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Abstract
Semiring provenance evaluates database queries or logical statements not just by true or false but by
values in some commutative semiring. This permits to track which combinations of atomic facts are
responsible for the truth of a statement, and to derive further information, for instance concerning
costs, confidence scores, number of proof trees, or access levels to protected data. The focus of this
approach, proposed and developed to a large extent by Val Tannen and his collaborators, has first
been on (positive) database query languages, but has later been extended, again in collaboration
with Val, to a systematic semiring semantics for first-order logic (and other logical systems), as well
as to a method for the strategy analysis of games.

So far, semiring provenance has been studied for finite structures. To extend the semiring
provenance approach for first-order logic to infinite domains, the semirings need to be equipped with
addition and multiplication operators over infinite collections of values. This needs solid algebraic
foundations, and we study here the necessary and desirable properties of semirings with infinitary
operations to provide a well-defined and informative provenance analysis over infinite domains. We
show that, with suitable definitions for such infinitary semiring, large parts of the theory of semiring
provenance can be succesfully generalised to infinite structures.
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1 Introduction

Semiring provenance was proposed in 2007 by Val Tannen in the seminal paper [7], together
with Todd Green and Grigoris Karvounarakis. It is based on the idea to annotate the
atomic facts in a database by values in some commutative semiring, and to propagate these
values through a database query, keeping track whether information is used alternatively or
jointly. This approach has been successfully applied to many variants of database queries,
including conjunctive queries, positive relational algebra, datalog, nested relations, XML,
SQL-aggregates, graph databases (see, e.g., the surveys [8, 3]). Depending on the chosen
semiring, provenance valuations give practical information about a query, beyond its truth
or falsity, for instance concerning the confidence that we may have in its truth, the cost
of its evaluation, the number of successful evaluation strategies, and so on. Beyond such
provenance evaluations in specific application semirings, more precise information is obtained
by evaluations in provenance semirings of polynomials or formal power series, which permit
us to track which atomic facts are used (and how often) to compute the answer to the query.

While semiring provenance had for a long time been restricted to negation-free query
languages, a new approach for dealing with negation has been proposed in 2017 by Grädel
and Tannen [4], based on transformations into negation normal form, quotient semirings
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3:2 Semiring Provenance in the Infinite

of polynomials with dual indeterminates, and a close relationship to semiring valuations
of games. In particular, this provides a semiring provenance analysis for full first-order
logic (over finite domains). Further such a provenance analysis can be applied to many
other logics and query languages with negation, and also permits a reverse provenance
analysis, i.e., finding models that satisfy various properties under given provenance tracking
assumptions, with potential applications to explaining missing query answers or failures of
integrity constraints, and to using these explanations for computing repairs. An updated
exposition of this approach can be found in [6].

If we investigate semiring provenance, beyond applications to finite data, as a general
semiring-based semantics for first-order logic (and other logical systems), the question arises
whether this semantics also makes sense over infinite domains, and what properties of the
underlying semirings are needed to make such an extension possible and meaningful. This is
the question that we want to study in this paper.

The obvious problem is the interpretation of quantifiers. A semiring interpretation π,
over the universe A, assigns to a formula ψ(ā) a value π[[ψ(ā)]] in some commutative semiring
S. This is defined by induction on ψ, and for the quantifiers, we have that

π[[∃xφ(x, b̄)]] :=
∑
a∈A

π[[φ(a, b̄)]] and π[[∀xφ(x, b̄)]] :=
∏
a∈A

π[[φ(a, b̄)]],

so for infinite universes, we need to equip the semirings with infinitary addition and multi-
plication operations, with suitable algebraic properties.

In some cases this is completely straightforward and unproblematic, for instance for finite
min-max semirings or, more generally, for semirings induced by some complete lattice (with
suprema and infima as semiring operations). There are other semirings, for instance the
natural semiring N = (N,+, ·, 0, 1), which do not admit infinitary operations, but which
can be easily completed to one that does so, such as N∞ = N ∪ {∞} where there is an
obvious natural definition for infinitary addition and multiplication. But such extensions are
not always obvious, for instance for semirings of polynomials. Further there are important
semirings, such as the tropical semiring T = (R∞

+ ,min,+,∞, 0) where the definition of the
infinitary operations (here infimum and infinitary sum) is obvious, but it is not clear whether
all relevant algebraic properties of the semiring operations also hold for their infinitary
versions. In the case of the tropical semiring, we shall see that most of the basic algebraic
properties do generalise to the infinite, with the exception of the distributive law which, in
its strong form, does only hold on countable domains, but not on uncountable ones. Of
course this poses the questions, what algebraic properties of infinitary semiring operations are
actually needed for a well-defined and meaningful semiring semantics. We shall systematically
study necessary and desirable algebraic properties of such infinitary operations and, on this
basis, propose a definition of infinitary semirings. We will discuss examples of such semirings,
focussing on one side on the case of absorptive infinitary semirings and, on the other side,
define extensions of the polynomial semiring N[X] to a semiring of generalised power series,
for which we can establish a universality property, similar to the one of N[X] in the finite
case.

Using these infinitary semirings, we shall discuss semiring provenance for first-order logic
on possibly infinite structures and show that a large part of the theory developed for the finite
case does indeed carry over to infinite domains. In particular, we establish that the Sum-of-
Proof-Trees-Theorem, saying that the semiring valuation of a first-order sentence coincides
with the sum of the valuations of its proof trees also holds on infinite domains, provided that
the underlying infinitary semiring satisfies an appropriate distributivity property.
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2 Commutative Semirings

▶ Definition 1 (Semiring). A commutative semiring is an algebraic structure S = (S,+, ·, 0, 1)
with 0 ̸= 1, such that (S,+, 0) and (S, ·, 1) are commutative monoids, · distributes over +,
and 0 · s = s · 0 = 0.

In this paper, we only consider commutative semirings and simply refer to them as
semirings. A semiring is naturally ordered (by addition) if s ≤ t :⇔ ∃r(s + r = t) defines
a partial order. Notice that ≤ is always reflexive and transitive, so a semiring is naturally
ordered if, and only if ≤ is antisymmetric, i.e. r ≤ s and s ≤ r only hold for s = r. In
particular, this excludes rings.

A semiring S is idempotent if s+ s = s for each s ∈ S and multiplicatively idempotent
if s · s = s for all s ∈ S. If both properties are satisfied, we say that S is fully idempotent.
Finally, S is absorptive if s + st = s for all s, t ∈ S or, equivalently, if multiplication is
decreasing in S, i.e. st ≤ s for all s, t ∈ S. Every absorptive semiring is idempotent, and
every idempotent semiring is naturally ordered.

Application semirings. There are many applications which can be modelled by semirings
and provide useful practical information about the evaluation of a formula.

The Boolean semiring B = (B,∨,∧,⊥,⊤) is the standard habitat of logical truth.
A totally ordered set (S,≤) with least element s and greatest element t induces the min-
max semiring (S,max,min, s, t). Specific important examples are the Boolean semiring,
the fuzzy semiring F = ([0, 1],max,min, 0, 1), and the access control semiring, also called
the security semiring [2].
A more general class (than min-max semirings) is the class of lattice semirings (S,⊔,⊓, s, t)
induced by a bounded distributive lattice (S,≤). Clearly, lattice semirings are fully
idempotent.
The tropical semiring T = (R∞

+ ,min,+,∞, 0) is used to annotate atomic facts with a
cost for accessing them and to compute minimal costs for verifying a logical statement.
It is not fully idempotent but absorptive.
The Viterbi semiring V = ([0, 1]R,max, ·, 0, 1), which is in fact isomorphic to T via
y 7→ − ln y can be used for reasoning about confidence.
An alternative semiring for this is the Łukasiewicz semiring L = ([0, 1]R,max,⊙, 0, 1),
where multiplication is given by s⊙ t = max(s+ t− 1, 0). It is isomorphic to the semiring
of doubt D = ([0, 1]R,min,⊕, 1, 0) with s⊕ t = min(s+ t, 1). Both L and D are absorptive
semirings.
The natural semiring N = (N,+, ·, 0, 1) is used to count the number of proof trees or
evaluation strategies that estabish the truth of a sentence. It is also important for bag
semantics in databases.

Provenance semirings. Provenance semirings of polynomials provide information on which
combinations of literals imply the truth of a formula. The universal provenance semiring over
a finite set X is the semiring N[X] of multivariate polynomials with indeterminates from X

and coefficients from N. Other provenance semirings are obtained, for example, as quotient
semirings of N[X] induced by congruences for idempotence and absorption. The resulting
provenance values are less informative but their computation is more efficient.

By dropping coefficients from N[X], we get the free idempotent semiring B[X] whose
elements are (in one-to-one correspondence with) finite sets of monomials with coefficient
1. It is the quotient induced by x+ x ∼ x.

Tannen’s Festschrift



3:4 Semiring Provenance in the Infinite

If, in addition, exponents are dropped, we obtain the Why-semiring W(X) of finite sums
of monomials with coefficient 1 that are linear in each indeterminate. In this semiring,
addition is idempotent but multiplication is not.
The free absorptive semiring S(X) consists of 0, 1 and all antichains of monomials with
respect to the absorption order ≽. A monomial m1 absorbs m2, denoted m1 ≽ m2, if
it has smaller exponents, i.e. m2 = m ·m1 for some monomial m. It is the quotient of
N[X] induced by x+ xy ∼ x.
Finally, (PosBool(X),∨,∧,⊥,⊤) is the semiring whose elements are classes of equivalent
(in the usual sense) positive Boolean expressions with Boolean variables from X. Its
elements are in bijection with the positive Boolean expressions in irredundant disjunctive
normal form. This is the lattice semiring freely generated by the set X. It arises from
S(X) by dropping exponents.

For treating logical formalisms with fixed-point constructions, such as Datalog or LFP,
provenance semirings with more general objects than polynomials are needed (see [1, 7].
Examples include the semirings of formal power series (with possibly infinite sums of
monomials) such as N∞[[X]] and the semirings S∞(X) of generalised absorptive polynomials
(admitting infinite exponents). Further, all these provenance semirings can be equipped with
dual indeterminates for treating negation, see [6].

3 Semirings with Infinitary Operations

3.1 Basic Properties of an Infinitary Operation
We first treat the two semiring operations, addition and multiplication, separately, and then
look at their connections. The properties of the individual operations are discussed in terms
of addition, but apply to multiplication analogously.

