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Abstract
We prove a general theorem for establishing properties expressed by binary relations on typed
(first-order) λ-terms, using a variant of the reducibility method and logical PERs. As an application,
we prove simultaneously that β-reduction in the simply-typed λ-calculus is strongly normalizing,
and that the Church-Rosser property holds (and similarly for βη-reduction).
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1 Introduction

Logical relations are an important tool used in proving some deep results about various typed
λ-calculi and their models. A special form of the concept of a logical relation first appeared
in Harvey Friedman’s seminal paper [4]. General logical relations were defined and used
extensively in the pioneering work of Plotkin [18] and Statman [19, 21, 20], and later on in a
more general setting by Breazu-Tannen and Coquand [2], Mitchell [15], Mitchell and Moggi
[16], and Abramsky [1], among others. As the name indicates, logical relations are certain
kinds of relations, and they are used to prove relational properties of terms. On the other
hand, reducibility is a tool used in proving properties of terms in various typed λ-calculi.
Typically, it is used to prove strong normalization or normalization, but it can be used to
prove other properties as well. The method was pioneered by Tait [22] for the simply-typed
λ-calculus, and brilliantly extended to various higher-order typed λ-calculi by Girard [9, 10]
(see also Tait [23]). Various expositions and analyses of such proofs are given in Mitchell
[15], Krivine [14], Huet [11], and Gallier [5, 6, 7, 8], among others. Another crucial concept
is that of a partial equivalence relation, or PER. PER’s were introduced by Hyland [12] and
Mulry [17]. PERs are a major tool in defining categories of domains in an effective setting
(see Freyd, Mulry, Rosolini, and Scott [3]). PERs also often show up as logical relations, and
are called logical PERs (see Breazu-Tannen and Coquand [2]).

In this note, we prove a general theorem for establishing properties expressed by binary
relations on typed (first-order) λ-terms, using a variant of the reducibility method and of
logical PERs. This note is written much in the spirit of our earlier papers [6, 8]. Our goal is
to elucidate the conditions under which the technology of reducibility and of logical relations
works. We do this by finding sufficient conditions that a binary relation R on typed λ-terms
need to satisfy for establishing that R holds, using reducibility. The conditions presented in
this paper were inspired by a paper by Koletsos [13].

In this short note, we restrict out attention to the simply-typed λ-calculus, but there is
little doubt that our method can be generalized to all the first-order types (as in [6]), or to
type intersection disciplines (as in [8]). As an illustration, it is easy to show simultaneously
that β-reduction is strongly normalizing and that the Church-Rosser property holds (and
similarly for βη-reduction).
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The generalization to second-order types (or more general types) is much more problematic
(for a discussion of some of the problems, see Breazu-Tannen and Coquand [2]), and is left
as an open problem.

2 R-Logical Candidates for the Arrow Type Constructor →

Let T denote the set of (simple) types. Recall that the set of simple types is defined
inductively from a set of base types and using the type constructor →, i.e. a base type b is a
type, and (σ → τ) is a type whenever σ and τ are types.

The presentation will be simplified if we adopt the definition of simply-typed λ-terms
where all the variables are explicitly assigned types once and for all. More precisely, we have
a family X = (Xσ)σ∈T of variables, where each Xσ is a countably infinite set of variables of
type σ, and Xσ ∩Xτ = ∅ whenever σ ̸= τ . Using this definition, there is no need to drag
contexts along, and the most important feature of the proof, namely the reducibility method,
is easier to grasp. Recall that an untyped λ-term is either a variable x, an application (MN),
or a λ-abstraction λx : σ. M . The terms of the typed λ-calculus λ→ (also called simply-typed
λ-terms) are the λ-terms that respect certain type-checking rules reviewed below.

▶ Definition 1. Given a λ-term M and a type σ, we define the binary relation M : σ (read,
M has type σ) using the following type-checking rules:

x : σ, when x ∈ Xσ,

(we can also have c : σ, where c is a constant of type σ, if there is a set of constants that
have been preassigned types).

x : σ M : τ

λx : σ. M : (σ → τ)
(abstraction)

M : (σ → τ) N : σ

(MN) : τ
(application)

From now on, when we refer to a λ-term, we mean a λ-term that type-checks. We let Λσ

denote the set of λ-terms of type σ, and Λ→ = (Λσ)σ∈T , also called the set of simply-typed
λ-terms. In this section, the only reduction rule considered is β-reduction:

(λx : σ. M)N −→β M [N/x].

