
Annotation and More Annotation:
Some Problems Posed by (and to) Val Tannen
Peter Buneman #

University of Edinburgh, UK

Stijn Vansummeren #

UHasselt, Data Science Institute, Belgium

Abstract
Among the many research accomplishments of Val Tannen, his work on provenance and semirings is
probably the most widely known. In this paper, we discuss questions that arise when applying this
general framework to the setting of curated databases, and in particular the setting where we can
have multiple annotations on the same data, as well as annotations on annotations.
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1 Background

By rights, Val Tannen should be a co-author of this short discussion because most of the
ideas arose from ongoing conversations with him about the need to put several annotations
on the same structure. There are various reasons for wanting to do this, the most important
being that it is common in practice to find structures with multiple annotations, and the
distinction between annotation and data is not always clear.

What we want to do in this paper is first to compare provenance and annotation:
provenance being something that describes, or is intrinsic to, the formation of data; annotation
being something that is superimposed on data after its formation. Second, to look at the
commonplace practice of having multiple annotations on a structure. How do we represent
annotations on annotations, and how well does this fit with the elegant theory of semirings [8]
for which Val Tannen is responsible?

Provenance and annotation have been studied together by the database community for 25
years or more [2,6,16,17]. They are obviously connected: provenance is a form of annotation,
and provenance may tell us how annotations should propagate through queries. Green,
Karvounarakis and Tannen’s original work [8] on semirings referred to them as “provenance
semirings”, other researchers [10,12] have used the term “annotation semirings”. What we
claim is that provenance and annotation are also fundamentally different and it is worth
examining these differences.

1.1 Provenance
While there is an unending sequence of attempts to define, characterize, formalize and
standardize provenance, all of them agree that provenance concerns the properties of the
process by which something has been formed and used. Provenance of any kind is hence an
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account of the history of an object. As such we do not expect to modify it. Indeed, there are
efforts, both in databases [14] , and more generally [15], to ensure that one does not “rewrite
history”. One might argue that, ideally, everything should carry its provenance, and that
provenance – whatever definition one chooses – is an unalterable, intrinsic, property of an
object. This does not mean that there has to be a unique model of provenance; but if one
has two definitions of provenance there has to be a notion of consistency and a method to
combine the two. For instance, in [9] there is a hierarchy of semirings that shows how one
semiring may be “more informative” with respect to provenance than another.

1.2 Annotation
Whereas the database community started to worry seriously about provenance and annotation
at the start of the millennium, the practice of annotating data was widespread in curated
databases at least ten years earlier. In stark contrast to provenance, annotations are regarded
as being added to, or superimposed upon, existing data. For instance, the widely used
Swissprot/Uniprot [1] database is regarded as a secondary database built on top of underlying
sequence data (the primary data). Similarly, geospatial databases may be regarded as
annotations on a terrestrial coordinate system.

Informally, annotation has the following properties: annotations are placed on data
after it has been created; annotations do not “influence” the data they annotate; and if
the underlying data changes, annotations may become invalid. Of course, without a proper
representation of the notions of time, influence or update in a database, we cannot expect
to formulate these conditions. But, in practice they are understood and follow naturally
from keeping annotated data in a separate database together with a copy or view of the
underlying primary data.

The curators and users of curated databases typically know which parts of the database
are imported from the primary data and which fields are added as annotation. The distinction
between annotation and the primary data is hence conveyed by some elementary form of
provenance although this provenance information is not necessarily explicitly represented in
the database.

2 Provenance and Simple Annotation

As a practical illustration of provenance and annotation in a curated database, Table 1 shows
the relational schema of the object table of the GtoPdb [13] database. This is a base table and
several other tables, all of which describe various substances, implicitly inherit and extend this
schema. In this table, the columns object_id, name, abbreviation, and systematic_name form
the primary data. The columns last_modified and old_object_id record some rudimentary
provenance information. All other columns are annotation, either commenting on the primary
data, or (like in_gctp) recording whether the primary data should be exported in a particular
view on the database.

What is remarkable about this schema is first that most of it is annotation and second,
as we shall see, that most of the annotation fields can usefully be given a semiring structure.
It is also interesting that last_modified, a field that we have associated with provenance also
has a simple semiring structure.

As we noted above, provenance appears to be a form of annotation. This is in particular
true for the last_modified and old_object_id columns in Table 1. Conversely, if as in [2,9],
one wants to study the propagation of annotations through queries, one should understand
provenance. If, for example, we want to know whether a tuple in the result of a query should
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Table 1 Schema of the GtoPdb [13] object table.

