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Abstract
In recent times, the demand for transparency and accountability in AI-driven decisions has intensified,
particularly in high-stakes domains like finance and bio-medicine. This focus on the provenance
of AI-generated conclusions underscores the need for decision-making processes that are not only
transparent but also readily interpretable by humans, to built trust of both users and stakeholders.
In this context, the integration of state-of-the-art Large Language Models (LLMs) with logic-oriented
Enterprise Knowledge Graphs (EKGs) and the broader scope of Knowledge Representation and
Reasoning (KRR) methodologies is currently at the cutting edge of industrial and academic research
across numerous data-intensive areas. Indeed, such a synergy is paramount as LLMs bring a layer of
adaptability and human-centric understanding that complements the structured insights of EKGs.
Conversely, the central role of ontological reasoning is to capture the domain knowledge, accurately
handling complex tasks over a given realm of interest, and to infuse the process with transparency
and a clear provenance-based explanation of the conclusions drawn, addressing the fundamental
challenge of LLMs’ inherent opacity and fostering trust and accountability in AI applications. In this
paper, we propose a novel neuro-symbolic framework that leverages the underpinnings of provenance
in ontological reasoning to enhance state-of-the-art LLMs with domain awareness and explainability,
enabling them to act as natural language interfaces to EKGs.
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1 Introduction

In today’s data-driven industrial landscape, adhering to the principles of Fairness, Account-
ability, Transparency, and Ethics (FATE) has become paramount for AI applications [44].
Indeed, the absence of transparency in AI’s decision-making processes prevents stakeholders
and users from assessing their fairness, detecting potential biases, and verifying their overall
reliability. This is particularly relevant in high-stakes domains such as finance and bio-
medicine, where there is an increasing demand for a clear, comprehensible, natural language
explanation of AI’s conclusions (i.e., their provenance) to back trustworthy critical decisions.
Such a feature would act as a bridge between the opaque inner workings of AI and human
comprehension, fostering informed decision-making and mitigating risks associated with
black-box models, in favour of users’ trust and adherence to ethical standards [35].

This requirement has gained further traction with the recent breakthrough of AI-based
chatbots and Large Language Models (LLMs) [46], which has marked a significant turning
point in the field of Natural Language Processing (NLP) and a pivotal shift in the access to
data and knowledge towards more natural, user-friendly, and high-level paradigms. Notably,
LLMs such as OpenAI’s GPT [55] and Meta’s Llama [61] have transcended traditional
academic and industrial applications, capturing the general public’s attention towards
generative AI capabilities. However, concerns persist regarding their lack of factual knowledge
and accuracy over enterprise domains, even when fine-tuning is involved [5], and, more
importantly, their opaqueness due to a very limited explainability of their conclusions [66].

Conversely, traditional Knowledge Representation and Reasoning (KRR) [48] approaches
are inherently domain-aware and explainable [24]. Indeed, logic-based reasoning in query
answering, often referred to as ontological reasoning [22], allows for FATEness, as it is
designed to provide factual conclusions augmented with the logically consequential steps, in
the form of top-down logical inference, that led to such results [25, 24]. For this reason, in the
database and the AI communities, we are observing the surge of increasingly mature, efficient,
and scalable intelligent systems with reasoning capabilities, backed by expressive logic-based
KRR formalisms. Among them, database query languages based on logic programming,
such as Datalog and its extensions [1, 22, 20, 21], are a yardstick for AI systems rooted
in ontological reasoning, thanks to their effective trade-off between expressive power and
computational complexity [11, 28, 48]. Leveraging such systems, domain-specific knowledge
can be captured by combining factual data from corporate databases with business-level
definitions as ontologies in Enterprise Knowledge Graphs (EKGs), and further augmented by
reasoning over them. Despite this, the interaction remains query-based, often operating at a
low level and lacking flexibility, thus proving itself challenging for non-specialists.

In light of these considerations, it becomes clear why neuro-symbolic methodologies are at
the forefront of academic and industrial interest. Indeed, their goal to synergistically combine
the intrinsic domain-expertise and transparency of deductive systems with the power of
LLMs in understanding and generating fluent and interpretable text holds immense potential
to build more intelligent, versatile, and explainable AI-based applications on KGs, paving the
way for a new era of transparent data-driven decision-making within organizations [54, 31, 42].

With the goal of contributing to such a pivotal challenge, this paper strives to strengthen
LLMs in their use as explainable NL interfaces to EKGs by leveraging the power of ontological
reasoning. In simple terms, our goal consists in enabling the answer to “why this conclusion”
questions in natural language and posed by the user over an EKG. We operate in the context
of the Vadalog [14, 8] system, a Datalog-based reasoning engine for knowledge graphs,
that finds many industrial applications [12, 15, 10, 4, 3, 32, 62]. We employ Vadalog
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to explore the factual information derived by applying the domain rules in high-stakes
domains of interest, via the well-known chase procedure [53] of databases. This enables us
to augment Llama 2-70B models with the derived domain knowledge and the provenance
of the inferred conclusions, while preserving their human-like orientation and flexibility at
handling question-answering tasks in natural language.
More in detail, our contributions can be summarized as follows.

We present a chase verbalization technique to enhance the domain expertise and
explanation capabilities of LLMs by leveraging ontological reasoning over knowledge
graphs and use cases in relevant domains.
We deliver such an approach in KGLM, a novel neuro-symbolic pipeline to build
LLM-powered explainable interfaces to EKGs by interacting with chase-based reasoning
engines such as the Vadalog system.
We provide a practical application of KGLM by integrating it within KG-Roar [13, 6],
a framework we developed to showcase Vadalog reasoning on financial use cases.