So let S = (S,+, 0) be a commutative monoid which we want to expand by an infinitary
operation

∑
that maps every sequence (si)i∈I (over an arbitrary index set I) to a value∑

i∈I si ∈ S. The infinitary sum should be compatible with the finite sum and respect the
basic algebraic properties of the monoid. We thus have the following requirements.

Partition invariance (infinite associativity): For each partition (Ij)j∈J of I we have∑
i∈I

si =
∑
j∈J

∑
i∈Ij

si.

Bijection invariance (infinite commutativity): For every bijection σ : J → I∑
i∈I

si =
∑
j∈J

sσ(j).

Compatibility with the finite: For each finite index set I = {i0, . . . , in}∑
i∈I

si = si0 + · · · + sin .

Partition invariance is actually a very strong property which, in particular, implies
bijection invariance. Indeed, consider the partition (Ij)j∈J of I into singleton sets Ij =
{σ(j)}. Then partition invariance (together with compatibility with finite sums) implies that∑
i∈I si =

∑
j∈J

∑
i∈Ij

si =
∑
j∈J sσ(j). Bijection invariance also justifies that we consider

operations over index sets rather than, for instance, transfinite sequences.
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Most natural infinitary operations on monoids satisfy these properties. Nevertheless
there are quite simple constructions that violate, for instance, infinite associativity, even for
certain naturally ordered monoids with an infinite sum defined as the supremum of its finite
subsums.

▶ Example 2. Let S = N∪{ω, ω′} with the (commutative) addition that extends the natural
addition on N by n + ω = ω for n ∈ N and ω + ω = ω + ω′ = ω′ + ω′ = ω′. Defining∑
i∈I si = sup{

∑
i∈I0

si : I0 ⊆fin I} we have a summation operator where, for the sequence
(sn)n∈N with s0 = ω and sn = 1 for n > 0, we have that the finite sum takes are all the
values n ≤ ω, and hence∑

n∈N
sn = sup{n : n ≤ ω} = ω but s0 +

∑
n≥1

sn = s0 + sup{n : n < ω} = ω + ω = ω′,

so partition invariance fails.

3.2 Compactness and its Consequences
However, these three requirements do not suffice to avoid “pathological” definitions with
undesirable behaviour. Consider, for instance, the monoid (N∪ {∞},+, 0) with the infinitary
sum defined by

∑
i∈I si = ∞ for all infinite I (and satisfying compatibility with + for finite

index sets). This violates, for instance, the following two natural properties.

Neutrality:
∑

respects the neutral element if
∑
i∈I si =

∑
i∈I,si ̸=0 si.

Idempotence:
∑

respects idempotent elements if for all s ∈ S such that s + s = s, also∑
i∈I s = s for every index set I ̸= ∅.

To guarantee these, and other, desirable properties, we propose compactness properties
which essentially say that if the infinitary operation takes different values on two sequences
(si)i∈I and (tj)j∈J then this is already witnessed by finite subsets, in the sense that some
finite subsequence of one takes a value that is not assumed by any finite subsequence of the
other. More formally:

Compactness: The operator
∑

is compact if for all (si)i∈I and (tj)j∈J we have that∑
i∈I

si =
∑
j∈J

tj whenever
{∑
i∈I0

si : I0 ⊆fin I
}

=
{ ∑
j∈J0

tj : J0 ⊆fin J
}
.

Strong compactness: The operator
∑

is strongly compact if for all (si)i∈I and (tj)j∈J and
all s, t we have that

s+
∑
i∈I

si = t+
∑
j∈J

tj whenever
{
s+

∑
i∈I0

si : I0 ⊆fin I
}

=
{
t+

∑
j∈J0

tj : J0 ⊆fin J
}
.

▶ Lemma 3.
1. Every compact operator respects idempotent elements.
2. If a partition invariant operator respects idempotent elements then it also respects the

neutral element.
3. If

∑
is partition invariant and respects idempotent elements, then there exists, for every

s ∈ S, a unique element ∞ · s :=
∑
i∈I s for every infinite I.

4. If
∑

is strongly compact, and s+ p = s then s+
∑
i∈I p = s for every index set I.

Tannen’s Festschrift



3:6 Semiring Provenance in the Infinite

Proof. (1) If s+s = s then for each index set I, the values
∑
i∈I0

s for finite I0 ⊆ I are s and
0. Taking J = {0, 1} and t0 = 0 and t1 = s we also have s and 0 as values for subsequences.
Thus, by compactness,

∑
i∈I s = t0 + t1 = 0 + s = s.

For (2) we note that since 0 is an idempotent element, we have that
∑
j∈J 0 = 0 for all

index sets J . It follows by partition invariance that∑
i∈I

si =
∑
i∈I

si ̸=0

si +
∑
i∈I

si=0

0 =
∑
i∈I

si ̸=0

si.

For (3) we first observe that the bijection invariance of an infinitary summation operator
implies that

∑
i∈I s =

∑
j∈J s for every s ∈ S and all index sets I, J of the same cardinality.

Hence there exists, for every s ∈ S and every infinite cardinal κ, a unique element κ·s =
∑
i∈I s

for every index set I of cardinality κ. Obviously, ω · s is idempotent, and we can decompose
any index set of size κ into a partition of sets of size ω. By partition invariance, and the
respect of idempotent elements, it follows that κ · s = ω · s =: ∞ · s. To prove (4), we note
that s+ p = s implies that s+

∑
i∈I0

p = s for all finite I0. With J = ∅ and t = s, strong
compactness implies that s+

∑
i∈I p = s for every index set I. ◀

But compactness also has consequences for finite sums. Recall that a finite monoid
S = (S,+, 0) is aperiodic if for every s ∈ S there exists some n ∈ N such that (n+ 1)s = ns.

▶ Lemma 4. The compactness property, even just for finite sums, in a finite monoid
S = (S,+, 0) implies that S must be aperiodic.

Proof. If S is not aperiodic then there exist s ∈ S and some minimal n ∈ N such ns ̸=
(n+ 1)s = ks for some k < n. But then the sums

∑n
i=1 s and

∑n+1
i=1 s have different values

although they have the same sets of values for subsums, namely {0, s, 2s, . . . , ns}, which
contradicts compactness. ◀

We further notice that the existence of an infinitary operation with (some of) these
properties can also have implications for the purely finitary properties of the monoid S =
(S,+, 0). Recall that S is +-positive if s+ t = 0 only holds for s = t = 0. Further, (S,+, 0)
is naturally ordered, if s ≤ t :⇔ ∃r(s+ r = t) is a partial order. Since ≤ is always reflexive
and transitive this is the case if, and only if, ≤ is antisymmetric, i.e. s ≤ t and t ≤ s imply
that s = t. Obviously, a naturally ordered monoid is +-positive, but the converse is not true.

▶ Lemma 5. If S = (S,+, 0) admits a partition invariant infinitary sum that respects the
neutral element, then S is +-positive. If this sum is strongly compact then S is naturally
ordered.

Proof. Suppose that s + t = 0. Since
∑

is partition invariant and respects the neutral
element we have that 0 =

∑
i∈N(s+ t) = s+

∑
i∈N(t+ s) = s+ 0 = s. For the second claim,

suppose that s+ r = t and t+ q = s. For p = r+ q we thus have that s+ p = s and t+ p = t.
We have to prove that s = t. By Lemma 3, strong compactness implies that s+

∑
i∈N p = s

and t+
∑
i∈N p = t. But then, partition invariance implies that

s = s+
∑
i∈N

p = s+
∑
i∈N

(r + q) = (s+ r) +
∑
i∈N

(q + r) = t+
∑
i∈N

p = t. ◀

▶ Lemma 6. There is a monoid S = (S,+, 0) that admits a partition-invariant and compact
infinitary sum such that S is not naturally ordered and the sum therefore violates strong
compactness. In particular, compactness does not imply strong compactness.
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Proof sketch. Consider the monoid M := (N4 ∪ {∞},+, 0) with a + ∞ = ∞ for all a
where the infinitary sum is defined by

∑
i∈I si = ∞ if there are infinitely many nonzero

summands si ≠ 0, and otherwise,
∑
i∈I si corresponds to the usual finite sum of all (finitely

many) nonzero summands. Clearly, M is naturally ordered by the usual component-wise
partial order on N4 with an adjoined top element ∞. Moreover, the infinitary sum is both
partition-invariant and bijection-invariant.

To construct S, we set a := (1, 0, 0, 0), b := (0, 1, 0, 0), c := (0, 0, 1, 0) and d := (0, 0, 0, 1),
and we identify a+ c ∼ b and b+ d ∼ a. Let ∼ be the minimal congruence relation on M

that satisfies this and set S := M/∼. It can be shown that such a congruence relation exists
and that it satisfies a ̸∼ b and is compatible with the infinitary sum on M . Moreover, the
infinitary sum on S inherits partition-invariance from the infinitary sum on M .

Further, it is possible to show that the infinitary sum on S is still compact. However, S is
not naturally ordered, since a ̸∼ b implies [a]∼ ̸= [b]∼, but by definition, we have [a]∼ ≤ [b]∼
and [b]∼ ≤ [a]∼ due to [a]∼ + [c]∼ = [a+ c]∼ = [b]∼ and [b]∼ + [d]∼ = [b+ d]∼ = [a]∼. With
Lemma 5, it follows that the infinitary sum on S cannot be strongly compact. ◀

Although compactness and strong compactness of an infinitary operation are powerful
and convenient properties, there is the problem that they are not always easy to verify,
and that there are relevant semirings where multiplication is not compact, as for instance
N∞[[X∞]], an infinitary extension of N[X] to be defined in Section 5, which does not even
respect idempotent elements. We therefore will work with the following simpler property,
which by Lemma 3 is implied by compactness, is easier to establish, and suffices for our
proofs.

Unique infinite powers:
∑

has unique infinite powers if for every s ∈ S, there exists a
unique element ∞ · s with ∞ · s :=

∑
i∈I s for every infinite I.

3.3 Distributivity
The requirements that relate the two algebraic operations in a commutative semiring are
the distributive law s(r + t) = sr + st and the fact that the neutral element of addition is
multiplicatively annihilating, i.e. 0 · s = 0 for all s. If an infinitary product

∏
is partition

invariant and compatible with finite products, then it follows immediately that
∏
i∈I si = 0

whenever si = 0 for some i ∈ I. The generalisation of the distributive law to infinitary
operations is more complicated and comes in a weak and a strong variant:

Weak distributivity: For each index set I and all s

s ·
∑
i∈I

si =
∑
i∈I

(s · si).