Column Type
object_id integer
name varchar(1000)
abbreviation varchar(100)
systematic_name varchar(100)
old_object_id integer
last_modified date
comments text
structural_info_comments text
annotation_status integer
only_iuphar boolean
grac_comments text
only_grac boolean
no_contributor_list boolean
quaternary_structure_comments text
in_cgtp boolean
in_gtip boolean
gtip_comment text
in_gtmp boolean
gtmp_comment text
cite_id varchar(20)

be included in a view specified by a field in_gctp, then we should be able to use provenance
to determine the value of that field. In fact one can use semirings and the semiring semantics
of relational algebra to describe the propagation of such fields. If there is only a single
annotation column C, and if the values in this column can be ascribed a semiring structure
K, such as is for example the case for the in_cgtp column in Table 1 where K is the Boolean
semiring, then we can simply propagate the annotation C by means of the semiring semantics
introduced in [8].
▶ Remark. Before continuing our discussion, it is worth noting that we have to be careful in
choosing the semiring K we intend to work in. Indeed, the formal definition of K-relations
proposed in [8] interprets all tuples that are annotated with the semiring’s additive unit 0 as
being absent from the database, i.e., non-existent. This need not be the semantics that one
wants. For example, in GtoPdb database and assuming that in_cgtp is the only annotation
attribute, a value of 0 in in_cgtp does not mean that the tuple is non-existent or should
be deleted. Rather, it means that the tuple should not be exported to the gctp view. This
difference can be resolved by moving to a semiring other than the Boolean semiring. This
alternate semiring has pairs (b1, b2) of booleans as elements; where b1 = 0 implies that b2 = 0
and where b1 = 0 indicates that the tuple is really not present. Otherwise, b1 = 1 indicates
tuple presence and b2 indicates whether the tuple is exported to in_gctp. The semiring
operations are defined pointwise in the obvious manner. For reasons of parsimony we will
ignore this issue and continue to work with the Boolean semirings for fields such as in_gctp.

The GtoPdb object table (Table 1) illustrates the common practice in curated databases
of having multiple annotations; and this leads to the following question, central to this paper.

How does one collectively propagate this multitude of annotations? In particular,
can we always cast this as a form of semiring provenance and, if so, what is the
semiring structure required? Moreover, how may we implement such propagation?

Tannen’s Festschrift



4:4 Annotation and More Annotation: Some Problems Posed by (and to) Val Tannen

I1 =

A B . . . X Y Z

a1 b1 . . . 1 1 0
a2 b2 . . . 0 1 0
a3 b3 . . . 0 0 0
a4 b4 . . . 1 1 1

I2 =

A B . . . A
a1 b1 . . . {X, Y }
a2 b2 . . . {Y }
a3 b3 . . . ∅
a4 b4 . . . {X, Y, Z}

I3 =

A B . . . A′

a1 b1 . . . X

a1 b1 . . . Y

a2 b2 . . . Y

a4 b4 . . . X

a4 b4 . . . Y

a4 b4 . . . Z

together with the base instance I

and πAB...I3 ⊆ I

Figure 1 Three ways of annotating with sets.

To give some insights into this question, let us restrict our attention, at least for the
purpose of this section, to the setting where there are multiple annotations, but all of these
annotations are of the same form. We will return to distinct forms in Section 3.

To start our discussion, we remark that the GtoPdb object table exhibits the following
two forms of annotation that commonly arise in curated databases. The first of these we
shall call believers. This is a catch-all term we will use for people or agents that “approve”
of a tuple. For example it is common for curators of a database to review (and possibly
correct) parts of a database. In another scenario a database may “export” a number of
smaller databases or views, and tuples may be tagged with the set of views that they should
be included in. In particular, the in_gctp, in_gtip, and in_gtmp columns in Table 1 represent
such tags. Note that while may view a single believer annotation as single Boolean value,
the set of multiple believer annotations taken together is a set-valued annotation.

A second and ubiquitous form of annotation are comments. Again, we may view a single
comment as a single string. Multiple comments are commonplace, however, and in practice
they are represented by concatenating strings in such a way that the reader can separate them.
Hence, a single comment annotation typically encodes a set of comment values. Columns
like structural_info_comments in Table 1 are clearly comments annotations.