Related Work. Numerous studies have been conducted to investigate different aspects
of provenance, namely its tracking, storing, and presentation [18, 26, 36, 58, 43, 47]. A
longstanding challenge is dealing with the complexity of provenance expressions, with the
goal of presenting them in a user-comprehensible form. To this aim, semirings models [40,
39, 56, 59] are the benchmark for their ability to present the provenance in an efficient and
mathematically elegant form. These structures capture the two key aspects of data usage in
provenance: joint contribution (represented by addition) and alternative sources (represented
by multiplication). This allows for a concise representation of how various inputs contribute
to the final output, enabling reasoning about aspects like confidence, access control, and
cost associated with the data lineage. However, this kind of representation is still not easily
accessible by non-expert users. In other studies, some graph-based representations of the
provenance have been proposed [23, 27, 60], allowing, for instance, user control over the
provenance graph, i.e., by visually tracking contributors and sources. While they have the
advantage of enhancing user interaction and inspection, they are still not the most natural
way of interacting and understanding the provenance. A more recent line of research attempts
to present provenance and answer to queries in natural language [33, 29, 49, 30, 19]. In most
cases, these efforts only support queries of low complexity and the NL sentence depends
on the quality of an input query asked in natural language. In other cases, explanations
are fragmented, presenting rules without a cohesive narrative [19]. Additionally, linking
provenance representation to an input query does not allow unlocking innovative uses of such
precious information, such as exploiting it for generating a training corpus for LLMs. Current
models are very effective for general tasks, but often struggle when it comes to specific
domains. For example, it has been shown that FinBert [51] and BloombergGPT [64], two
fine-tuned models on financial textual data, outperform generic LLMs on question-answering
tasks. In such a context, provenance information from business reasoning tasks could be a
valuable resource for generating a corpus of domain-specific knowledge to be injected into an
LLM for fine-tuning or via Retrieval-Augmented Generation [50] (RAG) mechanisms.

Overview. The remainder of this paper is organized as follows. In Section 2 we provide
essential background notions on ontological reasoning and introduce the Vadalog system.
In Section 3 we illustrate the verbalization technique for LLM explanation and the KGLM
pipeline. Section 4 delves into the application of KGLM within KG-Roar. Our conclusions
are drawn in Section 5.

Tannen’s Festschrift



1:4 Explaining Enterprise Knowledge Graphs with LLMs and Ontological Reasoning

2 Ontological Reasoning in the Vadalog System

To guide our discussion, we first lay out some preliminary notions on ontological reasoning
over enterprise knowledge graphs, with a specific focus on the Vadalog system and the
chase procedure at its foundation.

Relational Foundations. Let C and V be disjoint countably infinite sets of constants
and variables, respectively. A (relational) schema S is a finite set of relation symbols (or
predicates) with associated arity. A term is either a constant or a variable. An atom over S
is an expression of the form R(v̄), where R ∈ S is of arity n > 0 and v̄ is an n-tuple of terms.
A database (instance) over S associates to each symbol in S a relation of the respective arity
over the domain of constants. The members of the relations are called tuples or facts.

Dependencies. A Vadalog program consists of a set of tuples and tuple-generating
dependencies (TGDs), i.e., function-free Horn clauses of the form ∀x̄∀ȳ(φ(x̄, ȳ)→∃z̄ ψ(x̄, z̄)),
where φ(x̄, ȳ) (the body) and ψ(x̄, z̄) (the head) are conjunctions of atoms over the respective
predicates, x̄, ȳ are vectors of universally quantified variables and constants, and z̄ is a vector
of existentially quantified variables. Quantifiers can be omitted and conjunction is denoted
by comma. A predicate is intensional (IDB) if it occurs in at least one head of the schema S,
otherwise it is extensional (EDB) [1, 25, 38]. A fact corresponding to an intensional predicate
is intensional, otherwise it is extensional.

Vadalog Extensions. Real-world applications may require support for multiple features
that extend the declarative language. Among them, aggregate functions, namely sum, prod,
min, max and count, as well as SQL-like grouping constructs, are particularly relevant. In
the Vadalog context, support for aggregate functions is achieved by means of monotonic
aggregations [63]. Other essential extensions, integrated in Vadalog to address real-world
scenarios, include negations and negative constraints of the form φ(x̄, ȳ)→⊥, where φ(x̄, ȳ)
is a conjunction of atoms and ⊥ denotes the truth constant false to model disjointness or non-
membership, as well as expressions in rule bodies, modelled with comparison (>,<,≥,≤, ̸=)
and algebraic (+,−, ∗, /, etc.) operators.

Reasoning Task. KRR approaches model KGs as the combination of an extensional com-
ponent, essentially the ground business data in a database, and an intensional component,
which formally describes the business knowledge as a set of rules in a declarative language
such as Vadalog. Performing ontological reasoning over the KG augments it with new
inferred knowledge derived from the application of the rules over the business data. More
formally, given a database D and the query Q = (Σ, Ans), where Σ is the set of rules and
Ans an n-ary predicate, a reasoning task consists of finding an instance J such that a tuple
t̄ ∈ J if and only if t̄ ∈ Q(D) and for every other instance J ′ such that t̄ ∈ J ′ if and only if
t̄ ∈ Q(D), there is a homomorphism h from J to J ′.

