this function can be
found in Listing 6, with some schemas included which contain further details. The clause
“aborts_if false” means that this function should never abort, which can be proven if
the requires conditions over the input and the global state hold. For instance, the third
requires condition says the proposer (one of the input arguments) of creating the block
must be either a reserved address (@vm_reserved) or an active validator, which needs to
be checked by retrieving a global resource in the stake module. It is worth noting that
this function is directly called by the VM, so conditions in the specification were manually
audited at the call site.

Listing 6 Specification of block_prologue.
spec block_prologue {

requires chain_status :: is_operating ();
requires system_addresses :: is_vm(vm);
requires proposer == @vm_reserved

|| stake :: spec_is_current_epoch_validator (proposer);
requires timestamp >= reconfiguration :: last_reconfiguration_time ();
requires (proposer == @vm_reserved)

==> (timestamp :: spec_now_microseconds () == timestamp);
requires (proposer != @vm_reserved)

==> (timestamp :: spec_now_microseconds () < timestamp);
requires exists <stake :: ValidatorFees >(@aptos_framework);
requires exists <CoinInfo <AptosCoin >>(@aptos_framework);

FMBC 2024

9:8 Securing Aptos Framework with Formal Verification

include transaction_fee ::
RequiresCollectedFeesPerValueLeqBlockAptosSupply ;

include staking_config :: StakingRewardsConfigRequirement ;
aborts_if false ; // can never abort

}

3.2.2 Struct invariants
Struct invariants define the properties that the data within a struct must consistently satisfy.
When specifying the Aptos Framework, we observed many cases where the invariants of a
struct were implicitly present. These invariants were often documented within code comments
or manifested as assertion statements, and related functions were developed while observing
these implicit invariants. We have explicitly specified the invariants and verified them using
MVP. For example, the struct GasCurve (shown in Listing 7) represents a gas curve to be
used to adjust the global storage gas. It is an Eulerian approximation of an exponential curve.
The fields min_gas and max_gas are the minimum and maximum gas charges respectively,
and points is a vector of (x, y) pairs that represent the basis points of the curve where the
x-coordinate is the utilization ratio in the curve and y-coordinate is the utilization multiplier
in the curve.

Listing 7 Definition of GasCurve and Point.
struct GasCurve has copy , drop , store {

min_gas : u64 ,
max_gas : u64 ,
points : vector <Point >

}
struct Point has copy , drop , store {

x: u64 ,
y: u64

}

For each time period, the storage gas is recalculated by interpolation into the curve that
GasCurve defines. An implicit invariant of GasCurve was documented within code comments
to ensure correct linear interpolation. It says that every instance of GasCurve is well-formed,
representing a properly structured curve. Otherwise, interpolation becomes impossible,
leading to an abortion of the process. We formally specified the invariant to ensure it is
enforced consistently in all places. Listing 8 shows the specification of the invariant. For
each point instance, the (x,y) pair must not exceed the basis point denomination. For
each gas curve instance, 1) the minimum gas charge does not exceed the maximum gas
charge; 2) the maximum gas charge is capped by MAX_U64 scaled down by the basis point
denomination; and 3) the gas curve is a monotonically increasing function. MVP ensures that
those invariants hold everywhere in the code, that is, whenever of a value of the according
types is constructed or modified. It is worth mentioning that the storage gas recalculation is
part of the block_prologue execution path; thus, the data invariant of GasCurve plays an
important role in the block_prologue verification.

Listing 8 Invariants of GasCurve and Point.
spec GasCurve {

invariant min_gas <= max_gas ;
invariant (len(points) > 0 ==> points [0].x > 0);
invariant forall i in 0.. len(points) - 1:

(points [i].x < points [i + 1].x && points [i].y <= points [i + 1].y);
invariant max_gas <= MAX_U64 / BASIS_POINT_DENOMINATION ;

}

J. Park et al. 9:9

spec Point {
invariant x <= BASIS_POINT_DENOMINATION ;
invariant y <= BASIS_POINT_DENOMINATION ;

}

3.2.3 Global invariants
Global invariants define the properties that the global state must consistently satisfy. Global
invariants appear as members of the module specification. They are expressed as conditions
over the global state that consist of Move resources published in the global memory space.
Global invariants are important properties because they specify and ensure the correctness of
the entire global state. Several global invariants have been inferred from some core modules
of the Aptos Framework. For instance, the stake module defines Aptos’ staking mechanism.
Listing 9 shows the struct definitions related to validators. The resource ValidatorSet
contains the configuration information for the active validators of the Aptos Network. In
the struct ValidatorConfig, the field validator_index field denotes the index within the
active validator set. Its value is updated following changes to the active validator set.

Listing 9 Struct definitions related to validators.
struct ValidatorSet has key {

active_validators : vector < ValidatorInfo >,
// other fields ...

}
struct ValidatorInfo has copy , store , drop {

addr: address ,
voting_power : u64 ,
config : ValidatorConfig ,

}
struct ValidatorConfig has key , copy , store , drop {

validator_index : u64 ,
// other fields ...

}

In the function update_stake_pool (shown in Listing 10), the field validator_index is
used to locate the corresponding validator’s performance (i.e., the number of successful pro-
posals) data entry in ValidatorPerformance. The function will abort if validator_index
is equal to or greater than the length of validators in ValidatorPerformance.

Listing 10 Definition of the function update_stake_pool.
fun update_stake_pool (

validator_perf : & ValidatorPerformance ,
pool_address : address ,
staking_config : & StakingConfig

) {
let validator_config = borrow_global < ValidatorConfig >(pool_address);
let cur_validator_perf = vector :: borrow (

& validator_perf . validators ,
validator_config . validator_index

);
// ...

}

To prove that update_stake_pool never aborts unexpectedly, it is necessary to establish
the fact that validator_index never holds a value that is out-of-bounds for validators
in ValidatorPerformance. Listing 11 shows the formal specification of the global in-
variant, which denotes the correct relation between the two resources ValidatorSet and
ValidatorPerformance in the global memory. The invariant says that if the resource

FMBC 2024

9:10 Securing Aptos Framework with Formal Verification

ValidatorSet exists, all values of the validator_index fields in ValidatorSet must be
smaller than the length of validators in ValidatorPerformance. Notice that this property
cannot be expressed by a data invariant since those must not depend on global memory, but
here, we indirectly index global memory by an address found in a ValidatorSet.

Listing 11 Global invariant on validators.
spec module {

invariant exists < ValidatorSet >(@aptos_framework) ==>
validator_set_is_valid ();

fun validator_set_is_valid (): bool {
let set = global < ValidatorSet >(@aptos_framework);
forall i in 0.. len(set. active_validators):

global < ValidatorConfig >(validators [i]. addr). validator_index <
len(global < ValidatorPerformance >(@aptos_framework). validators)

}
}

4 Discussion

In this section, we discuss the benefits of formal verification for enhancing the security of the
Aptos Framework, along with insights gained from this endeavor. Formal verification not only
establishes proofs for key properties of the Aptos Framework but also aids in identifying bugs
and issues. The process of writing formal specifications demands thorough code review, while
the analysis of counterexamples unveils nuanced program behaviors, enabling the detection of
certain bugs. Throughout the formal specification and verification process, numerous issues
were identified, including the aptos_governance::store_signer_cap example shown in
Listing 12.

Listing 12 Incorrect implementation of store_signer_cap.
public fun store_signer_cap (

aptos_framework : &signer ,
signer_address : address ,
signer_cap : SignerCapability ,

) acquires GovernanceResponsbility {
system_addresses :: assert_framework_reserved_address (

address_of (aptos_framework)
);
if (! exists < GovernanceResponsbility >(@aptos_framework)) {

move_to (aptos_framework , GovernanceResponsbility {
signer_caps : simple_map :: create <address , SignerCapability >()

});
};
let signer_caps = &mut borrow_global_mut < GovernanceResponsbility >(

@aptos_framework
). signer_caps ;
simple_map :: add(signer_caps , signer_address , signer_cap);

}

Listing 12 shows the incorrect version of the function prior to our correction, caused by a
subtle difference between the signer argument aptos_framework and the address constant
@aptos_framework. This function misbehaves when address_of(aptos_framework) differs
from @aptos_framework. While the address constant @aptos_framework is set to be 0
x1, the argument aptos_framework can represent any reserved address from 0x1 to 0xa
because the function checks if aptos_framework corresponds to one of these reserved

addresses. Consequently, the resource GovernanceResponsibility might be established
under address_of(aptos_framework), which might not align with @aptos_framework. This

J. Park et al. 9:11

discrepancy raises the possibility that the resource GovernanceResponsibility may not be
present under @aptos_framework, leading to the potential abort in borrow_global_mut<
GovernanceResponsibility>(@aptos_framework).

Listing 13 Specification of store_signer_cap.
spec store_signer_cap (

aptos_framework : &signer ,
signer_address : address ,
signer_cap : SignerCapability ,

) {
aborts_if ! system_addresses :: is_aptos_framework_address (

address_of (aptos_framework)
);
aborts_if ! system_addresses :: is_framework_reserved_address (

signer_address
);
let signer_caps = global < GovernanceResponsbility >(

@aptos_framework
). signer_caps ;
aborts_if exists < GovernanceResponsbility >(@aptos_framework) &&

simple_map :: spec_contains_key (signer_caps , signer_address);
ensures exists < GovernanceResponsbility >(@aptos_framework);

}

Listing 13 formally specifies the intended behavior of the function store_signer_cap,
which could not be verified against its incorrect version of the function. To resolve this, we
amended the code to ensure that aptos_framework matches the address @aptos_framework,
and that signer_address is indeed a reserved address.

Moreover, we have identified and defined various invariants within the modules, sig-
nificantly enhancing our understanding of their behaviors and their security implications.
This deeper insight has subsequently guided the refactoring and improvement of several
modules. For instance, the on_new_epoch function in the stake module initially had a
complex and lengthy while loop. In specifying the function, we divided this while loop
into two separate loops. This division not only simplified the writing of loop invariants
but also enhanced their readability and understandability. Furthermore, in the process of
specifying the calculate_reward_amount function, we identified multiple issues, including
overflow, rounding errors, and division by zero. To address these concerns, we refactored the
code to use higher precision u128 instead of u64 in the intermediate steps to avoid overflow,
performed division at the end to minimize rounding errors, and ensured the denominator
was non-zero before division to prevent division-by-zero errors. Listing 14 presents the
calculate_reward_amount post-refactoring.

