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Abstract
We give a novel descriptive-complexity theoretic characterization of L and NL computable queries
over finite structures using traversal invariance. We summarize this as (N)L = FO + (breadth-first)
traversal-invariance.
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1 Presentation invariance

A common phenomenon in mathematics is that some property or quantity is defined in terms
of some additional structure, but ends up being invariant of it. Dimension of a vector space
and Euler characteristic of a manifold are important examples of this phenomenon; they are
defined in terms of a given basis or simplicial complex respectively, but are invariant of the
particular one chosen.

This state of affairs is very common in descriptive complexity theory. For example,
suppose we want to compute the parity of a given finite set X. If we are given some linear
ordering (X,<), there is an inductive program computing the parity of X, but the result
computed is independent of the particular ordering. Therefore, we call parity order-invariant
LFP: computable by an LFP program with a given order, but independent of the specific
choice.

The celebrated result of Immerman and Vardi [6, 11] that LFP logic captures polynomial-
time queries over families of ordered finite structures can be recast as, order-invariant LFP
logic captures polynomial-time queries over all finite structures. Since then, a wide array of
correspondences have been identified between known complexity classes on one hand, and
invariant forms of LFP, MSO, or first-order logic on the other. For example, first-order
logic and LFP logic invariant in arbitrary numerical predicates captures AC0 and P/poly
respectively [9].

Our contribution. We give a novel characterization of logarithmic and nondeterministic
logarithmic space queries using presentation-invariant first-order definability (Theorems 28
and 29). The presentations in question are traversals and breadth-first traversals respectively,
which are certain types of linear orders on finite graphs.
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2:2 Traversal-Invariant Characterizations of Logspace

This is to our knowledge the first characterization of L or NL that does not rely on any
sort of recursion or sequential computation, however limited, such as a function algebra,
fixed-point logic, programming language, or automaton.

We find it fascinating and mysterious that passing from traversals to breadth-first
traversals in the presentation causes a jump from L to NL in definability power. It begs
the question, what other complexity classes can be characterized by certain types of graph
search?

Structure of this paper. In Section 2, we discuss traversal- and breadth-first traversal-
invariant definability, and show the definability of undirected and directed reachability
respectively. In Section 3, we present descriptive-theoretic characterizations of L and NL
(Theorems 28 and 29).

Preliminaries and notation. We assume familiarity with basic graph theory, automata
theory, and model theory, including the notion of interpretation. We will denote graphs
and other first-order structures by uppercase Roman letters. By “graph” we always mean
“undirected graph;” we will say ”directed graph” when we need to. We denote families of
structures in a common signature by captial calligraphic letters, e.g., K.

2 Traversals

Traversals are absolutely fundamental in computer science. They give us systematic ways
of exploring a finite graph or other sort of network, and lie at the foundation of all sorts of
sophisticated algorithms and techniques. Let us isolate the simplest possible version, which
we call generic graph search, and which operates over a finite nonempty graph G.
1. Initialize a set S to some vertex in G, and repeat the following until G \ S is empty.
2. If there is some vertex in the boundary of S, add it to S. Otherwise, add any element of

G \ S to S.
Generic graph search is nondeterministic, insofar as it does not specify which vertex to add to
S. Important refinements of this algorithm include breadth-first and depth-first search, which
specify additional heuristics for how to add vertices to S, without being fully deterministic.

In common parlance, the word traversal can refer either to the algorithm or the linear
orders of G they produce, but in the current work we reserve the term “traversal,” “breadth-
first traversal,” and “depth-first traversal” for the latter. In this paper, we do not work with
depth-first traversals, but we will come back to them in the last section.

▶ Definition 1. For a finite graph G, (G,<) is a traversal (resp. breadth-first traversal,
depth-first traversal) in case some instance of generic graph search (resp. breadth-first search,
depth-first search) of G visits its vertices in order <.

Corneil and Krueger [2] discovered that, in fact, these traversals are first-order definable
in the language of ordered graphs.

▶ Lemma 2. For any finite graph G and linear ordering < of its vertices
(G,<) is a traversal iff

(G,<) |= (∀u < v < w)(uEw → (∃x < v)xEv),

(G,<) is a breadth-first traversal iff

(G,<) |= (∀u < v < w)(uEw → (∃x < v)x ≤ u ∧ xEv),

and (G,<) is a depth-first traversal iff

(G,<) |= (∀u < v < w)(uEw → (∃x < v)x ≥ u ∧ xEv).
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Note that connected components of G induce intervals in a traversal. Notice also how the
definitions of breadth-first traversal and depth-first traversal refine the notion of traversal in
opposing ways: given a vertex v that occurs between two endpoints u and w of a single edge,
v must have some prior neighbor in a plain traversal. In a breadth-first traversal, there must
be some prior neighbor less than or equal to u, and in a depth-first traversal, there must be
some prior neighbor greater than or equal to u.

It is an easy but important fact that

▶ Lemma 3. Every finite graph admits a traversal; a fortiori, every finite graph admits both
a breadth-first traversal and a depth-first traversal.

In the present paper we characterize L and NL using traversals and breadth-first traversals
respectively; it is an open question whether depth-first traversals similarly characterize some
complexity class.

2.1 Traversal-invariant definability
We now present the fundamental definability-theoretic concepts in this paper. We use the
standard model-theoretic notion of an interpretation in this definition; for details see the
Appendix. If K is some family of structures in a common signature, by a “query over K,” we
mean a boolean query, i.e., an isomorphism-closed subset of K.2

▶ Definition 4. Suppose K ⊆ K+ are signatures, K is a nonempty family of K-structures,
and P is a nonempty family of K+-structures, such that for any A ∈ P, its K-reduct A|K is
in K.