Chase Procedure. The semantics of a Vadalog program can be defined in an operational
way with the chase procedure [45, 53]. It enforces the satisfaction of a set Σ of rules over a
database D, incrementally augmenting D with facts entailed via the application of the rules
over D, until fixpoint. While Vadalog guarantees that such fixpoint exists when only the
core features are used [14], the joint presence of algebraic operations and recursion must be
carefully handled, as even simple Datalog programs can be in general non-terminating [1].
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A TGD σ : φ(x̄, ȳ)→ψ(x̄, z̄) is applicable to D if there exists a homomorphism θ such that
θ(φ(x̄, ȳ)) ⊆ D. Then, a chase step adds the fact θ(ψ(x̄, z̄)) to D, if not already in D. The
chase graph G(D,Σ) is the directed acyclic graph with the facts from the chase Σ(D) as
nodes and an edge from a node n to a node m if m derives from n (and possibly other facts)
via a chase step [20]. A comprehensive examination of reasoning termination in Vadalog
has been thoroughly explored in dedicated works [16, 9].

▶ Example 1 (Trading Activity). Let us consider a simple trading activity managed with a
smart contract. Here, D contains a log over time of buy/sell orders from the traders who
invest in it as well as market information, e.g., asset prices (Price), or market shutdowns
(MarketClosed). The following set Σ contains the Vadalog rules governing the basic
functioning of the market, i.e., under which conditions the orders are accepted and how
profits and losses are computed.

Open(x, y, t1),¬MarketClosed(t1)→ Accepted(x, y, t1) (σ1)
Accepted(x, y, t1),Price(p1, t1), k = y ∗ p1 → Position(x, y, k, t1) (σ2)

Close(x, t2),Price(p2, t2),Position(x, y, k, t1),
t2 > t1, pl = y ∗ p2 − k → Return(x,pl) (σ3)

If a trader x wants to open a position (buy) on a certain asset of size y at time t1 and the
market is open at t1, the order is accepted (rule σ1). If the order by x is accepted and the
asset price at t1 is p1, then x holds a position on the market at time t1 of size y and of
notional (total value) k equal to y ∗ p1 (rule σ2). If, later at t2, trader x decides to close
its position (sell) and the price at t2 is p2, then x gets returns (profits or losses) from its
trading activity as y ∗ p2 − k (rule σ3).

Let us also consider an excerpt of database D = {Open(EGTech,0.3,1), Price(124,1),
Price(147,9), Close(EGTech,9), MarketClosed(5)}. Figure 1 illustrates the chase graph
derived from the activation of Σ over D. Specifically, rule σ1 generates the fact Accep-
ted(EGTech,0.3,1), as the market is not closed at time 1. Then, the fact Position(EGTech,0.3,
37.2,1) is derived via rule σ2. Finally, as trader EGTech closes the position, i.e., sells the
asset, at time 9 and the price goes up to 147$, then EGTech gets a profit of 6.9$ as return
via rule σ3.

Open(EGTech,0.3,1) MarketClosed(5)

Accepted(EGTech,0.3,1) Price(124,1)

Position(EGTech,0.3,37.2,1)Close(EGTech,9) Price(147,9)

Return(EGTech,6.9)

σ1 σ1

σ2 σ2

σ3
σ3 σ3

Figure 1 Instance of chase graph for Example 1.

Tannen’s Festschrift



1:6 Explaining Enterprise Knowledge Graphs with LLMs and Ontological Reasoning

The Vadalog System. The Vadalog system is a state-of-the-art ontological reasoning
engine that leverages the theoretical underpinnings of the chase procedure and the vast
experience of the database community on provenance to power efficient, scalable, and
explainable reasoning tasks over critical business domains and large enterprise KGs [8].

To achieve this, it adopts a streaming data processing architecture based on the pipes
and filters style [14, 7]. Here, the set of logic rules Σ and the queries are translated into
active data scans (linear scans for linear TGDs, join scans for join TGDs, and an output scan
for the query), connected by intermediate buffers in a processing pipeline. The reasoning
process is performed as a data stream along the pipeline, where each filter (i.e., scan) reads
tuples from the respective parent, from the output scan down to the external data stores
that inject ground facts into the pipeline. Interactions between scans occur by means of
primitives open(), next(), get(), close(), which open the parent stream, ask for the presence
of a fact to fetch, obtain it, and close the communication, respectively. Since, for each
filter, multiple parent filters may be available, Vadalog selects which one to invoke (via
next() call) by employing specific routing strategies (round-robin, shortest path, etc.) that
manage a priority queue of the sources. This methodology allows Vadalog to keep track
of the provenance of each result, derived from one or more chase steps. Unlike traditional
semi-naive approaches [1], Vadalog generalizes the volcano iterator model [37], operating in
a pull-based query-driven fashion in which, ideally, facts are materialized only at the end of
the chase procedure and if they contributed to the reasoning task.

Figure 2 illustrates Vadalog processing pipeline for the scenario in Example 1 given, as
ontological reasoning task, the query q of finding the returns for the trader EGTech. Here
the output filter o sends a next() message to the query processor, which propagates it to
the TGDs scans. Note that each filter in the figure is labelled with the corresponding rule
number from the above scenario.

Input Sources

Output Sources

o

σ1

q

σ2 σ3

Query
Processor

next()

next()

ne
xt
()

next()

Figure 2 Processing pipeline of Vadalog for Example 1.
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3 Overview of the KGLM Pipeline

Reasoning Task with Σ

…

A C

E

D

F G

Tool to translate 
rules into NL

Verbalizer

B

Extensional Knowledge D 

A C

E

D

F G

B

Extensional and Derived Knowledge

Chase Σ(D)

Domain Glossary

Vadalog terms
description

Chase-based LLM Fine-tuning Chase-based Explanation Retrieval

Edges Selection

Graph 
Interaction

Prompt NL 
Interaction

Verbalized 
Explanation 

Enhanced 
Explanation

Verbalized 
Rules

Tokenized
Corpus

Chase GraphCorpus 
Generator

Quality Filters
Fine-tuning 

Corpus
Fine-tuned 

LLM

En
te

rp
ri

se
 K

G

Chase Graph

Figure 3 Visual overview of the KGLM pipeline.

