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Abstract
Comprehension syntax is widely adopted in modern programming languages as a means for manipu-
lating collection types. This paper proves that all subquadratic algorithms which are expressible in
comprehension syntax, do not compute low-selectivity joins. As database systems support these
joins efficiently, this confirms an intensional expressiveness gap between comprehension syntax and
relational database systems. The proof of this intensional expressiveness gap relies on a “limited-
mixing” lemma which states that subquadratic algorithms expressible using comprehension syntax
have limited ability for mixing atomic objects in their inputs.
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1 Overview

Query languages based on comprehension syntax are able to express all relational queries
supported by typical database systems [4, 22]. Moreover, queries written in comprehension
syntax are appealingly simple [3]. So, comprehension syntax has become widely regarded as
a means for embedding collection-type querying capabilities into programming languages.
However, join queries expressed in comprehension syntax in these programming languages
are generally compiled into nested loops. This implies such queries typically have quadratic
or even higher time complexity when they are expressed by means of comprehension syntax.

In contrast, in relational database systems, even in the absence of indices, when joins have
low selectivity, these joins often have O(n log n) time complexity based on (sort-)merge-join
algorithms [2]. And when the input relations are pre-sorted on their join attributes in a
low-selectivity join, a merge-join can even be realised with linear time complexity by skipping
the sorting steps.
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11:2 An Intensional Expressiveness Gap of Comprehension Syntax

Therefore, there is a potential intensional expressiveness gap between algorithms that can
be realised by comprehension syntax and those used in database systems, such as algorithms
for low-selectivity joins. Consequently, despite the syntactic naturalness of comprehension
syntax, one might say it fails as a genuine naturally embedded query language. Nonetheless,
this gap has not been formally proven.

The main objective of this paper is to prove that this intensional expressiveness gap
indeed exists. The proof goes via a “limited-mixing” lemma on N RC1(≤). On ordered data
types, N RC1(≤) is equivalent to the flat relational algebra or first-order logic [22]. More
pertinently, there is a simple translation between comprehension syntax and N RC1(≤), and
this translation preserves time complexity. This makes N RC1(≤) a suitable ambient query
language for investigating the potential intensional expressiveness gap between comprehension
syntax and typical database systems.

The limited-mixing lemma states that all N RC1(≤) queries of subquadratic time com-
plexity are only able to mix atoms in their input relations in very limited ways. So, these
subquadratic-complexity queries cannot be low-selectivity joins. This limited-mixing lemma
is non-query specific and is applicable even when ordered data types are present. It thus
considerably enriches the available theoretical tools for studying intensional expressive power,
as these tools are often query specific and are inapplicable in the presence of ordered data
types. It is also a useful intensional counterpart to Gaifman’s locality property [8]. Gaifman’s
locality is very useful for analyzing extensional expressiveness of first-order query languages
on unordered data types, but is inapplicable to ordered data types.

This chapter is organized as follows. Section 2 presents N RC1, its operational semantics,
rewrite rules and the induced normal forms. Section 3 states and proves the limited-mixing
lemma. Section 4 leverages the limited-mixing lemma to prove the main result that all
implementations of zip, which is a prototypical linear-time low-selectivity join, in N RC1
have at least quadratic time complexity. This confirms the intensional expressive power gap
between comprehension syntax and relational database systems. Finally, Section 5 provides
discussion on the intensional expressiveness gap and how the gap could be addressed.

2 Nested Relational Calculus

The restriction of the nested relational calculus N RC from Buneman et al. [4] and Wong [22]
to flat relations is used as the ambient language here. N RC is equivalent to the usual nested
relational algebra [4, 22]. Its restriction to flat relations, denoted here as N RC1, is equivalent
to flat relational algebra and first-order logic [22]. This ambient language, and its operational
semantics and rewrite rules, are described below.

2.1 Types and expressions
The types and expressions of N RC are given in Figure 1. The type superscripts in the figure
are omitted when there is no confusion. For simplicity, all variable names are assumed to be
distinct. For convenience, all data types are endowed with an order; this query language is
denoted as N RC(≤).

The semantics of a type is just a set of objects built up by nesting sets and records of
base-type objects. Base types are denoted by b (representing atomic values in a database).
An object of type s1 × · · · × sn is a tuple (i.e., a record) whose ith component is an object
of type si, for 1 ≤ i ≤ n. An object of type {s} is a finite set whose elements are objects
of type s; an object of type {s} is called a set or a “relation.” Moreover, if s = b × · · · × b,
then an object of type {s} (or s) is called a “flat relation.” However, if s contains some set
brackets, then an object of type {s} is called a “nested relation.”
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Types in N RC

s ::= b | s1 × · · · × sn | {s}
where b is a base type.

Expressions in N RC

Cs : s xs : s

e1 : s1 . . . en : sn

(e1, . . . , en) : s1 × · · · × sn

e : s1 × · · · × sn

e.πi : si
1 ≤ i ≤ n

{}s : {s}
e : s

{e} : {s}
e1 : {s} e2 : {s}

e1 ∪ e2 : {s}
e1 : {s} e2 : {t}⋃
{e1 | xt ∈ e2} : {s}

true : B false : B
e1 : B e2 : s e3 : s

if e1 then e2 else e3 : s

e1 : s e2 : s

e1 < e2 : B
e1 : s e2 : s

e1 = e2 : B
e : {s}

e isempty : B

Figure 1 N RC.