A first-order sentence φ over P is (K,P)-invariant in case for any two structures A and
B in P with the same domain, if A|K ∼= B|K , then A |= φ ⇐⇒ B |= φ.

▶ Definition 5. An n-pointed graph is a graph expanded with n constants. Let Γn be the
language of n-pointed graphs, i.e., a binary relation symbol and n constant symbols.

▶ Definition 6. Let G′ be a family of finite n-pointed graphs, T be the set of all expansions
of structures in G′ by any traversal, and φ be a (G′, T )-invariant sentence. Then for any
G ∈ G′, we write

G |= (T <)φ

to indicate that for some (equivalently, any) traversal < of G, (G,<) |= φ. Similarly, we
write

G |= (B <)φ

if φ is (G′,B)-invariant where B is the set of all expansions by breadth-first traversals.

▶ Definition 7. Let K be a signature, K be some family of K-structures and Q a query
over K. We say that Q is basic traversal-invariant definable if there exists some n ∈ N, a
family of finite n-pointed graphs G′, a (G′, T )-invariant sentence φ, and an interpretation
π : Γn → K, such that

2 We will represent n-ary queries over K by boolean queries over the family of structures obtained by
expanding every structure in K by any n points.

Tannen’s Festschrift



2:4 Traversal-Invariant Characterizations of Logspace

1. π is an interpretation K to G′, and
2. for any A ∈ K,

A ∈ Q ⇐⇒ Aπ |= (T <)φ,

where T is the set of all expansions by a traversal of all graphs in G′.3

We define basic breadth-first traversal (BFT)-invariant definable similarly. We also write
A |= ((T <)φ)π to mean Aπ |= (T <)φ.

Note that in our definition of traversal- or BFT-invariant definability, G′ is not required
to be the family of all finite n-pointed graphs, though it typically will be. Note also that K
must be a family of finite structures if there is to be a interpretation π : K → G′.

▶ Definition 8. Let K be a signature, K be some family of K-structures and Q a query over
K. Then Q is traversal-invariant definable (resp. BFT-invariant definable) if it is a boolean
combination of basic traversal-invariant (resp. basic BFT-invariant) definable queries.

We collect some important examples:

▶ Lemma 9. The following queries are traversal-invariant definable over the indicated
families of structures K:
1. Undirected st-connectivity, over all finite 2-pointed graphs.
2. The family of all acyclic graphs, over all finite graphs.
3. The family of all bipartite graphs, over all finite graphs.
4. The family of even-sized finite linear orders, over all finite linear orders.

Proof. Let G∈ be the family of all finite 2-pointed graphs with constants s and t. The binary
reachability relation is actually definable by a single (G∈, T )-invariant sentence, which says
that there is no w with no prior neighbor such that s < w ≤ t or t < w ≤ s. Since components
of G induce intervals in (G,<), this formula asserts there is no interval separating s and t

into separate connected components.
Acyclicity is similarly the spectrum of a (G, T )-invariant sentence. A graph is acyclic iff,

relative to any traversal, no vertex has two or more prior neighbors.
The square of a graph G = (V,E) is the graph G2 = (V,E2), where E2(x, y) iff x and y

are connected by a path of length exactly two. Then G is bipartite iff G2 is disconnected.
Since G2 is definable as a translation of G under an interpretation π : G → G, and since
connectivity is traversal-invariant definable, so is bipartiteness.

The parity of a linear order is also equivalent to the connectivity of a translation.
Specifically, connect u and v by an edge iff u = v ± 2 mod n, where n is the size of the
order. Then the resulting graph is either a single cycle or a union of two cycles depending on
whether n is odd or even respectively. ◀

Since, e.g., connectivity and acyclicity are not Gaifman-local queries [3, 9], it follows that
traversal-invariance is strictly more expressive than order-invariance.

3 See the Appendix for the definition of notions and notations involving interpretations.
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2.2 Directed reachability
Here we deal with the question of directed st-connectivity using BFT invariance. In fact, we
will need something more than the directed graph structure, but the result will be invariant
of it, an apparent asymmetry with the undirected case that will be resolved in the next
section.

This construction is substantially more sophisticated than our examples above. We reduce
directed reachability to an equidistance problem over undirected graphs, which we solve with
the appropriate BFT-invariant sentence.

▶ Definition 10. If A is a finite structure, we say that a successor expansion (A,S) of A
is a structure of the form (A,min,max, S), where min and max are constants and S is a
successor function on a total order with endpoints min and max.

If K is a signature, let (K,S) be the signature of successor expansions of K-structures.4
If K is a family of finite K-structures, let KS be the family of all successor expansions of
structures in K.

▶ Definition 11 (Successor Invariance). For any family K of finite structures, let KS be the
set of all successor expansions of K. A query Q over KS is successor-invariant in case for
any A,B ∈ KS , if A|K ∼= B|K , then A |= Q ⇐⇒ B |= Q.

For any C ∈ K, we say C |= (SS)Q iff some (equivalently, any) successor expansion of
C satisfies Q.

▶ Definition 12. Let Dn be the family of all finite n-pointed directed graphs, and Gn be the
family of all finite n-pointed graphs. Let DS

n be the family of all successor expansions of all
finite directed n-pointed graphs.