Logic-oriented Enterprise Knowledge Graphs and Knowledge Representation and Reasoning
approaches are at the forefront of explainable AI, which is as of today an area of paramount
importance for both the academic community and the industry sector. Current research in
KRR focuses on developing ontological reasoning systems, such as Vadalog, that effectively
combine factual knowledge (extensional knowledge) with formally defined domain expertise
(intensional knowledge) expressed through logical rules. In this context, integrating state-
of-the-art Large Language Models with logic-oriented EKGs holds immense promise for
developing explainable and human-oriented AI tools. A significant challenge, however,
lies in the mismatch between the technologies. In fact, KRR systems require queries to
be formulated in their specific formalisms, with knowledge generation restricted to what
reasoning rules can capture. In contrast, LLMs lack the comprehensive domain models
that are a cornerstone of KRR approaches. One promising approach involves leveraging the
strengths of both paradigms in a synergistic fashion. Indeed, LLMs excel at natural language
generation, allowing them to translate the complex relationships and entities within EKGs
into human-understandable explanations. EKGs, in turn, provide LLMs with a foundation
of factual knowledge, provenance, and ontological reasoning, thus mitigating the risk of
inconsistencies and biases often present in LLMs’ outputs.

Vadalog-powered KGLM. Specifically, we identify two main synergies between LLMs and
logic-based EKGs. On the one hand, we can leverage the reasoning output, enriched by the
provenance of each conclusion, to inject domain-specific knowledge for fine-tuning an LLM.

Tannen’s Festschrift
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On the other hand, we can exploit the text manipulation capabilities of such models to enable
a natural language navigation of the EKG, presenting its inferred edges and provenance in
a human-like form. In the context of the Vadalog system, we recall that the provenance
is provided by leveraging the chase procedure. Indeed, the chase graph resulting from a
reasoning process corresponds to a directed acyclic graph representation of how each output
fact was derived from the input facts by applying one or more Vadalog rules.

We develop such synergies between Vadalog-powered EKGs and LLMs in KGLM,
the first, to the best of our knowledge, neuro-symbolic framework to enhance state-of-
the-art LLMs with domain awareness and explainability, making them suitable to act as
natural language interfaces to EKGs. Indeed, as further showcased later in this section
and in Section 4, the features provided by KGLM are highly complementary, and have
as their foundation a so-called verbalizer module that deterministically translates the KG
into natural language sentences. Such verbalizations can then either be used as input to
build question-answering fine-tuning corpora for LLMs, or they can be composed to retrieve
the NL explanation of how a certain result was derived in the chase, which can then be
injected into the LLM to achieve more fluent explanations that, in industrial applications,
represent readable business reports. Indeed, these integrations can potentially enable a proper
neuro-symbolic reasoning behavior by combining unstructured information with internal
business rules to derive novel knowledge.

Reasoning Use Cases. To support our discussion, let us consider two scenarios involving a
financial Enterprise Knowledge Graph. Specifically, we refer to an ownership KG, where the
extensional component consists of Owns relationships, as depicted in Figure 4.

0.56

0.62

0.23

0.51
0.12

0.27

0.13

0.12

0.32
A

C

E

D

F G

…

…
B

Figure 4 Portion of ownership knowledge graph. Nodes are companies. Solid edges are owns
relationships with their shares.

On top of the KG, we can formalize an intensional component into Vadalog rules, which
augment the graph with new knowledge in the form of novel edges.

▶ Example 2 (Company Control). This scenario allows analysts to understand who has
decision power in companies, based on who controls the majority of votes, in a “one-share
one-vote” assumption. To this end, the task augments the ownership graph with “control”
edges, as follows [41]: A company x directly owning s shares of a company y, controls such
shares via y itself (rule σ4). If x controls a company z and z owns s shares of y, then x

controls s shares of y via z (rule σ5). Finally, if x controls the majority of the shares of y,
directly or indirectly, then x controls y (rule σ6).

Owns(x, y, s)→ ControlledShares(x, y, y, s) (σ4)
Control(x, z),Owns(z, y, s)→ ControlledShares(x, z, y, s) (σ5)

ControlledShares(x,_, y, s), ts = sum(s), ts > 0.5→ Control(x, y) (σ6)
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▶ Example 3 (Close Link). Integrated ownership refers to the total stake a single entity
holds in another entity, considering both direct and indirect ownership throughout the
graph, with finite or infinite paths [52]. The value of integrated ownership I is calculated as
limϵ→0

∑
Pi∈Bϵ

wϵ(Pi), where Bϵ is the set of all paths P = [x, p1, . . . , pk, y] in the ownership
graph such that x ̸= pi for i = 1, . . . , k, and where wϵ(P ) = Π(pi,pj)∈Pw(pi, pj) > ϵ, with
w(pi, pj) representing the direct ownership of pi on pj , ϵ ∈ R+, and 0 < ϵ ≤ 1. Note
that integrated ownership differs from simple ownership used in Example 2. Applying this
formulation to the regulation of the European Central Bank [34], we can say that x is in
close link with y if: (i) the integrated ownership of x on y is at least 20% (rule σ7); (ii) y is
in close link with x (rule σ8); (iii) there is a third company z, whose integrated ownership on
x and y is at least 20% (rule σ9).