Listing 14 the calculate_reward_amount function of the stake module.
fun calculate_rewards_amount (

stake_amount : u64 ,
num_successful_proposals : u64 ,
num_total_proposals : u64 ,
rewards_rate : u64 ,
rewards_rate_denominator : u64

): u64 {
let rewards_numerator = (stake_amount as u128) *

(rewards_rate as u128) * (num_successful_proposals as u128);
let rewards_denominator = (rewards_rate_denominator as u128) *

(num_total_proposals as u128);
if (rewards_denominator > 0) {

((rewards_numerator / rewards_denominator) as u64)
} else {

0
}

}

FMBC 2024

9:12 Securing Aptos Framework with Formal Verification

The specifications for the Aptos Framework developed in this work are also an important
component of the automatically generated reference documentation for the Aptos Framework,
offering a comprehensive and precise description of the expected behavior of each function and
module. This detailed documentation is vital to ongoing maintenance and quality assurance
efforts. For example, the requires conditions specified for the block_prologue function,
as illustrated in Listing 6, serve as assumptions that cannot be verified directly because
the function is invoked by the VM, and VM verification falls outside the scope of MVP.
Nonetheless, these conditions clearly document all the assumptions for the VM regarding
invoking block_prologue, thus enabling a more streamlined and time-effective manual audit
process.

Here are some key lessons learned: adopting a top-down approach proved beneficial,
as it allowed us to grasp and establish high-level security requirements comprehensively,
ensuring no critical security aspect was overlooked. These high-level requirements serve
as an effective communication bridge between security experts and developers, proving
invaluable for future code maintenance. However, verifying high-level requirements alone can
be challenging without the support of local and global specifications, such as those provided
through aborts_if specs and data/global invariants. Therefore, a bottom-up approach
becomes essential for systematically developing these specifications. Moreover, integrating
MVP into the Continuous Integration (CI) testing process significantly reduces the necessity
for frequent audits with each contract modification. Consequently, formal verification has
effectively decreased both the time and cost associated with auditing.

We encountered several challenges in writing local and global specifications, particularly
due to the difficulties in writing loop invariants and timeouts with MVP. To overcome
these issues, we employed several abstraction methods: (1) modeling non-linear functions as
non-interpreted functions to facilitate verification of their callers; (2) applying loop unrolling
techniques for complex or nested loops to enable bounded checking; and (3) for functions
operating over large data domains like u128 (e.g., math128), we performed verification
within a smaller data domain such as u8. This strategy allowed for effective verification of
non-linear functions like max, min, mul_div, clamp, pow, floor_log2, sqrt, and ceil_div
within the domain of u8. However, there is more work to do specifically regarding loops
in Move programs, which we hope to avoid as much as possible and instead be replaced
by higher-order functions like foreach, map, fold and so on, which can then be specially
treated by MVP.

The verification artifacts for this work can be accessed online. Appendix A offers a
collection of annotated links to these artifacts. Also, Appendix B details the verification
results (e.g., the number of verification conditions and the execution time) and outlines the
steps for their reproduction.

5 Related Work

Many approaches have been applied to the verification of smart contracts; see e.g. the
surveys [15, 19]. [19] refers to at least two dozen systems for smart contract verification. It
distinguishes between contract and program level approaches. Our approach has aspects of
both: we address program level properties via pre/post conditions, and contract (“blockchain
state”) level properties via global invariants. Among the existing approaches, the Move
ecosystem is the first one where contract programming and specification language are fully
integrated, and the language is designed from the first principles influenced by verification.

J. Park et al. 9:13

Methodologically, Move and MVP are thereby closer to systems like Dafny [13], or the older
Spec# system [3], where instead of adding a specification approach posterior to an existing
language, it is part of it from the beginning.

In contrast to other approaches that only focus on specific vulnerability patterns [5, 16, 17,
20], MVP offers a universal specification language. We support universal quantification over
arbitrary memory content as well as global invariants. For comparison, the SMT Checker for
Solidity [9, 11, 12] does not support quantifiers, because it interprets programming language
constructs (requires and assert statements) as specifications and has no dedicated specification
language. While in Solidity, one can simulate aspects of global invariants using modifiers by
attaching pre/post conditions, this is not the same as our invariants, which are guaranteed
to hold independent of whether a user may or (accidentally) may not attach a modifier.
Moreover, our invariants are optimized to be evaluated only when necessary.

The Certora verifier [4] is a formal verification tool for Solidity smart contracts which
has expressiveness comparable to that of MVP. However, because Move bytecode is fully
typed and of a higher abstraction level than EVM bytecode, the verification task of Certora
becomes substantially more challenging compared to MVP. This complexity could potentially
render MVP more user-friendly and accessible for application.

6 Conclusion

To ensure the highest standards of quality and security within the Aptos Network, we have
rigorously applied formal verification techniques to the Aptos Framework. We thoroughly
documented high-level security requirements. Subsequently, we specified each aspect of the
Aptos Framework, function-by-function, until most of the high-level security requirements
and functional properties were eventually formally verified. During this process, we also
found and fixed bugs and usability issues within MVP, thus benefiting all Aptos developers.
This combined work gives the Aptos Framework a high level of quality assurance and, to
the best of our knowledge, represents one of the first large-scale smart contract verification.
Looking ahead, Aptos Labs plans to maintain and evolve the verification work as well as
improve MVP itself. This effort aims to ensure the tool stays available for developers and
auditors in the Aptos ecosystem, thereby enhancing software quality in the smart contract
domain.

References
1 Aptos. The Aptos Blockchain. https://aptos.dev/aptos-white-paper, 2022.
2 Aptos Labs, MoveBit, and OtterSec. Securing the Aptos Framework through formal verification.

https://medium.com/aptoslabs/securing-the-aptos-framework-through-formal-verif
ication-14124d1ed660, 2024.

3 Mike Barnett, Robert DeLine, Manuel Fähndrich, Bart Jacobs, K. Rustan M. Leino, Wolfram
Schulte, and Herman Venter. The Spec# Programming System: Challenges and Directions,
pages 144–152. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. doi:10.1007/978-3-5
40-69149-5_16.

4 Certora. Certora Prover Documentation. https://docs.certora.com/en/latest/index.htm
l, 2022.

5 ConsenSys. Mythril Classic: Security analysis tool for Ethereum smart contracts. URL:
https://github.com/skylightcyber/mythril-classic.

6 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS,
volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008. doi:
10.1007/978-3-540-78800-3_24.

FMBC 2024

https://aptos.dev/aptos-white-paper
https://medium.com/aptoslabs/securing-the-aptos-framework-through-formal-verification-14124d1ed660
https://medium.com/aptoslabs/securing-the-aptos-framework-through-formal-verification-14124d1ed660
https://doi.org/10.1007/978-3-540-69149-5_16
https://doi.org/10.1007/978-3-540-69149-5_16
https://docs.certora.com/en/latest/index.html
https://docs.certora.com/en/latest/index.html
https://github.com/skylightcyber/mythril-classic
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

9:14 Securing Aptos Framework with Formal Verification

7 E. W. Dijkstra. On the Reliability of Programs, pages 359–370. Association for Computing
Machinery, New York, NY, USA, 1 edition, 2022. doi:10.1145/3544585.3544608.

8 David L. Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, and Jingyi Emma
Zhong. Fast and reliable formal verification of smart contracts with the move prover (extended
version). CoRR, abs/2110.08362, 2021. doi:10.48550/arXiv.2110.08362.

9 Ethereum Foundation. Solidity documentation, 2018. URL: http://solidity.readthedocs
.io.

10 Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Víctor A. Braberman. Model-based
quality assurance of protocol documentation: tools and methodology. Softw. Test. Verification
Reliab., 21(1):55–71, 2011. doi:10.1002/STVR.427.

11 Ákos Hajdu and Dejan Jovanovic. solc-verify: A modular verifier for solidity smart contracts.
CoRR, abs/1907.04262, 2019. doi:10.48550/arXiv.1907.04262.

12 Ákos Hajdu and Dejan Jovanovic. SMT-Friendly Formalization of the Solidity Memory Model.
In ESOP, volume 12075 of Lecture Notes in Computer Science, pages 224–250. Springer, 2020.
doi:10.1007/978-3-030-44914-8_9.

13 K. M. Leino. Accessible software verification with dafny. IEEE Software, 34(06):94–97, nov
2017. doi:10.1109/MS.2017.4121212.

14 K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate verification language:
Design and logical encoding. In Javier Esparza and Rupak Majumdar, editors, TACAS, pages
312–327, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/978-3-642-120
02-2_26.

15 Jing Liu and Zhentian Liu. A survey on security verification of blockchain smart contracts.
IEEE Access, 7:77894–77904, 2019. doi:10.1109/ACCESS.2019.2921624.

16 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In ACM Conference on Computer and Communications Security, pages
254–269. ACM, 2016. doi:10.1145/2976749.2978309.

17 Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding
the greedy, prodigal, and suicidal contracts at scale. In ACSAC, pages 653–663. ACM, 2018.
doi:10.1145/3274694.3274743.

18 The CVC Team. CVC5. URL: https://github.com/cvc5/cvc5.
19 Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A survey of smart

contract formal specification and verification. CoRR, abs/2008.02712, 2020. doi:10.48550/a
rXiv.2008.02712.

20 Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli,
and Martin T. Vechev. Securify: Practical security analysis of smart contracts. In ACM
Conference on Computer and Communications Security, pages 67–82. ACM, 2018. doi:
10.1145/3243734.3243780.

21 Jingyi Emma Zhong, Kevin Cheang, Shaz Qadeer, Wolfgang Grieskamp, Sam Blackshear,
Junkil Park, Yoni Zohar, Clark Barrett, and David L. Dill. The Move Prover. In Shuvendu K.
Lahiri and Chao Wang, editors, Computer Aided Verification, pages 137–150. Springer Inter-
national Publishing, 2020. doi:10.1007/978-3-030-53288-8_7.

A Verification Artifacts

This section overviews the artifacts of this verification work. The Aptos Framework consists
of three Move packages such as

move-stdlib: the common standard library of vanilla Move,
aptos-stdlib: the Aptos-specific standard library,
aptos-framework: the Aptos’ standard modules for coin, staking, voting, and other
operations

https://doi.org/10.1145/3544585.3544608
https://doi.org/10.48550/arXiv.2110.08362
http://solidity.readthedocs.io
http://solidity.readthedocs.io
https://doi.org/10.1002/STVR.427
https://doi.org/10.48550/arXiv.1907.04262
https://doi.org/10.1007/978-3-030-44914-8_9
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1109/ACCESS.2019.2921624
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/3274694.3274743
https://github.com/cvc5/cvc5
https://doi.org/10.48550/arXiv.2008.02712
https://doi.org/10.48550/arXiv.2008.02712
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1007/978-3-030-53288-8_7

J. Park et al. 9:15

We’ve specified and verified all three Move packages. The Move modules and specs can be
found via the following permanent links:

move-stdlib modules and specs:
(modules) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-m
ove/framework/move-stdlib/doc/overview.md#module-index
(specs) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-mov
e/framework/move-stdlib/doc/overview.md#specification-index

aptos-stdlib modules and specs:
(modules) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-m
ove/framework/aptos-stdlib/doc/overview.md#module-index
(specs) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-mov
e/framework/aptos-stdlib/doc/overview.md#specification-index

aptos-framework modules and specs:
(modules) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-m
ove/framework/aptos-framework/doc/overview.md#module-index
(specs) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-mov
e/framework/aptos-framework/doc/overview.md#specification-index

Moreover, the high-level security requirement document is an important artifact of this
verification work. The high-level security requirements are presented in the markdown table
formats within the Aptos Framework’s reference documentation, including hyperlinks to
the relevant formal specifications, facilitating requirement traceability. All the high-level
security requirements of aptos-framework can be accessed through this index: https:
//github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/apto
s-framework/doc/overview.md#high-level-security-requirement-index. Please
note that if the browser does not automatically navigate to the item linked from the index
pages above, refreshing your browser should resolve the issue and direct you to the correct
item.