Strong distributivity: For every index set I and every collection (Ji)i∈I of index sets∏
i∈I

∑
j∈Ji

sj =
∑
f∈F

∏
i∈I

sf(i),

where F is the set of all choice functions f : I →
⋃
i∈I Ji such that f(i) ∈ Ji for all i ∈ I.

For finite index sets I, strong distributivity is implied by weak distributivity via a rather
straightforward induction. For infinite index sets the situation is more complicated.

We first observe that strong distributivity holds for the completion N∞ = N ∪ {∞}
of the natural semiring (N,+, ·, 0, 1) (with the natural extensions of finite addition and
multiplication from N to finite and infinitary addition and multiplication on N∞).

Tannen’s Festschrift



3:8 Semiring Provenance in the Infinite

▶ Proposition 7. The semiring N∞ satisfies strong distributivity.

Proof. Given an expression
∏
i∈I

∑
j∈Ji

sj over N∞, we argue by case distinction.
If

∏
i∈I

∑
j∈Ji

sj = 0, then there is some i ∈ I such that sj = 0 for all j ∈ Ji. But
then every choice function f ∈ F has the property that sf(i) = 0 which implies that also∑
f∈F

∏
i∈I sf(i) = 0.

If
∏
i∈I

∑
j∈Ji

sj ̸= 0, then there exists, for each i ∈ I, some j ∈ Ji such that sj ̸= 0.
Hence there is a choice function f ∈ F such that

∏
i∈I sf(i) ̸= 0.

We next discuss the cases where
∏
i∈I

∑
j∈Ji

sj = ∞. Assume that sk = ∞ for some
k ∈ Ji, so

∑
j∈Ji

sj = ∞. For the choice function that selects k ∈ Ji, and nonzero elements
in the other index sets, we have

∏
i∈I sf(i) = ∞, and hence

∑
f∈F

∏
i∈I sf(i) = ∞. Another

possible case with
∑
j∈Ji

sj = ∞ appears when there are infinitely many j ∈ Ji with sj ̸= 0.
Then there are infinitely many choice functions f ∈ F such that sf(i) ̸= 0 for all i, so again∑

f∈F
∏
i∈I sf(i) = ∞. Finally it may be the case that

∏
i∈I

∑
j∈Ji

sj = ∞ because there
are infinitely many i ∈ I, such that

∑
j∈Ji

sj > 1. We distinguish two possibilities. Either
there are infinitely many i, for which there exists some j ∈ Ij with sj ≥ 2. Selecting these
elements, and (by the argument above) non-zero values for the other indices gives us a choice
function f ∈ F such that

∏
i∈I sf(i) = ∞. The other possibility is that there exist infinitely

many i ∈ I with at least two indices j ∈ Ij with sj = 1. But this implies that there are
not just one, but infinitely many choice functions f ∈ F such that sf(i) ̸= 0 for all i, so∑
f∈F

∏
i∈I sf(i) = ∞.

Suppose finally that
∏
i∈I

∑
j∈Ji

sj = n where 1 ≤ n < ∞. Then there exists a finite
index set I0 ⊂ I, such that

∏
i∈I

∑
j∈Ji

sj =
∏
i∈I0

∑
j∈Ji

si and that
∑
j∈Ji

sj = 1 for all
i ∈ I \ I0. This implies that in each such Ji there is precisely one j such that sj = 1, and
that sk = 0 for k ≠ j. Let F ′ be the subset of those choice functions in F that select for
each i ∈ I \ I0 the unique j ∈ Ji with sj = 1. Notice that

∏
i∈I sf(i) = 0 for all f ∈ F \ F ′.

Further, let F0 be the set of choice functions on I0. Each f ∈ F0 uniquely extends to a choice
function in f ′ ∈ F ′, with

∏
i∈I0

sf(i) =
∏
i∈I sf ′(i). We further note that each sum

∑
j∈Ji

sj
cannot exceed n, so it can only have finitely many non-zero entries and can be written as a
finite sum. By (finite) distributivity, we have∑

f∈F

∏
i∈I

sf(i) =
∑
f ′∈F ′

∏
i∈I

sf ′(i) +
∑

f∈F\F ′

∏
i∈I

sf(i) =
∑
f∈F0

∏
i∈I0

sf(i) =
∏
i∈I0

∑
j∈Ji

sj = n. ◀

It is easy to verify that N∞ also satisfies all other properties mentioned above, including
(strong) compactness. The same holds for other semirings that are obtained by completing a
semiring without infinitary operations by an element ∞ to which the appropriate infinite
sums and infinite products evaluate. This includes, for instance, the polynomial semirings
N[X] ∪ {∞} and B[X] ∪ {∞}, for finite sets X of indeterminates.

But there are also important semirings for which strong distributivity depends on the
cardinality of the index sets that we consider. We illustrate this for the tropical semiring
T = (R∞

+ ,min,+,∞, 0) (whose infinitary operations are, of course, infimum and the natural
infinitary sum). Weak distributivity holds for arbitrary index sets. However, this is not the
case for strong distributivity.

▶ Proposition 8. In the tropical semiring, strong distributivity holds for countable index sets,
but fails for uncountable ones.

Proof. We first prove the failure of strong distributivity for uncountable index sets. Let
Ji = ω for all i in some uncountable index set I, and let (sj)j∈ω be any sequence of positive
real numbers that converges to 0. Strong distributivity would mean that∑

i∈I
inf
j∈ω

sj = inf
f∈F

∑
i∈I

sf(i)
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where F ranges over all choice functions f : I → ω. However, the left side is 0 since the
infimum of (sj)j∈ω is 0. But every choice function f : I → ω must hit some n ∈ ω infinitely
often so for every f we have that

∑
i∈I sf(i) ≥ ∞ · sn = ∞. Hence the right side evaluates to

∞, and strong distributivity fails.
Next we observe that, for all index sets I and (Ji)i∈I ,∑
i∈I

inf
j∈Ji

sj ≤ inf
f∈F

∑
i∈I

sf(i).

Indeed, for all f ∈ F we clearly have that infj∈Ji
sj ≤ sf(i). Summation is monotone, so it

follows that
∑
i∈I infj∈Ji sj ≤

∑
i∈I sf(i) and since this holds for all f ∈ F it also holds for

the infimum.
Finally, it remains to show that for countable I and all (Ji)i∈I , we have that∑
i∈I

inf
j∈Ji

sj ≥ inf
f∈F

∑
i∈I

sf(i).

We know that this holds for finite I, so we assume now that I is countably infinite. Without
loss of generality we can take I = ω, and we set qi := infj∈Ij

sj and q :=
∑
i∈ω qi. We have

to show that inff∈F
∑
i∈ω sf(i) ≤ q. If q = ∞, there is nothing to prove. Otherwise q and

hence also all qi are finite. Fix any ε > 0. Since infj∈Ji
sj = qi we can find, for every i < ω,

some j ∈ Ji such that sj ≤ qi + ε2−(i+1). Let fε be a choice function that maps each i ∈ ω

to some j ∈ Ji with this property. We then have that∑
i∈ω

sfε(i) ≤
∑
i∈ω

(qi + ε2−(i+1)) =
∑
i∈ω

qi + ε ·
∑
i∈ω

2−(i+1) = q + ε.

Since this holds for all ε > 0 we conclude that inff∈F
∑
i∈I sf(i) ≤ q. ◀

The same proposition, with almost exactly the same proofs, holds also for the Viterbi
semiring V, the Łukasiewicz semiring L and the semiring of doubt D.

3.4 Monotonicity
In a naturally ordered semiring, an important property is that both addition and multiplication
are monotone in each argument: if s1 ≤ t1 and s2 ≤ t2 then s1 + s2 ≤ t1 + t2 and s1s2 ≤ t1t2.
By partition invariance it immediately follows that also the infinitary sum is monotone in
each argument.

▶ Lemma 9. If si ≤ ti for all i ∈ I, then
∑
i∈I si ≤

∑
i∈I ti.

Proof. For each i ∈ I, we have that ti = si + δi for some element δi ∈ S. Hence
∑
i∈I ti =∑

i∈I(si + δi) =
∑
i∈I si +

∑
i∈I δi. ◀

Monotonicity of multiplication is implied by the distributive law: if t1 = s1 + δ1 and
t2 = s2 + δ2 then t1t2 = s1s2 + s1δ2 + s2δ1 + δ1δ2, so s1s2 ≤ t1t2. Monotonicity of infinitary
products in each single argument follows by the same argument. If tj = sj + δ for some j ∈ I,
and si = ti for all other i ∈ I then

∏
i∈I ti = (sj + δ)

∏
i∈I\{j} si =

∏
i∈I si + δ

∏
i∈I\{j} si.

Assuming strong distributivity, we can apply this argument simultaneously to each factor.

▶ Lemma 10. If S satisfies strong distributivity, and si ≤ ti for all i ∈ I, then
∏
i∈I si ≤∏

i∈I ti.
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Proof. Again, let ti = si + δi and let F be the set of all choice functions f that map each
i ∈ I to either si or δi. Further, let f0 ∈ F be the function that maps all i ∈ I to si. By
strong distributivity, we have that∏
i∈I

ti =
∏
i∈I

(si+ δi) =
∑
f∈F

∏
i∈I

f(i) =
∏
i∈I

f0(i)+
∑

f∈F\{f0}

∏
i∈I

f(i) =
∏
i∈I

si+
∑

f∈F\{f0}

∏
i∈I

f(i)

so
∏
i∈I si ≤

∏
i∈I ti. ◀

Given that strong distributivity does not hold in all interesting semirings, we should add
monotonicity to our list of desired properties for infinitary semiring operations.

Monotonicity: For each index set I and all families (si)i∈I and (ti)i∈I such that si ≤ ti
(w.r.t. the natural order) we also have that∑

i∈I
si ≤

∑
i∈I

ti and
∏
i∈I

si ≤
∏
i∈I

ti.

The requirement of monotonicity for the infinitary sum is redundant since it is implied
by partition invariance, but monotonicity of infinitary products does not seem to follow from
weaker properties than strong distributivity.

▶ Example 11. Let S = N ∪ {∞} with the natural definition of infinitary sum, but with
an infinitary product that evaluates to 0, if there are infinitely many finite factors different
from 1. More precisely,

∏
i∈I

si =


∞ if si = ∞ for some i ∈ I and si ̸= 0 for all i ∈ I∏
i∈I0

si for I0 ⊆fin I such that si = 1 for all i ∈ I \ I0

0 otherwise.