The interpretation ρ. We present an interpretation defined in [10] that translates directed
successor graphs into undirected graphs. Let (x, y, z) be the constants of Γ3 and (s, t) be the
constants of (Γ2, S). Consider the binary interpretation ρ : Γ3 → (Γ2, S) defined by

Eρ(u, a; v, b) ≡
(
S(a) = b ∧ E′(u, v)

)
∨

(
S(b) = a ∧ E′(v, u)

)
.

xρ = (s,min)

yρ = (s,max)

zρ = (t,max),

where E′(u, v) abbreviates E(u, v) ∨ u = v. Then ρ is an interpretation DS
2 → G3, because

the predicate Eρ is visibly symmetric. Note that ρ is also quantifier-free. We can express
the st reachability problem on D ∈ DS

2 into an equidistance problem on Dρ, cf. Figure 1 for
an example. A proof of the following lemma appears in [10] and is deferred to the Appendix.

▶ Lemma 13. For any graph D ∈ DS
2 , there is a directed path from s to t in D iff the

vertices y and z are equidistant from x in Dρ. Even stronger, if there is no directed path
from s to t in D, then either d(x, z) is undefined or |d(x, y) − d(x, z)| ≥ 2, where d indicates
distance in Dρ.

4 Note that there is no symbol for the order with respect to which S is a successor function in the signature
(K, S).

Tannen’s Festschrift
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1 2 3 4

a s x• • • •y

s t a • • • •

b b • • • •

t • • • •z

Figure 1 A directed graph to the left, with its undirected ρ-translation to the right. There is
an edge between (u, i) and (v, i + 1) on the right exactly when u = v or there is a directed edge
u → v on the left. Consequently, there is a directed path s⇝ t on the left exactly when y and z are
equidistant from x on the right. Here there is no such path s⇝ t, d(x, y) = 3, and d(x, z) = 7.

▶ Definition 14. Let G′
3 be the family of finite 3-pointed undirected graphs with constants

x, y, z such that x and y lie in the same connected component and, if z does as well, then
|d(x, y) − d(x, z)| ≠ 1.

By Lemma 13, ρ is in fact an interpretation DS
2 → G′

3.

Breadth-first traversals and quasi-levels. On a graph with a distinguished source for each
connected component, vertices are naturally partitioned into levels according to their distance
from their respective source. If we fix a BFT of a graph, and let the source of each connected
component be its least element, then the resulting levels induce intervals in that traversal.5
Moreover, every edge of the graph is either within levels or between adjacent levels. The
least neighbor of every vertex (except the source) is in the previous level.

It is probably impossible to recognize when two nodes are in the same level using first-order
logic on graphs, even given a BFT. However we can do almost as well.

▶ Definition 15. Let (V,E,<) be a finite graph expanded by a breadth-first traversal. A
quasi-level is a nonempty interval I of (V,E) such that w ∈ I ⇐⇒ p(w) < v ≤ w, where v
is the least element of I and p(w) the least neighbor of w (cf. Figure 2).

Observe that it is easy to define when two vertices v and w occur in a common quasi-level,
by the formula

(p(w) < v ≤ w) ∨ (p(v) < w ≤ v).

Notice that if two vertices occur in a common quasi-level, then their distances from
their (necessarily common) source cannot differ by more than 1. If two vertices occur in no
common quasi-level, then either they are in different connected components, or the distances
from their common source cannot be equal.

5 Recall that connected components induce intervals of a traversal, so it suffices to observe that levels
induce intervals within connected components.



S. Bhaskar, S. Lindell, and S. Weinstein 2:7

v1

v3

v7

v15v14

v6

v13v12

v2

v5

v11v10

v4

v9v8

Figure 2 {v2, v3}, {v3, v4, v5}, {v6, . . . , v11}, and {v13, v14, v15} are quasi-levels but {v5, . . . , v11}
and {v4, v5, v6} are not. In the first counterexample, v11 ∈ I, but p(v11) = v5, the least element of I,
and in the second counterexample, p(v7) < v4 < v7 and v4 is the least element of I, but v7 /∈ I.

The interpretation τ . We define a 2-dimensional interpretation τ : Γ6 → Γ3. Let

(x1, y1, z1, x2, y2, z2)

be the constants in Γ6 and (x, y, z) be the constants in Γ3. Given G ∈ G3, the domain of Gτ

consists of “two copies” of G, which we achieve by ∂τ (u, v) ⇐⇒ v = x∨ v = y. Within each
copy, we inherit the edge relation from G, and we let, e.g., xi be the vertex corresponding to
x in copy i. We do not put any edges between the two copies except for connecting x1 and
x2. Notice that τ is quantifier-free.

▶ Definition 16. Let G′
6 be {Gτ : G ∈ G′

3}.

Then (by definition), τ is an interpretation G′
6 → G′

3. Moreover,

▶ Theorem 17. Let B be the set of all expansions of graphs in G′
6 by a breadth-first traversal.

There is a (G′
6,B)-invariant formula ψ such that for any (G, x, y, z) ∈ G′

3,

d(x, y) = d(x, z) =⇒ Gτ |= (B <)ψ

|d(x, y) − d(x, z)| ≥ 2 =⇒ Gτ |= ¬(B <)ψ,

where the second case also contains all those graphs where x, y, and z are not all connected.

(The proof is deferred to the Appendix.)
By composing the interpretation ρ with the interpretation τ , we see that for any successor

expansion of a finite 2-pointed directed graph D ∈ DS
2 , there is a path from s to t in D if

and only if Dρτ |= (B <)ψ. Hence,

▶ Corollary 18. The directed reachability query is BFT-invariant definable over DS
2 .

3 Descriptive Complexity

In this section we obtain the main results of this paper: a characterization of deterministic
and nondeterministic logarithmic space by traversal and breadth-first traversal invariance
quantifiers respectively.