The expression constructs are defined as follows. The expression C denotes objects,
including constants of base types b; the syntax for C will be given in the next subsection.
The expression (e1, . . . , en) forms a tuple whose ith component is the object denoted by ei,
for 1 ≤ i ≤ n. The expression e.πi extracts the ith component of the tuple e. The expressions
{}, {e}, and e1 ∪ e2 have their conventional meaning as set operations. The expression⋃

{e1 | x ∈ e2} forms the set obtained by first applying the function f(x) = e1 to each object
in the set e2 and then taking their union; that is,

⋃
{e1 | x ∈ e2} = f(C1) ∪ . . . ∪ f(Cn),

where f(x) = e1 and {C1, . . . , Cn} is the set denoted by e2.
Besides the object types and their expression constructs above, N RC also has the Boolean

type B as a base type, and the expression constructs true, false, and if e1 then e2 else e3,
which have their conventional meaning as Boolean values and conditional expression. Lastly,
the expression e1 < e2 provides a linear ordering on objects of the same type; the expression
e1 = e2 checks whether the objects denoted by e1 and e2 are the same; and the expression
e isempty checks whether the set denoted by e is empty.

The emptiness test e isempty, the equality test e1 = e2, and the ordering test e1 < e2
are provided for every type s solely for convenience. They are actually defined in terms of
the tests on base types b. In particular, the linear ordering on any arbitrarily deeply nested
combinations of record and set types can be lifted – in a manner definable by N RC – from
the linear ordering on each base type b as follows [13]: for tuple types s1 × · · · × sn, it is
defined pointwise lexicographically; and for set types {s}, it is defined a la Wechler [21]
based on the Hoare ordering (viz. X ≤ Y iff for all x ∈ X − Y , there is y ∈ Y − X, such
that x ≤ y).

The notation x ∈ e2 in the
⋃

{e1 | x ∈ e2} construct is an abstraction that introduces
the variable x whose scope is the expression e1. That is, it is part of the syntax and is not a
membership test. This construct is the sole means in N RC for iterating over a set.

Tannen’s Festschrift



11:4 An Intensional Expressiveness Gap of Comprehension Syntax

If a variable appearing in an expression e is not introduced by a subexpression of the form⋃
{e1 | x ∈ e2} in e, it is called a free variable of e. When it is necessary to explicitly indicate

the free variables of an expression, we write e(x1, ..., x2) or e(x⃗). An expression e(x⃗), with
free variables x⃗ can be regarded as a function f(x⃗) = e(x⃗). When it is desirable to distinguish
the free variables local to a subexpression e(x⃗, X⃗) of an expression e′(X⃗), uppercase is used
for the free variables of the entire expression while lowercase is used for other free variables of
the subexpression. Also, an expression e having no free variable is called a closed expression.

When objects C⃗ have the same types as the free variables x⃗ of an expression e(x⃗), the
expression obtained by replacing each variable xi in x⃗ in e(x⃗) by the corresponding Ci in C⃗

is denoted as e[C⃗/x⃗]. The result of applying e(x⃗) as a function to C⃗ is denoted by e(C⃗). To
make notations lighter, e(C⃗) is sometimes also used to denote the expression e[C⃗/x⃗]; however,
this usage is generally eschewed in proofs.

A “pattern-matching” construct
⋃

{e1 | (x1, . . . , xn) ∈ e2} is used for convenience. It is a
syntactic sugar for

⋃
{e1[x.π1/x1, . . . , x.πn/xn] | x ∈ e2}. There is also an easy mechanical

translation [3, 22] between the syntax of N RC and comprehension syntax of the form
{e | δ1, . . . , δn} where each δi either has the form x⃗i ∈ ei or the form ei. The translation is
as follows:

{e | x⃗1 ∈ e1, ∆} =df

⋃
{{e | ∆} | x⃗1 ∈ e1};

{e | e1, ∆} =df if e1 then {e | ∆} else {}; and
{e | } =df {e}.

Comprehension syntax is used here to write examples, but the reader should understand
these examples as syntactic sugars of the actual N RC expressions.

▶ Example 1. All relational queries [5] are expressible in N RC.
Πi X =df {x.πi | x ∈ X} is the relational projection;
σd X =df {x | x ∈ X, d(x)} is the relational selection;
X ▷◁ Y =df {(x, y) | (u, x) ∈ X, (v, y) ∈ Y , u = v} is the relational join;
X ∩ Y =df {x | x ∈ X, not {y | y ∈ Y , y = x} isempty} is the relational intersection.
X − Y =df {x | x ∈ X, {y | y ∈ Y , y = x} isempty} is the relational difference; and
X ÷ Y =df {x | (x, y) ∈ X, Y ⊆ {y′|(x′, y′) ∈ X, x′ = x}}, where Y ⊆ Y ′ =df

Y − Y ′ isempty, is the relational division.

▶ Example 2. N RC can also express nested relational operations [20].
unnest R =df {(x, y)| (X, y) ∈ R, x ∈ X} unnests the nested relation R; and
nest R =df {({x | (x, y) ∈ R, y = v}, v) | (u, v) ∈ R} creates a nested version of a relation
R, which groups values in the first column of R by values in the second column of R.

Let N RC1 denote the fragment of N RC where expressions are restricted to flat relation
types. That is, in N RC1, every (sub)expression e(x1, ..., xn) : s where xi : si for 1 ≤ i ≤ n,
the types s, s1, ..., sn are all flat relations. It is known that N RC enjoys the conservative
extension property [22]; thus, N RC(≤) and N RC1(≤) express the same functions on flat
relations, and are equivalent to flat relational algebra or first-order logic with ordering
FO(≤).