IntOwns(x, y, s), s > 0.2→ CloseLink(x, y) (σ7)
CloseLink(x, y)→ CloseLink(y, x) (σ8)

IntOwns(x, y, s1 ), IntOwns(x, z, s2 ), s1 > 0.2, s2 > 0.2,
x ̸= y, x ̸= z, y ̸= z → CloseLink(y, z) (σ9)

The result of the application of the above Vadalog rules to the excerpt of the ownership
Knowledge Graph is shown in Figure 5. In the rest of the section, we will provide an
overview of how KGLM operates to address the two LLM-EKG synergies introduced, namely,
chase-based LLM fine-tuning and chase-based explanation retrieval. Figure 3 illustrates the
high-level pipeline of the framework.
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0.51
0.12

0.27

0.13

0.12

0.32
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Figure 5 Portion of ownership knowledge graph from Figure 4 augmented with new edges by
reasoning on the scenarios from Example 2 and 3. Nodes are companies. Solid edges are owns
relationships with their shares (int owns omitted to avoid clutter). Dashed edges respectively denote
control relationships (orange, directed) and close links (purple, undirected).

3.1 Chase-based LLM Fine-tuning
The goal of this KGLM task is to synthesize question-answering fine-tuning corpora that
cover the entire “reasoning space” of the domain of interest, conveying domain-specificity and
provenance-awareness to the LLM. Algorithm 1 and Algorithm 2 provide the pseudo-code
describing the task, corresponding to the left path of the pipeline in Figure 3.

The first step consists in the execution of the ontological reasoning task of interest with
the Vadalog system. Given an extensional knowledge D and the set Σ of Vadalog rules
encoding the domain knowledge as the intensional component, the KG is built by augmenting
D with the new inferred edges. Consequently, the corresponding chase graph Σ(D) is
generated (line 2 Algorithm 1). In the presence of results deriving from the application of

Tannen’s Festschrift
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Algorithm 1 Reasoning and plan verbalization in KGLM.
1: function ReasoningAndPlanVerbalization(D,Σ, glossary)
2: chase ← Vadalog.reason(D,Σ) ▷ chase generation
3: aggrChase ← ∅
4: for each step in chase do ▷ chase aggregation
5: stepAggrContrib ← ∅
6: if hasAggregate(step.getRule()) then
7: stepAggrContrib ← collectAggrContributors(step, chase)
8: aggrStep ← aggregateStep(step, stepAggrContrib)
9: aggrChase ← verbChase ∪ {aggrStep}

10: verbRules ← verbalizeRules(Σ, glossary) ▷ rules verbalization
11: verbPlan ← verbalizePlan(Σ.getLogicPlan(), verbRules)
12: return (aggrChase, verbPlan)

Algorithm 2 Chase-based LLM fine-tuning task in KGLM.
1: function ChaseBasedFineTuning(aggrChase, verbPlan,model, threshold)
2: tokenizedCorpus ← filter(generate(verbPlan)) ▷ tokenized corpus generation
3: chaseCorpus ← ∅
4: for each aggrStep in aggrChase do ▷ chase corpus generation
5: chasePromptResp ← map(tokenizedCorpus, aggrStep)
6: chaseCorpus ← chaseCorpus ∪ {chasePromptResp}
7: for each pair ⟨prompt, resp⟩ in chaseCorpus do ▷ quality-driven optimization
8: qualityScore ← checkQuality(⟨prompt, resp⟩)
9: if qualityScore ≤ threshold then

10: chaseCorpus ← chaseCorpus \ {⟨prompt, resp⟩}
11: else
12: chaseCorpus ← chaseCorpus ∪ paraphrase(⟨prompt, resp⟩)
13: fineTuningCorpus ← postprocess(chaseCorpus)
14: fineTunedModel ← fineTune(model,fineTuningCorpus) ▷ model fine-tuning
15: return fineTunedModel

aggregation functions, the chase is further processed to collect all the contributors that
led to the resulting aggregated value by unfolding the corresponding path of chase steps
altogether [2, 9] (line 9 Algorithm 1).

Here, as previously introduced, our framework uses a verbalizer component to transform
Σ into a set of natural language sentences via a deterministic transformation. To achieve
this, the verbalizer is equipped with a domain glossary, containing descriptions of the terms
and predicates involved in the rules (line 10 Algorithm 1). In the case of the company control
scenario introduced in Example 2, the glossary in Figure 6 could be employed.

Predicate Description
Owns(x, y, s) <x> owns <s> shares of <y>

ControlledShares(x, z, y, s) <x> controls <s> of <y> via <z>
Control(x, y) <x> controls <y>

Figure 6 Domain glossary for the company control scenario.
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Plan Parts Verbalized Plan Tokenized Corpus Fine-Tuning Corpus

𝑂𝑤𝑛𝑠 𝑥, 𝑦, 𝑠 →
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑𝑆ℎ𝑎𝑟𝑒𝑠

𝑥, 𝑦, 𝑦, 𝑠
↓

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑𝑆ℎ𝑎𝑟𝑒𝑠
𝑥, 𝑦, 𝑦, 𝑠 ,

ts = sum s ,
ts > 0.5

→ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝑥, y)

Since <x> owns <s> shares of 
<y>, then <x> controls <s> of 

<y> via <y>. Since <x> 
controls <s> of <y> via <y> 
and <ts> is the sum of <s> 

and <ts> is higher than 0.5, 
then <x> controls <y>

Q1: How does <x> exercise
control over <y>?