The Aptos Framework is open-source and accessible on GitHub. Each module in move
-stdlib and its spec is contained in a single Move source file .move, while aptos-stdlib
and aptos-framework define modules in .move and their specs in .spec.move separately.
The source code of Move modules and specs can be found at the following link:

move-stdlib: https://github.com/aptos-labs/aptos-core/tree/fmbc-24/apto
s-move/framework/move-stdlib/sources
aptos-stdlib: https://github.com/aptos-labs/aptos-core/tree/fmbc-24/apto
s-move/framework/aptos-stdlib/sources
aptos-framework: https://github.com/aptos-labs/aptos-core/tree/fmbc-24/ap
tos-move/framework/aptos-framework/sources

B Reproducing the Verification Result

This section explains how to reproduce the verification result. The steps are summarized as
follows:

1. Install Aptos CLI. The Move Prover (MVP) is integrated in the Aptos CLI4, a command
line tool for developing, debugging, deploying and operating on the Aptos Network. To

4 https://aptos.dev/tools/aptos-cli/

FMBC 2024

https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/move-stdlib/doc/overview.md#module-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/move-stdlib/doc/overview.md#module-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/move-stdlib/doc/overview.md#specification-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/move-stdlib/doc/overview.md#specification-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-stdlib/doc/overview.md#module-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-stdlib/doc/overview.md#module-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-stdlib/doc/overview.md#specification-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-stdlib/doc/overview.md#specification-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-framework/doc/overview.md#module-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-framework/doc/overview.md#module-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-framework/doc/overview.md#specification-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-framework/doc/overview.md#specification-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-framework/doc/overview.md#high-level-security-requirement-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-framework/doc/overview.md#high-level-security-requirement-index
https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-framework/doc/overview.md#high-level-security-requirement-index
https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework/move-stdlib/sources
https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework/move-stdlib/sources
https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework/aptos-stdlib/sources
https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework/aptos-stdlib/sources
https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework/aptos-framework/sources
https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework/aptos-framework/sources
https://aptos.dev/tools/aptos-cli/

9:16 Securing Aptos Framework with Formal Verification

install the Aptos CLI, please refer to https://aptos.dev/tools/aptos-cli/install
-cli/.

2. Clone the aptos-core repository. aptos-core contains the core components of the
Aptos Network including the Aptos Framework and their specs. Please use the following
command to download the snapshot of the repository made for this paper: git clone --
branch fmbc-24 git@github.com:aptos-labs/aptos-core.git

3. Install the dependencies of MVP. MVP requires the backend verification tools such as Z3
and Boogie. To install all the dependencies that MVP needs, please run the command
./script/dev_setup -ytp in the aptos-core directory, and execute the environment
command in .profile to properly set the environment variables such as Z3_EXE and
BOOGIE_EXE.

4. Run MVP. To prove the aptos-framework package, please go to the aptos-move
/framework/aptos-framework directory and run aptos move prove (aptos-move/
framework/move-stdlib for move-stdlib and aptos-move/framework/aptos-stdlib
for aptos-stdlib).

Listing 15 shows the verification result that has been performed on a Apple M1 Max
machine with 64 GB of memory.

Listing 15 The verification result.
The verification result for move - stdlib
[INFO] preparing module 0x1 :: BCS
...
[INFO] preparing module 0x1 :: string
[INFO] transforming bytecode
[INFO] generating verification conditions
[INFO] 138 verification conditions
[INFO] running solver
[INFO] 0.049s build , 0.023s trafo , 0.013 s gen , 2.027s verify , total 2.113

s
Success

The verification result for aptos - stdlib
[INFO] preparing module 0x1 :: bls12381_algebra
...
[INFO] preparing module 0x1 :: smart_vector
[INFO] transforming bytecode
[INFO] generating verification conditions
[INFO] 338 verification conditions
[INFO] running solver
[INFO] 0.204s build , 0.124s trafo , 0.045 s gen , 18.347 s verify , total

18.721 s
Success

The verification result for aptos - framework
[INFO] preparing module 0x1 :: system_addresses
...
[INFO] preparing module 0x1 :: staking_proxy
[INFO] transforming bytecode
[INFO] generating verification conditions
[INFO] 525 verification conditions
[INFO] running solver
[INFO] 0.735s build , 0.636s trafo , 0.193 s gen , 84.024 s verify , total

85.589 s
Success

Notice the number of verification conditions prompted for each of those commands corresponds
to one function (if generic, one instantiation) and all its pre/post conditions, injected
invariants, and properties inlined in the code (e.g. loop invariants).

https://aptos.dev/tools/aptos-cli/install-cli/
https://aptos.dev/tools/aptos-cli/install-cli/

Structured Contracts in the EUTxO Ledger Model
Polina Vinogradova #

Input Output, Canada
Orestis Melkonian #

Input Output, United Kingdom

Philip Wadler #

Input Output, United Kingdom
University of Edinburgh, United Kingdom

Manuel Chakravarty #

Input Output, The Netherlands

Jacco Krijnen #

Utrecht University, The Netherlands
Michael Peyton Jones #

Input Output, United Kingdom

James Chapman #

Input Output, United Kingdom
Tudor Ferariu #

University of Edinburgh, United Kingdom

Abstract
Blockchain ledgers based on the extended UTxO model support fully expressive smart contracts to
specify permissions for performing certain actions, such as spending transaction outputs or minting
assets. There have been some attempts to standardize the implementation of stateful programs
using this infrastructure, with varying degrees of success.

To remedy this, we introduce the framework of structured contracts to formalize what it means
for a stateful program to be correctly implemented on the ledger. Using small-step semantics, our
approach relates low-level ledger transitions to high-level transitions of the smart contract being
specified, thus allowing users to prove that their abstract specification is adequately realized on
the blockchain. We argue that the framework is versatile enough to cover a range of examples,
in particular proving the equivalence of multiple concrete implementations of the same abstract
specification.

Building upon prior meta-theoretical results, our results have been mechanized in the Agda
proof assistant, paving the way to rigorous verification of smart contracts.

2012 ACM Subject Classification Theory of computation → Program specifications; Security and
privacy → Formal methods and theory of security

Keywords and phrases blockchain, ledger, smart contract, formal verification, specification, transition
systems, Agda, UTxO, EUTxO, small-step semantics

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.10

Supplementary Material Software: https://omelkonian.github.io/structured-contracts/

1 Introduction

Many modern cryptocurrency blockchains are smart contract-enabled, meaning that they
provide support for executing user-defined code as part of block or transaction processing.
This code is used to specify agreements between untrusted parties that can be automatically
enforced without a trusted intermediary. Examples of such contracts may include distributed
exchanges (DEXs), escrow contracts, auctions, etc.

There is a lot of variation in the details of how smart contract support is implemented
across different platforms. On account-based platforms such as Ethereum [6] and Tezos [17],
smart contracts are inherently stateful and their states can be updated by transactions.
Smart contracts in the extended UTxO (EUTxO) model, such as Cardano [20] and Ergo
[13], on the other hand, take the form of boolean predicates on the transaction data and are
inherently stateless. In this model, transactions specify all the changes being done to the
ledger state, while contract predicates are used only to specify permissions for performing the
UTxO set updates specified by the transaction, such as spending UTxOs or minting tokens.

© Polina Vinogradova, Orestis Melkonian, Philip Wadler, Manuel Chakravarty, Jacco Krijnen,
Michael Peyton Jones, James Chapman, and Tudor Ferariu;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 10; pp. 10:1–10:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:polina.vinogradova@iohk.io
https://orcid.org/0000-0003-3271-3841
mailto:orestis.melkonian@iohk.io
https://orcid.org/0000-0003-2182-2698
mailto:philip.wadler@iohk.io
https://orcid.org/0000-0001-7619-6378
mailto:manuel.chakravarty@iohk.io
mailto:j.o.g.krijnen@uu.nl
https://orcid.org/0000-0002-1840-472X
mailto:michael.peyton-jones@iohk.io
https://orcid.org/0000-0003-0602-1657
mailto:james.chapman@iohk.io
https://orcid.org/0000-0001-9036-8252
mailto:s1408714@sms.ed.ac.uk
https://orcid.org/0009-0002-6952-5844
https://doi.org/10.4230/OASIcs.FMBC.2024.10
https://omelkonian.github.io/structured-contracts/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

10:2 Structured Contracts in the EUTxO Ledger Model

Functional EUTxO programming is a less conventional paradigm than the stateful
contracts of the account-based model [30, 14]. However, it has a notable advantage: the
changes made by a transaction applied to the ledger are predictable, including the outputs of
the contracts that it runs on-chain [20, 2]. This is because the data inspected by the executed
contracts, the exact cost of on-chain contract execution, and UTxO set changes, are all fixed
at the time of transaction construction. The unpredictability of transaction application and
contract execution outcomes results in vulnerabilities in account-based models, such as the
reentrancy or replay attacks [18, 17], which do not exist in the EUTxO model.

Like many prominent platforms [17, 6, 24, 31, 29], the Cardano implementation of the
EUTxO ledger [20] is specified as a transition system. The reason for this design choice is
that the evolution of the ledger takes place in atomic steps corresponding to the application
of a single transaction. What sets the Cardano specification apart, however, is the formal
rigor of its operational small-step semantics specification [12].

Many common contract applications require a model of stateful computation. There
are multiple existing approaches to implementing and verifying specific designs of stateful
programs running on the ledger [7, 15, 10], however, there are currently no principled standard
practices for doing so. We propose the structured contract framework (SCF) as an extension
of this approach to contract specification. It enables users to instantiate a small-step program
specification that runs on the ledger via the use of smart contract scripts.