The infinitary product is not monotone since
∏
i<ω 1 = 1 but

∏
i<ω 2 = 0. Strong distributiv-

ity of course also fails, as witnessed by
∏
i<ω(1+1). One can readily verify that the infinitary

operations in this semiring satisify all the other properties that we discussed, including strong
compactness.

3.5 Infinitary Semirings
We are now ready to propose a definition for semirings with infinitary operations.

▶ Definition 12. An infinitary semiring, also called ∞-semiring, is a commutative, naturally
ordered semiring S = (S,+, ·, 0, 1), together with two infinitary operations

∑
and

∏
that

satisfy the following properties:
partition invariance (infinite associativity), and hence also bijection invariance (infinite
commutativity),
compatibility with finite addition and multiplication,
neutral elements are respected,
there are unique infinite powers,
weak distributivity, and
monotonicity.
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This should be seen as a working definition that reflects our current state of investiga-
tions. There are of course alternative possibilities. For instance we could impose (strong)
compactness of infinitary sums and products as a basic property, which would imply that
idempotent and neutral elements are respected, and that there exist unique infinite powers.
We further note that the requirement that the additive neutral element is respected is in
fact redundant, as it is implied by weak distributivity and partition invariance. Indeed,∑
i∈I 0 =

∑
i∈I(0 · 0) = 0 ·

∑
i∈I 0 = 0 and therefore

∑
i∈I si =

∑
i∈I,si=0 si +

∑
i∈I,si ̸=0 si =∑

i∈I,si ̸=0 si. However, it can be shown that the requirement that the multiplicative neutral
element is respected by infinitary products does not follow from the other properties (for a
counterexample, take (N∞, ·, 1) and set all infinite products of non-zero values to ∞). We
could also require strong distributivity, which we chose to omit from the definition because
we want to include in our study some relevant semirings that (for arbitrary index sets) only
satisfy the weak distributive law. Instead, we introduce the following variant.

▶ Definition 13. Let κ be an infinite cardinal. An infinitary semiring is κ-distributive if it
satisfies strong distributivity for products of cardinality < κ. That is, it satisfies∏

i∈I

∑
j∈Ji

sj =
∑
f∈F

∏
i∈I

sf(i)

for all sets I with |I| < κ (and sets Ji of arbitrary cardinality). It is strongly distributive if
it satisfies strong distributivity for all index sets.

The tropical semiring, the Viterbi semiring, and the Łukasiewicz semiring are examples
of ω1-distributive semirings.

Homomorphisms between ∞-semirings should be compatible with the infinitary operations.
We again introduce a weaker variant for a more fine-grained analysis.

▶ Definition 14 (∞-semiring homomorphisms). Let κ be an infinite cardinal, and let S,S ′ be
infinitary semirings. A semiring κ-homomorphism h : S → S ′ is a semiring homomorphism
such that for all sequences (si)i∈I in S with |I| < κ, we have that

h
(∑
i∈I

si

)
=

∑
i∈I

h(si) and h
(∏
i∈I

si

)
=

∏
i∈I

h(si).

Further h is called an ∞-semiring homomorphism, if it is a semiring κ-homomorphism for
all κ.

Of course, the term infinitary semiring does not imply that the semiring has infinitely
many elements. Quite to the contrary:

▶ Proposition 15. Every finite semiring, in which both addition and multiplication induce
aperiodic monoids, expands to an ∞-semiring (in which, moreover, both operations are
strongly compact).

Proof. Let (S, ·, 1) be the multiplicative monoid of the semiring. Since it is aperiodic, there
exists, for every s ∈ S, a minimal number ns such that sns+1 = sns and hence sn = sns

for all n ≥ ns. We put s∞ := sns . We can now define an infinitary product
∏
i∈I si by

reducing it to a finite product. For every s ∈ S, let ms := min(ns, |{i ∈ I : si = s}|)
and set

∏
i∈I si :=

∏
s∈S s

ms . The definition of infinitary sums is completely analogous.
It is easily verified, that the required properties are inherited from finite addition and
multiplication. Since the infinitary operations reduced to the finite ones, strong compactness
is also straightforward. ◀
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Let us next consider infinite lattice semirings, induced by some partial order (S,≤).

▶ Proposition 16. An infinite lattice semiring expands to an ∞-semiring if, and only if, the
underlying order is a complete lattice in which finite infima distribute over arbitrary suprema.

Proof. In a complete lattice semiring where finite infima distribute over arbitrary suprema,
the desired infinitary operations are suprema and infima, which obviously satisfy all required
properties. For the converse implication, it suffices to show that in any expansion to an
∞-semiring, infinitary summation is given by suprema. As required, this implies the existence
of arbitrary suprema and thus completeness of the lattice, and the weak distributive law w.r.t.
the semiring operations reduces to weak distributivity of the lattice operations. Suppose that
there are elements (xi)i∈I such that z :=

∑
i∈I xi is not the supremum of {xi | i ∈ I} =: X.

By partition invariance, xi⊔
∑
j∈I,j ̸=i xi = z for each i ∈ I, so z is an upper bound of X. Thus,

there must exist some other upper bound y for X such that z ̸≤ y. But weak distributivity
yields y⊓z = y⊓

∑
i∈I xi =

∑
i∈I(y⊓xi) =

∑
i∈I xi = z and thus z ≤ y, a contradiction. ◀

There are two main further classes of semirings that we consider. A particularly useful
class is the class of infinitary absorptive semirings, studied in the next section. Recall that
absorption has the consequence that multiplication is decreasing, which leads to dualities
that permit to carry over a number of classical logical properties to semiring semantics. The
other relevant class consists of the semirings that extend the natural semiring N or semirings
of polynomials such as N[X], where multiplication is increasing.

4 Infinitary Absorptive Semirings

Recall that a semiring S is absorptive if s+ st = s for all s, t ∈ S or, equivalently, 1 + t = 1
for all t ∈ S. Every absorptive semiring is idempotent (i.e., s + s = s for all s ∈ S) and
every idempotent semiring is naturally ordered. In naturally ordered semirings, addition
and multiplication are monotone w.r.t. the natural order. Further in absorptive semirings,
multiplication is decreasing (i.e., s · r ≤ s for all s, r ∈ S).

We will introduce the notion of infinitary absorptive semirings. These are based on
absorptive semirings, with some additional properties that permit to define natural infinitary
addition and multiplication operations, based on infima and suprema.

▶ Definition 17. An infinitary absorptive semiring is the expansion of an absorptive semiring
S which satisfies the additional properties that

the natural order (S,≤) is a complete lattice.
S is (fully) continuous: for every non-empty chain C ⊆ S, the supremum

⊔
C and the

infimum
d
C are compatible with addition and multiplication, i.e.

s ◦
⊔
C =

⊔
(s ◦ C) and s ◦

l
C =

l
(s ◦ C),

where (s ◦ C) := {s ◦ c : c ∈ C} for every s ∈ S and ◦ ∈ {+, ·}.

As a consequence, we can define natural infinitary addition and multiplication operations
in S, by taking suprema of finite subsums and infima of finite subproducts:∑

i∈I
si :=

⊔
I0⊆I

I0 finite

(∑
i∈I0

si

)
and

∏
i∈I

si :=
l

I0⊆I
I0 finite

( ∏
i∈I0

si

)
.
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Since addition is idempotent in absorptive semirings, the infinitary addition is in fact the
same as the supremum:

∑
i∈I si =

⊔
i∈I si. However, unless multiplication is also idempotent

(so that the semiring is a lattice semiring), infinitary products need not coincide with infima.
Indeed, we note that there are infinitary absorptive semirings in which the natural order is a
completely distributive lattice (i.e., infima and suprema satisfy a strong distributive law),
but strong distributivity does not hold for the infinitary semiring operations defined above.
One such example is the Viterbi semiring V: the natural order for V is just the usual linear
order on the real interval [0, 1], which is a completely distributive lattice, but we have seen
that the strong distributive law fails on V for uncountable index sets.

Most of the common application semirings mentioned in Sect. 2 are in fact absorptive
(with the notable exception of the natural semiring) and permit the expansion to an infinitary
absorptive semiring. Among the semirings of polynomials mentioned in Sect. 2, only S(X)
and PosBool(X) are absorptive semirings whereas N[X], B[X], and W(X) are not.

It remains to show that infinitary absorptive semirings are indeed ∞-semirings, i.e. that
they satisfy all the properties required by Definition 12. Since the infinitary properties are
based on suprema and infima, this is straightforward in most cases. For the weak distributivity
law, this is a direct consequence of the continuity of multiplication. The only property that
requires work, and also makes use of continuity of multiplication, is the partition invariance
of infinitary products (whereas for infinite sums partition invariance is trivial, because they
are just suprema).

▶ Lemma 18. Products in infinitary absorptive semirings are partition invariant.

Proof. To simplify notation, we define the abbreviation s(I0) :=
∏
i∈I0

si for finite index sets
I0 ⊆fin I. We thus have to prove that∏

i∈I
si =

l

I0⊆finI

s(I0) !=
l

J0⊆finJ

( ∏
j∈J0

l

H0⊆finIj

s(H0)
)

=
∏
j∈J

∏
i∈Ij

si.

We prove both directions. First fix a finite set I0 ⊆fin I. Since (Ij)j∈J is a partition, there
is a finite set J0 ⊆fin J such that I0 ⊆

⋃
j∈J0

Ij . Moreover, for each i ∈ Ij we clearly have
si ≥

d
H0⊆finIj

s(H0) by considering H0 = {i}. Using absorption (abs) and monotonicity
(m), we have

s(I0) =
∏
i∈I0

si
(abs)
≥

∏
i∈Ij

j∈J0

si
(m)
≥

∏
j∈J0

l

H0⊆finIj

s(H0) ≥
l

J0⊆finJ

∏
j∈J0

l

H0⊆finIj

s(H0)

which proves direction “≥”.
For the other direction, fix a finite set J0 = {j1, . . . , jk} ⊆fin J . Recall that s(I0) is a

finite product and thus associative (a). Together with continuity of multiplication (c), we get
l

I0⊆finI

s(I0) ≤
l

I0⊆fin
⋃

j∈J0

Ij

s(I0) =
l

Hj1 ⊆finIj1

. . .
l

Hjk
⊆finIjk

s(Hj1 ∪ · · · ∪Hjk
)

(a)=
l

Hj1 ⊆finIj1

. . .
l

Hjk
⊆finIjk

(s(Hj1) · · · s(Hjk
))

(c)=
( l

Hj1 ⊆finIj1

aHj1

)
· · ·

( l

Hjk
⊆finIjk

aHjk

)
=

∏
j∈J0

l

H0⊆finIj

s(H0),

which closes the proof. ◀
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The natural notion of homomorphisms between infinitary absorptive semirings are the
fully-continuous homomorphisms (which are compatible with suprema and infima of chains
in the same way as the semiring homomorphisms). Since infinitary operations are defined
through suprema and infima1, they are preserved by fully-continuous homomorphisms.