Consider the setting where there is only one of these forms of annotation – believers or
comments – on the primary data. Figure 1 shows three possible methods of representing
such annotated tables. The first, which applies only to believers, adds a new Boolean column
for each curator or view to the primary database table. This method is only practical if we
may assume that the set of possible curators or views is known and small. If this is not the
case, and if one has the luxury of working systems that support nested tables [4] one can
add a column that simply contains the set of curators (respectively, views or comments) as
shown by I2. Otherwise (and also common practice) one may add an auxiliary table – with
the appropriate foreign key constraint – that specifies a binary relation between the primary
data and the believers respectively comments. This third method I3 is often used in practice
when curators or contributors details are also kept in the database.

The first two representation methods I1 and I2 naturally lend them to a semiring-based
semantics for carrying the annotations through queries. For both believers and comments
these semirings are semirings of sets, straightforward but different. In the case of believers
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and representation method I1, the added Boolean columns can be viewed as boolean vectors
of a fixed dimension, which clearly form a semiring. If as in I2 we are using a set-valued
column then we want the lattice of subsets of believers as the appropriate semiring. For
example, if tuples r, t1 and t2 are respectively believed by sets R, T1 and T2 then the set of
people who believe in the tuple with provenance polynomial r1(t1 + t2) is R ∩ (T1 ∪ T2): we
are using the semiring of subsets of some set – a distributive lattice.

On the other hand, if R, T1 and T2 are sets of comments, we would expect to see the tuple
with polynomial r1(t1 + t2) annotated with R ∪ T1 ∪ T2. Here we are using a commutative
idempotent monoid – a degenerate semiring in which the two binary operations coincide and
the empty set is the multiplicative unit. This is also the semiring used in lineage [6].

By contrast, representation method I3, while ubiquitous in practice, does not immediately
seem to lend itself to a semiring-based semantics. The reason is that the values in the
annotation column A′ in the auxiliary table (being the individual believers or comments)
does not necessarily have a natural semiring interpretation. For: which individual believer
corresponds to the product or sum of two individual believers?

We find it interesting to remark, however, that we may instead view representation
method I3 as a means to implement the annotation propagation semantics of method I2 under
the above-described distributive lattice and lineage semirings. Whereas a straightforward
implementation of I2 requires systems that support nested tables (as the annotation column
contains a set), method I3 is able to implement this using ordinary flat relational database
management systems. In particular, when we view I2 as a nested relation then I3 together
with the base instance I is a particular form of a so-called shredded representation of I2 [5,7,11].
It is possible to simulate full nested relational algebra (NRA) by means of ordinary flat
relational algebra (RA) on shredded representations [5,7], something that also Val has worked
on [11]. Hence, we may indeed view I3 and particular relational algebra queries on I3, as a
way to simulate semiring-based querying on on I2.

In full generality, however, shredding requires that RA is endowed with the ability to
invent new identifiers. This is required to simulate the creation of new (deeply) nested
sets. In the particular case of annotation-propagation that we are interested in here and the
specific case where the only NRA operations that we want to do on set-based attributes in
I2 are intersection and union (our semiring operations), it seems that one does not require
the ability to invent new identifiers. Indeed, because there is a functional dependency from
the non-annotation attributes in I2 to the set-based annotation attribute A, we may always
“identify” a set (including newly created ones) simply by means of the tuple of non-annotation
attributes. Moreover, if we only intend to propagate the annotation on I2 through positive
relational algebra queries, then it seems that the simulating shredded queries on I2 will
also be positive. A full verification of these conjectures has not appeared in the literature,
however, to the best of our knowledge.

A connected interesting and possibly open question is the following: even if from a
theoretical point of view we can always “identify” nested sets by means of the tuple of
non-annotated values in method I3, we almost certainly do not want to do this in practice
because such tuples can be very wide. Indeed, in the simulating shredded queries we will
often have to join using the identifier columns as join fields, and thus the fewer join fields
the better. Hence the question: when is it possible to use only a subset of the non-attribute
columns as set-identifier keys in the shredded representation? How does this work if we have
primary key information on the primary data?

Tannen’s Festschrift
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3 Multiple annotations

Beyond illustrating some distinctions between annotation and provenance, the GtoPdb
example shows that multiple annotations on a tuple are commonplace. Moreover, where
semirings may be associated with annotations, different semirings serve different purposes.

That we have so many annotations on a single tuple in the GtoPdb example is partly due
to database design. Take, for example, the view specified by in_gtmp=true. Since object_id
is a key one could place the gtmp_comment field in another table with key object_id and the
appropriate key inclusion. Multiple uses of this transformation would be confusing to say
the least, and the database designers rightly kept all this information in the same place.