▶ Proposition 3. N RC(≤), N RC1(≤), and FO(≤) have the same extensional expressive
power on flat relations.

An expression e(x⃗) in N RC can always be turned into an expression e′(y⃗, x⃗) such that
no constants or objects appear in it. This can be obtained by introducing fresh free variables
y⃗ and replacing each object Ci in e(x⃗) by the variable yi; then e′[C⃗/y⃗](x⃗) = e(x⃗). So, for
simplicity, and without loss of generality, only constant-free expressions are considered when
results are stated and proved in this paper.
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C ⇓ C

e1 ⇓ C1 . . . en ⇓ Cn

(e1, . . . , en) ⇓ (C1, . . . , Cn)
e ⇓ (C1, . . . , Cn)

e.πi ⇓ Ci
1 ≤ i ≤ n

{} ⇓ {}
e ⇓ C

{e} ⇓ {C}
e1 ⇓ C1 e2 ⇓ C2

e1 ∪ e2 ⇓ C1 ⊕ C2

e2 ⇓ {C1, . . . , Cn}
e1[C1/x] ⇓ C′

1 · · · e1[Cn/x] ⇓ C′
n⋃

{e1 | x ∈ e2} ⇓ C′
1 ⊕ · · · ⊕ C′

n

true ⇓ true false ⇓ false

e1 ⇓ true e2 ⇓ C

if e1 then e2 else e3 ⇓ C

e1 ⇓ false e3 ⇓ C

if e1 then e2 else e3 ⇓ C

e1 ⇓ C1 e2 ⇓ C2

e1 < e2 ⇓ true C1 < C2
e1 ⇓ C1 e2 ⇓ C2

e1 < e2 ⇓ false C1 ̸< C2

e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ true C1 = C2
e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ false C1 ̸= C2

e ⇓ C

e isempty ⇓ true C = {} e ⇓ C

e isempty ⇓ false C ̸= {}

Figure 2 A call-by-value operational semantics of N RC.

2.2 Operational semantics
In order to discuss intensional expressive power, i.e. what algorithms are expressible, it is
necessary to know how an expression of N RC is executed. This is specified in Figure 2 as a
call-by-value operational semantics. A call-by-value operational semantics is widely adopted
in programming languages and has also been used for several variations of N RC in earlier
works [18, 19, 24] on intensional expressive power.

In Figure 2, the notation e ⇓ C means the closed expression e is evaluated to produce
the object C. The unique evaluation tree of e is denoted using the notation e ⇓. The “step”
complexity step(e ⇓) of an evaluation is defined as the time complexity of the largest node
in the evaluation tree – viz., step(e ⇓) = max{time(e′ ⇓ C ′) | the node e′ ⇓ C ′ occurs in
the evaluation tree of e ⇓. The time complexity time(e′ ⇓ C ′) of a node is the number of
branches that the node has. E.g., in Figure 2, time(

⋃
{e1 | x ∈ e2} ⇓ C ′

1 ⊕ · · · ⊕ C ′
n) = n + 1.

On the other hand, the time complexity time(e ⇓) of an evaluation is the sum of the time
complexity of all the nodes in the tree.

The syntax for objects C is as follows. A constant c of a base type b is an object of type
b. A tuple (C1, ..., Cn) is an object of type s1 × · · · × sn if each Ci is an object of type si.
An “enumeration list”, elist for short, {C1, ..., Cn} is an object of type {s} if each Ci is an

Tannen’s Festschrift



11:6 An Intensional Expressiveness Gap of Comprehension Syntax

object of type s. An elist {C1, .., Cn} can be thought of as a particular way of enumerating
the elements of the set that it represents, viz. C1 followed by C2, followed by C3, and so
on. There are as many distinct elists that represent the same set as there are distinct ways
to enumerate elements of that set, corresponding to different ordering and multiplicity of
appearances of its elements in the enumeration.

The notations C = C ′ and C == C ′ are used to refer to two notions of equality involving
elists. The notation C = C ′ means C are C ′ are the same objects when all the elists contained
in them (and objects therein) are interpreted as sets: thus, c = c′ iff c and c′ are the same
constant of a base type; (C1, ..., Cn) = (C ′

1, ..., C ′
n) iff Ci = C ′

i for 1 ≤ i ≤ n; and {C1, ...,
Cn} = {C ′

1, ..., C ′
m} iff for each 1 ≤ i ≤ n, there is 1 ≤ j ≤ m such that Ci = C ′

j , and for
each 1 ≤ j ≤ m, there is 1 ≤ i ≤ n such that Ci = C ′

j . The notation C == C ′ means C

and C ′ are the same objects when all the elists contained in them (and objects therein) are
interpreted as lists: thus, c == c′ iff c and c′ are the same constant of a base type; (C1, ...,
Cn) == (C ′

1, ..., C ′
n) iff Ci == Ci′ for 1 ≤ i ≤ n; and {C1, ..., Cn} == {C ′

1, ..., C ′
m} iff

n = m, and Ci == C ′
i for 1 ≤ i ≤ n.