▶ Proposition 19. Every fully-continuous homomorphism h : S → S ′ between infinitary
absorptive semirings is an ∞-semiring homomorphism.

5 Polynomials and Power Series

The semirings N[X] of multivariate polynomials with a (finite) set X of indeterminates
and coefficients from N play a fundamental role for the provenance analysis of database
queries and first-order sentences. This is due to the fact that N[X] is the semiring that
is freely generated by X and has the universal property that every function h : X → S
into an arbitrary commutative semiring S uniquely extends to a semiring homomorphism
h : N[X] → S.

The question arises, whether we can extend N[X] to an infinitary semiring that has
corresponding universal properties. We must be able to infinitely often add the same
monomial (e.g., x+x+x+. . . ), add infinitely many different monomials (e.g., x+x2+x3+. . . )
and multiply the same variable infinitely often (e.g., x ·x ·x · . . . ). To address these issues, we
extend N[X] by allowing coefficients in N∞, using formal power series instead of polynomials,
and allowing exponents in N∞ (as is done for generalised absorptive polynomials). We thus
obtain semirings of generalised power series over X, denoted N∞[[X∞]]. Infinite summation
in N∞[[X∞]] is straightforward and infinite products can be defined by considering the sum
over all possible factorisations of a given monomial. Here are the formal definitions.

▶ Definition 20. Fix a finite set X of indeterminates. A monomial is a function m : X → N∞

that associates with each indeterminate an exponent. Let M be the set of all monomials.
A generalised power series is a function P : M → N∞ associating with each monomial its

coefficient. We obtain the semiring N∞[[X∞]] of generalised power series with the infinitary
sum and product defined by∑

i∈I
Pi :=

(
m 7→

∑
i∈I

Pi(m)
)

and
∏
i∈I

Pi =
(
m 7→

∑
(mi)i∈splits(m)

∏
i∈I

Pi(mi)
)
.

Here, splitsI(m) is the set of sequences (mi)i∈I of monomials with m =
∏
i∈I mi. We may

omit the index I if it is clear from the context.

The corresponding definition with an infinite set X of indeterminates is not consistent
with Definition 12, since it does not have unique powers. For the polynomial P =

∑
i<ω xi, we

have that Pω is different from Pω1 . Therefore, we only use finite sets of indeterminates. We
further note that N∞[[X∞]], even with a single indeterminate, does not preserve idempotent
elements and hence is not compact. Indeed, let Q :=

∑
i<ω ∞ · xi. Then Q2 = Q but

Qω = ∞ · x∞ +Q ̸= Q. Nevertheless N∞[[X∞]] turns out to be an important ∞-semiring,
playing a similar role as N[X] does in the finite case. To establish that N∞[[X∞]] is an
∞-semiring, we begin with somewhat technical observations about infinite powers.

1 Fully-continuous homomorphisms commute with suprema and infima of chains by definition, and thus
also with suprema/infima of the directed sets in the definition (based on arguments in [9]).
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▶ Lemma 21. Let P ∈ N∞[[X∞]] and I an infinite index set. The only possible coefficients
of

∏
i∈I P are 0, 1, and ∞.

Proof. Let Q =
∏
i∈I P , fix a monomial m and assume that Q(m) ̸= 0. Consider a sequence

(mi)i∈I ∈ splits(m) with value
∏
i∈I P (mi) > 0. If there is a monomial v that occurs only

finitely often (but at least once) in (mi)i, then by permuting the occurrences of v with other
monomials in the sequence, we obtain infinitely many pairwise different sequences in splits(m)
with the same value. Since Q(m) is the sum over all sequences in splits(m), this implies
Q(m) = ∞. Similarly, if two different monomials v, v′ occur infinitely often in (mi)i, we can
again obtain infinitely many different permutations of the sequence and Q(m) = ∞.

So the only possibility for Q(m) < ∞ is that all sequences (mi)i with
∏
i∈I P (mi) > 0

consist of only one monomial, i.e. mi = mj for all i, j ∈ I. Assume towards a contradiction
that two such sequences exist, say (v)i∈I ∈ splits(m) and (w)i∈I ∈ splits(m). Since |ω| + |I| =
|I|, we can construct a sequence (ui)i∈I that consists of countably many repetitions of v, and
|I| many repetitions of w. All indeterminates occurring in v or w must have exponent ∞ in
m, hence also (ui)i ∈ splits(m). But this sequence uses two monomials infinitely often which
implies Q(m) = ∞, contradiction.

Hence Q(m) < ∞ implies that there is only one sequence (mi)i ∈ splits(m) with value∏
i∈I P (mi) > 0, and since mi = mj for all i, j this value must be either 1 or ∞. ◀

▶ Lemma 22. N∞[[X∞]] has unique infinite powers.

Proof. We recall that N∞ satisfies compactness and thus has unique infinite powers. The
unique power property for summation in N∞[[X∞]] is inherited from N∞, as summation is
defined pointwise by summing over the coefficients of each monomial.

Multiplication requires more work. Notice that the set M of monomials is countable,
since X is finite. Let P ∈ N∞[[X∞]] and I, J two infinite index sets. It suffices to prove that

Q :=
∏
i∈I

P ≤
∏
j∈J

P =: R

due to symmetry. Fix a monomial m and a sequence (mi)i∈I ∈ splitsI(m). Consider the set
of monomials {mi | i ∈ I} occurring in this sequence. We partition this set into a set M0 of
monomials that occur only finitely often and a set M∞ of monomials that occur infinitely
often. Let I0 ⊆ I be the set of indices i with mi ∈ M0. Since M0 is countable and each
m ∈ M0 occurs finitely often, I0 is countable as well. We further fix an enumeration of the
set M∞ (which is countable as well).

We now construct a sequence (vj)j∈J ∈ splitsJ(m) by first constructing a sequence
(wl)l∈L ∈ splitsL(m) for some index set L and then applying a bijection f : J → L. We define
L as follows:

L = I0 ∪̇ (ω × ω) ∪̇ J.

We next define the elements of the sequence (wl)l∈L. We first need a “padding element” m∞
(in case |J | > |I|). If M∞ ̸= ∅, we choose an arbitrary but fixed m∞ ∈ M∞. If M∞ = ∅,
then M0 contains infinitely many monomials (each of which occurs finitely often in (mi)i∈I).
Recall that m =

∏
i∈I mi and consider the indeterminates X0 ⊆ X with finite exponents

in m. Since the exponents are finite, there can be only finitely many monomials in M0
containing an indeterminate in X0 (recall that X is finite!). Consider the infinitely many
monomials in M0 not containing an indeterminate in X0. Among these, we choose m∞
so that P (m∞) is minimal. Notice that when P (m∞) > 1, then by minimality there are
infinitely many monomials m′ ∈ M0 with P (m′) > 1, and hence

∏
i∈I P (mi) = ∞ (†).

Tannen’s Festschrift



3:16 Semiring Provenance in the Infinite

We are now ready to define the sequence (wl)l∈L.
if l ∈ I0, we set wl = ml (i.e., we copy all finitely often occurring monomials),
if l = (n,m) ∈ ω×ω, we set wl to the n-th monomial in M∞ (i.e., we repeat each monomial
in M∞ infinitely often); if M∞ = ∅ we set wl = m∞ (or we omit the (ω × ω)-part),
if l ∈ J , we set wl = m∞ (this is only for padding so that L has the right cardinality).

By construction, the monomials in (wl)l∈L match the monomials in (mi)i∈I in the
following sense: each monomial appears either infinitely often in both sequences, or the same
finite number of times in both sequences. The only exception is m∞ in the case M∞ = ∅,
but in this case we know that m∞ contains only indeterminates that have exponent ∞ in
m. It follows that the products of the two sequences result in the same monomial m, so
(wl)l∈L ∈ splitsL(m) as claimed.

It further follows (using compactness of N∞) that the values of the sequences are also
equal:

∏
i∈I P (mi) =

∏
l∈L P (wl). Again, the case M∞ = ∅ needs special attention. If

P (m∞) = 0, then both sequences have value 0 and are equal. If P (m∞) = 1, then repeating
m∞ does not affect the value of the sequence. If P (m∞) > 1, then we have

∏
l∈L P (wl) = ∞

due to the padding, but in this case also
∏
i∈I P (mi) = ∞ by (†) and the equality still holds.

We can finally define the sequence (vj)j∈J ∈ splitsJ(m). Notice that |L| = |J | since J is
infinite and both I0 and ω × ω are countable. We thus have a bijection f : J → L and can
set vj = wf(j). Since f is bijective, (vj)j∈J has the same product and value as (wl)l∈L, and
thus also as (mi)i∈I .

We still have to prove that Q(m) ≤ R(m). (This does not immediately follow from
the above argument, since we have to sum over all sequences, but different sequences
(mi)i∈I could be mapped to the same sequence (vj)j∈J .) We proceed by a case distinction
using Lemma 21. The case Q(m) = 0 is trivial. If Q(m) = 1, then the construction
of (vj)j∈J witnesses R(m) ≥ 1. The only other possibility is Q(m) = ∞. If there is a
sequence (mi)i∈I ∈ splitsI(m) with value ∞, then by the above construction also R(m) = ∞.
Otherwise there must be a sequence (in fact infinitely many) (mi)i∈I ∈ splitsI(m) with value
1 < s < ∞. At least two distinct monomials must occur in (mi)i∈I (otherwise the value
would be 0, 1, or ∞), and, by construction, these monomials must also be contained in the
sequence (vj)j∈J . It follows that there are infinitely many pairwise different permutations of
(vj)j∈J , and since all of these sequences occur in the summation we have R(m) = ∞. ◀

Most of the other requirements for ∞-semirings follow by applying the properties of
infinitary operations in N∞ to coefficients and exponents.

▶ Theorem 23. N∞[[X∞]] is a strongly distributive ∞-semiring.

Proof. It follows directly from the definition that addition and multiplication in N∞[[X∞]]
are compatible with finite operations and respect neutral elements, and we have already
considered infinite powers in Lemma 22. It then suffices to prove partition invariance and
strong distributivity, as these imply all remaining properties.