If we do keep this information in the same place, we have to allow that two annotations
may differ on what tuples are mapped to a semiring zero, so that we have to allow the explicit
appearance of zero in an annotation column. As remarked in Section 2, in the familiar
representation of a singly-annotated relation as a K-relation, the tuples annotated with a
zero are not present.

In Section 1.2 we made the informal observation that if we changed the underlying data
then an annotation could become invalid. In the case of a tuple annotation, upon what parts
of a tuple does an annotation depend? In particular does one annotation depend on another?
In Table 1 it is unlikely that a change to abbreviation could alter the validity of in_gtmp.
However the gtmp_comment field is only going to be present if in_gtmp is true. We can
informally define the scope of an annotation as that part of a tuple (both non-annotation
columns and annotation columns) it annotates and say that two annotations are independent
if neither is in the scope of the other.

For independent annotations there is an obvious method of treating them as a single
annotation. For example, if we have a semiring K1 for believers and K2 for comments then
there is an obvious product semiring defined on K1 ×K2 with all operations defined pointwise.
We have seen this before: in the column-based representation of I1 in figure 1, the annotation
columns X and Y taken together can be regarded as the product of two Boolean-valued
annotations.

A more interesting problem arises when the annotations are not independent. That is
when one annotation depends on, or is within the scope of, another. This is also common
in curated databases, and happens with both believer and comments annotations. For
example, it is possible for one curator to verify or check the work of another, so “A verifies
B’s verification of ...” presupposes that B verified something. It can also happen when one
view is a sub-view of another, and it is possible to provide comments on top of comments, or
on top of verifications.1

For such correlated annotations, it is not immediate how we may view them as semiring
elements. In fact, it is not a priori clear how representation methods I1 and I2 of Figure 1
extend to this setting. By contrast, for method I3, the shredded representation of the
annotation, the extension is straightforward: starting with schema R we want to add two
annotation attributes A and A′. We construct the instances I, IA and IAA′ over the schemas
R, R ∪ {A} and R ∪ {A, A′} that satisfy the inclusions πRIA ⊆ I and πR∪{A′}IAA′ ⊆ IA.
The following questions now arise: can we still view this as a shredded representation of
generalized version of I2? If so, can we view the annotation attribute of generalized I2 as
having a semiring structure? In discussions that we have had with Val on this topic, it seems
that a semiring structure exists, but that the elements in the domain of this semiring must
be themselves K-relations. Full answers to these questions are still open.

1 Somewhat confusingly “A believes that B believes ...” does not imply that “B believes ...” so we really
cannot regard this as an annotation on an annotation.
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The comment semiring can be treated similarly. The generalization of I3 described above
works equally well for comments on comments except that we are using the degenerate
semiring with only union. What is interesting is that it is common to build up chains of
comments of indefinite length. This can also be easily represented in the semiring framework.
If C is the domain of comments and C∗ is the set of sequences over C then the monoid we
need is the prefix-closed subsets of C∗, which is closed under union.

4 Closing and further questions

The foregoing account of annotation in curated databases is not just a theoretical exercise.
As we have already mentioned, the base “object” table in GtoPdb [13] has six Boolean fields
for views and six comment fields each of which pertains to one of those fields. Tens of other
tables inherit from this table; moreover many other tables in the database have a comment
field. Understanding which comments are relevant to a tuple in the output of a query is a
non-trivial task in practice. Another interesting field that can be regarded as an annotation,
but also part of the provenance is a “time of last modification” – which may be represented
in some semiring.

As our discussion illustrates, it is not always clear how to cast the propagation of
annotation as an application of querying under the semiring semantics. In particular, ensuring
that multiple annotations can be suitably propagated seems to require us to form semirings of
increasingly rich structure: semirings of sets, product semirings, and (in Section 3), semirings
of K-relations. Further research is required to complete this picture of multiple annotation
propagation and the induced semiring structure.

We close our discussion with two further topics.
We introduced the notion of the scope – the set of attributes in a tuple that is subject

to some annotation. Do the rules for combining annotations still hold? For example, if a
projection loses some or all the attributes in the scope of an annotation, do we want to keep
that annotation?

We also defined scope informally in terms of update to a tuple. But we have no model for
update, and this brings up the question of how annotation behaves under update. Provenance
and update have been studied in [3], but does this tell us anything about annotation; and is
there a larger picture that includes semirings?

Finally, although we have suggested that the scope of an annotation could be part of a
tuple, why could it not be even broader. Could we annotate data values, tables, columns, as
well as arbitrary views?
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