In Figure 2, a constructor C ⊕ C ′ is used to produce the concatenation of two elists in
constant time; i.e. given C == {C1, ..., Cn} and C ′ == {C ′

1, ..., C ′
m}, C ⊕ C ′ == {C1, ...,

Cn, C ′
1, ..., C ′

m}. Also, ⊕ is always used in a right-associative manner; e.g., C ⊕ C ′ ⊕ C ′′

means C ⊕ (C ′ ⊕ C ′′). Note that while it is not a common practice to use a constant-time
concatenation constructor to represent lists, it has been used in e.g. the influential Kleisli
Query System [23] which is based on N RC.

Linear orderings < are available on all base types and are lifted to all types, as defined
earlier. With this, the subset of objects in “canonical form” can be defined as follows. A
constant c of any base type b is canonical. A tuple (C1, ..., Cn) is canonical if each Ci is
canonical. An elist {C1, ..., Cn} is canonical if for every 1 ≤ i, j ≤ n, it is the case that Ci is
canonical, Cj is canonical, and Ci < Cj iff i < j; a canonical elist is thus duplicate-free and
is sorted according to <. The notation canonize(C) denotes the unique canonical form of
the object C. Clearly, for C == {C1, ..., Cn} representing a flat relation, canonize(C) can
be produced in O(n log(n)) time.

The call-by-value operational semantics in Figure 2 does not perform canonization. This is
because canonization is not needed to guarantee the soundness of an evaluation in N RC(≤).

▶ Proposition 4 (Soundness). Suppose e(x⃗) : s is an expression in N RC, C⃗ are objects
having the same types as x⃗, and e[C⃗/x⃗] ⇓ C ′. Then e[C⃗/x⃗] = C ′.

The size of an object C can be defined in any reasonable way. One way is defining
size(C) as the number of symbols used to write C out. Another way, when C is an elist, is
defining size(C) as |C|, the length of the elist. Both notions of size can be generalized to
size(C⃗) =

∑
i size(Ci). The latter notion of input size is used by default. Then the time

complexity of an expression e(x⃗) can be defined in the usual way based on input size; i.e.
the time complexity of e(x⃗) is a function g : N → N where g(n) equals the maximum of
time(e[C⃗/x⃗] ⇓ C ′) over all inputs C⃗ of size at most n. Then, the time complexity is said to
be constant if g is Θ(1), linear if g is Θ(n), quadratic if g is Θ(n2), and polynomial if g is
Θ(nk) for some natural number k. The following is easily shown in a manner similar to [4,
Theorem 4.4].

▶ Proposition 5 (Polynomiality). Let e(x⃗) : s be an expression in N RC(≤). Then there is
a number k such that the time complexity of e(x⃗) is Θ(nk) where n denotes input size. In
particular, if the time complexity of e(x⃗) is sub-quadratic, then it must be either linear or
constant time; and if it is sub-linear, then it must be constant time. Furthermore, these
properties are retained when N RC is augmented by any additional functions that have
polynomial time complexity.
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⋃
{e | x ∈ {}} 7→ {}⋃

{e1 | x ∈ {e2}} 7→ e1[e2/x]⋃
{e | x ∈ (e1 ∪ e2)} 7→

⋃
{e | x ∈ e1} ∪

⋃
{e | x ∈ e2}⋃

{e1 | x ∈
⋃

{e2 | y ∈ e3}} 7→
⋃

{
⋃

{e1 | x ∈ e2} | y ∈ e3}⋃
{e | x ∈ (if e1 then e2 else e3)} 7→ if e1 then

⋃
{e | x ∈ e2} else

⋃
{e | x ∈ e3}

(e1, . . . , e2).πi 7→ ei

(if e1 then e2 else e3).πi 7→ if e1 then e2.πi else e3.πi

if true then e2 else e3 7→ e2

if false then e2 else e3 7→ e3

Figure 3 A system of rewrite rules for N RC.

2.3 Rewrite rules
Figure 3 shows a system of rewrite rules for simplifying N RC expressions. These rules have
been used in many previous works on N RC [22, 14, 15, 24]. These rules are easily shown to
be sound, and do not increase step complexity, and are strongly normalizing [22].

Although this system of rewrite rules does not increase step complexity, it can increase
time complexity. E.g., rewriting

⋃
{
⋃

{{(x, z)} | z ∈ Z} | x ∈ {
⋃

{{y.π1} | y ∈ Y }}} to⋃
{{(

⋃
{{y.π1} | y ∈ Y }, z)} |z ∈ Z} by the second rule in Figure 3, changes the time

complexity from O(|Y | + |Z|) to O(|Z| · |Y |).
Fortunately, the second rule in Figure 3 is the only rule that misbehaves this way. For

convenience of reference, the system of rewrite rules in Figure 3 is called the unrestricted
system. And when the second rule is excluded, it is called the restricted system.

▶ Proposition 6 (Normal form). Let e(X⃗) : s be an expression in N RC(≤), and C⃗ be objects
having the same types as X⃗.
1. e[C⃗/X⃗] == e′[C⃗/X⃗] if e 7→ e′.
2. step(e[C⃗/X⃗] ⇓) ≥ step(e′[C⃗/X⃗] ⇓) if e 7→ e′.
3. time(e[C⃗/X⃗] ⇓) ≥ time(e′[C⃗/X⃗] ⇓) if e 7→ e′ under the restricted system of rewrite rules.
4. The (un)restricted system of rewrite rules is strongly normalizing.
5. The unrestricted system of rewrite rules induces a normal form, wherein every subexpres-

sion of the form
⋃

{e1(y, x⃗, X⃗) | y ∈ e2(x⃗, X⃗)}, e2(x⃗, X⃗) must be one of the variables in
X⃗.