Equations between λ-terms of the same type σ are denoted as M
.= N : σ, and equational

provability is defined as follows.

▶ Definition 2. The axioms and inference rules of the equational β-theory of the typed
λ-calculus λ→ are defined below.

x
.= x : σ (reflexivity),

where x is any variable of type σ. We also have axioms c
.= c : σ, where c is a constant of

type σ, when typed constants are present.

(λx : σ. M)N .= M [N/x] : τ (β)
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M1
.= M2 : σ

M2
.= M1 : σ

(symmetry)

M1
.= M2 : σ M2

.= M3 : σ

M1
.= M3 : σ

(transitivity)

M1
.= M2 : (σ → τ) N1

.= N2 : σ

(M1N1) .= (M2N2) : τ
(congruence)

M1
.= M2 : τ

λx : σ. M1
.= λx : σ. M2 : (σ → τ)

(ξ)

The notation ⊢β M
.= N : σ means that the equation M

.= N : σ is provable from the
above axioms and inference rules.

The equational βη-theory of the typed λ-calculus λ→ is obtained by adding the following
axiom to the above axioms and inference rules.

λx : σ. (Mx) .= M : (σ → τ) (η)

where x /∈ FV (M).

The notation ⊢βη M
.= N : σ means that the equation M

.= N : σ is provable from all the
axioms, including (η), and the inference rules.

Given any term M , we can easily show by induction on the structure of M that the
equation M

.= M : σ is provable using the (reflexivity) axioms and the rules (congruence)
and (ξ). Thus, reflexivity holds for all terms, not just variables and constants. The reason
for using a restricted form of the reflexivity axioms is that this makes the proof of Lemma 10
simpler.

It turns out that the behavior of a term depends heavily on the nature of the last typing
inference rule used in typing this term. A term created by an introduction rule, or I-term,
plays a crucial role, because when combined with another term, a new redex is created. On
the other hand, for a term created by an elimination rule, or simple term, no new redex
is created when this term is combined with another term. This motivates the following
definition.

▶ Definition 3. An I-term is a term of the form λx : σ. M . A simple term (or neutral term)
is a term that is not an I-term. Thus, a simple term is either a variable x, a constant c, or
an application MN . A term M is stubborn iff it is simple and, either M is irreducible, or
M ′ is a simple term whenever M

+−→β M ′ (equivalently, M ′ is not an I-term).

Let R = (Rσ)σ∈T be a family of nonempty binary relations, where Rσ ⊆ Λσ × Λσ.

▶ Definition 4. Properties (P0)-(P3) are defined as follows:
(P0) Every relation Rσ is a per, i.e., Rσ is symmetric and transitive.
(P1) ⟨x, x⟩ ∈ Rσ, ⟨c, c⟩ ∈ Rσ, for every variable x and constant c of type σ.
(P2) If ⟨M1, M2⟩ ∈ Rσ and M1 −→β M ′

1, then ⟨M ′
1, M2⟩ ∈ Rσ.

(P3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ→τ , ⟨N1, N2⟩ ∈ Rσ, and either
⟨(λx : σ. M ′

1)N1, M2N2⟩ ∈ Rτ whenever M1
+−→β λx : σ. M ′

1 and M2 is stub-
born, or ⟨(λx : σ. M ′

1)N1, (λx : σ. M ′
2)N2⟩ ∈ Rτ whenever M1

+−→β λx : σ. M ′
1 and

M2
+−→β λx : σ. M ′

2, then ⟨M1N1, M2N2⟩ ∈ Rτ .

Tannen’s Festschrift
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From now on, we only consider families of relations R satisfying conditions (P0)-(P3) of
Definition 4.

▶ Definition 5. For any type σ, a nonempty relation C ⊆ Λσ × Λσ is a R-logical candidate
iff it satisfies the following conditions:
(R0) C is a per.
(R1) C ⊆ Rσ.
(R2) If ⟨M1, M2⟩ ∈ C and M1 −→β M ′

1, then ⟨M ′
1, M2⟩ ∈ C.