A1: <x> controls <y> as it 
owns <s> shares, 

which is the majority

Q1: How does A exercise 
control over B?

A1: A controls B as it 
owns 0.56 shares, 

which is the majority
Q2: How does <x> have a 

majority over <y>?
A2: <x> controls <y> because it 
owns a total combined number 

<ts> of its shares, 
through its subsidiaries

Q2: How does A have a 
majority over C?

A2: A controls C because it 
owns a total combined number 

0.62 of its shares, 
through its subsidiaries

… … …

𝐼𝑛𝑡𝑂𝑤𝑛𝑠 𝑥, 𝑦, 𝑠 ,
𝑠 > 0.2

→ 𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑛𝑘(𝑥, 𝑦)

Since <x> has an integrated 
ownership of <s> over <y>, 

and <s> is over 0.2, then <x> 
and <y> are in close link

Q1: Are <x> and <y> 
in a close link relationship?

A1: <x> and <y> are in a close link 
relationship, as the integrated 

ownership <s> of <x> over <y> is 
higher than 0.2

Q1: Are B and D 
in a close link relationship?

A1: B and D are in a close link 
relationship, as the integrated 
ownership 0.51 of B over D is 

higher than 0.2
… … …

𝑂𝑝𝑒𝑛 𝑥, 𝑦, 𝑡! ,
¬ 𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑙𝑜𝑠𝑒𝑑 𝑡!
→ 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑥, 𝑦, 𝑡!)

↓
𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑥, 𝑦, 𝑡! ,
𝑃𝑟𝑖𝑐𝑒 𝑝!, 𝑡! ,
𝑘 = 𝑦 ∗ 𝑝!

→ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥, 𝑦, 𝑘, 𝑡!)

Since the trader <x> at time 
<𝑡!> sends an order to open 
a position of size <y> and it 

is not true that <𝑡!> is a 
time when the market is 

closed, then the order of size 
<y> by <x> is accepted at 

time <𝑡!>. Since the order of 
size <y> by <x> is accepted 

and the price is <𝑝!> at time 
<𝑡!>, then <x> holds a 

position of size <y> and 
notional <k> at time <𝑡!>

Q1: When did <𝑥> send 
an order to open a position 

with notional <𝑘>?
A1: The order to open that 

position was sent at time <𝑡!> 

Q1: When did EGTech send 
an order to open a position 

with notional 37.2?
A1: The order to open that 
position was sent at time 1

Q2: Why was the order 
sent by trader <𝑥> 

at time <𝑡!> accepted?
A2: Because at time <𝑡!> 

the market was open

Q2: Why was the order 
sent by trader EGTech
at time 1 accepted?

A2: Because at time 1 
the market was open

… … …

Figure 7 Generation of domain-specific corpora from scenarios in Examples 1-3 for LLM fine-
tuning. Parts of interest of the plan are extracted, verbalized and passed to an LLM for generating
the Q&A pair. Then, based on the actual chase graph, the final corpus is generated.

The NL translation of the rules leverages the select-project-join semantics, rewriting logic-
based rules into textual “since-then closures”. All Vadalog syntactic elements are converted
into their textual counterparts. Conjunctions are rendered as “and” tokens, built-in operators
are represented with specific keywords, e.g., > becomes “is higher than”, and the same occurs
for aggregations, e.g., x = count(y) becomes “x is the total number of y”, etc. Moreover,
rule variables are converted into tokens acting as placeholders. For instance, with respect
to Example 2, the rule Owns(x, y, s)→ ControlledShares(x, y, y, s) (rule σ4) is verbalized as:
“Since < x > owns < s > shares of < y >, then < x > controls < s > of < y > via < y >”.

Then, with the verbalization of the rules available, we can generate a fine-tuning corpus
to train an LLM to answer novel questions, which might relate to simple information retrieval
tasks or more complex ones, i.e., involving an effort toward reasoning on novel input data. To
generate the fine-tuning corpus, we exploit the effectiveness of powerful pre-trained LLMs [17],
such as GPT-4 and Llama 2, in text understanding and manipulation capabilities. In fact,
we can ask it to act as a human agent and synthesize a set of possible prompt-response pairs
based on an input text. Note that here we have two goals: 1) minimizing the number of “calls”
to the LLM, for cost- and time-efficiency reasons; 2) avoiding any ground value (coming
from the EKG) being disclosed to the LLM, for data protection reasons. Thus, we leverage
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the regularity of logical languages and resort to a lifting technique based on the creation
of a logic plan out of Σ (line 11 Algorithm 1). Intuitively, a plan is the equivalent in our
context of a database execution plan and can be seen as the dependency graph of the rules
of Σ, where nodes represent rules and edges stand for head-body dependencies (similarly, at
a high level, to Vadalog’s processing pipeline introduced in Section 2). By sending natural
language excerpts of the plan, obtained from the aggregation of the verbalized rules, we can
automatically generate a corpus of tokenized question-answers, which capture the knowledge
encoded in the rules and their interconnections (line 2 Algorithm 2). With such an approach,
we achieve a corpus generation pipeline that is cost- and time-effective and that protects
confidential data. The tokenized set of prompt-response pairs is then passed on to filters,
which discard low-quality pairs. For instance, pairs in which the LLM generates new tokens
are discarded. Such a step could also resort to a human-in-the-loop approach: in fact, as the
pairs are a finite and relatively small set of templates, a validator could be hired to discard
non-informative ones.