6. The restricted system of rewrite rules induces a normal form, wherein every subexpression
of the form

⋃
{e1(y, x⃗, X⃗) | y ∈ e2(x⃗, X⃗)}, e2(x⃗, X⃗) must be one of the variables in X⃗ or

e2(x⃗, X⃗) has the form {e3(x⃗, X⃗)}.

3 A limited-mixing lemma

An analysis of the normal form induced by the restricted system of rewrite rules yields a
useful limited-mixing lemma on N RC1(≤). The lemma is proved below, after some relevant
definitions are given.

A level-0 atom of an object C is a constant c which has at least one occurrence in C

that is not inside any elist in C. A level-1 atom of an object C is a constant c which
has at least one occurrence in C that is inside an elist which is not nested inside another

Tannen’s Festschrift



11:8 An Intensional Expressiveness Gap of Comprehension Syntax

elist in C. All other constants appearing in an object C are higher level atoms. The
notations atom0(C), atom1(C), and atom≤1(C) respectively denote the set of level-0 atoms
of C, the set of level-1 atoms of C, and their union. The level-0 molecules of an object
C are the elists in C that are not nested inside other elists. The notation molecule0(C)
denotes the set of level-0 molecules of C. E.g., suppose C = (c1, c2, {(c3, c4, {(c5, c6)})});
then atom0(C) = {c1, c2}, atom1(C) = {c3, c4}, atom≤1(C) = {c1, c2, c3, c4}, {c5, c6} are
higher-level atoms, and molecule0(C) = {{(c3, c4, {(c5, c6)})}}.

The level-0 Gaifman graph of an object C is defined as an undirected graph gaifman0(C)
whose nodes are the level-0 atoms of C, and edges are all the pairs of level-0 atoms of C.
The level-1 Gaifman graph of an object C is defined as an undirected graph gaifman1(C)
whose nodes are the level-1 atoms of C, and the edges are defined as follow: If C == {C1,
..., Cn}, the edges are pairs (x, y) such that x and y are in the same atom0(Ci) for some
1 ≤ i ≤ n; if C == (C1, ..., Cn), the edges are pairs (x, y) ∈ gaifman1(Ci) for some
1 ≤ i ≤ n; and there are no other edges. The Gaifman graph [8] of an object C is defined as
gaifman(C) = gaifman0(C) ∪ gaifman1(C).

It is shown below, by induction on the structure of N RC1(≤) expressions, that they
manipulate their inputs in highly restricted local manners. In particular, expressions which
have contant time complexity are unable to mix level-0 and level-1 atoms. And expressions
which have linear time complexity are able to mix level-0 atoms with level-0 and level-1
atoms, but are unable to mix level-1 atoms with themselves or with higher-level atoms.

▶ Lemma 7 (Limited mixing). Let e(X⃗) : s be an expression in N RC1(≤). Suppose objects
C⃗ have the same types as X⃗, and e[C⃗/X⃗] ⇓ C ′.
1. If e(X⃗) has constant time complexity, then

(i) atom0(C ′) ⊆ atom0(C⃗),
(ii) atom1(C ′) ⊆ atom≤1(C⃗),
(iii) gaifman(C ′) ⊆ gaifman(C⃗),
(iv) for each U ∈ molecule0(C ′), there are V0, V1, ..., Vm such that atom1(V0) ⊆
atom0(C⃗), Vj ∈ molecule0(C⃗) for each 1 ≤ j ≤ m, and U = V0 ∪ V1 ∪ · · · ∪ Vm.

2. If e(X⃗) has linear time complexity, then
(i) atom0(C ′) ⊆ atom0(C⃗),
(ii) atom1(C ′) ⊆ atom≤1(C⃗), and
(iii) for each (u, v) ∈ gaifman(C ′), either (u, v) ∈ gaifman(C⃗), or u ∈ atom0(C⃗) and
v ∈ atom1(C⃗), or u ∈ atom1(C⃗) and v ∈ atom0(C⃗).

Proof. The proof proceeds by structural induction on e(X⃗). For Part 1, the only interesting
case is when e(X⃗) has constant time complexity and has the form

⋃
{e1(x, X⃗) | x ∈ e2(X⃗)}.

This implies both e1(x, X⃗) and e2(X⃗) have constant time complexity. Let C⃗ have the
types of X⃗, e[C⃗/X⃗] ⇓ C ′, and e2[C⃗/X⃗] ⇓ C ′′. Then by induction hypothesis on e2(X⃗),
atom0(C ′′) ⊆ atom0(C⃗), atom1(C ′′) ⊆ atom≤1(C⃗), and gaifman(C ′′) ⊆ gaifman(C⃗). Note
that molecule0(C ′′) = {C ′′}. The induction hypothesis implies C ′′ = V0 ∪ V1 ∪ · · · ∪ Vm

where atom1(V0) ⊆ atom0(C⃗) and Vj ∈ molecule0(C⃗) for each j > 0. This means each
Vj , j > 0, is one of the input relations in C⃗. However, this leads to a contradiction be-
cause