Partition invariance of addition follows immediately from the respective property of N∞,
as addition is defined by adding coefficients. For multiplication, fix a partition (Ij)j∈J of I.
Using strong distributivity of N∞, it remains to prove for each monomial m:(∏

j∈J

∏
i∈Ij

Pi

)
(m) =

∑
(mj)j∈splitsJ (m)

∏
j∈J

∑
(vi)i∈splitsIj

(mj)

∏
i∈Ij

Pi(vi)

=
∑

(mj)j∈splitsJ (m)

∑
f∈F

∏
j∈J

∏
i∈Ij

Pi(f(j, i))

!=
∑

(ui)i∈splitsI (m)

∏
i∈I

Pi(ui).
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Here, F is the set of choice functions that choose (vi)i ∈ splitsIj
(mj) for each j. To simplify

the presentation, we let f(j, i) = vi for the chosen sequence (i.e., we include the index i as
argument).

We prove both directions of the last equality. First let (ui)i ∈ splitsI(m). Set mj =∏
i∈Ij

ui. Then (mj)j ∈ splitsJ(m) by comparing exponents and using partition invariance
of N∞. For i ∈ Ij , we define f(j, i) = ui. Since each i occurs in exactly one Ij , we
have

∏
j∈J

∏
i∈Ij

Pi(f(j, i)) =
∏
i∈I Pi(ui) by partition invariance of N∞. Notice that our

construction (ui)i 7→ ((mj)j , f) is injective, so direction ≥ holds (by partition invariance of
addition in N∞).

For the other direction, let (mj)j ∈ splitsJ (m) and f ∈ F . For each i ∈ I, pick the unique
j with i ∈ Ij and set ui = f(j, i). Then (by partition invariance of N∞ in each exponent):∏

i∈I
ui =

∏
j∈J

∏
i∈Ij

ui =
∏
j∈J

∏
i∈Ij

f(j, i) =
∏
j∈J

mj = m,

so (ui)i ∈ splitsI(m). Applying the same argument to the coefficients yields∏
i∈I

Pi(ui) =
∏
j∈J

∏
i∈Ij

Pi(ui) =
∏
j∈J

∏
i∈Ij

Pi(f(j, i)).

Again, the mapping ((mj)j , f) 7→ (ui)i we construct is injective, so direction ≤ holds as well.

To prove strong distributivity, let (Ij)j∈J be a partition of I and F be the set of choice
functions f with f(j) ∈ Ij . Strong distributivity then follows from strong distributivity and
partition invariance of N∞:(∏

j∈J

∑
i∈Ij

Pi

)
(m) =

∑
(mj)j∈splitsJ (m)

∏
j∈J

∑
i∈Ij

Pi(mj)

=
∑

(mj)j∈splitsJ (m)

∑
f∈F

∏
j∈J

Pf(j)(mj)

=
∑
f∈F

∑
(mj)j∈splitsJ (m)

∏
j∈J

Pf(j)(mj)

=
(∑
f∈F

∏
j∈J

Pf(j)

)
(m). ◀

We now establish a kind of universal property of N∞[[X∞]]. This shows, in particular,
that N∞[[X∞]] is the free strongly distributive ∞-semiring.

▶ Theorem 24 (κ-universality). Let S be a κ-distributive ∞-semiring. Every mapping
h : X → S extends uniquely to a semiring κ-homomorphism h : N∞[[X∞]] → S.

Proof. For every element s ∈ S there exist unique elements ∞ · s =
∑
i∈I s and s∞ =

∏
i∈I s

for all infinite index sets I. Thus, n · s and sn are well-defined for all s ∈ S and n ∈ N∞. We
first lift h to monomials m by setting h(m) :=

∏
x∈X h(x)m(x). By partition invariance, h

commutes with (finite and infinitary) products of monomials:

h(
∏
i∈I

mi) =
∏
x∈X

h(x)
∑

i∈I
mi(x) =

∏
x∈X

∏
i∈I

h(x)mi(x) =
∏
i∈I

∏
x∈X

h(x)mi(x) =
∏
i∈I

h(mi).

We write power series P ∈ N∞[[X∞]] as P =
∑
m∈M (P (m) · m). Then h is uniquely

defined by h(P ) :=
∑
m∈M (P (m) ·h(m)). We need to show that h commutes with the (finite

and infinitary) semiring operations. Since infinitary operations are compatible with the finite
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ones, it suffices to prove that h commutes with the infinitary sum and product. This is easy
for summation (over index sets of arbitrary cardinality) due to partition invariance:

h
(∑
i∈I

Pi

)
=

∑
m∈M

(∑
i∈I

Pi(m)
)

· h(m) =
∑
m∈M

∑
i∈I

(Pi(m) · h(m)) =
∑
i∈I

h(Pi).

For products, we use partition invariance (pi) and strong distributivity (sd) for the cardinality
of I. Let F be the set of (unrestricted) functions f : I → M . Then,∏

i∈I
h(Pi) =

∏
i∈I

∑
m∈M

(Pi(m) · h(m)) (sd)=
∑
f∈F

∏
i∈I

Pi(f(i)) · h(f(i))

(pi)=
∑
m∈M

∑
(mi)i∈splits(m)

(∏
i∈I

(Pi(mi) · h(mi))
)

(pi)=
∑
m∈M

∑
(mi)i∈splits(m)

(∏
i∈I

Pi(mi) ·
∏
i∈I

h(mi)
)

=
∑
m∈M

∑
(mi)i∈splits(m)

((∏
i∈I

Pi(mi)
)

· h(m)
)

(pi)=
∑
m∈M

( ∑
(mi)i∈splits(m)

∏
i∈I

Pi(mi)
)

· h(m) = h
(∏
i∈I

Pi

)
. ◀

▶ Remark 25. Notice that Theorem 24 no longer holds if we drop the exponent ∞. It is not
clear how the infinite power x · x · x · · · is then defined, but we can argue by case distinction
that in any case, the universal property is violated.

If
∏
i<ω x = 0, then h(

∏
i<ω x) = 0 ̸= 1 =

∏
i<ω h(x) for h(x) = 1 (say in the Viterbi

semiring).
If P =

∏
i<ω x ̸= 0, then there must a monomial m (with finite exponents) and coefficient

P (m) = n > 0. For h(x) = 1
2 into the Viterbi semiring, we then get h(P ) ≥ h(n ·m) =

n · h(m) = h(m) > 0, but also
∏
i<ω h(x) = ( 1

2 )∞ = 0, contradiction.

▶ Remark 26. Observe that N∞[[X∞]] is not fully continuous. To see this, consider the
decreasing chain Pi =

∑
i<j<ω x

j , where the monomial xi disappears in the i-th step and the
infimum is thus 0. Then x∞ ·

d
i Pi = x∞ · 0 = 0, but

d
i(x∞ · Pi) =

d
i ∞ · x∞ = ∞ · x∞.

Similar constructions of universal infinitary semirings are possible for smaller classes of
semirings. For idempotent semirings, the appropriate semiring is B[[X∞]], which is constructed
in the same way as N∞[[X∞]] but with Boolean coefficients. The above proofs can easily be
adapted to show that B[[X∞]] is a strongly distributive ∞-semiring and satisfies κ-universality
for all idempotent κ-distributive semirings.

For absorptive semirings, the appropriate choice are generalised absorptive polynomials
S∞(X), for a finite set X of indeterminates. These are known to be the freely generated
absorptive, fully-continuous semirings (cf. [1]). Since fully-continuous homomorphisms are also
∞-homomorphisms (by Proposition 19), S∞(X) is universal also for all infinitary absorptive
semirings (notice that we do not have to assume strong distributivity here). More recently,
a version of S∞(X) with infinite indeterminate set X was studied in [11]. The resulting
semiring is no longer fully continuous, but it is still κ-universal for infinitary absorptive
semirings in the sense of Theorem 24 (i.e., assuming κ-distributivity of the target semiring).

Additionally requiring idempotence of multiplication leads to the class of lattice semirings.
For a finite set X of indeterminates, the freely generated lattice semiring, also called
PosBool(X), is finite and hence infinitary operations become trivial. For infinite X, one can
consider the free completely distributive lattice (see, e.g., [10]) which, in our terminology, is
universal for all strongly distributive infinitary lattice semirings.
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6 Semiring Provenance for First-Order Logic

For a given finite relational vocabulary τ , we denote by Litn(τ) the set of literals Rx̄ and
¬Rx̄ where R ∈ τ and x̄ is a tuple of variables from {x1, . . . , xn}. The set LitA(τ) refers to
literals Rā and ¬Rā that are instantiated with elements from a universe A.

▶ Definition 27 (S-interpretation). Given an ∞-semiring, S, a mapping π : LitA(τ) → S
is an S-interpretation (of vocabulary τ and universe A). We say that S is model-defining
if exactly one of the values π(L) and π(¬L) is zero for any pair of complementary literals
L,¬L ∈ LitA(τ).

An S-interpretation π : LitA(τ) → S inductively extends to valuations π[[φ(ā)]] of in-
stantiated first-order formulae φ(x̄) in negation normal form. Equalities are interpreted by
their truth value, that is π[[a = a]] := 1 and π[[a = b]] := 0 for a ̸= b (and analogously for
inequalities). Based on that, the semantics of disjunction and existential quantifiers is defined
via (possibly infinitary) sums, while conjunctions and universal quantifiers are interpreted as
(possibly infinitary) products.

π[[ψ ∨ ϑ]] := π[[ψ]] + π[[ϑ]] π[[ψ ∧ ϑ]] := π[[ψ]] · π[[ϑ]]

π[[∃xφ(x, b̄)]] :=
∑
a∈A

π[[φ(a, b̄)]] π[[∀xφ(x, b̄)]] :=
∏
a∈A

π[[φ(a, b̄)]]

Negation is handled via negation normal form (denoted nnf), i.e. for every ψ ∈ FO we
identify π[[¬ψ]] with π[[nnf(¬ψ)]]. This will allow us to compare valuations π[[ψ]] and π[[¬ψ]] in
a meaningful way. We now examine, which of the basic properties of first-order provenance,
as listed for instance in [6] extend to the infinitary case. We start with the fundamental
property for first-order provenance which is just the simple fact that semiring valuations are
compatible with semiring homomorphisms. This obviously translates to the infinitary case,
for homomorphisms that also preserve infinitary sums and products.

▶ Proposition 28 (Fundamental Property). Let π : LitA(τ) → S be an S-interpretation with
universe A of cardinality at most κ, and let h : S → S ′ be a semiring κ-homomorphism.
Then, (h ◦ π) is an S ′-interpretation and h(π[[φ(ā)]]) = (h ◦ π)[[φ(ā)]] for all φ(x̄) ∈ FO(τ)
and instantiations ā ⊆ A.