Finally, we materialize the actual fine-tuning corpus via the chase graph. For each new
fact derived from chase procedure, we look up the corresponding verbalized portion of the
plan and the tokenized corpus pairs. Each pair is instantiated by mapping the tokens to the
corresponding constant arguments of the fact (line 4 Algorithm 2). In Figure 7, we provide
some examples of tokenized corpora and their instantiations over artificial data for each of our
presented use cases. The corpus undergoes a more thorough quality check where each pair is
filtered according to a BERT-score-based scoring model that returns a so-called R-score, to
evaluate generated text on coherence and factual consistency with the input text [65] (line 7
Algorithm 2). The threshold under which a pair is dropped can be selected by the user. The
filtered-in pairs are enhanced via NLP paraphrasing to improve generalization, cleansed with
additional post-processing procedures, and finally injected into the LLM for domain-specific
question-answering fine-tuning (line 14 Algorithm 2).

3.2 Chase-based Explanation Retrieval
The chase-based fine-tuning discussed above enables us to inject into the LLM the awareness
of the full domain of interest, encapsulating both factual data and the logical connections
between them in the form of provenance. However, due to the closed-book nature of the
approach [57], we empirically observed how the fine-tuned model alone is not able to effectively
address complex questions regarding why and how a certain fact exists in the augmented
KG. Indeed, answering such explanatory questions often involves composing back along the
provenance paths that led, from extensional facts, to infer intensional ones in the reasoning
process. To address this, we extended KGLM with a dedicated module that supports the
LLM in correctly handling such questions by retrieving the chase-based explanations and
injecting them into the model to enrich its answers. Algorithm 1 and Algorithm 3 provide the
pseudo-code describing the task, corresponding to the right path of the pipeline in Figure 3.

The procedure assumes that the first steps, introduced in the context of the LLM fine-
tuning task, have already occurred. The reasoning task was performed by Vadalog (line 2
Algorithm 1), the chase graph was generated, contributors to aggregations were collected
(line 9 Algorithm 1), and the logic plans were translated into combinations of natural language
sentences corresponding to the rules in Σ (line 11 Algorithm 1).

Now, let us consider a user interacting with the KG and asking questions about a possible
explanation of generated facts. As summarized in Figure 8, this can be performed by either
selecting the corresponding edge of the KG or in NL with a prompt-based interaction,
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Algorithm 3 Chase-based LLM explanation retrieval task in KGLM.
1: function ChaseBasedExplRetrieval(chase, verbPlan,model, glossary, query)
2: fact ← extractFact(model, query, glossary) ▷ queried fact extraction
3: factStep ← extractStep(chase, fact)
4: explanationSubgraph ← {factStep}
5: predecessors ← {factStep}
6: while not predecessors.isEmpty() do ▷ explanation subgraph creation
7: currentStep ← predecessors.dequeue()
8: currentPreds ← getPredecessors(currentStep, chase)
9: for each predStep in currentPreds do

10: if not predStep in explanationSubgraph then
11: explanationSubgraph ← explanationSubgraph ∪ {predStep}
12: predecessors.enqueue(predStep)
13: detExplanation ← concatenate(map(verbPlan, explanationSubgraph))
14: refExplanation ← model.refine(detExplanation)
15: return model.answer(query, refExplanation)

depending on the application KGLM is running into. In both cases, the LLM can extract
from the question the corresponding fact of interest, whose explanation is requested by
leveraging the model’s acquired knowledge of the KG and the glossary (line 2 Algorithm 3).

Selection of the 
edge to explain

Direct Graph 
Selection

Prompt NL 
Interaction

A

C
"How does company A exert 

control over company C?"

Figure 8 Possible interactions with KGLM to select facts to explain.

At this point, the actual retrieval process begins. First, the chase step that led to
the inference of the fact is identified in the chase graph (line 3 Algorithm 3). As we are
interested in the full explanation of the fact, we then perform a back-composition along the
provenance paths (according to the previously mentioned unfolding approach [2, 9]), from
the fact of interest up to the extensional ones that began such sequences of rule activations
during the reasoning process. The result is an explanation subgraph of the chase graph,
featuring both the facts and the activated rules in the paths (line 6 Algorithm 3). For
instance, let us consider the portion of ownership KG in Figure 5, augmented with control
edges derived from the reasoning task. Now, we may wonder “How does company A exert
control over company C?” and submit such a request to KGLM as an NL prompt-based
interaction. First, the LLM identifies the fact “Control(A,C )” of interest. Once the fact
has been correctly identified, the corresponding trace is retrieved from the chase graph, as
shown in Figure 9.

Next, we leverage the previously generated verbalized plan, mapping its tokens to the
corresponding constant arguments of the facts in the subgraph. By concatenating the
resulting verbalized chase steps, we obtain the deterministic NL explanation of the fact
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Figure 9 An instance of explanation subgraph for the company control scenario.

of interest as a sequence of “Since {body}, then {head}” sentences (line 13 Algorithm 3).
Note that the final order of the verbalizations reflects the breadth-first traversal of the graph
and thus respects logical dependency. However, the explanation produced by the verbalizer
can be long, complex, and hard to read, especially in the presence of complex provenance
paths. For instance, continuing with our example, we get the following explanation for fact
“Control(A,C )”: “Since A owns 0.56 shares of B, then A controls 0.56 of B via B. Since A
controls 0.56 of B via B and 0.56 is higher than 0.5, then A controls B. Since A controls B
and B owns 0.62 shares of C, then A controls 0.62 of C via B. Since A controls 0.62 of C
via B and 0.62 is higher than 0.5 then A controls C”. To make it more understandable, we
leverage the text manipulation capabilities of our model, improving fluency and clarity of the
result. By prompting the LLM with the following request: “Please produce a more readable
version of the explanation: . . . ”, we achieve a refined report that is highly accurate in content
and comprehensible (line 14 Algorithm 3). For instance, the above explanation becomes:
“A’s direct ownership of 0.56 of B translates to its control over B. With B’s ownership of
0.62 of C, A, through B, also controls 0.62 of C. As the percentage exceeds 0.5, A effectively
controls C”. Finally, the explanation is passed to our domain-aware model, acting as KG
interface, to answer the original user question (line 15 Algorithm 3).