⋃
{e1(x, X⃗) | x ∈ e2(X⃗)} would then have at least linear time complexity. So, there

can be no Vj , j > 0. Hence, C ′′ = V0 and atom1(C ′′) = atom1(V0) ⊆ atom0(C⃗). Let
C ′′ = {C1, . . . , Cn}. Then, atom0(Ci) ⊆ atom0(C⃗). Let e1[Ci/x, C⃗/X⃗] ⇓ C ′

i. Then, by in-
duction hypothesis on e1(x, X⃗), atom0(C ′

i) = {} ⊆ atom0(Ci, C⃗) = atom0(C⃗), atom1(C ′
i) ⊆

atom≤1(C⃗), gaifman(C ′
i) ⊆ gaifman(Ci, C⃗) = gaifman(C⃗). The induction hypothesis also im-

plies C ′
i = Vi,0 ∪ Vi,1 ∪ · · · ∪ Vi,m for some m where atom0(Vi,0) ⊆ atom0(Ci, C⃗) = atom0(C⃗),
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and Vi,j = molecule0(Ci, C⃗) = molecule0(C⃗) for j > 0. Thus, each C ′
i satisfies Part 1(i) to

Part 1(iv). Consequently, C ′ = C ′
1 ∪ · · · ∪ C ′

n satisfies Part 1(i) to Part 1(iv). The other
cases for Part 1 are straightforward, and are thus omitted.

For Part 2, by Proposition 6, e(X⃗) is assumed to be in the normal form induced by the
restricted system of rewrite rules. This first interesting case is when e(X⃗) has the form⋃

{e1(x, X⃗) | x ∈ X0}, where X0 is one of the free variables in X⃗, and has linear time complex-
ity. Then e1(x, X⃗) must have constant time complexity; otherwise, the whole expression has
quadratic time complexity. Let C⃗ have the types of X⃗ and let C0 in C⃗ correspond to X0. Sup-
pose Cx ∈ C0 and e1[Cx/x, C⃗/X⃗] ⇓ C ′

x. As C ′
x has set type, atom0(C ′

x) = {} ⊆ atom0(C⃗).
This proves Part 2(i). Since Cx ∈ C0 and C0 is in C⃗, atom0(Cx) ∈ atom1(C⃗). Also, as this
lemma concerns N RC1, Cx must have type b×· · ·×b; thus, atom1(Cx) = {}. By the induction
hypothesis on e1(x, X⃗), atom1(C ′

x) ⊆ atom≤1(Cx, C⃗) = atom≤1(C⃗). This proves Part 2(ii).
As e1(x, X⃗) has constant time complexity, and Cx has type b×· · ·×b, the induction hypothesis
also implies gaifman(C ′

x) ⊆ gaifman(Cx, C⃗) = gaifman0(Cx, C⃗) ∪ gaifman1(C⃗). Suppose
(u, v) ∈ gaifman(C ′

x). If u ∈ atom0(Cx) and v ∈ atom0(Cx), then (u, v) ∈ gaifman1(C⃗) ⊆
gaifman(C⃗). If u ∈ atom0(Cx) and v ̸∈ atom0(Cx), then u ∈ atom1(C0) ⊆ atom1(C⃗) and
v ∈ atom0(C⃗). If u ̸∈ atom0(Cx) and v ∈ atom0(Cx), then v ∈ atom1(C0) ⊆ atom1(C⃗) and
u ∈ atom0(C⃗). If u ̸∈ atom0(Cx) and v ̸∈ atom0(Cx), then both u and v are in atom0(C⃗),
and thus (u, v) ∈ gaifman0(C⃗) ⊆ gaifman(C⃗). This proves Part 2(iii). This finishes the case
when e(X⃗) has the form

⋃
{e1(x, X⃗) | x ∈ X0},

The second interesting case is when e(X⃗)has linear time complexity and has the form⋃
{e1(x, X⃗) | x ∈ {e2(X⃗)}}. Let C⃗ have the types of X⃗ and let e2[C⃗/X⃗] ⇓ C ′′. By the

induction hypothesis of either Part 1 or 2 (it does not matter which), we get atom0(C ′′) ⊆
atom0(C⃗); thus, atom0(C ′′, C⃗) = atom0(C⃗). Since {e2(X⃗)} has flat relation type, e2(X⃗)
must have a type of the form b × · · · × b. This means atom1(C ′′) = {} ⊆ atom1(C⃗); thus,
atom1(C ′′, C⃗) = atom1(C⃗). Crucially, atom0(C ′′) ⊆ atom0(C⃗) and atom1(C ′′) = {} implies
gaifman(C ′′, C⃗) = gaifman(C⃗). As C ′′ has no elist, molecule0(C ′′, C⃗) = molecule0(C⃗). Then
both Part 1 and 2 of the lemma follows immediately for this case.

The other cases are straightfoward and are omitted. ◀

4 Intensional expressiveness gap

As mentioned earlier, an intensional expressiveness gap of comprehension syntax relative to
relational database systems appears to manifest in joins of low selectivity. And judging by
Example 1, it also potentially manifests in relational intersection and relational difference, as
these two operations have O(n log n) time complexity in a relational database system whereas
their comprehension-syntax equivalent in Example 1 is quadratic. The other relational query
operations (project, select, and union), as well as joins of high selectivity are succinctly
expressible in N RC1(≤) with comparable time complexity when there are no indices available
on the input relations; cf. Example 1. The relational division is ignored here because it is
not directly supported by typical relational database systems; i.e., when it is needed in a
relational database system, it is expressed using the other operators, usually at quadratic
space and time complexity [11].