Naturally ordered semirings are +-positive, and this trivially extends to infinite sums:∑
i∈I si = 0 only if si = 0 for all i ∈ I. Recall that a semiring is positive if it is +-positive

and has no divisors of 0. However, in many relevant positive semirings it my be the case
that an infinite product evaluates to 0, although all its factors are positive. Simple examples
are products

∏
i<ω si with si ≤ 1 − ε in the Viterbi semiring. We shall see that this may

lead to the sometimes undesirable effect, that the semiring valuation of a true sentence may
evaluate to 0.

▶ Definition 29. We call an ∞-semiring ∞-positive if it is positive, and any infinitary
product of non-zero elements is also non-zero.

The characterisation of positive semirings by homomorphisms into the Boolean semiring
extends to ∞-positivity.

▶ Lemma 30. An ∞-semiring S is ∞-positive if, and only if, †S : S → B, defined by

†S (s) =
{

⊤ if s ̸= 0
⊥ if s = 0

is an ∞-homomorphism.
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A model-defining S-interpretation π : LitA(τ) → S defines the unique (classical) structure
Aπ with universe A, such that Aπ |= L for a literal L ∈ LitA(τ) if, and only if, π(L) ̸= 0. We
can identify Aπ with its canonical B-interpretation †S ◦ π which maps the true literals to ⊤,
and the false ones to ⊥. (Notice that †S ◦ π is well-defined for every semiring, although †S is
an ∞-homomorphism, only for ∞-positive semirings.)

Here is an associated semantical notion. We call S truth-preserving (for first-order logic)
if for every model-defining S-interpretation and every sentence ψ ∈ FO(τ) we have that
π[[ψ]] ̸= 0 if, and only if Aπ |= ψ.

▶ Proposition 31. A ∞-semiring S is truth-preserving if, and only if, it is ∞-positive.

Proof. If S is ∞-positive then †S is an ∞-homomorphism. Given any model-defining
S-interpretation π, then by the fundamental property,

Aπ |= ψ ⇐⇒ (†S ◦ π)[[ψ]] = ⊤ ⇐⇒ †S(π[[ψ]]) = ⊤ ⇐⇒ π[[ψ]] ̸= 0.

Conversely, assume that S is an infinitary semiring that is not ∞-positive. Then there exists
a non-empty finite or infinite sequence (sa)a∈A such sa ≠ 0 for all a ∈ A, but

∏
a∈A sa = 0.

We use this to define an S-interpretation with universe A and one unary predicate P such
that π(Pa) = sa (and π(¬Pa) = 0) for all a ∈ A. The model defined by π is Aπ = (A,P )
with P = A, and clearly Aπ |= ∀xPx. However, π[[∀xPx]] =

∏
a∈A sa = 0, so S is not

truth-preserving. ◀

Many interesting semiring interpretations in provenance analysis do not define a single
structure but a whole class of structures (with common universe and common vocabulary). In
general, we can assume that such interpretations are consistent, in the sense that valuations
of complementary literals satisfy certain constraints, although they need not be as strict
as those for model-defining interpretations. We examine how such constraints for literals
constrain the valuations of arbitrary first-order sentences.

▶ Proposition 32. Let π : LitA(τ) → S be a S-interpretation.
If for every L ∈ LitA(τ) at least one of π(L) and π(¬L) is 0 then for any sentence
ψ ∈ FO, at least one of π[[ψ]] and π[[¬ψ]] is 0.
If for every L ∈ LitA(τ) we have π(L) · π(¬L) = 0 then for any sentence ψ we have
π[[ψ]] · π[[¬ψ]] = 0.

Proof. If ψ is not a literal, then there exists a finite or infinite collection of (φi)i∈I of
sentences such that one of the values π[[ψ]] and π[[¬ψ]] is the sum

∑
i∈I [[φi]], and the other is

the product
∏
i∈I π[[¬φi]]. To prove the first claim, assume that π[[ψ]] and π[[¬ψ]] are both

non-zero. It follows that all values π[[¬φi]] are non-zero. But by induction hypothesis, this
implies that all values π[[φi]], and hence also their sum, must be 0, so we have a contradiction.

For the second claim, assume by induction hypothesis, that π[[φi]] · π[[¬φi]] = 0 for all
i ∈ I. With weak distributivity, it then follows that

π[[ψ]] · π[[¬ψ]] =
∑
i∈I

π[[φi]] ·
∏
j∈I

π[[¬φj ]] =
∑
i∈I

(
π[[φi]] ·

∏
j∈I

π[[¬φj ]]
)

=
∑
i∈I

(
π[[φi]] · π[[¬φi]] ·

∏
j∈I\{i}

π[[¬φj ]]
)

= 0. ◀

Proposition 32 holds in arbitrary ∞-semirings and supports a kind of “consistency”, with
the two kinds coinciding when the semiring has no divisors of 0. A related question concerns
the constraint that complementary literals are not both mapped to 0, i.e. they are not both
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considered false under the same interpretation. We would like to conclude that this constraint
as well translates to arbitrary sentences. But this is, in general, true only for ∞-positive
∞-semirings.

▶ Proposition 33. Let π : LitA(τ) → S be an S-interpretation into a ∞-positive ∞-semiring.
If for every L ∈ LitA(τ) we have π(L) ̸= 0 or π(¬L) ̸= 0 (equivalently, π(L) + π(¬L) ̸= 0)
then for any sentence ψ we have π[[ψ]] ̸= 0 or π[[¬ψ]] ̸= 0 (equivalently, π[[ψ]] + π[[¬ψ]] ̸= 0).

Proof. Towards a contradiction, suppose that π[[ψ]] = π[[¬ψ]] = 0. As in the proof above,
take sentences (φi)i∈I such that one of the values π[[ψ]] and π[[¬ψ]] is the (finite or infinite)
sum

∑
i∈I [[φi]], and the other is the (finite or infinite) product

∏
i∈I π[[¬φi]]. Since S is

∞-positive, it follows that π[[¬φi]] = 0 for at least one i ∈ I. By induction hypothesis,
π[[φi]] ̸= 0, which, by +-positivity, contradicts the assumption that π[[ψ]] = 0. ◀

The example given in the proof of Proposition 31 shows that the condition of ∞-positivity
is necessary for this proposition.

7 Proof Trees

A fundamental theorem for the provenance analysis of first-order logic says that, for every
semiring interpretation (over a finite domain) the valuation of a first-order sentence coincides
with the sum of the valuations for its proof trees or, equivalently, the sum of the valuations of
the strategies for the verifier in the associated model checking game. In game theoretic terms
this has been shown in [5], and in terms of proof trees, this is presented in [6]. The question
arises under which conditions this theorem generalises to semiring interpretations over infinite
domains. For this purpose, we inspect the proof of the Sum-of-Proof-Trees-Theorem [6, Sect.
3.5] to see what properties of the infinitary semiring operations are needed for extending the
proof to infinite domains. We first recall the relevant definitions.

An evaluation tree for a sentence ψ ∈ FO(τ) on a (possibly infinite) universe A is a
directed tree T whose nodes are labelled by formulae φ(ā), where φ(x̄) is an occurrence2 of
a subformula in ψ whose free variables x̄ are instantiated by a tuple ā of elements from A,
such that the following conditions hold.

The root of T is ψ.
A node φ ∨ ϑ has one child which is labelled by either φ or ϑ.
A node φ ∧ ϑ has two children labelled by φ and ϑ, respectively.
A node ∃y φ(ā, y) has one child labelled φ(ā, b) for some b ∈ A.
A node ∀y φ(ā, y) has for each for all b ∈ A a child labelled by φ(ā, b) for all b ∈ A.
The leaves of T are literals L ∈ LitA(τ).

For any literal L, #L(T ) ∈ N ∪ {∞} denotes the number of occurrences of L in T . The
valuation of T for a semiring interpretation π : LitA(τ) → S into an infinitary semiring S is
defined as

π(T ) :=
∏

L∈LitA(τ)

π(L)#L(T ).

Since S has unique infinite powers, there is a well-defined value π(L)∞ ∈ S, hence π(T ) is
well-defined for all S-interpretations π into ∞-semirings.

2 Notice that we consider different occurrences of the same subformula as separate objects. In particular,
a sentence φ ∨ φ has twice as many evaluation trees as φ.
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A proof tree for π and ψ ∈ FO(τ) is an evaluation tree T with π(T ) ̸= 0. If π is clear
from the context, we write T (ψ) for the set of all proof trees for π and ψ.

▶ Theorem 34 (Sum of Proof Trees). Let A be domain of cardinality < κ, and let S be a
κ-distributive ∞-semiring. For every semiring interpretation π : LitA(τ) → S and every
sentence ψ ∈ FO(τ), we have that

π[[ψ]] =
∑

T ∈T (ψ)

π(T ).

Proof. We proceed by induction on ψ.
Let ψ be a literal. If π(ψ) = 0 then ψ has no proof tree, so the sum over the valuations
of its proof trees is 0. Otherwise ψ has precisely one proof tree which is the literal itself.
In both cases, the desired equality holds trivially.
Let ψ = φ ∨ ϑ. A proof tree T for ψ has the root ψ followed by a proof tree T ′ for either
φ or for ϑ; clearly π(T ) = π(T ′). Thus

π[[ψ]] = π[[φ]] + π[[ϑ]] =
∑

T ′∈T (φ)

π(T ′) +
∑

T ′∈T (ϑ)

π(T ′) =
∑

T ∈T (ψ)

π(T ).

Let ψ = φ ∧ ϑ. A proof tree T for ψ has the root ψ, attached to which are a proof tree
T ′ for φ and a proof tree T ′′ for ϑ. We can thus identify every T ∈ T (ψ) with a pair
(T ′, T ′′) ∈ T (φ) × T (ϑ), and since #L(T ) = #L(T ′) + #L(T ′′) for every literal L we
have that, π(T ) = π(T ′)π(T ′′). It follows, by weak distributivity, that

π[[ψ]] = π[[φ]] · π[[ϑ]] =
∑

T ′∈T (φ)

π(T ′) ·
∑

T ′′∈T (ϑ)

π(T ′′)

=
∑

(T ′,T ′′)∈T (ψ)

π(T ′)π(T ′′) =
∑

T ∈T (ψ)

π(T ).