(R3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ, and either ⟨λx : γ. M ′
1, M2⟩ ∈ C whenever

M1
+−→β λx : γ. M ′

1 and M2 is stubborn, or ⟨λx : γ. M ′
1, λx : γ. M ′

2⟩ ∈ C whenever
M1

+−→β λx : γ. M ′
1 and M2

+−→β λx : γ. M ′
2, then ⟨M1, M2⟩ ∈ C.

Note that (R3) and (P1) imply that for every type σ, any R-logical candidate C of type
σ contains all pairs ⟨x, x⟩ and ⟨c, c⟩ for all variables and all constants of type σ. More
generally, (R3) implies that C contains all pairs ⟨M1, M2⟩ of stubborn terms in Rσ, and
(P1) guarantees that pairs ⟨x, x⟩ and ⟨c, c⟩ are in Rσ (for every type σ).

By (P3), if ⟨M1, M2⟩ ∈ Rσ→τ is a pair of stubborn terms and ⟨N1, N2⟩ ∈ Rσ is any
pair of terms, then ⟨M1N1, M2N2⟩ ∈ Rτ . Furthermore, M1N1 and M2N2 are also stubborn
since they are simple terms and since they can only reduce to an I-term (a λ-abstraction) if
M1 or M2 reduce to a λ-abstraction, i.e. an I-term. Thus, if ⟨M1, M2⟩ ∈ Rσ→τ is a pair of
stubborn terms and ⟨N1, N2⟩ ∈ Rσ is any pair of terms, then ⟨M1N1, M2N2⟩ ∈ Rτ is a pair
of stubborn terms. Also, observe that if M1

+−→β M ′
1, M2

+−→β M ′
2, and ⟨M1, M2⟩ ∈ C,

then ⟨M ′
1, M ′

2⟩ ∈ C. This follows from (R2) and (R0), since (R0) implies symmetry and
transitivity.

Given a family of relations R, for every type σ, we define the relation [[σ]] as follows.

▶ Definition 6. The logical relations [[σ]] are defined as follows:

[[σ]] = Rσ, σ a base type,

[[σ → τ ]] = {⟨M1, M2⟩ | ⟨M1, M2⟩ ∈ Rσ→τ , and for all N1, N2,

if ⟨N1, N2⟩ ∈ [[σ]] then ⟨M1N1, M2N2⟩ ∈ [[τ ]]}.

▶ Lemma 7. If R is a family of relations satisfying conditions (P0)-(P3), then each [[σ]] is a
R-logical candidate that contains all pairs of stubborn terms in Rσ.

Proof. We proceed by induction on types. If σ is a base type, [[σ]] = Rσ, and obviously,
every pair of stubborn terms in Rσ is in [[σ]]. Since [[σ]] = Rσ, (R0) and (R1) are trivial, (R2)
follows from (P2), and (R3) is also trivial.1

We now consider the induction step.

(R0). By the definition of [[σ → τ ]], symmetry and transitivity are straightforward.

(R1). By the definition of [[σ → τ ]], (R1) is trivial.

(R2). Let ⟨M1, M2⟩ ∈ [[σ → τ ]], and assume that M1 −→β M ′
1. Since ⟨M1, M2⟩ ∈

Rσ→τ by (R1), we have ⟨M ′
1, M2⟩ ∈ Rσ→τ by (P2). For any ⟨N1, N2⟩ ∈ [[σ]], since

1 In fact, if [[σ]] = Rσ, (R3) holds trivially even at nonbase types. This remark is useful is we allow type
variables.
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⟨M1, M2⟩ ∈ [[σ → τ ]], we have ⟨M1N1, M2N2⟩ ∈ [[τ ]], and since M1 −→β M ′
1 we have

M1N1 −→β M ′
1N1. Then, applying the induction hypothesis at type τ , (R2) holds for [[τ ]],

and thus ⟨M ′
1N1, M2N2⟩ ∈ [[τ ]]. Thus, we have shown that ⟨M ′

1, M2⟩ ∈ Rσ→τ and that if
⟨N1, N2⟩ ∈ [[σ]], then ⟨M ′

1N1, M2N2⟩ ∈ [[τ ]]. By the definition of [[σ → τ ]], this shows that
⟨M ′

1, M2⟩ ∈ [[σ → τ ]], and (R2) holds at type σ → τ .