Generalizing the constraint-emitting-machine design pattern introduced in the seminal
EUTxO paper [9] to establish a correspondence between high-level abstract state machines
and low-level transactions, SCF formalizes the notion of stateful program running on the
EUTxO ledger, and what it means for it to be implemented correctly. We do so by requiring
instantiation of a stateful program to include a proof of a simulation relation between its
specification and the ledger specification. Our generalization allows formalizing invariants
(a.k.a. safety properties) of contracts for which it was not previously done in a uniform way.
For example, we can express invariants of stateful contracts with state distributed across
multiple UTxOs, as well as on the totality of tokens under a specific policy.

The class of contracts which can be instantiated in SCF is made up of all stateful contracts
with implementations for which valid ledger evolution guarantees that the evolution of the
on-chain contract state adheres to its specification. We argue that SCF constitutes a novel
principled approach to stateful smart contract architecture that is amenable to formal analysis
and suitable for a wide range of smart contract applications. The main contributions of this
paper are:

(i) a formulation of the structured contract framework (SCF) on top of a simplified
small-step semantics for EUTxO ledgers;

(ii) a case study expressing the minting policy of a single NFT as a structured contract;
(iii) a case study demonstrating the use of SCF to define two distinct ledger implementations

of a single specification, including one that is distributed across multiple UTxO entries
and interacting scripts.

We have mechanized our results in the Agda proof assistant [25], which are publicly
available in HTML format:

https://omelkonian.github.io/structured-contracts/

In the future, we hope to integrate this framework into the existing Agda specification of
Cardano’s small-step ledger semantics.1

1 https://github.com/IntersectMBO/formal-ledger-specifications

https://omelkonian.github.io/structured-contracts/
https://github.com/IntersectMBO/formal-ledger-specifications

P. Vinogradova et al. 10:3

2 EUTxO ledger model

The EUTxO ledger model is a UTxO-based ledger model that supports the use of user-defined
Turing-complete scripts to specify conditions for spending (consuming) UTxO entries as well
as token minting and burning policies. The EUTxO model has been previously expressed
in terms of a ledger state containing a list of transactions that have been validated, and
a set of rules for validating incoming transactions [7]. We demonstrate here that it can
be expressed as a labeled transition system with the UTxO set as its state, specified in
small-step semantics, similar to the specification of the deployed Cardano ledger [20]. The
transaction validation rules of the existing model are interpreted as constraints of the UTxO
state transition rule in our model. Note that while in a realistic system transactions are
applied to the ledger in blocks, here we abstract away block structure for simplicity.

Specifying transition relations. For some Env, State and Input, the transition relation
TRANS ⊆ Env × State × Input × State contains 4-tuples (e, s, i, s′) ∈ TRANS where e ∈ Env
is the environment, s ∈ State is the start state, i ∈ Input is the input, and s′ ∈ State is the
end state.

A specification TRANS consists of one or more transition rules. The only 4-tuples that
are members of TRANS are those that satisfy the preconditions of one of its transition rules.
By convention, all variables that appear unbound in a given rule are universally quantified,
unless they are bound by an explicit existential (∃) or let-binding (:=). In the context of
specifying transition rules, membership in TRANS is also denoted by the following notation:

e ⊢ s i−−−−→
trans

s′

Input, environment, and labeled transition systems. The input and the environment
together are used to calculate the possible end state(s) for a given start state, making up the
label of the transition between the start and end states. If the transition relation is functional,
there is exactly one end state for a given start state and label. We adopt the conventional
distinction between environment and input due to its usefulness in the blockchain context [12].
In particular, input comes from users, e.g. transactions they submit. The environment, on
the other hand, is outside the user’s control, such as the blockchain time.

2.1 Ledger types
The ledger types and rules that we base this work on are, for the most part, similar to those
presented in existing EUTxO ledger research [7]. We make some simplifications in order to
remove details not relevant to this work. We give an overview of these for completeness,
and clarify any omitted types in Appendix A. Notation we use that is outside conventional
set-theoretic notation is listed in Figure 3, and explained in the text. Here, B,N,Z denote
the type of Booleans, natural numbers, and integers, respectively. Some types described
below are mutually recursive, so there is no natural order in which to describe them.

Value. We define Value := PolicyID 7→ (TokenName 7→ Quantity) as a nested map structure,
closely following the original formulation as finitely supported functions [7]. A term of this
type is a bundle of multiple kinds of assets. The type of an identifier of a class of fungible
assets is given by AssetID := PolicyID ×TokenName. Quantity := Z is an integral value, which
can be negative in the case of indicating quantities of tokens to be burned. For a given

FMBC 2024

10:4 Structured Contracts in the EUTxO Ledger Model

v ∈ Value, the nested map associates a quantity to each asset ID. The quantities of all assets
with IDs not included in v are implicitly 0. Value forms a partial order, as well as a group
with addition (+) and the empty map (∅) as the zero [8]. The components of AssetID are:

(i) a script of type PolicyID := Script, which is executed any time a transaction is minting
assets with this minting policy. If it validates, the transaction is allowed to mint the
assets under this policy (specified in the mint field of the transaction), meaning that
these assets are added to the the total amount of assets a transaction is transferring
(see (v) and (ix) in Section 2.2) ;

(ii) a TokenName := [Char], which is a character list specified by the user at the time of
minting transaction construction, and is used to differentiate assets under the same
minting policy. A minting policy may condition on token names.

UTxO set. The type of the UTxO set is a finite key-value map UTxO := OutputRef 7→
Output. The type of the key of this map is OutputRef := Tx × Ix, with Ix := N. A
(tx , ix) ∈ OutputRef is called an output reference. It consists of a transaction tx that created
the output to which it points, and index ix, which is the location of particular output in
the list of outputs of that transaction. The pair uniquely identifies a transaction output. In
practice, an injective function, which encodes a transaction as a natural number, is applied
to a tx for inclusion in an output reference, so that OutputRef is the type N × Ix. However,
we omit this for simplicity and readability.

An output (a, v, d) ∈ Output := Script × Value × Datum consists of (i) a script address a

(field validator), which is run when the output is spent, (ii) an asset bundle v (field value),
and (iii) a datum d (field datum), which is some additional data.

Data. Data is a type used for representing data encoded in a specific way. It is similar
in structure to a CBOR encoding, c.f. the relevant Agda definitions2 accompanying the
seminal EUTxO papers [9, 7]. Data of this type is passed as arguments to scripts. The types
Datum := Data and Redeemer := Data are both synonyms for the Data type. Conversion
functions are required in order for a script to interpret Data-type inputs as the datatypes it
is expecting. When the context is clear, the decoding function is called fromData, and the
encoding one is toData.

Slot number. A slot number slot ∈ Slot := N is a natural number used to represent the
time at which a transaction is processed.

Transactions. The data structure Tx specifies a set of updates to the UTxO set. A
transaction tx ∈ Tx contains (i) a set tx .inputs ∈ OutputRef × Output × Redeemer of inputs
each referencing entries in the UTxO set that the transaction is removing (spending), with
their corresponding redeemers, (ii) a list of outputs tx .outputs, which get entered into the
UTxO set with the appropriately generated output references, (iii) a pair of slot numbers
tx .validityInterval representing the validity interval of the transaction, (iv) a tx .mint ∈ Value
being minted by the transaction, (v) a redeemer for each of the minting policies being
executed tx .mintRdmrs ∈ Script 7→ Redeemer, and (vi) the map tx .sigs of (public) keys that
signed the transaction, paired with their signatures.

2 https://omelkonian.github.io/formal-utxo/UTxO.Types.html#DATA

https://omelkonian.github.io/formal-utxo/UTxO.Types.html#DATA

P. Vinogradova et al. 10:5

Scripts. A smart contract, or script, is a piece of stateless user-defined code with a boolean
output, and has the (opaque) type Script. Scripts are associated with performing a specific
action, such as spending an output, or minting assets. If a transaction attempts to perform
an action associated with a script, that script is executed during transaction validation,
and must return true (validate) given certain inputs. A script specifies the conditions a
transaction must satisfy in order to be allowed to perform the associated action. We do not
specify the language in which scripts are written, but we presume Turing-completeness. We
write script pseudocode using set-theoretic notation.

The input to a script consists of (i) a summary of transaction data, (ii) a pointer to the
specific action (within the transaction) for which the script is specifying the permission,
(iii) and a piece of user-defined data we call a Redeemer. A redeemer is defined at the time
of transaction construction (by the transaction author) for each action requiring a script
to be run. Evaluating a minting policy script s to validate minting tokens under policy p,
run by transaction tx with redeemer r, is denoted by JsK(r, (tx , p)). To evaluate a script
q, which validates spending input i ∈ tx .inputs with datum d and redeemer r, we write
JqK(d, r, (tx , i)).

2.2 Ledger transition semantics
Permissible updates to the UTxO set are given by the transition system LEDGER ⊆
Slot × UTxO × Tx × UTxO. The output of the function checkTx : Slot × UTxO × Tx → B
determines whether a transaction is valid in a given state and environment. The output of
checkTx(slot, utxo, tx) is given by the conjunction of the following checks, which are consistent
with the previously specified EUTxO validation rules [7] :

(i) The transaction has at least one input:

tx .inputs ̸= {}

(ii) The current slot is within transaction validity interval:

slot ∈ tx .validityInterval

(iii) All outputs have positive values:

∀o ∈ tx .outputs, o.value > ∅

(iv) All output references of transaction inputs exist in the UTxO:

∀(oRef , o) ∈ {(i.outputRef, i.output) | i ∈ tx .inputs}, (oRef 7→ o) ∈ utxo

(v) Value is preserved:

tx .mint +
∑

i∈ tx.inputs, (i.outputRef 7→ o)∈ utxo

o.value =
∑

o∈ tx.outputs
o.value

(vi) No output is double-spent:

∀ i, j ∈ tx .inputs, i.outputRef = j.outputRef ⇒ i = j

(vii) All inputs validate:

∀ (i, o, r) ∈ tx .inputs, Jo.validatorK(o.datum, r, (tx , (i, o, r))) = true

FMBC 2024

10:6 Structured Contracts in the EUTxO Ledger Model

(viii) Minting redeemers are present:

∀ (s 7→) ∈ tx .mint, ∃ r , (s, r) ∈ tx .mintRdmrs

(ix) All minting scripts validate:

∀ (p, r) ∈ tx .mintRdmrs, JpK(r , (tx, p)) = true

(x) All signatures are correct:

∀ (pk 7→ s) ∈ tx .sigs, checkSig(tx , pk, s) = true

Membership in the LEDGER set is defined using checkTx. The single rule defining LEDGER,
called ApplyTx, states that (slot, utxo, tx , utxo′) ∈ LEDGER whenever checkTx(slot, utxo, tx)
holds and utxo′ is given by { i 7→ o ∈ utxo | i /∈ getORefs(tx) } ∪ mkOuts(tx).