3.1 Multihead finite automata
A nondeterministic multihead finite automaton (NMFA) is an automaton with a single tape,
finitely many heads on that tape, and a finite control. Unlike a Turing machine, the tape is
not infinite; rather, it is initialized to the input string plus two special characters on either

Tannen’s Festschrift



2:8 Traversal-Invariant Characterizations of Logspace

side to mark the left and right endpoints. Also unlike a Turing machine, the heads cannot
write, they can only move left, right, or stay put depending on which characters they are
reading. A single state is designated as accepting; if the computation enters this state then
we say it halts. The language of an NMFA is exactly the set of strings it halts on.

Formally, an NMFA consists of a set Q of states, some number k ∈ N of heads, an input
alphabet Σ, a start state q0 ∈ Q, an accept state qf ∈ Q, and a transition relation δ which
relates k-tuples in Σ ∪ {▷, ◁} with {−1, 0, 1}k. If any head is reading the left (respectively
right) endpoint character, no subsequent transition may move that head right (respectively
left). Futhermore, if the current state is qf , then the transition relation moves all heads to
the left (if possible) or fixes them if they are already at the left endpoint.

A configuration of an NMFA consists of the input string, the current state, and the
location of the heads. The transition relation induces a relation on the space of configurations
in the natural way. The intial configuration is the one in which the state is q0 and all heads
are at the left. The final configuration is the same but with state qf . By the stipulation of
the transition relation, if an NMFA enters qf , then it will always enter the final configuration.

The configuration graph of an NMFA on a particular input x is a 2-pointed directed
graph whose vertices are the set of configurations on x and whose edge relation is the graph
of the relation induced by the transition function. The source and sink are the initial and
final configurations respectively.

Strings and pointed graphs as structures. Let Γ2 be the language of 2-pointed graphs,
and let (Γ2, S) be the language of 2-pointed successor graphs, with two (additonal) constants
min and max, and a successor function.

Let Σ be a finite alphabet. We think of a string x = x0x1 . . . xn−1 in Σ⋆ as a finite
structure with domain {0, 1, . . . , n− 1}, a predicate σ for each σ ∈ Σ with semantics

(∀i < n) x |= σ(i) ⇐⇒ xi = σ,

constants min and max naming 0 and n− 1, and finally a successor function taking index i
to index i+ 1.6

We henceforth overload the meaning of Σ to indicate not only an alphabet, but also the
signature of strings in that alphabet, so that the terms “finite Σ-structure” and “member of
Σ⋆” denote the same objects.

Crucial to our work is that for a fixed NMFA, there is an interpretation that takes an
input string and translates it into the associated configuration graph.

▶ Theorem 19. For every NMFA M with alphabet Σ there is an interpretation π : Γ2 → Σ
such that for every sufficiently long string x ∈ Σ⋆, xπ is isomorphic to the configuration
graph of M on input x.

Furthermore, we can expand π to an interpretation π : (Γ2, S) → Σ, so that xπ is a
successor expansion of the above configuration graph.

Moreover, π can be made quantifier-free.

(The proof is deferred to the Appendix)

▶ Definition 20. An NMFA M is symmetric (SMFA) in case, for any input x, the configu-
ration graph of M on x is undirected.

6 This is a common, “folklore,” method of representing strings as structures. Often one takes a total
ordering < over the indices of a string instead of the successor function (see Libkin [7]), but for our
purposes, either will work.
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Computability by NMFAs is known to capture exactly nondeterministic logarithmic space
(NL) [4], and computability by SMFAs captures at least logarithmic space (L).7

3.2 Capturing L and NL
Canonical encodings. For any finite structure A, any linear order (A,<), and any fixed
alphabet Σ of size at least 2, there is a canonical encoding of (A,<) as a string in Σ⋆.

This construction is the foundation of all results in descriptive complexity, and can be
found in numerous texts, e.g., [7]. We will not repeat it here. We do note, however, that any
successor expansion (A,S) of A induces a linear order – hence every successor expansion of
any finite structure has a canonical encoding.

Even more importantly, this canonical encoding is definable as the translation induced by
a quantifier-free interpretation. The details are complicated, but can be found in Section 9.2
of [7].

▶ Theorem 21. For every signature L, there is a quantifier-free interpretation µ : Σ → (L, S)
such that for every successor expansion (A,S) of any finite L-structure A, (A,S)µ is the
canonical encoding of (A,S).

We now state the definition of a complexity-bounded query over finite structures, for
which we need to imagine models of computation that take finite structures as input. We
follow the standard method in descriptive complexity, which is to take a model of computation
that operates on strings, and feed it the encoding (A,S)µ of a structure A. Of course this
encoding is not canonical given only A; for a well-defined query, we demand that the result
of the computation is invariant of the particular expansion (A,S).

Now we are in a position to state:

▶ Theorem 22. For every signature L and every logarithmic space query Q over finite
L-structures, there is a quantifier-free interpretation γ : Γ2 → (L, S) such that for every
sufficiently large finite L-structure A,

A ∈ Q ⇐⇒ A |= (SS) ((T <)φ)γ ,

where (T <)φ is the sentence in the language of 2-pointed ordered graphs asserting that the
distinguished vertices are connected.

Proof. Let µ : Σ → (L, S) be the interpretation given by L in Theorem 21, let M be an
SMFA deciding Q, let π : Γ2 → Σ be the associated interpretation from Theorem 19, and let
γ = µπ. Fix a finite L-structure A and an arbitrary successor expansion (A,S).

Then M accepts the string (A,S)µ iff A ∈ Q. But, (A,S)µπ = (A,S)γ is the configuration
graph of M on (A,S)µ, so M accepts (A,S)µ just in case the distinguished vertices of (A,S)γ

are connected. In other words,

A ∈ Q ⇐⇒ (A,S)γ |= (T <)φ.