4 KGLM Integration for Financial Applications

We recently introduced KG-Roar [13], a framework we created to showcase ontological
reasoning with Vadalog on real-world cases that can be suitably modeled with a KG. It
consists of a web-based environment designed for the interactive development and navigation
of logical KGs derived from augmenting an input graph database with intensional definitions
of new nodes and edges in the form of Vadalog programs. Such programs are user-defined
or pre-built code snippets encapsulated in reasoning widgets (as illustrated in Figure 10),
and act as a metaphor for capturing and integrating business-specific knowledge into the KG,
thus enriching its representational power. Indeed, KG-Roar offers an interactive productivity
environment where the user can select widgets of interest and augment the KG interactively
at runtime with new knowledge thanks to the scalability and responsiveness of the underlying
Vadalog reasoning engine. A virtual representation of the KG is provided in an interactive
visualization window within the environment. The goal of KG-Roar is to enable users to
perform complex analyses, seamlessly building, browsing, and querying even complex and
large knowledge graphs, such as the European ownership KG of financial companies.

KGLM in KG-Roar. To support such a purpose, we enrich the KG-Roar environment
with the KGLM framework presented in the previous section. Going beyond the visual
representation of the derived edges in the KG, often unsatisfactory as missing the actual
motivation for their existence (i.e., their provenance), we provide users with a knowledge pal
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that enables natural language-based interactions with the underlying KG. Specifically, such
an agent acts as a chatbot, standing upon Llama 2-70B models that are specialized in the
domain of interest by leveraging KGLM’s chase-based fine-tuning corpora. Depending on
the nature of the user question, it performs distinct actions to provide the answer.

In case of descriptive queries, i.e., questions that are focused on investigating the specifics
of a certain fact in the KG, the knowledge pal leverages the expertise of the domain,
acquired via fine-tuning, and the verbalized rules provided in a RAG-like mechanism to
generate the answer. For instance, in the context of Example 1, to the question “What
is the notional of EGTech’s position at time 1?”, it responds with “EGTech’s notional
at time 1 is 37.2$, equal to the product between 124$, the price of the asset at that time,
and 0.3, the size of the opened position”.
In case of explanatory queries, i.e., more complex questions that are focused on investig-
ating why a certain fact exists in the KG (that is, its provenance), the knowledge pal
retrieves the full chase-based explanation of the fact from KGLM, further enhancing
its readability and providing it to the user as an accurate business report. For instance,
in the context of Example 1, to the question “How does EGTech make profits from its
trading activity?”, it responds with “By opening a position of size 0.3 at time 1, having
the position accepted with an initial price of 124$ and a notional of 37.2$ at time 1, and
then closing it at time 9 with a final price of 147$, thus achieving a profit of 6.9$”.

Let us consider the application of the company control scenario from Example 2 and the close
link one from Example 3 to showcase KGLM’s integration into KG-Roar. As previously
mentioned, KGLM supports the selection of the fact to explain from the corresponding edge
in the knowledge graph. Thus, it is possible to click on an edge in the visualized KG to
request the corresponding explanation, as illustrated in Figure 11. In the presence of highly
connected KGs, such as the one in Figure 12, the visual exploration becomes less intuitive
and the request can directly be prompted in NL to the knowledge pal. In both cases, the
generated response will be presented in a dedicated box that can be interactively explored
by highlighting tagged entities both in the text and in the visualized KG, and KG-Roar
will zoom in on the portion of the graph involved.

Figure 10 Financial use cases in the form of executable widgets.
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Figure 11 Instance of explanation panel for company control use case via direct graph selection.

Figure 12 Instance of explanation panel for close link use case via prompt NL interaction.

5 Conclusion

In today’s industrial landscape, we observe an increasingly pressing demand for AI applications
to sustain transparency, fairness, and accountability of decision-making processes, especially
in high-stakes domains like finance and bio-medicine. To achieve this, novel neuro-symbolic
solutions are rising to bridge the gap between the opaque nature of ML-based technologies
such as LLMs and the required human-interpretable provenance of their responses.

In this paper, we strived to contribute to such a paradigm shift by presenting KGLM, the
first, to the best of our knowledge, neuro-symbolic pipeline that enhances LLMs with domain-
specific knowledge and provenance-based explainability by leveraging the inherent domain-
awareness of Knowledge Representation and Reasoning methodologies at the foundation
of the Vadalog system. Capitalizing on our experience in the financial field, we built a
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framework that can act as a natural language interface to Enterprise Knowledge Graphs,
empowering business analysts to investigate the rationale behind data investigation performed
via reasoning tasks in a human-oriented fashion. We also integrated our solution into a
well-established KG environment for financial tasks, KG-Roar, which allows such users to
conduct graph-based data analysis, now enhanced by the possibility of interacting with them
in natural language. By further leveraging provenance information, we also aim to expand
our KGLM framework in future works, injecting reasoning capabilities into Large Language
Models in a chain-of-thought fashion to directly reason over EKGs, possibly enriched by
additional unstructured data. We believe that such contributions could become significant
assets for organizations, enabling them to harness the advanced capabilities of LLMs without
sacrificing the clarity and accountability of informed decision-making processes.
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