ApplyTx

utxo′ := { i 7→ o ∈ utxo | i /∈ getORefs(tx) } ∪ mkOuts(tx)

checkTx(slot, utxo, tx)

slot ⊢
(

utxo
) tx−−−−→

ledger

(
utxo′)

The value utxo′ is calculated by removing the UTxO entries in utxo corresponding to the
output references of the transaction inputs, and adding the outputs of the transaction tx to
the UTxO set with correctly generated output references. The function getORefs computes
a UTxO set containing only the output references of transaction inputs, paired with the
outputs contained in those inputs. The function mkOuts computes a UTxO set containing
exactly the outputs of tx , each associated to the key (tx , ix), where the index ix is the place
of the associated output in the list of tx outputs. For details, see Figure 4.

The EUTxO ledger definition [9], on which we base our semantics, models the ledger as
a list of transactions, recorded in the order of processing. In essence, this is the reflexive-
transitive closure of the step relation above, where there is a special initial transaction with
no inputs a.k.a. the genesis transaction. We have deliberately left a full treatment of trace
properties for future work: our model currently says nothing about an initial state and only
specifies how to update an arbitrary UTxO set in accordance with the LEDGER rule. It is
worth mentioning that validation check (i) would contradict the genesis transaction, although
it is necessary for subsequent transaction in order to ensure replay protection: a transaction
valid at some given point in time cannot again be valid in the future.

3 Simulations and the structured contract formalism

Intuitively, a stateful program is correctly implemented on the ledger whenever its state is
observable in (i.e. computable from) the ledger state, and whenever the ledger state is updated,
the observed program state is updated in accordance with the program’s specification. In
this section, we formalize the notion of smart contract scripts correctly implementing a
specification.

The purpose of a smart contract script is to encode the conditions under which a
transaction can update a part of the ledger state with which the script is associated, e.g.
change the total quantity of tokens under a given policy. This interpretation of the use of
stateless code on the ledger justifies a stateful program model for representing most programs
running on the ledger. Stateful programs are implemented using one or more interacting

P. Vinogradova et al. 10:7

scripts controlling the updates of the contract state data within the ledger state. In this
section, we specify what is required to construct a simulation relation between two transition
systems specified via small-step semantics, and define a subset of such simulations that
corresponds to the set of all (correctly) implemented stateful contracts on an EUTxO ledger.

3.1 Simulations
We instantiate the definition a simulation [23] with labeled state transition systems expressed
as small-step semantics specifications.

Simulation definition. Let TRANS and STRUC be small-step labeled transition systems.
A simulation of TRANS in STRUC, denoted by (STRUC, ∼, ≃) ⪰ TRANS, consists of of the
following types together with the following relations :

_ ⊢ _ _−−−−→
trans

_ ⊆ Env × State × Input × State

_ ⊢ _ _−−−−→
struc

_ ⊆ Env′ × State′ × Input′ × State′

_ ∼ _ ⊆ State × State′

_ ≃ _ ⊆ (Env × Input) × (Env′ × Input′)

such that the following holds :

Sim

(e, i) ≃ (e′, j) u ∼ s e ⊢
(

u
) i−−−−→

trans

(
u′)

∃ s′, u′ ∼ s′ ∧ e′ ⊢ (s) j−−−−→
struc

(s′)
(1)

Instantiating a simulation of TRANS in STRUC requires specifying TRANS, STRUC,
π, πTx, and fulfilling the proof obligation Sim.

3.2 Structured contracts
The simulation definition we give is general, however, the rest of this work is geared towards
reasoning about the programmable via user-defined scripts. For this reason, we define a
particular class of simulations of LEDGER. Since scripts are not allowed to inspect block-level
data (e.g. the current slot number), we fix the environment of the structured contract
specification to be a singleton type {⋆}. We also require that ∼ is a partial function, rather
than a relation, which computes a specific contract state for a given UTxO state (or fails,
returning ⋆). Additionally, we require that ≃ is a function.

▶ Definition (Structured contract). Let (STRUC, ∼, ≃) ⪰ LEDGER be a simulation. We say
that it is a structured contract whenever Env = ⋆, and there exist two functions π : UTxO →
State ∪ {⋆}, πTx : Tx → Input such that :

utxo ∼ s := (π(utxo) = s)
(slot, tx) ≃ (⋆, i) := (πTx(tx) = i)

Discussion. This definition states that a ledger step (slot, utxo, tx , utxo′) with π(utxo) ̸= ⋆,
there is a step given by (⋆, π(utxo), πTx(tx), π(utxo′)) ∈ STRUC which corresponds to the
ledger step. It is possible that a transaction updates the UTxO set but not the contract
state, so that π(utxo) = π(utxo′).

FMBC 2024

10:8 Structured Contracts in the EUTxO Ledger Model

We do not assume that a valid contract state can be computed from an arbitrary UTxO
state. For this reason, the function π is partial. For example, it is possible that two copies
of the same NFT exist in a given ledger state. When programmed correctly, an NFT
minting policy would not allow this to happen. When reasoning about properties of such a
policy, we ignore ledger start states where the NFT uniqueness condition has already been
violated. Defining a class of structured contracts for which the relation in Equation 1 is a
bisimulation [23] between STRUC and LEDGER is a more difficult problem, and we leave it
for future work.

4 NFT minting policy as a structured contract

Our first structured contract example expresses a specific minting policy. Constructing
structured contracts specifying the evolution of the quantity of tokens under a specific policy
is a tool for formal analysis of minting policy code. In particular, for a correctly defined
minting policy, we are able to express and prove the defining property of an NFT under
this policy: at most one such token can exist on the ledger. Instantiating an NFT as a
structured contract allows us to state and prove a property that is quite naturally expressed
for account-based blockchains with stateful NFT contracts, such as the ERC-721 [16], but
poses a challenge for EUTxO ledger program analysis. For the Agda mechanization of this
example, see the accompanying code at:

https://omelkonian.github.io/structured-contracts/NFT.html.

We first pick an identifier for the policy we wish to express, myNFTPolicy. Before writing
the policy code, we define a system NFT to specify how we want the total number of tokens
on the ledger under this policy to behave. Here, the state type is State := Value, and
Input := Tx.

UpdateNFTTotal

i := { (myNFTPolicy 7→ tkns) ∈ tx .mint}

∅ ≤ s ≤ s + i ≤ { myNFTPolicy 7→ {∅ 7→ 1} }

⊢
(

s
) tx−−→

nft

(
s + i

)
This specification states that the only allowed transitions are (i) a constant one, and

(ii) adding a single NFT { myNFTPolicy 7→ {∅ 7→ 1} } ∈ Value, to the state – if one does
not yet exist. An NFT whose total ledger quantity obeys this specification can never be
burned, must be the only token under its policy, and must have the empty string ∅ as a
name. It also does not require any authentication to be minted. To define the policy and
projection functions, we pick an output reference myNFTRef which we call an anchor. That
is, myNFTRef must be spent by the NFT-minting transaction as a mechanism to ensure that
no other transaction can mint another NFT under this policy. Next, we define the projection
function,

π(utxo) :=
{

s if (s = { myNFTPolicy 7→ {∅ 7→ 1} } ∧ ¬ hasRef) ∨ s = ∅
⋆ otherwise

where

s := { p 7→ tkns | p 7→ tkns ∈
∑

7→out∈utxo
out.value, p = myNFTPolicy }

hasRef := (myNFTRef 7→ ∈ utxo)

https://omelkonian.github.io/structured-contracts/NFT.html

P. Vinogradova et al. 10:9

Here, π(utxo) returns a non-⋆ result when either no tokens under the myNFTPolicy policy
exist, or only the token { myNFTPolicy 7→ {∅ 7→ 1} } exists under this policy, and the
anchor myNFTRef is not in the UTxO. We define the policy,

myNFTPolicy := mkMyNFTPolicy(myNFTRef)

JmkMyNFTPolicy(myRef)K(, (tx , pid)) := ∃ (myRef , ,) ∈ tx .inputs
∧ { myNFTPolicy 7→ {∅ 7→ 1} } ∈ tx .mint

To prove Sim for the NFT contract (see Appendix B for a proof sketch, which is also
mechanized in Agda), we need to make an additional assumption,

NFT re-minting protection. ∀ (slot, utxo, tx , utxo′) ∈ LEDGER,

((π(utxo) = ∅ ∧ myNFTRef ∈ getORefs(tx)) ∨ π(utxo) > ∅) ⇒ tx ̸= myNFTRef.fst (2)

This assumption guarantees that if an NFT with policy myNFTPolicy exists on ledger
state utxo, the transaction myNFTRef.fst, whose output was spent as a condition for minting
the NFT, cannot be valid again in utxo. It also requires that a transaction spending
myNFTRef cannot be the same transaction that added myNFTRef to the UTxO set. Under
reasonable constraints on an initial ledger state, replay protection (c.f. Section 2) is a global
invariant of EUTxO ledger state traces (as proven in prior work on EUTxO under the name
“uniqueness” [7]), from which we can directly derive re-minting protections.

We note here that, as exemplified by Assumption 2, the SCF approach to implementation
allows us to express specific consequences of trace-based ledger transition system properties
as local invariants. This enables the separation of reasoning about the global behavior of the
ledger from reasoning about the correctness of contract implementation, for which we can
make use of relevant local invariants of ledger behavior.

NFT property example. At most one NFT under the policy myNFTPolicy can ever exist in
any utxo that is valid for NFT : for any utxo such that π(utxo) ̸= ⋆,

π(utxo) ⊆ { myNFTPolicy 7→ {∅ 7→ 1} }

This is immediate from the definition of π, however, this result is meaningful. By definition
of Sim, and the fact that NFT is a structured contract, it is not possible to transition from a
UTxO state valid for NFT (i.e. π(utxo) ̸= ⋆) to a state which is not valid for NFT. That is,
with (slot, utxo, tx , utxo′) ∈ LEDGER, the updated state π(utxo′) must also always have at
most one NFT under myNFTPolicy. This also implies that at most one can ever be minted
by a valid transaction applied to a utxo valid for NFT.

5 Multiple implementations of a single specification

In this section we present an example of a specification that has more than one correct
implementation, one of which is distributed across multiple UTxO entries. The guarantee
that the two implement the same specification enables contract authors to meaningfully
compare them across relevant characteristics, such as space usage, or parallelizability.

FMBC 2024

10:10 Structured Contracts in the EUTxO Ledger Model

5.1 Toggle specification

We define (and mechanize in the corresponding Agda code) a specification wherein the state
consists of two booleans, and only one can be true at a time. We set the contract input to
be {toggle} ∪ {⋆}. The two booleans in the state are both flipped by the input toggle, and
unchanged by ⋆. We define the transition system TOGGLE :

Noop (
x, y

) ⋆−−−−−→
toggle

(
x, y

) Toggle (
x, y

) toggle−−−−−→
toggle

(
y, x

)
5.2 Toggle implementations

The naive implementation uses the datum of a single UTxO entry to store a representation
of the full state of the TOGGLE contract. The distributed implementation uses datums in
two distinct UTxO entries to represent the first and the second value of the boolean pair
that is the TOGGLE state.