(R3). Let ⟨M1, M2⟩ ∈ Rσ→τ , and assume that ⟨λx : σ. M ′
1, λx : σ. M ′

2⟩ ∈ [[σ → τ ]]
whenever M1

+−→β λx : σ. M ′
1 and M2

+−→β λx : σ. M ′
2, or that ⟨λx : σ. M ′

1, M2⟩ ∈ [[σ → τ ]]
whenever M1

+−→β λx : σ. M ′
1 and M2 is stubborn, where M1 and M2 are simple terms. We

prove that for every ⟨N1, N2⟩, if ⟨N1, N2⟩ ∈ [[σ]], then ⟨M1N1, M2N2⟩ ∈ [[τ ]]. First, we prove
that ⟨M1N1, M2N2⟩ ∈ Rτ , and for this we use (P3). First, assume that M1 and M2 are
stubborn, and let ⟨N1, N2⟩ be in [[σ]]. By (R1), ⟨N1, N2⟩ ∈ Rσ. By the induction hypothesis,
all pairs of stubborn terms in Rτ are in [[τ ]]. Since we have shown that ⟨M1N1, M2N2⟩ is
a pair of stubborn terms in Rτ whenever ⟨M1, M2⟩ ∈ Rσ→τ is pair of stubborn terms and
⟨N1, N2⟩ ∈ Rτ , we have ⟨M1, M2⟩ ∈ [[σ → τ ]].

Now, assume that M1 or M2 is not stubborn. Since by (R0), each [[σ]] is symmetric, we
only need to consider the case where M1 is not stubborn and M2 is stubborn. This case is
similar to the next case, because M2N2 is stubborn for any N2, and we leave it as an exercise.

Consider ⟨M1, M2⟩ ∈ Rσ→τ where M1 and M2 are non stubborn. If M1
+−→β λx : σ. M ′

1

and M2
+−→β λx : σ.M ′

2, then by assumption, ⟨λx : σ.M ′
1, λx : σ.M ′

2⟩ ∈ [[σ → τ ]], and for any
⟨N1, N2⟩ ∈ [[σ]], we have ⟨(λx : σ. M ′

1)N1, (λx : σ. M ′
2)N2⟩ ∈ [[τ ]]. Since by (R1), ⟨N1, N2⟩ ∈

Rσ and ⟨(λx : σ. M ′
1)N1, (λx : σ. M ′

2)N2⟩ ∈ Rτ , by (P3), we have ⟨M1N1, M2N2⟩ ∈ Rτ .
Now, there are two cases.

If τ is a base type, then [[τ ]] = Rτ and ⟨M1N1, M2N2⟩ ∈ [[τ ]].

If τ is not a base type, then the terms M1N1 and M2N2 are simple. We prove that
⟨M1N1, M2N2⟩ ∈ [[τ ]] using (R3) (which by induction, holds at type τ). The case where
M1N1 and M2N2 are stubborn follows from the induction hypothesis. The case where M1N1
is not stubborn and M2N2 is stubborn is similar to the next case, but simpler (and the
symmetric case follows by (R0)).

If both M1N1 and M2N2 are not stubborn terms, observe that if M1N1
+−→β Q1 and

M2N2
+−→β Q2, where Q1 = λy : γ. P1 and Q2 = λy : γ. P2 are I-terms, then the reductions

are necessarily of the form

M1N1
+−→β (λx : σ. M ′

1)N ′
1 −→β M ′

1[N ′
1/x] ∗−→β Q1,

and

M2N2
+−→β (λx : σ. M ′

2)N ′
2 −→β M ′

2[N ′
2/x] ∗−→β Q2,

where M1
+−→β λx : σ. M ′

1, M2
+−→β λx : σ. M ′

2, N1
∗−→β N ′

1, and N2
∗−→β N ′

2. Since
by assumption, ⟨λx : σ. M ′

1, λx : σ. M ′
2⟩ ∈ [[σ → τ ]] whenever M1

+−→β λx : σ. M ′
1 and

M2
+−→β λx : σ. M ′

2, and by the induction hypothesis applied at type σ, by (R2) and (R0),2
⟨N ′

1, N ′
2⟩ ∈ [[σ]], we conclude that ⟨(λx : σ. M ′

1)N ′
1, (λx : σ. M ′

2)N ′
2⟩ ∈ [[τ ]]. By the induction

hypothesis applied at type τ , by (R2) and (R0), we have ⟨Q1, Q2⟩ ∈ [[τ ]], and by (R3), we
have ⟨M1N1, M2N2⟩ ∈ [[τ ]].