Therefore,

A ∈ Q ⇐⇒ (A,S) |= ((T <)φ)γ ,

and since the right hand side is independent of the particular successor expansion,

A ∈ Q ⇐⇒ A |= (SS) ((T <)φ)γ . ◀

7 In [1], Axelsen considers the more restrictive reversible MFAs, which are both deterministic and
backwards deterministic, and shows that they capture L. It is plausible that this might allow us to
strengthen our results even further.

Tannen’s Festschrift
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▶ Theorem 23. For every signature L and every NL query Q over finite L-structures, there
is a quantifier-free interpretation γ : Γ6 → (L, S) such that for every sufficiently large finite
L-structure A,

A ∈ Q ⇐⇒ A |= (SS) ((B <)ψ)γ ,

where ψ is the sentence from Theorem 17 in the language (Γ6, <).

Proof. Let µ : Σ → (L, S) be the interpretation given by L in Theorem 21, let M be an
NMFA deciding Q, let π : (Γ2, S) → Σ be the associated interpretation from Theorem 19.
Recall the interpretations ρ : Γ3 → (Γ2, S) and τ : Γ6 → Γ3 from Section 2.2. Finally, let
γ = µπρτ . Fix a finite L-structure A and an arbitrary successor expansion (A,S).

Then M accepts the string (A,S)µ iff A ∈ Q. But M accepts (A,S)µ just in case there
is a path from source to sink over the graph (A,S)µπ. By Corollary 18, this occurs just in
case (A,S)µπρτ |= (B <)ψ. But (A,S)µπρτ = (A,S)γ .

Since the above is independent of the particular successor expansion S,

A ∈ Q ⇐⇒ A |= (SS)((B <)ψ)γ ,

which completes the proof. ◀

3.3 Logspace-computable traversals
In the other direction, we want to show that traversals and breadth-first traversals are
computable in L and NL respectively. These constructions rely on the computability
in logarithmic space of undirected st-connectivity, and furthermore on the existence of
logarithmic space universal exploration sequences [8].

Given an ordered graph G and a vertex v, it is possible to construct, in logarithmic space,
the index of the least vertex u in the connected component of v. Simply iterate through the
vertices of G in order, testing connectivity with v, until we find a vertex that is connected.

▶ Theorem 24. There is a logarithmic space Turing machine which, for every finite ordered
graph (G,<), computes a traversal (G,≺) in the following sense: given the canonical encoding
of (G,<) and (indices of) two of its vertices v and w, accepts or rejects according to whether
v ≺ w.

Proof. Given two vertices v and w in G, first test whether they are in the same connected
component. If not, let v0 and w0 be the least elements in the connected components of v
and w respectively, and compare v and w according to whether v0 < w0.

Otherwise, let v0 be the least element of their common connected component. If n = |G|,
construct (using space logarithmic in n) a universal exploration sequence, and explore the
connected component of v and w according to that sequence starting with v0. Let v ≺ w iff
the first occurrence of v precedes the first occurrence of w.

We must show (G,≺) is a traversal. Notice that connected components induce intervals. If
v is not the least vertex in some connected component, then its first occurrence in the universal
exploration sequence has some immediate predecessor u which is a neighbor. Therefore, in
the traversal, u ≺ v; hence, v has some preceding neighbor. ◀

Canonical BFT of an ordered graph. Unlike the case of ordinary traversals, where the
traversal (G,≺) of (G,<) depends on some family of universal exploration sequences, we
will define a canonical breadth-first traversal (G,≺B) of an ordered graph (G,<) and show
that it can be computed in nondeterminstic logspace.
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▶ Definition 25. Given a finite ordered graph (G,<) and vertices v, w ∈ G, let v0 and
w0 be the <-least elements of the connected components of v and w respectively. Let <⋆

be the ordering on finite sequences of vertices that orders them first by length, and then
lexicographically. Let v⃗ be the <⋆-least path from v0 to v. Then,
1. if v0 ̸= w0, then v ≺B w ⇐⇒ v0 < w0,
2. if v0 = w0 then v ≺B w ⇐⇒ v⃗ <⋆ w⃗.

▶ Lemma 26. For any finite ordered graph (G,<), (G,≺B) is a breadth-first traversal.

(Proof deferred to appendix.)

▶ Theorem 27. There is a logarithmic space nondeterministic Turing machine which, on
input a finite ordered graph (G,<) and vertices v, w ∈ G, decides whether or not v ≺B w.

Proof. As in the proof of Theorem 24, given two vertices v and w, first test whether v0 = w0
(i.e., whether they’re in the same connected component). If not, decide v ≺B w according to
whether v0 < w0.

Otherwise we argue that we can construct the sequence v⃗ = (v0, . . . , vℓ−1, v) in the
following sense: given an index for vi, we can test whether it’s equal to v; if not, we can
construct the index of vi+1, all in logarithmic space.

If we can do this, then we decide v ≺B w by comparing v⃗ <⋆ w⃗. First we compare their
lengths: we simultaneously construct (vi+1, wi+1) from (vi, wi), until the first index is v or
the second is w. Unless this happens at the same stage, we are done. (Since (vi+1, wi+1)
overwrites (vi, wi), this remains in logarithmic space.)

Otherwise, we start over, and simultaneously construct (vi, wi) until we (necessarily) find
the first index at which they differ. Then we decide v ≺B w according to which is larger.

It remains to show how to construct vi+1 from vi. Orient all edges in G so that they
increase distance from v0. Then vi+1 is the <-least vertex x such that there is an edge (vi, x)
and a directed path (x, v). Since we can compute directed reachability in nondeterminstic
logarithmic space, we can find vi+1 in nondeterminstic logarithmic space as well. ◀

At this point we are ready to state two of the central results of this paper.