Thread token scripts. We use the thread tokens mechanism [7] to construct a unique
identifier of the UTxO (or pair of UTxOs) from which the contract state is computed. The
mechanism for ensuring uniqueness of a thread token is the same as for the NFT contract
example in Section 4. It relies on the replay protection property of the ledger, ensuring that
if a thread token exists on the ledger, it must be unique. In both the naive and distributed
implementations, the thread token minting policy guarantees that thread tokens are generated
in quantity of at most 1 by a transaction that spends a specific output reference myRef.

For the naive implementation, one thread token is sufficient to identify the state-bearing
UTxO. Upon minting, the policy requires the token to be placed into a UTxO locked by a
specific script, which is passed as a parameter to the minting policy. This script (discussed
below) ensures the correct evolution of the contract state. The datum in the UTxO containing
the thread token is the initial state of the contract encoded as a pair of booleans (by the
partial decoder function fromDataN : Data → B ∪ {⋆}). It can be any pair of correctly
encoded booleans. See Figure 5 for the policy pseudocode.

For the distributed implementation, two distinct NFTs are needed to identify the UTxOs
containing the TOGGLE state data. Both NFTs are under the same minting policy and must
be minted by a single transaction, but have distinct token names, ”a” and ”b”. Upon being
minted, the policy requires that they are placed in separate UTxOs, locked by the same script
(discussed below). The datum in each must be decodeable (by fromDataD : Data → B ∪ {⋆})
as a boolean. See Figure 6 for the policy pseudocode.

Validator scripts. We require different UTxO-locking scripts for our two distinct imple-
mentations. Both scripts serve the following function: when the UTxO locked by the script
is spent, the script must ensure that thread tokens are propagated into UTxOs that are
locked by the same validator as the spent UTxOs containing the thread tokens, and that the
datums in those UTxOs are correct. This implements the Toggle rule. The Noop rule applies
when the transaction does not spend the thread tokens.

For the naive version, the datum in the new UTxO containing the thread token must
decode as a pair of booleans whose order is reversed as compared to the booleans encoded in
the datum of the spent UTxO that previously contained the thread token. We define it by :

P. Vinogradova et al. 10:11

JtoggleValN (myRef)K((b, b′), r, (tx, i)) := ttt = i.output.value ∧ r = toggle
∧ ∃ o ∈ tx.outputs, (b′, b) = (o.datum) ∧ (o.validator = vi) ∧ (ttt = o.value)
where

vi := i.output.validator
ttt := {toggleTTN (myRef, vi) 7→ {encode(vi) 7→ 1}}

The function encode : Script → [Char] encodes a script as a string for the purpose of
specifying (via the token name) the output-locking script that must persistently lock the
thread token.

The distributed implementation script ensures that both the thread token-containing
UTxOs are spent simultaneously. Then, it checks that the booleans in the datums are
switched places : the one that was in the UTxO with token ”a” must now be in a new UTxO
with token ”b”, and vice-versa. The validator script is given in Figure 1.

JtoggleValD(myRef)K(b, toggle, (tx , i)) :=
((tta = i.output.value) ⇒

∃ o, o′ ∈ tx .outputs, i′ ∈ tx .inputs,
o.validator = o′.validator = vi ∧
tta = o.value ∧ ttb = o′.value ∧ i′.output.value = ttb
o.datum = i′.output.datum ∧ o′.datum = i.output.datum)

∧
((ttb = i.output.value) ⇒

∃ o, o′ ∈ tx .outputs, i′ ∈ tx .inputs,
o.validator = o′.validator = vi ∧
tta = o.value ∧ ttb = o′.value ∧ i′.output.value = tta
o.datum = i.output.datum ∧ o′.datum = i′.output.datum)

∧
((tta = i.output.value) ∨ (ttb = i.output.value))

where
vi := i.output.validator
tta := {toggleTTD(myRef, vi) 7→ {(encode(vi) ++ ”a”) 7→ 1}}
ttb := {toggleTTD(myRef, vi) 7→ {(encode(vi) ++ ”b”) 7→ 1}}

Figure 1 TOGGLE validator script for the distributed implementation.

Ledger representation. The state projection function computations return a valid contract
state (i.e. a pair of booleans) whenever the anchor reference myRef is not in the UTxO,
and thread tokens have been minted according to their policy and placed alongside the
appropriate datums and scripts. The input projection function returns toggle whenever a
transaction contains the thread tokens in its input(s), and ⋆ otherwise. For details, see
Figures 7 and 2.

FMBC 2024

10:12 Structured Contracts in the EUTxO Ledger Model

πd(utxo) :=

(a, b) if myRef /∈ { i | i 7→ o ∈ utxo } ∧ ∃! (i 7→ o, i′ 7→ o′) ∈ utxo,

tta = o.value ∧ ttb = o′.value
∧ o.validator = toggleValD(myRef) = o′.validator
∧ o.datum = a ∧ o′.datum = b

⋆ otherwise

πTx,d(tx) :=

{
toggle if ∃ i, i′ ∈ tx.inputs, i.output.value = tta ∧ i′.output.value = ttb
⋆ otherwise

Figure 2 TOGGLE distributed projections.

In Appendix C, we give a proof sketch for the simulation relations between TOGGLE and
LEDGER to complete the instantiation of the two versions of the structured contract. The
proofs are very similar to to those for the NFT contract, so we have not mechanized them.
To avoid duplication of thread tokens, we again need to make the additional assumption
that a transaction cannot be valid again if it has previously been applied. That is, for any
(slot, utxo, tx , utxo′) ∈ LEDGER, with π(utxo) ̸= ⋆, necessarily tx ̸= myRef.fst.

TOGGLE property example. The following property states that in any step of TOGGLE,
either the state booleans are swapped, or stay the same. Its proof is immediate from the
specification, regardless of the implementation.

(⋆, (a, b), i, (c, d)) ∈ TOGGLE ⇒ (c, d) = (b, a) ∨ (c, d) = (a, b)

6 Related work

Scilla [14] is a intermediate-level language for expressing smart contracts as state machines
on an account-based ledger model. It is formalized in Coq, and the contracts written in
it are amenable to formal verification. In our work we pursue the same goal of correctly
implementing stateful contracts and formally studying their behavior on the EUTxO ledger.

CoSplit [26] is a static analysis tool for implementing sharding in an account-based
blockchain. Sharding is the act of separating contract state into smaller fragments that
can be affected by commuting operations, usually for the purposes of increasing parallelism
and scalability. Our work allows users to build contracts whose state is distributed across
multiple UTxOs and tokens on the ledger. One of the benefits of an EUTxO ledger is that
transaction application commutes [2]. Therefore, no additional work is required to ensure
commutativity when updating only a part of a contract with distributed state.

The Bitcoin Modelling Language (BitML) [5] enables the definition of smart contracts in
a particular restricted class of state machines on the Bitcoin ledger, where a computational
soundness result securely establishes a relation between high-level BitML contracts and
low-level Bitcoin transactions. The BitML state machines are less expressive than the class
of specifications considered in our model, although subsequent work introduces recursion [3].
Another derivative of BitML, the ILLUM language [4], allows users to build Turing-complete
contracts that achieve a secure simulation to UTxO. A key difference between ours approach
and ILLUM appears to be the direction of the security proofs: our work presents users with
a framework for choosing an implementation and proving the property that “transactions can
only ever update the contract state according to the stateful contract specification”, whereas

P. Vinogradova et al. 10:13

the work on ILLUM enables, given a specified contract transition, automatically constructing
specific transactions that are guaranteed to perform the corresponding contract update. The
goal in all the above cases is again similar to ours – to guarantee certain properties of on-chain
state machine implementations. Alas, we lack the accompanying meta-theoretical guarantees,
but we are confident similar properties hold for our system and hope to make this formal in
future work.

VeriSolid [22] synthesizes Solidity smart contracts from a state machine specification,
with support for formal verification. The underlying ledger model for VeriSolid is an account-
based model. Like BitML, VeriSolid is less flexible in the types of state machines that can be
implemented, and how they can be implemented, but offers more automation than our work.
Yet another language for expressing the formal semantics of (a subset of) Solidity exists [21],
has been specified in Isabelle/HOL, and was developed with the goal of improving formal
verification methods of smart contracts. This work differs from ours in the underlying ledger
model, as well as the direction of the ledger-contract simulation relation.

The K framework [27] is a unifying formal semantics framework for all programming
languages, which has been used as a tool to perform audits of smart contracts [28], as well
as specifying Solidity operational semantics [19]. Auditing is a common approach to smart
contract verification [1, 11], which will also be useful for structured contract specifications.

7 Conclusion

Previous work on stateful EUTxO contracts [7] constructs a consolidated (single-UTxO)
on-chain implementation for a given constraint-emitting machine (CEM), including a proof
that the contract state is always updated correctly by a given transaction. Constructing the
implementation and associated proof in this formalism is done uniformly, and holds for any
specification it is instantiated with. This fixed-implementation approach allows for specifying
only a small subset of possible constraints on the updating transaction data. In this work,
we introduce the structured contract framework, in which, for a particular specification, the
contract author decides on an implementation that satisfies their specific requirements (e.g.
on-chain memory constraints, distributed vs consolidated, etc.), and is not limited in the
constraints a state update may place on the transaction data.

Our formalism defines the space of all stateful contracts implementable on the EUTxO
ledger via user-defined scripts. Our work opens up the possibility of formal analysis of the
behavior of a much larger class of contracts which may have previously been implemented
ad-hoc, or via an ill-suited formalism. Instantiating our framework requires the definition of
a small-step stateful contract specification, projection functions which compute the state
and input values of a contract for a given UTxO state and transaction (resp.), and a proof of
the integrity of the implementation. Similar to the proof completed for the CEMs formalism,
the proof obligation in our framework ensures that on-chain state evolution of a contract
adheres to its specification.

We note that the existence of a valid UTxO state update corresponding to a given contract
update is not guaranteed, and such an update is difficult to construct in the general case. We
leave this for future work. Another limitation of our approach is the lack of proof automation,
which presents a challenge due to the fact that a contract state may be computed from a
given UTxO state by an arbitrary user-defined function. A full formalization of structured
contract behavior in terms of trace-based properties of contracts and their expression at the
ledger level is needed, and is the subject of future work.