Since ⟨M1, M2⟩ ∈ Rσ→τ and ⟨M1N1, M2N2⟩ ∈ [[τ ]] whenever ⟨N1, N2⟩ ∈ [[σ]], we
conclude that ⟨M1, M2⟩ ∈ [[σ → τ ]]. ◀

2 Symmetry and transitivity are needed, but they follow from (R0).

Tannen’s Festschrift
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For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to
(P0)-(P3).

▶ Definition 8. Properties (P4) and (P5) are defined as follows:

(P4) If ⟨M1, M2⟩ ∈ Rτ , then ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ .
(P5) If ⟨N1, N2⟩ ∈ Rσ and ⟨M1[N1/x], M2[N2/x]⟩ ∈ Rτ , then
⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rτ .

▶ Lemma 9. If R is a family of relations satisfying conditions (P0)-(P5) and for every
⟨N1, N2⟩, (⟨N1, N2⟩ ∈ [[σ]] implies ⟨M1[N1/x], M2[N2/x]⟩ ∈ [[τ ]]), then ⟨λx : σ.M1, λx : σ.M2⟩
∈ [[σ → τ ]].

Proof. We prove that ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ and that for every every ⟨N1, N2⟩, if
⟨N1, N2⟩ ∈ [[σ]], then ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ [[τ ]]. We will need the fact that the
sets of the form [[σ]] have the properties (R0)-(R3), but this follows from Lemma 7, since
(P0)-(P3) hold. First, we prove that ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rσ→τ .

Since by Lemma 7, ⟨x, x⟩ ∈ [[σ]] for every variable of type σ, by the assumption of Lemma
9, ⟨M1[x/x], M2[x/x]⟩ = ⟨M1, M2⟩ ∈ [[τ ]]. Then, by (R1), ⟨M1, M2⟩ ∈ Rτ , and by (P4), we
have ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ .

Next, we prove that for every every ⟨N1, N2⟩ ∈ [[σ]], then ⟨(λx : σ.M1)N1, (λx : σ.M2)N2⟩
∈ [[τ ]]. Assume that ⟨N1, N2⟩ ∈ [[σ]]. Then, by the assumption of Lemma 9, we de-
duce that ⟨M1[N1/x], M2[N2/x]⟩ ∈ [[τ ]]. Thus, by (R1), we have ⟨N1, N2⟩ ∈ Rσ and
⟨M1[N1/x], M2[N2/x]⟩ ∈ Rτ . By (P5), we have ⟨(λx : σ.M1)N1, (λx : σ.M2)N2⟩ ∈ Rτ . Now,
there are two cases.

If τ is a base type, then [[τ ]] = Rτ . But we just showed that ⟨(λx : σ.M1)N1, (λx : σ.M2)N2⟩
∈ Rτ , so we have ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ [[τ ]].

If τ is not a base type, then (λx : σ. M1)N1 and (λx : σ. M2)N2 are simple. Thus, we
prove that ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ [[τ ]] using (R3). The case where (λx : σ. M1)N1
and (λx : σ. M2)N2 are stubborn is trivial. The case where (λx : σ. M1)N1 is not stubborn
and (λx : σ. M2)N2 is stubborn is similar to the next case and simpler (and the symmetric
case follows by (R0)).

If (λx : σ. M1)N1 and (λx : σ. M2)N2 are not stubborn and if (λx : σ. M1)N1
+−→β Q1

and (λx : σ. M2)N2
+−→β Q2, where Q1 = λy : γ. P1 and Q2 = λy : γ. P2 are I-terms, then