▶ Theorem 28. The following are equivalent:
1. Q is a logspace-decidable query over finite K-structures.
2. There is a quantifier-free interpretation π : Γ2 → (K,S) such that for all sufficiently large

finite K-structures A,

A ∈ Q ⇐⇒ A |= (SS) ((T <)φ)π,

where φ is the formula expressing undirected st-connectivity.
3. There is a traversal-invariant definable query R over finite (K,S) structures such that for

any finite K-structure A,

A ∈ Q ⇐⇒ A |= (SS)R

Proof. Implication 1 ⇒ 2 is exactly Theorem 22. Implication 2 ⇒ 3 is immediate, as
((T <)φ)π is by definition a traversal-invariant definable query, and traversal-invariant
queries are closed under finite differences. It remains to show 3 ⇒ 1.

It suffices to show that the traversal-invariant definable query R is logspace computable
over finite (K,S) structures, as given an encoding of a K-structure A, a logspace Turing
machine can always compute a successor relation on the domain of A, by using the particular
encoding in which A is presented.
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Since logspace-computable queries are closed under boolean combinations, it suffices
to show that any basic traversal-invariant definable query is logspace computable. Since
logspace computable queries are closed under elementary interpretations, it suffices to show
that for any class G′ of finite graphs, every (G′, T ′)-invariant formula is logspace computable
over graphs in G′, where T ′ is the family of all expansions of graphs in G′ by traversals.

But for this, it suffices to show that any first-order sentence in the language of ordered
graphs is logspace computable given an encoding of a finite graph, where the order is
the traversal defined in Theorem 24. Since logspace queries are closed under first-order
combinations, it suffices to check that given any encoding of a graph and two vertices therein,
we can test whether they are equal, test whether they are connected by an edge, or compare
them according to the canonical traversal.

The first two are true, and the last is exactly Theorem 24. ◀

By replacing “L” by “NL” and “traversal” by “breadth-first traversal” throughout, we get

▶ Theorem 29. The following are equivalent:
1. Q is an nlogspace-decidable query over finite K-structures.
2. There is a quantifier-free interpretation π : Γ6 → (K,S) such that for all sufficiently large

finite K-structures A,

A ∈ Q ⇐⇒ A |= (SS) ((B <)ψ)γ ,

where ψ is the sentence of Theorem 17.
3. There is a breadth-first traversal-invariant definable query R over finite (K,S) structures

such that for any finite K-structure A,

A ∈ Q ⇐⇒ A |= (SS)R

Structures with successor. Suppose the signature K contains the unary function symbol
S, and that K is a family of finite K-structures in which S is interpreted by a successor
function. Then the quantifier (SS) in any successor-invariant query (SS)R is superfluous
over K; i.e., for any A ∈ K,

A |= R ⇐⇒ A |= (SS)R.

The reason is that the interpretation of S in R is independent of the particular successor
function on A that we choose, so we might as well choose the one native to A.

In particular, for such families K, we can drop the (SS) quantifier from the traversal- or
breadth-first traversal-invariant queries R of Theorems 28 and 29. In particular, let us take
the case of strings over a finite alphabet Σ, which are the original setting for logspace and
nlogspace queries, and also successor structures as described in Section 3. Then we have

▶ Corollary 30. For any family Q ⊆ Σ⋆,
1. Q is logspace-decidable iff there is a traversal-invariant definable query R such that for

every string x ∈ Σ⋆, x ∈ Q ⇐⇒ x |= R, and
2. Q is nlogspace-decidable iff there is a breadth-first traversal-invariant definable query R

such that for every string x ∈ Σ⋆, x ∈ Q ⇐⇒ x |= R.
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3.4 Discussion and open questions
Our results are the first presentation-invariant characterizations of L and NL, and, to our
knowledge, the largest known complexity classes characterized by first-order logic extended by
invariant definability of an elementary class of presentations. They demonstrate the surprising
power of interpretations (even quantifier-free ones!) and establish a new foundational
correspondence between graph traversals and complexity classes.

The elephant in the room is whether depth-first traversal invariance captures a meaningful
complexity class, like polynomial time. While we have been able to find depth-first invariant
definitions of certain suggestive queries (like vertex-avoiding paths), we still do not have very
strong evidence one way or the other. More generally, there are a variety of graph traversals
and a variety of associated presentations (such as the ancestral relation of the traversal tree)
which might correspond to interesting complexity classes.

Finally, we have extended these notions of definability to arbitrary infinite structures by
requiring that the underlying order be well-founded. (Since well-orders are not elementarily
definable, this circumvents the usual “Beth definability” obstacle to studying presentation
invariance over infinite structures.) Whereas separating traversal-invariant from BFT-
invariant definability over classes of finite structures requires separating L and NL, it is
plausibly easier to separate them over arbitrary classes, and it is plausible that this will
inform the finite case. This work is ongoing.
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A Interpretations and change of signature

We review the basic definitions behind interpretations, following the exposition of Hodges [5],
except that we also allow for functional signatures (see below). There is no new mathematical
content here; however, getting the definitions and terminology straight is terribly important,
since we use interpretations extensively.
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▶ Definition 31. Let L and K be signatures and k ∈ N. An elementary k-ary interpretation
π : L → K is a first-order K-formula ∂π(x̄), for each constant symbol c ∈ L a variable-free
K-term cπ, and for each relation symbol r ∈ L, a first-order K-formula rπ(x̄1, . . . , x̄n), where
n is the arity of r, and the length of each tuple throughout is k.

An interpretation is quantifier-free in case ∂π and each rπ is quantifier-free.