FMBC 2024

10:14 Structured Contracts in the EUTxO Ledger Model

We present examples of contracts and safety properties satisfied by these examples: (i) a
stateful model of an NFT policy, and, for another simple contract, a pair of (ii) a distributed
and (iii) a consolidated implementation. Using our framework to construct more sophisticated
and realistic contract examples, such as DEXs or account simulations, is the subject of future
work. The approach we presented can also potentially be applied to existing contracts for
which a small-step specification can be constructed, making them more amenable to formal
verification.

References
1 Arnaud Bailly. Model-based testing with QuickCheck, 2022. URL: https://engineering.

iog.io/2022-09-28-introduce-q-d/.
2 Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. A theory of transaction parallelism

in blockchains. Logical Methods in Computer Science, Volume 17, Issue 4, nov 2021. doi:
10.46298/lmcs-17(4:10)2021.

3 Massimo Bartoletti, Stefano Lande, Maurizio Murgia, and Roberto Zunino. Verification of
recursive bitcoin contracts. CoRR, abs/2011.14165, 2020. doi:10.48550/arXiv.2011.14165.

4 Massimo Bartoletti, Riccardo Marchesin, and Roberto Zunino. Secure compilation of rich
smart contracts on poor UTXO blockchains, 2023. doi:10.48550/arXiv.2305.09545.

5 Massimo Bartoletti and Roberto Zunino. BitML: a calculus for Bitcoin smart contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 83–100. ACM, 2018. doi:10.1145/3243734.3243795.

6 Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized Application
Platform. https://ethereum.org/en/whitepaper/, 2014.

7 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann
Müller, Michael Peyton Jones, Polina Vinogradova, and Philip Wadler. Native custom tokens
in the Extended UTXO model. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation: Applications - 9th International
Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,
October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes in Computer
Science, pages 89–111. Springer, 2020. doi:10.1007/978-3-030-61467-6_7.

8 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann
Müller, Michael Peyton Jones, Polina Vinogradova, Philip Wadler, and Joachim Zahnentferner.
UTXOma: UTXO with multi-asset support. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation: Applications - 9th
International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes,
Greece, October 20-30, 2020, Proceedings, Part III, volume 12478 of Lecture Notes in Computer
Science, pages 112–130. Springer, 2020. doi:10.1007/978-3-030-61467-6_8.

9 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian,
Michael Peyton Jones, and Philip Wadler. The Extended UTxO model. In Proceed-
ings of Trusted Smart Contracts (WTSC), volume 12063 of LNCS. Springer, 2020. doi:
10.1007/978-3-030-54455-3_37.

10 Manuel M. T. Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant, Aggelos
Kiayias, and Alexander Russell. Hydra: Fast isomorphic state channels. IACR Cryptol. ePrint
Arch., 2020:299, 2020. URL: https://eprint.iacr.org/2020/299.

11 Florent Chevrou. A journey through the auditing process of a smart contract, 2023. URL:
https://www.tweag.io/blog/2023-05-11-audit-smart-contract/.

12 Jared Corduan, Matthias Güdemann, and Polina Vinogradova. A Formal Specification of
the Cardano Ledger. https://github.com/input-output-hk/cardano-ledger/releases/
latest/download/shelley-ledger.pdf, 2019.

13 Ergo Team. Ergo: A Resilient Platform For Contractual Money. https://whitepaper.io/
document/753/ergo-1-whitepaper, 2019.

https://engineering.iog.io/2022-09-28-introduce-q-d/
https://engineering.iog.io/2022-09-28-introduce-q-d/
https://doi.org/10.46298/lmcs-17(4:10)2021
https://doi.org/10.46298/lmcs-17(4:10)2021
https://doi.org/10.48550/arXiv.2011.14165
https://doi.org/10.48550/arXiv.2305.09545
https://doi.org/10.1145/3243734.3243795
https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-61467-6_8
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://eprint.iacr.org/2020/299
https://www.tweag.io/blog/2023-05-11-audit-smart-contract/
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://whitepaper.io/document/753/ergo-1-whitepaper
https://whitepaper.io/document/753/ergo-1-whitepaper

P. Vinogradova et al. 10:15

14 Ilya Sergey et al. Safer smart contract programming with Scilla. In Proceedings of the ACM on
Programming Languages, volume 3 (OOPSLA), pages 1–30. ACM, 2019. doi:10.1145/3360611.

15 Pablo Lamela Seijas et al. Marlowe: Implementing and analysing financial contracts on
blockchain. In Financial Cryptography and Data Security, pages 496–511, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-54455-3_35.

16 Ethereum Team. ERC-721 TOKEN STANDARD. https://ethereum.org/en/developers/
docs/standards/tokens/erc-721, 2023.

17 LM Goodman. Tezos – a self-amending crypto-ledger (white paper), 2014.
18 Tobias Guggenberger, Vincent Schlatt, Jonathan Schmid, and Nils Urbach. A structured

overview of attacks on blockchain systems. PACIS, page 100, 2021. URL: https://aisel.
aisnet.org/pacis2021/100.

19 Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanan, Yang Liu, and Jun Sun. Semantic
understanding of smart contracts: Executable operational semantics of Solidity. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1695–1712, 2020. doi:10.1109/SP40000.
2020.00066.

20 Andre Knispel and Polina Vinogradova. A Formal Specification of the Cardano Ledger in-
tegrating Plutus Core. https://github.com/input-output-hk/cardano-ledger/releases/
latest/download/alonzo-ledger.pdf, 2021.

21 Diego Marmsoler and Achim D. Brucker. A denotational semantics of Solidity in Isabelle/HOL.
In Software Engineering and Formal Methods: 19th International Conference, SEFM 2021,
Virtual Event, December 6–10, 2021, Proceedings, pages 403–422, Berlin, Heidelberg, 2021.
Springer-Verlag. doi:10.1007/978-3-030-92124-8_23.

22 Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Abhishek Dubey. Ver-
iSolid: Correct-by-design smart contracts for Ethereum. In International Conference on
Financial Cryptography and Data Security, pages 446–465. Springer, 2019. doi:10.1007/
978-3-030-32101-7_27.

23 Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge University
Press, 1999.

24 S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/en/
bitcoin-paper, oct 2008.

25 Ulf Norell. Dependently typed programming in Agda. In International School on Advanced
Functional Programming, pages 230–266. Springer, 2008. doi:10.1007/978-3-642-04652-0_5.

26 George Pîrlea, Amrit Kumar, and Ilya Sergey. Practical smart contract sharding with ownership
and commutativity analysis. In PLDI ’21: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25,
2021, PLDI 2021, pages 1327–1341, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3453483.3454112.

27 Grigore Roşu and Traian Şerbănuţă. An overview of the K semantic framework. The Journal of
Logic and Algebraic Programming, 79:397–434, aug 2010. doi:10.1016/j.jlap.2010.03.012.

28 Runtime Verification Team. Smart contract analysis and verification, 2023. URL: https:
//runtimeverification.com/smartcontract.

29 The ZILLIQA Team. The ZILLIQA Technical Whitepaper. https://docs.zilliqa.com/
whitepaper.pdf, 2017.

30 The Solidity Authors. Solidity 0.8.25 documentation. https://docs.soliditylang.org/en/
v0.8.25/, 2023.

31 Jan Xie. Nervos CKB: A Common Knowledge Base for Crypto-Economy. https://github.
com/nervosnetwork/rfcs/blob/master/rfcs/0002-ckb/0002-ckb.md, 2018.

FMBC 2024

https://doi.org/10.1145/3360611
https://doi.org/10.1007/978-3-030-54455-3_35
https://ethereum.org/en/developers/docs/standards/tokens/erc-721
https://ethereum.org/en/developers/docs/standards/tokens/erc-721
https://aisel.aisnet.org/pacis2021/100
https://aisel.aisnet.org/pacis2021/100
https://doi.org/10.1109/SP40000.2020.00066
https://doi.org/10.1109/SP40000.2020.00066
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://doi.org/10.1007/978-3-030-92124-8_23
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1007/978-3-030-32101-7_27
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1016/j.jlap.2010.03.012
https://runtimeverification.com/smartcontract
https://runtimeverification.com/smartcontract
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://docs.soliditylang.org/en/v0.8.25/
https://docs.soliditylang.org/en/v0.8.25/
https://github.com/nervosnetwork/rfcs/blob/master/rfcs/0002-ckb/0002-ckb.md
https://github.com/nervosnetwork/rfcs/blob/master/rfcs/0002-ckb/0002-ckb.md

10:16 Structured Contracts in the EUTxO Ledger Model

A EUTxO details

Figure 3 introduces non-standard syntax we use throughout.

H =
∞⋃

n=0

{0, 1}8n the type of bytestrings

⋆ : {⋆} the one-element set, and its one inhabitant
a : A ∪ {⋆} maybe type over A

fst : (A × B) → A first projection
(a, b) : Interval[A] intervals over a totally-ordered set A

Key 7→ Value ⊆ { k 7→ v | k ∈ Key, v ∈ Value } finite map with unique keys
[a1; ...; ak] : [C] finite list with terms of type C

++ : ([C], [C]) → [C] list concatenation
h :: t : [C] list with head h and tail t

Figure 3 Notation.

Figure 4 lists the primitives and derived types that comprise the foundations of the
EUTxO model, along with some ancillary definitions. (Outputs normally refer to transaction
IDs by hash, but we simplify here for clarity.)

B Sim relation proof sketch for NFT

Suppose (slot, utxo, tx , utxo′) ∈ LEDGER, and π(utxo) ̸= ⋆. There are two disjuncts :
(i) If i = { (myNFTPolicy 7→ tkns) ∈ tx .mint } = ∅, by preservation of value (rule (v) in

Section 2.2), the amount s of tokens under myNFTPolicy remains unchanged in utxo′.
If s = ∅, we get s′ = ∅ + ∅ = ∅. Then, by Assumption 2 we conclude that tx does not
add myRef to utxo. So, π(utxo′) is defined, and π(utxo) = π(utxo′) = ∅. If s > ∅, by
Assumption 2, we conclude that tx cannot add an output with reference myRef in the
utxo′. Since, by π(utxo) ̸= ⋆, we know that myRef was not in utxo either, we conclude
that there is no output with myRef in utxo′. So, π(utxo) = π(utxo′).

(ii) If i ̸= ∅, tokens under myNFTPolicy are being minted, and the policy must be checked
by ledger rule (ix) in Section 2.2. Necessarily, by myNFTPolicy, i = {pid 7→ {∅ 7→ 1}}.
If s = ∅, s′ = s + i = i is the new total amount of tokens under policy myNFTPolicy in
the UTxO. The unique output with reference myRef must be removed from the UTxO
by tx , so that it is not contained in utxo′. By Assumption 2, it is also not added back
by tx to utxo′. Then, π(utxo′) ̸= ⋆, and is equal to i. If s ≥ ∅, an output with reference
myRef is not in utxo′. So, myNFTPolicy fails, and the tx is not valid on the ledger.