the reductions are necessarily of the form

(λx : σ. M1)N1
∗−→β (λx : σ. M ′

1)N ′
1 −→β M ′

1[N ′
1/x] ∗−→β Q1,

(λx : σ. M2)N2
∗−→β (λx : σ. M ′

2)N ′
2 −→β M ′

2[N ′
2/x] ∗−→β Q2,

where M1
∗−→β M ′

1, M2
∗−→β M ′

2, N1
∗−→β N ′

1, and N2
∗−→β N ′

2. But ⟨M1[N1/x], M2[N2/x]⟩
∈ [[τ ]], and since

M1[N1/x] ∗−→β M ′
1[N ′

1/x] ∗−→β Q1,

and

M2[N2/x] ∗−→β M ′
2[N ′

2/x] ∗−→β Q2,

by (R2) and (R0), we have ⟨Q1, Q2⟩ ∈ [[τ ]]. Since ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rτ

and ⟨Q1, Q2⟩ ∈ [[τ ]] whenever (λx : σ. M1)N1
+−→β Q1 and (λx : σ. M2)N2

+−→β Q2, by (R3),
we have ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ [[τ ]]. ◀
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▶ Lemma 10. Given a family of relations R satisfying conditions (P0)-(P5), for every pair
⟨M1, M2⟩ of type σ, for every pair of substitutions φ1 and φ2 such that ⟨φ1(y), φ2(y)⟩ ∈ [[γ]]
for every y : γ ∈ FV (M1) ∪ FV (M2), if ⊢β M1

.= M2 : σ, then ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ]].

Proof. First, we prove the lemma, but in the case where M1
.= M2 : σ is provable in the

proof system of Definition 2 without using the axioms (β) or (η). We proceed by induction
on the proof of M1 = M2.

x
.= x : σ (reflexivity)

Obvious, since by assumption, ⟨φ1(x), φ2(x)⟩ ∈ [[σ]].

M1
.= M2 : σ

M2
.= M1 : σ

(symmetry)

By the induction hypothesis, ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ]]. Since by Lemma 7 (R0), every [[γ]]
is symmetric, we also have ⟨M2[φ2], M1[φ1]⟩ ∈ [[σ]].

M1
.= M2 : σ M2

.= M3 : σ

M1
.= M3 : σ

(transitivity)

By the induction hypothesis, ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ]] and ⟨M2[φ2], M3[φ3]⟩ ∈ [[σ]]. Since
by Lemma 7 (R0), every [[γ]] is transitive, we also have ⟨M1[φ1], M3[φ3]⟩ ∈ [[σ]].

M1
.= M2 : (σ → τ) N1

.= N2 : σ

(M1N1) .= (M2N2) : τ
(congruence)

By the induction hypothesis, ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ → τ ]] and ⟨N1[φ1], N2[φ2]⟩ ∈ [[σ]].
By the definition of [[σ → τ ]], we get ⟨M1[φ1]N1[φ1], M2[φ2]N2[φ2]⟩ ∈ [[τ ]], which shows that

⟨(M1N1)[φ1], (M2N2)[φ2]⟩ ∈ [[τ ]],

since M1[φ1]N1[φ1] = (M1N1)[φ1] and M2[φ2]N2[φ2] = (M2N2)[φ2].

M1
.= M2 : τ

λx : σ. M1
.= λx : σ. M2 : (σ → τ)

(ξ)

Consider any ⟨N1, N2⟩ ∈ [[σ]], and any substitutions φ1 and φ2 such that ⟨φ1(y), φ2(y)⟩
∈ [[γ]] for every y : γ ∈ (FV (M1) ∪ FV (M2)− {x}). Thus, the substitutions φ1[x := N1] and
φ2[x := N2] have the property that ⟨φ1(y), φ2(y)⟩ ∈ [[γ]] for every y : γ ∈ FV (M1)∪FV (M2).
By suitable α-conversion, we can assume that x does not occur in any φ1(y) or φ2(y) for every
y ∈ dom(φ1) ∪ dom(φ2), that N1 is substitutable for x in M1, and that N2 is substitutable
for x in M2. Then, M1[φ1[x := N1]] = M1[φ1][N1/x] and M2[φ2[x := N2]] = M2[φ2][N2/x].
By the induction hypothesis applied to ⟨M1, M2⟩, φ1[x := N1], and φ2[x := N2], we have

⟨M1[φ1[x := N1]], M2[φ2[x := N2]]⟩ ∈ [[τ ]],

that is, ⟨M1[φ1][N1/x], M2[φ2][N2/x]⟩ ∈ [[τ ]]. Consequently, by Lemma 9,

⟨(λx : σ. M1[φ1]), (λx : σ. M2[φ2])⟩ ∈ [[σ → τ ]],
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that is,

⟨(λx : σ. M1)[φ1], (λx : σ. M2)[φ2]⟩ ∈ [[σ → τ ]],

since (λx : σ. M1[φ1]) = (λx : σ. M1)[φ1] and (λx : σ. M2[φ2]) = (λx : σ. M2)[φ2].