▶ Definition 32. Given an elementary k-ary interpretation π : L → K and a first-order
L-term or L-formula α, its translation απ, is a K-formula given by the following recursion:
1. If α is a variable x, then απ is a k-tuple of (distinct) variables x̄.
2. If α is a constant symbol c, then απ is cπ.
3. If α is the atomic formula r(α1, . . . , αn), then απ is rπ(απ, . . . , απ),
4. If α is a boolean combination of formulas ϑ, then απ is the same boolean combination of

formulas ϑπ,
5. If α is ∃xϑ, then απ is the formula ∃x̄ ∂π(x̄) ∧ ϑπ, and
6. If α is ∀xϑ, then απ is the formula ∀x̄ ∂π(x̄) → ϑπ.

In the definition below, ∂π[Ak] denotes the subset of Ak on which ∂π holds.

▶ Definition 33. Suppose π : L → K is an interpretation and A is a K-structure. Then the
π-translation Aπ is the L-structure with domain ∂π[Ak] with the denotation of λ given by
λπ, for each λ ∈ L.

(Note that even though the arity of λπ is nk as a K-formula, it defines an n-ary relation
over Aπ, whose elements are k-tuples of A.)

Functional signatures. In a very particular case (see successor expansions, Definition 10)
we will want to consider signatures with function symbols, and exactly once (Theorem 19),
we will want to define an interpretation π : L → K where L has some function symbol
f(x1, . . . , xn). In this case fπ(x⃗1, . . . , x⃗n) is a definition by cases, where each case is a
first-order K-formula, and the definiens inside each case is a k-tuple of K-terms in the free
variables (x⃗1, . . . , x⃗n), where k is the arity of π. In a quantifier-free interpretation, each case
must be a quantifier-free K-formula.

Functional signatures also generalize signatures with constants, which are nullary function
symbols. For a constant symbol c, cπ is a definition by cases, where each case is a k-tuple of
variable-free K-terms.

It is common practice in finite model theory to replace functions by their graph relations,
thus working with purely relational signatures. The only reason for considering functional
signatures here is to make certain interpretations quantifier free (cf. Theorems 28 and 29);
in the purely relational setting, these interpretations would contain quantifiers.

Injective interpretations. Usually an interpretation will also contain a first-order K-formula
eqπ(x̄, ȳ) defining when we regard two k-tuples as equal. (For example, when interpreting
rational numbers by pairs of integers, we say (a, b) = (c, d) ⇐⇒ ac− bd = 0.) In case eqπ

is simply equality of tuples (as above), π is called an injective interpretation. Here we do
not deal with any interpretations with a nontrivial equivalence relation. Therefore, it is
convenient to drop the word “injective” and simply refer to interpretations.

▶ Lemma 34 (Fundamental property of interpretations). Suppose that π : L → K is an
elementary interpretation. Then for every K-structure A, every n-ary L-sentence φ, and
every x̄1, . . . , x̄n in the domain ∂π[Ak] of Aπ,

A |= φπ(x̄1, . . . , x̄n) ⇐⇒ Aπ |= φ(x̄1, . . . , x̄n).
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Note that on the left-hand side, (x̄1, . . . , x̄n) is regarded as an nk-tuple of elements in A,
and on the right-hand side, it is regarded as an n-tuple of elements in Aπ.

▶ Definition 35. Suppose that π : L → K, L is a class of L-structures, and K is a class of
K-structures. Then π is an interpretation K → L in case for every A ∈ K, Aπ ∈ L.

Properties of interpretations ρ and τ

Lemma 13. For any graph D ∈ DS
2 , there is a directed path from s to t in D iff the vertices

y and z are equidistant from x in Dρ. Even stronger, if there is no directed path from s to t
in D, then either d(x, z) is undefined or |d(x, y) − d(x, z)| ≥ 2, where d indicates distance in
Dρ.

Proof of Lemma 13. (Adapted from [10]) Fix a graph D and let n be the number of vertices
in D. Identify the vertices of D with {0, 1, . . . , n − 1} such that S(i, i + 1). Then in Dρ,
there is a path

x = (s, 0) − (s, 1) − · · · − (s, n− 1) = y,

of length n− 1, and this is moreover the distance between x and y, by considering the second
coordinate.

If t is reachable from s in D, then that must be witnessed by some directed path
(s = r0 → r1 → · · · → rℓ−1 = t) of length ℓ ≤ n. Then

(r0, 0) − (r1, 1) − · · · − (rℓ−1, ℓ− 1) − (rℓ−1, ℓ) − · · · − (rℓ−1, n− 1)

is a path in Dρ from x to z of length exactly n − 1. Again by considering the second
coordinate, we can see that there is no shorter path. Hence y and z are equidistant from x.

Conversely, suppose that there were a path in Dρ from x to z in Dρ of length exactly
n− 1. Then it must be of the form

(u0, 0) − (u1, 1) − · · · − (un−1, n− 1),

where u0 = s, un−1 = t, and for each i, either ui = ui+1 or ui → ui+1 in D. Hence the ui

witness a directed path from s to t.
Moreover, observe the parity of the second coordinate in any path must alternate. Hence,

the length of any path from (s, 0) to (t, n− 1) must be equal to n− 1 modulo 2. Therefore,
if there is no directed path from s to t in D, then in Dρ then any path from x to z in Dρ

must have length at least n+ 1. This is at least 2 greater than d(x, y), which is n− 1. ◀

Theorem 17. Let B be the set of all expansions of graphs in G′
6 by a breadth-first traversal.

There is a (G′
6,B)-invariant formula ψ such that for any (G, x, y, z) ∈ G′

3,

d(x, y) = d(x, z) =⇒ Gτ |= (B <)ψ

|d(x, y) − d(x, z)| ≥ 2 =⇒ Gτ |= ¬(B <)ψ,

where the second case also contains all those graphs where x, y, and z are not all connected.