If ψ = ∃y φ(y), then a proof tree T for ψ consists of the the root ψ, attached to which is
a proof tree Ta for φ(a), for some a ∈ A. Clearly π(T ) = π(Ta). It follows, by partition
invariance of the infinitary sum, that

π[[ψ]] =
∑
a∈A

π[[φ(a)]] =
∑
a∈A

∑
Ta∈T (φ(a))

π(Ta) =
∑

T ∈T (ψ)

π(T ).

Let finally ψ = ∀y φ(y). A proof tree for ψ consists of the the root ψ attached to which
are proof trees Ta for φ(a), for all a ∈ A. We can thus identify such a proof tree with a
choice function T that associates with every a ∈ A a proof tree Ta ∈ T (φ(a)), and thus
T (ψ) with the set of such choice functions. Further, for every literal L, we have that
#L(T ) =

∑
a∈A #L(Ta) and therefore π(T ) =

∏
a∈A π(Ta). It follows, by κ-distributivity

for the index set A, that

π[[ψ]] =
∏
a∈A

π[[φ(a)]] =
∏
a∈A

∑
T ∈T (φ(a))

π(T ) =
∑

T ∈T (ψ)

∏
a∈A

π(Ta)) =
∑

T ∈T (ψ)

π(T ). ◀

▶ Example 35. To see that κ-distributivity is not only used in the proof, but is indeed
necessary for the the Sum-of-Proof-Trees-Theorem, we present an example of a semiring
interpretation into the Viterbi semiring V = ([0, 1]R,max, ·, 0, 1) (a ω1-distributive ∞-semiring
whose infinitary operations are supremum and infinite product) over the uncountable domain
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P∞(N) of infinite sets of natural numbers and the vocabulary of one binary relation E. The
interpretation π : LitP∞(N)({E}) → V is defined by

π(Eab) :=
{

0 if a ∩ b = ∅
1 − 1

2+min(a∩b) otherwise.

Let ψ := ∀x∃yExy. If the Sum-of-Proof-Trees-Theorem were true also in this case, we would
have that

π[[ψ]] = sup
T ∈T (ψ)

π(T ).

But this is not the case. On the one side, we have that

π[[ψ]] =
∏

a∈P∞(N)

sup
b∈P∞(N)

π(Eab) = 1.

Indeed, for every infinite subset a ⊆ N and every n ∈ N we can take b := a ∩ [n,∞), and we
then have that π(Eab) ≥ 1 − 1

2+n which implies that supb∈P∞(N) π(Eab) = 1 for every a.
On the other side, the proof trees in T (ψ) are in one-to one correspondence with the

functions e : P∞(N) → P∞(N) such that a ∩ e(a) ̸= ∅ for all a. Let Te be the proof tree
associated with e. From its root ψ, Te branches out to the nodes ∃yEay, for all a ∈ P∞(N),
each of which has a unique child Eab, namely the one with b = e(a). The valuation of Te is

π(Te) =
∏

a∈P∞(N)

π(Eae(a)) =
∏
n∈N

(1 − 1
2+n )#{a: min(a∩e(a))=n}.

Since there are uncountably many a ∈ P∞(N) there exist n ∈ N such that min(a∩ e(a)) = n

for infinitely (in fact uncountably) many a. Hence π(Te) is an infinite product in which
infinitely many factors are (1 − 1

2+n ), hence π(Te) = 0. Since this holds for all e, and hence
all proof trees for ψ we have that

sup
T∈T (ψ)

π(T ) = 0 ̸= 1 = π[[ψ]].

Similar examples can be constructed for the semirings T, L and D.

An interesting application of the Sum-of-Proof-Trees-Theorem concerns interpretations
into semirings with dual indeterminates, as proposed in [4] and further studied in [6].

Let X, X̄ be two disjoint finite sets of indeterminates together with a one-to-one cor-
respondence X ↔ X̄, and denote by x ∈ X and x̄ ∈ X̄ two elements that are in this
correspondence. We shall use X for positive literals Rā and X̄ for negated literals ¬Rā. By
convention, if we annotate Rā with x, then x̄ can only be used to annotate ¬Rā, and vice
versa. We refer to x and x̄ as complementary variables.

Analogous to the construction of the semiring N[X, X̄] of dual-indeterminate polynomials
in [4] we can define the semiring of dual-indeterminate power series N∞[[X∞, X̄∞]] as the
quotient of N∞[[(X ∪ X̄)∞]] via the congruence induced by x · x̄ = 0, or, equivalently, as the
semiring of power series with indeterminates in X ∪ X̄ whose monomials do not contain
complementary variables. We can multiply such power series as above, provided that we
eliminate the monomials with complementary variables afterwards.

Most of the results and applications exhibited in [6] generalise to this setting. As an
example, we mention the information that the Sum-of-Proof-Trees-Theorem delivers for
model-compatible interpretations.

Tannen’s Festschrift
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▶ Definition 36. A model-compatible N∞[[X∞, X̄∞]]-interpretation is a semiring interpreta-
tion π : LitA(τ) → N∞[[X∞, X̄∞]] such that for each atom Rā one of the following (mutually
exclusive) three properties holds:
1. π(Rā) = x and π(¬Rā) = x̄ for some x ∈ X, or
2. π(Rā) = 0 and π(¬Rā) = 1, or
3. π(Rā) = 1 and π(¬Rā) = 0.

Contrary to model-defining interpretations, a model-compatible interpretation π defines,
in general, not a single structure, but a class of structures compatible with π, consisting of
all structures A (with universe A and vocabulary τ) such only those literals L ∈ LitA(τ) can
be true in A for which π(L) ∈ X ∪ X̄ ∪ {1}.

▶ Corollary 37. Let π : LitA(τ) → N∞[[X∞, X̄∞]] be model-compatible and let ψ be sentence
in FO(τ). Then the power series π[[ψ]] describes all proof trees that verify ψ using premises
from the literals that π maps to indeterminates or to 1.

Specifically, each monomial c xe1
1 · · ·xek

k in π[[ψ]] stands for c distinct proof trees that use
e1 times the literal annotated by x1, . . . , and ek times the literal annotated by xk, where
x1, . . . , xk ∈ X ∪ X̄. In particular, when π[[ψ]] = 0 no proof tree exists, and hence there is no
model of ψ that is compatible with π.

8 Summary and Conclusion

Up to now, semiring provenance has essentially been restricted to finite data, typically
to database queries against a finite, possibly annotated, database, to first-order sentences
evaluated over a finite domain, or to the strategy analysis for a (possibly infinite) game,
played on a finite game graph.

In this paper we have provided foundations for semiring provenance over infinite domains.
This required to expand semirings by infinitary sum and product operators, and we have
investigated in detail the necessary, or at least desirable, algebraic properties that should
hold for these operators. Clearly the infinitary operators must be compatible with finite sums
and products. Partition invariance, a natural generalisation of associativity, turned out to be
a quite strong property which also implies bijection invariance, the natural generalisation of
commutativity. However, we have seen that these basic properties do not suffice to exclude
“pathological” operators, and we have investigated a number of other algebraic properties,
including (strong) compactness, the respect of neutral and idempotent elements, and the
existence of unique powers. We have seen that compactness is a very powerful property,
which implies the other ones, but since it is sometimes hard to verify, and does in fact not
hold in all interesting semirings, we have decided not to impose it as a necessary requirement
in our definition of infinitary semirings. Instead we work with the weaker requirements that
neutral elements are respected and that there exist unique infinite powers.

Distributivity and monotonicity are the fundamental algebraic properties that govern the
interplay of sums and products in (naturally ordered) semirings. The generalisation of the
distributive law from finite to infinitary semirings comes in two variants, a weak one and a
strong one. While weak distributivity is unproblematic in the semirings we consider, it turned
out that strong distributivity is more delicate. In some important semirings it does not hold
for arbitrary index sets but only for countable ones. On the other side, strong distributivity
is an important property which, for instance, implies monotonicity and is also used later in
the Sum-of-Proof-Trees-Theorem. We decided to omit strong distributivity in our definition
of infinitary semirings, and to require only weak distributivity and monotonicity. Instead we
have introduced also the variant of a κ-distributive infinitary semiring.
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Based on this algebraic analysis, and on the requirements for provenance valuations
on infinite structures, we thus have come to a proposal for an appropriate definition of
infinitary semirings. We have also discussed the appropriate notions of homomorphisms
among infinitary semirings. We have studied how finite semirings and infinite lattice semirings
can be expanded to infinitary semirings, and we have seen that the extension N∞ of the
natural semiring N is a strongly distributive infinitary semiring. For the class of absorptive
semirings, multiplication is decreasing and hence infinitary operations can be defined in a
natural way by suprema and infima over finite subsets. Finally we have investigated the
generalisation of the universal semiring of multivariate polynomials, N[X], to an infinitary
semiring N∞[[X∞]] of generalised power series. We have proved that N∞[[X∞]] is indeed
universal for strongly distributive infinitary semirings.

In the last two sections, we have shown that, based on these infinitary semirings, the
provenance analysis for first-order logic can indeed be extended from finite structures to
infinite ones, preserving the basic results of the theory. In particular, we have proved that
the Sum-of-Proof-Trees-Theorem, saying that the semiring valuation of a first-order sentence
coincides with the sum of the valuations of its proof trees, also holds on domains < κ,
provided that the underlying infinitary semiring is κ-distributive. Further, we have briefly
discussed the use of dual indeteminates (for treating negation) which leads to semirings of
dual-indeterminate generalised power series. The Sum-of-Proof-Trees-Theorem, applied to a
model-compatible interpretation into such a semiring, gives valuations that describe all proof
trees of a sentence, with precise information, which of the tracked literals are actually used
in a proof tree, and how often.

A limitation of this result is that the semirings of generalised power series have only
finitely many indeterminates. This means that although we can deal with infinite structures,
we can track inside of these only finitely many literals, and take the truth values of the others
for granted. Over an infinite universe, a model-compatible interpretation thus defines a class
of structures in which the truth values of all but finitely many literals coincide. In this way,
we can thus track finite data embedded into an infinite background structure, but not the
collection of all atomic facts in an infinite structure. For the Sum-of-Proof-Trees-Theorem as
such, no such restriction applies, so it can be used for provenance valuations in application
semirings over arbitrary infinite domains.

To overcome this limitation of N∞[[X∞]], we would need universal provenance semirings
with infinitely many variables. We have seen that for N∞[[X∞]] itself, the extension to infinite
sets X would not be consistent with our definition of infinitary semirings, but such extensions
seem possible in settings of absorptive provenance semirings such as S∞(X) and PosBool(X),
and perhaps also for Why-semirings. But this will have to be studied elsewhere.
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