This intensional expressiveness gap is illustrated and confirmed here using two example
queries on objects in canonical form. The first query, head(x, X), produces the first element
in an input canonical elist X, assuming this first element has the form (x, x′) and x does not
appear in subsequent elements of X. The second query, zip(X, Y ), produces an elist that
pairs the ith elements in two input canonical elists X and Y of equal length, assuming the
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ith element of X has the form (oi, x′
i) and that in Y has the form (oi, y′

i) and that each oi

occurs only once in X and once in Y . These two queries are chosen because head can be
straightforwardly implemented in constant time in any programming language, while zip is a
very low-selectivity join which can be answered efficiently – i.e. with linear or near-linear
time complexity – in relational database systems.

The expression head′(x, X) =df {(y, y′) | (y, y′) ∈ X, y = x} in N RC1(≤) defines the
same function as head on any input (x, X) meeting the requirement of head. However,
head′(x, X) has time complexity Θ(|X|); i.e., it has linear time complexity.

The expression zip′(X, Y ) =df {(x, y) | (u, x) ∈ X, (v, y) ∈ Y, u = v} in N RC1(≤) defines
the same function as zip on any input (X, Y ) meeting the requirement of zip. However,
zip′(X, Y ) has time complexity Θ(|X| · |Y |); i.e., it has quadratic time complexity.

In fact, as shown below, every expression in N RC1(≤) that implements head has at least
linear time complexity; and every expression in N RC1(≤) that implements zip has at least
quadratic time complexity. In other words, the intensional expressiveness gap of N RC1(≤),
and thus of comprehension syntax, is real.

▶ Proposition 8. Let head(x, X) : {b1 ×b2} be an expression in N RC1(≤). Suppose for every
object c of type b1 and non-empty canonical object C of type {b1 × b2} whose first element is
(c, c0), and c does not appear in subsequent elements of C, head[c/x, C/X] ⇓ {(c, c0)}. Then
time(head[c/x, C/X] ⇓) is at least |C|. That is, the time complexity of head(x, X) is Ω(|X|).

Proof. For a contradiction, suppose head(x, X) has sublinear time complexity. Then Pro-
position 5 implies head(x, X) has constant time complexity. Let head[c/x, C/X] ⇓ C ′ where
C ′ = {(c, c0)}. As C ′ has type {b1 ×b2}, molecule0(C ′) = {C ′}. Similarly, molecule0(c, C) =
{C}. By Part 1(iv) of Lemma 7, either C ⊆ C ′ or atom1(C ′) ⊆ atom0(c, C). However,
C ̸⊆ C ′ = {(c, c0)} in general and atom1(C ′) = {c, c0} ̸⊆ atom0(c, C) = {c}. This contradic-
tion implies that head(x, X) has at least linear time complexity. ◀

▶ Proposition 9. Let zip(X, Y ) : {b1 × b2} be an expression in N RC1(≤) where X is a
variable of type {b3 ×b1}, Y is a variable of type {b3 ×b2}, and b1, b2, and b3 are distinct base
types. Suppose for every canonical objects U == {(o1, u1), ..., (on, un)} of type {b3 × b1} and
V == {(o1, v1), ..., (on, vn)} of type {b3 × b2}, zip[U/X, V/Y ] ⇓ C ′ where C ′ == {(u1, v1),
..., (un, vn)}. Then time(zip[U/X, V/Y ] ⇓) is at least |U | · |V |. Thus, the time complexity
of zip(X, Y ) is Ω(|U | ∗ |Y |).

Proof. Suppose for a contradiction that zip(X, Y ) has subquadratic time complexity. Then
Proposition 5 implies zip(X, Y ) has either constant or linear time complexity.

Assume zip(X, Y ) has constant time complexity and zip[U/X, V/Y ] ⇓ C ′ where C ′ ==
{(u1, v1), ..., (un, vn)}. Clearly, molecule0(C ′) = {C ′} and molecule0(U, V ) = {U, V }. Then,
by Part 1(iv) of Lemma 7, either U ⊆ C ′, V ⊆ C ′, or atom1(C ′) ⊆ atom0(U, V ) = {}. Clearly,
all three options are impossible. Thus zip(X, Y ) cannot have constant time complexity.

Suppose instead zip(X, Y ) has linear time complexity. Then gaifman(C ′) = C ′ = {(u1, v1),
..., (un, vn)}. However, for 1 ≤ i ≤ n, (ui, vi) ∈ gaifman(C ′) ̸∈ gaifman(U, V ) = U ∪ V .
Then, by Part 2(iii) of Lemma 7, either ui ∈ atom0(U, V ) or vi ∈ atom0(U, V ). However, as
U and V are both elists, atom0(U, V ) = {} and thus contains neither ui nor vi. So, zip(X, Y )
cannot have linear time complexity. Therefore, it has at least quadratic time complexity. ◀

Incidentally, it was Peter Buneman who first conjectured that zip, characterized by its
low-selectivity nature, could only be defined using comprehension syntax with quadratic time
complexity. This insight, shared with me by Stijn Vansummeren over three decades ago, has
apparently remained open until being resolved here in Proposition 9.
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5 Closing remarks

The impedance mismatch problem between databases and programming languages has been
highlighted three decades ago [7]. It refers to the difficulties of integrating database query-
like feature and capability into a programming language. Some has regarded the use of
comprehension syntax [3] as a breakthrough for this problem [6]. Indeed, comprehension
syntax provides an iteration construct that is simple enough for programming with collection
data types that data objects of a database have been mapped to, and explicit enough to
admit a direct translation to the query language of the database, thereby permitting queries
to the database to be embedded simply and naturally into a programming language.