Proof of Theorem 17. Let ψ assert that all six constants (x1, . . . , z2) occur in the same
connected component; moreover, if x1 < x2, then y2 and z2 occur in the same quasi-level,
and if x2 < x1, then y1 and z1 occur in the same quasi-level. (To show that ψ is invariant, it
suffices to show that ψ is correct.)
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Fix a graph (G, x, y, z) ∈ G′
3 such that d(x, y) = d(x, z). Consider its translation, and

expand this by an arbitrary breadth-first traversal. We may assume that all constants
(x1, . . . , z2) lie in the same connected component; otherwise ψ evaluates to false, which is
correct as not all of (x, y, z) are connected.

Suppose that x1 < x2. Let w be the least element of < in the connected component of x1.
Then w must be in G1, so any path from w to y2 or z2 must pass through the edge (x1, x2).
Hence,

|d(x, y) − d(x, z)| = |d(x2, y2) − d(x2, z2)| = |d(w, y2) − d(w, z2)|.

In other words, the desired quantity is exactly the difference in distance between y2 and x2
to the source. We know that this difference is either equal to 0 or at least 2, and ψ correctly
distinguishes these two cases by testing whether y2 and z2 occur in the same quasi-level.

Similarly, if x2 < x1, ψ distinguishes |d(x, y) − d(x, z)| = 0 from |d(x, y) − d(x, z)| ≥ 2 by
testing whether y1 and z1 occur in the same quasi-level. ◀

B Defining configuration graphs by interpretation

Theorem 19. For every NMFA M with alphabet Σ there is an interpretation π : Γ2 → Σ
such that for every sufficiently long string x ∈ Σ⋆, xπ is isomorphic to the configuration
graph of M on input x. Furthermore, we can expand π to an interpretation π : (Γ2, S) → Σ,
so that xπ is a successor expansion of the above configuration graph. Moreover, π can be
made quantifier-free.

Proof of Theorem 19. Let k be the number of heads in M. Then k+1 will be the dimension
of π. The domain of the interpretation ∂π just stipulates that the first coordinate is less than
q, the number of states of M.

We can now establish a bijection between the domain of π and configurations of M with
input x, for any string x such that |x| ≥ q. A configuration is simply specified by current
state and the location of the heads, which correspond to the first and remaining k coordinates
of the domain respectively. Since x is sufficiently long, there are enough choices in the first
coordinate for all states of M.

Let u⃗ and v⃗ be arbitrary configurations of M on input an arbitrary string of length at
least q. We want to define Eπ(u⃗, v⃗) to hold just in case the configuration v⃗ is reachable from
u⃗ in one step. This is definable by a boolean combination of formulas of the following form:
1. ui is the minimum or maximum index,
2. σ ∈ Σ is the character at index, and
3. indices ui and vi are identical or adjacent.
Each of these formulas is quantifier-free definable in the language Σ, by e.g.,
1. ui = 0 or ui = n− 1,
2. σ(ui), and
3. ui = vi or S(ui) = vi or ui = S(vi)
respectively, where 0 and n− 1 are aliases for min and max respectively. Finally,

sπ = (0, 0, . . . , 0), tπ = (S(0), 0, . . . , 0).

This is because all heads are at the left in the initial or final configuration, 0 is the start
state, and 1 is the halt state.

Now for any string x of length at least q, not only is the domain of xπ in bijection with
the configurations of M on x, but relative to this bijection πE defines the graph of “next,”
and πs and πt are the initial and final configurations respectively. Hence xπ as a structure is
isomorphic to the configuration graph of M on input x.
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To expand π to an interpretation from ΓS
2 , we need to define a successor function on

(k+1)-tuples of indices, given a successor function on indices. This is easy to do by mimicking
the standard “increment-by-one” algorithm on numbers written in some fixed radix.8 ◀

First-order definitions of traversals
Lemma 26. For any finite ordered graph (G,<), (G,≺B) is a breadth-first traversal.

Proof of Lemma 26. Connected components of G induce intervals of (G,≺B), so it suffices
to assume that G is connected. Let v0 be the least element of G (unambiguously with respect
to either order).

Suppose v is a non-minimal vertex and let v⃗ = (v0, v1, . . . , vℓ−1, v). Since <⋆-least shortest
paths are closed under prefixes, vi ≺B v for each v; in particular, |v⃗ℓ−1| = ℓ− 1.

Let u be the ≺B-least neighbor of v, and u⃗. Since u ⪯B vℓ−1, |u⃗| ≤ ℓ− 1. Since (u⃗, v) is
a path from v0 to v of length at most ℓ, and since ℓ is the distance from v0 to v, |u⃗| = ℓ− 1.

Since u and vℓ−1 are the same distance from v0, we have

u⃗ ≤⋆ (v0, . . . , vℓ−1) ∧ (v0, . . . , vℓ−1, v) ≤⋆ (u⃗, v).

Therefore u⃗ = (v0, . . . , vℓ−1). In particular, u = vℓ−1.
Finally, suppose that v and w are arbitrary non-minimal vertices of G, and that v ≺B w.

Let v† and w† be the second-to-last elements of v⃗ and w⃗ respectively. Then v† and w† are
the ≺B-least neighbors of v and w, so it suffices to show that v† ⪯B w†.

However, v⃗ = (v⃗†, v) and w⃗ = (w⃗†, w). Since v⃗ <⋆ w⃗, v⃗† ≤⋆ w⃗†, which concludes the
proof. ◀

8 This is the only point in which we have to define Sπ where S is a function symbol, here we use a
definition by cases in which every case is a quantifier-free term guarded by a quantifier-free formula.
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