C Sim relation proof sketch for TOGGLE

Suppose that (slot, utxo, tx , utxo′) and π(utxo) = (a, b). We first observe that each of the
thread tokens in either implementation is present in an input of the transaction if and only
if it is present in the output. This is because π(utxo) = (a, b) implies that the unique
token(s) already exists in the UTxO set, and the minting policy cannot be satisfied, which
holds because myRef ∈ { i.outputRef | i ∈ tx .inputs } contradicts π(utxo) = (a, b). So,
thread tokens are not being minted or burned, and, by rule (v) in Section 2.2, we can make
the required conclusion.

P. Vinogradova et al. 10:17

Ledger primitives

J_K : Script → Datum × Redeemer × ValidatorContext → B
J_K : Script → Redeemer × PolicyContext → B

checkSig : Tx → PubKey → H → B

Defined types

Signature = PubKey 7→ H
OutputRef = (id : Tx, index : Ix)

Output = (validator : Script,
value : Value,

datum : Data)
TxInput = (outputRef : OutputRef,

output : Output,
redeemer : Redeemer)

Tx = (inputs : P TxInput,
outputs : [Output],
validityInterval : Interval[Slot],
mint : Value,

mintRdmrs : Script 7→ Redeemer,
sigs : Signature)

ValidatorContext = (Tx, (Tx, TxInput))
PolicyContext = (Tx, PolicyID)

Helper functions

toMap : Ix → [Output] → (Ix 7→ Output)
toMap(, []) = []
toMap(ix , u :: outs) = { ix 7→ u } ∪ toMap(ix + 1, outs)

mkOuts : Tx → UTxO
mkOuts(tx) = { (tx , ix) 7→ o | (ix 7→ o) ∈ toMap(0, tx .outputs) }

getORefs : Tx → P (OutputRef)
getORefs(tx) = { i.outputRef | i ∈ tx .inputs }

Figure 4 Primitives and basic types for the EUTxOma model.

FMBC 2024

10:18 Structured Contracts in the EUTxO Ledger Model

toggleTTN : OutputRef → Script → Script
JtoggleTTN (myRef, s)K(, (tx , pid)) := myRef ∈ {i.outputRef | i ∈ tx .inputs }

∧ tx .mint = {pid 7→ {encode(s) 7→ 1}}
∧ ∃ o ∈ tx .outputs,

o.value = {pid 7→ {encode(s) 7→ 1}}
∧ o.validator = s

∧ fromDataN (o.datum) ̸= ⋆

Figure 5 TOGGLE thread token minting policy for the naive implementation.

toggleTTD : OutputRef → Script → Script
JtoggleTTD(myRef, s)K(, (tx , pid)) :=

myRef ∈ {i. outputRef | i ∈ tx .inputs }
∧ tta + ttb = tx .mint
∧ ∃ oa, ob ∈ tx .outputs,

oa.value = tta ∧ ob.value = ttb
∧ oa.validator = ob.validator = s

∧ fromDataD(oa.datum) ̸= ⋆ ∧ fromDataD (ob.datum) ̸= ⋆

where
tta := {pid 7→ {(encode(s) ++ ”a”) 7→ 1}
ttb := {pid 7→ {(encode(s) ++ ”b”) 7→ 1}

Figure 6 TOGGLE thread token minting policy for the distributed implementation.

ttt := {toggleTTN (myRef) 7→ {encode(toggleValN (myRef)) 7→ 1}}
tta := {toggleTTD(myRef) 7→ {(encode(toggleValD(myRef)) ++ ”a”) 7→ 1}}
ttb := {toggleTTD(myRef) 7→ {(encode(toggleVal(D myRef)) ++ ”b”) 7→ 1}}

πn(utxo) :=

(a, b) if myRef /∈ { i | i 7→ o ∈ utxo }

∧ ∃! (i 7→ o) ∈ utxo, ttt = o.value
∧ o.validator = toggleValN (myRef) ∧ o.datum = (a, b)

⋆ otherwise

πTx,n(tx) :=
{

toggle if ∃ i ∈ tx .inputs, i.output.value = ttt
⋆ otherwise

Figure 7 TOGGLE thread tokens and naive projections.

P. Vinogradova et al. 10:19

Now, there are two possibilities, π(tx) = ⋆ and π(tx) = toggle, for each of which we must
prove that (⋆, π(utxo), π(tx), π(utxo′)) and π(utxo) = π(utxo′).

Naive implementation.
(i) π(tx) = ⋆ : We have that ¬ (∃ i ∈ tx .inputs, i.output.value = ttt). Since an additional

token ttt cannot be minted or burned, we also conclude ¬ (∃ o ∈ tx .outputs, o.value =
ttt). By π(utxo) = (a, b), the utxo state contains a unique output with token ttt, datum
(a, b), and toggleValN (myRef) validator. By π(tx) = ⋆, that output was not spent, and
still exists in the UTxO set utxo′. By Assumption 2, since tx ≠ myRef.fst, the reference
myRef is not added to the inputs of utxo′. So, that π(utxo′) = π(utxo) = (a, b). Then,

(⋆, π(utxo), π(tx), π(utxo′)) = (⋆, (a, b), ⋆, (a, b)) ∈ TOGGLE

(ii) π(tx) = toggle : Implies that ∃ i ∈ tx .inputs, i.output.value = ttt. This means that
that the (unique) UTxO containing ttt is spent, and no ttt tokens are minted or burned.
Therefore, the transaction must create a single output in utxo′ with that token. The
script toggleValN (myRef) must be run because ttt is spent and, by π(utxo) = (a, b), was
locked by toggleValN (myRef). Because toggleValN (myRef) must validate, the unique
new output containing ttt must have a datum (b, a), the same validator. Again, myRef
is not added to the inputs of utxo′ by assumption. We conclude that π(utxo′) = (b, a).
Then,

(⋆, π(utxo), π(tx), π(utxo′)) = (⋆, (a, b), ⋆, (b, a)) ∈ TOGGLE

Distributed implementation. The proof for the distributed implementation is similar to
the one for the naive implementation, except we must keep track of two inputs and two
outputs containing two thread tokens. A transaction updating the state must necessarily
spend both outputs containing each of the tokens, and that the new UTxOs containing them
are such that the datum in UTxO with token tta now has the boolean that was in the datum
of ttb, and vice-versa. Both must still be locked by toggleValN (myRef).

FMBC 2024

	p000-Frontmatter
	Preface

	p001-Cassez
	p002-Knispel
	1 Introduction
	2 Fundamental entities
	2.1 Cryptographic primitives
	2.2 Addresses
	2.3 Base types

	3 Advancing the blockchain
	3.1 Protocol parameters
	3.2 Extending the blockchain block-by-block
	3.3 Extending the ledger transaction-by-transaction

	4 UTxO
	4.1 Witnessing
	4.2 Accounting

	5 Decentralized Governance
	5.1 Entities and actions
	5.2 Votes and proposals
	5.3 Enactment
	5.4 Voting and Proposing
	5.5 Ratification

	6 Transactions
	7 Compiling to a Haskell implementation & Conformance testing
	8 Related Work
	9 Conclusion
	A Governance helper calculations
	B UTxO
	C Advancing epochs

	p003-Praveen
	1 Introduction
	2 Related Work
	3 Safety of Pipelined Moonshot Consensus
	4 Formal Specification and Verification using IVy
	4.1 IVy modeling setup
	4.2 Pipelined Moonshot Specification
	4.3 Structure of the Safety Proof

	5 Challenges
	6 Recommendations
	7 Conclusion
	A IVy Specification of the Pipelined Moonshot Protocol

	p004-Jones
	1 Introduction
	2 Background
	3 Model
	3.1 Binary Tree
	3.2 Isabelle Functions
	3.2.1 Nodes
	3.2.2 Height
	3.2.3 Longest
	3.2.4 Check
	3.2.5 Event

	3.3 Mining
	3.4 Honest Mining

	4 Verification
	5 Discussion
	6 Related Work
	7 Conclusion
	A Functions
	B Mining Locale
	C Honest Mining Locale
	D Blockchain Locale

	p005-Pusceddu
	1 Introduction
	2 Formalization
	3 Results
	4 Related work
	5 Conclusions

	p006-Bartoletti
	1 Introduction
	2 Background and related work
	3 Our benchmark
	4 Evaluation: SolCMC vs. Certora
	5 Conclusions

	p007-Sorensen
	1 Introduction
	2 Related Work
	3 Contract Morphisms
	3.1 Morphisms of Pure Functions
	3.2 Contract Morphisms in ConCert

	4 Morphisms to Formally Specify and Verify Contract Upgrades
	5 Further Applications of Morphisms in Formal Verification
	5.1 Hoare Properties and Contract Morphisms
	5.2 Isomorphisms and Propositional Indistinguishability

	6 Conclusion

	p008-Schiffl
	1 Introduction
	2 Liveness Properties in Smart Contracts
	2.1 Simple Bank Example
	2.2 Escrow Example
	2.3 Auction Example
	2.4 Examples from Literature
	2.5 Observations

	3 Formalization of Smart Contract Liveness
	3.1 A Model of Smart Contract Applications
	3.2 Specification Language
	3.2.1 LTL
	3.2.2 Restrictions
	3.2.3 Domain-specific Constructs

	3.3 Verification

	4 Prototypical Implementation and Evaluation
	4.1 Implementation of Model-driven Approach
	4.2 Evaluation
	4.2.1 Bank
	4.2.2 Escrow
	4.2.3 Auction
	4.2.4 General Remarks

	5 Conclusion and Future Work

	p009-Park
	1 Introduction
	2 Background
	2.1 Move as A Programming Language for Smart Contracts
	2.2 Move Prover
	2.3 Move Specification Language
	2.4 Aptos Framework

	3 Formal Verification of the Aptos Framework
	3.1 From Security Requirement to Verification
	3.2 Systematic functional specification
	3.2.1 Abort conditions
	3.2.2 Struct invariants
	3.2.3 Global invariants

	4 Discussion
	5 Related Work
	6 Conclusion
	A Verification Artifacts
	B Reproducing the Verification Result

	p010-Vinogradova
	1 Introduction
	2 EUTxO ledger model
	2.1 Ledger types
	2.2 Ledger transition semantics

	3 Simulations and the structured contract formalism
	3.1 Simulations
	3.2 Structured contracts

	4 NFT minting policy as a structured contract
	5 Multiple implementations of a single specification
	5.1 Toggle specification
	5.2 Toggle implementations

	6 Related work
	7 Conclusion
	A EUTxO details
	B Sim relation proof sketch for {NFT}
	C Sim relation proof sketch for {TOGGLE}