However, comprehension syntax is also widely adopted in modern programming languages
– e.g., Python [9] and Scala [16] – as an easy-to-use means for manipulating collection types
in general. For this purpose, the collection objects are created within a program or do not
come from a database system, and queries written in comprehension syntax for manipulating
these objects are not translated to the query language of an underlying database system for
execution. In such a setting, programs written in comprehension syntax typically correspond
to nested loops.

This gives rise to an intriguing disparity. Many queries when translated to their database
equivalent can be executed by the underlying database system very efficiently. Yet when they
are executed directly as comprehension syntax, they are not efficient at all. Consider this
query as an example, {(x.dept, x.stf ) | x ∈ DeptStaff , y ∈ Staff , x.stf = y.stf , y.age > 65}
which retrieves departments and their staff who are above 65 years old. Suppose a staff
typically belongs to only one department. This query would then be a low-selectivity join.
It typically would be executed by a database system, via e.g. a merge join [2], with time
complexity Θ(n+m) assuming the inputs DeptStaff and Staff have size n and m and are both
sorted by their stf field; or with time complexity Θ(n log(n)+m log(m)) if sorting is required.
In contrast, the same query would typically has time complexity Θ(nm) natively in the
programming language. Even if a filter promotion is applied (and ignoring the change in the
appearance of the output) to optimize the query to {(x.dept, x.stf ) | y ∈ Staff , y.age > 65,
x ∈ DeptStaff , x.stf = y.stf }, this optimized query still has quadratic time complexity
Θ(gnm), for some 0 ≤ g ≤ 1, natively in the programming language.

This linear-vs-quadratic time complexity difference of low-selectivity joins can be called
an intensional expressiveness gap between comprehension syntax and database systems. That
is, it is a gap between the algorithms that can be expressed using comprehension syntax and
database systems. As far as relational database system is concerned, the low-selectivity join,
the relational intersection, and the relational difference appear to be the only intensional
expressiveness gap as all other relational query operators, as well as high-selectivity joins, in
the absence of database indices on the input relations, have similar time complexity whether
executed by a relational database system or in the programming language directly as queries
in comprehension syntax.

It has been open whether this intensional expressiveness gap is a real gap; i.e., there
might exist some clever way to implement low-selectivity joins efficiently using comprehension
syntax. As the main result of this paper, this intensional expressiveness gap is proved
by showing that all subquadratic algorithms expressible using pure comprehension syntax
cannot compute low-selectivity joins. In fact, I have claimed elsewhere [17] that even allowing
some functions – viz. takewhile and dropwhile, fold, or zip – commonly available in the
collection-type function libraries of programming languages, to be used with comprehension
syntax, all expressible subquadratic algorithms still cannot compute low-selectivity joins in
general.
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It is a natural follow-up question on what exactly is missing from comprehension syntax
that prevents efficient algorithms for low-selectivity joins to be expressed. This intensional
expressiveness gap can be charaterized in a precise way by identifying a new programming
construct that enables more algorithms to be expressed but doing so without enabling more
functions to be expressed. This is the Synchrony iterator construct, which I have proposed
and investigated with Val Tannen and Stefano Perna [17], for expressing synchronized
iterations on multiple collection objects. A construct for generalized iteration on multiple
collection objects in synchrony appears to be a conceptually novel choice, because practically
all functions commonly provided in the function libraries of programming languages involve
iteration on a single collection object. Adding this construct does not change the functions
that are expressible using pure comprehension syntax, and yet enables the realization of
efficient low-selectivity joins, including non-equijoins. Moreover, the Synchrony iterator
construct dovetails rather appealingly with comprehension syntax, so that efficient queries
written with the help of Synchrony iterators often do not look too different from their
inefficient pure comprehension-syntax equivalents. See [17] for more information.

The proof of the intensional expressiveness gap uses a novel limited-mixing lemma. The
lemma shows that all subquadratic-time queries in comprehension syntax are only able to
mix atomic objects in their input in very limited ways. This limited-mixing lemma is of
independent interest. Many past works on intensional expressive power are query specific.
Just to cite a couple of examples, Abiteboul and Vianu [1] showed that there is no “generic
machine” for computing the parity query in PTIME; and Suciu and Paredaens [18] showed
that the transitive closure of a long chain can only be computed in the complex object algebra
of Abiteboul and Beeri using exponential space. A notable non-query-specific intensional
expressiveness result is that of Wong [24], who showed that all queries on a general class
of structures, which includes deep trees and long chains, in a nested relational calculus
augmented with a powerset operator are either already expressible in the calculus without
using the powerset operator, or must use an exponential amount of space. Furthermore,
most previous results on intensional expressive power, such as those mentioned above, are
for query languages without ordered data types. The limited-mixing lemma in this paper
stands out in comparison to these results in two aspects. Firstly, the limited-mixing lemma
is non-query specific; it applies to all queries of subquaratic time complexity in the respective
query languages. Secondly, the limited-mixing lemma is valid in the presence of ordered data
types. The limited-mixing lemma thus enriches the repertoire of techniques for studying
intensional expressive power. The limited-mixing lemma is also useful intensional counterpart
to Gaifman’s locality property [8]. Gaifman’s locality property is useful for analyzing the
extensional and intensional expressive power [10, 12, 24] of query languages on unordered
data types. However, it is effectively useless on ordered data types and on query languages
with a fold-like function. Limited-mixing lemmas do not have these limitations.

Lastly, here is a small advertisement: Synchrony iterator has been implemented in
Python and Scala. These implementations are available at https://www.comp.nus.edu.sg/
~wongls/projects/synchrony.
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