This concludes the proof in the case where M1
.= M2 : σ is provable in the proof system

of Definition 2 without using the axioms (β) or (η). We now show that the lemma holds
when the axioms (β) are also used.

We noted (just after Definition 2) that the equation M
.= M : σ is provable using the

(reflexivity) axioms and the rules (congruence) and (ξ), for every term M . Thus, by the
previous proof, we have that ⟨M [φ1], M [φ2]⟩ ∈ [[σ]] for every term M of type σ. In particular,
this holds for the term (λx : σ. M)N , and by (R2), we have

⟨((λx : σ. M)N)[φ1], M [N/x][φ2]⟩ ∈ [[τ ]].

But this shows that the lemma also holds for every axiom (β), concluding the proof. ◀

▶ Theorem 11. If R is a binary relation on λ-terms satisfying conditions (P0)-(P5) listed
below
(P0) Every relation Rσ is a per, i.e., Rσ is symmetric and transitive;
(P1) ⟨x, x⟩ ∈ Rσ, ⟨c, c⟩ ∈ Rσ, for every variable x and constant c of type σ;
(P2) If ⟨M1, M2⟩ ∈ Rσ and M1 −→β M ′

1, then ⟨M ′
1, M2⟩ ∈ Rσ;

(P3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ→τ , ⟨N1, N2⟩ ∈ Rσ, and either
⟨(λx : σ. M ′

1)N1, M2N2⟩ ∈ Rτ whenever M1
+−→β λx : σ. M ′

1 and M2 is stub-
born, or ⟨(λx : σ. M ′

1)N1, (λx : σ. M ′
2)N2⟩ ∈ Rτ whenever M1

+−→β λx : σ. M ′
1 and

M2
+−→β λx : σ. M ′

2, then ⟨M1N1, M2N2⟩ ∈ Rτ ;
(P4) If ⟨M1, M2⟩ ∈ Rτ , then ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ ;
(P5) If ⟨N1, N2⟩ ∈ Rσ and ⟨M1[N1/x], M2[N2/x]⟩ ∈ Rτ , then
⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rτ ;

then for every provable equation ⊢β M1
.= M2 : σ, we have ⟨M1, M2⟩ ∈ Rσ (in other words,

every equation provable in the equational β-theory of λ→ satisfies the binary predicate defined
by R).

Proof. Apply Lemma 10 to every β-provable equation M1
.= M2 : σ and to the pair of

identity substitutions, which is legitimate since ⟨x, x⟩ ∈ [[γ]] for every variable of type γ (by
Lemma 7). Thus, ⟨M1, M2⟩ ∈ [[σ]] for every β-provable equation M1

.= M2 : σ, and thus
⟨M1, M2⟩ ∈ Rσ. ◀

▶ Remark. The proof of Lemma 10 actually shows that each Rσ is reflexive.

As an application of Theorem 19, it is easy to prove strong normalization and the Church-
Rosser property for −→β . To do this consider the relation R defined as ⟨M1, M2⟩ ∈ R iff
M1

∗←→β M2, and both M1 and M2 reduce to the same unique normal form. Properties
(P0)-(P5) are easily verified, using the same techniques as in Gallier [6]. Of course, this is a
bit of an overkill for the simply-typed λ-calculus.

We now show how to extend the previous results to the βη-equational theory of λ→.
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3 Adding η-Reduction

The rule of η-reduction is an oriented version of axiom (η):

λx : σ. (Mx) −→η M,

where x /∈ FV (M). We will denote the reduction relation defined by β-reduction and
η-reduction as −→βη.

The definition of an I-term remains identical to that given in Definition 3, and similarly
for stubborn terms. Properties (P0)-(P3) also remain the same, but they are stated with
respect to the new reduction relation +−→βη .

▶ Definition 12. Properties (P0)-(P3) are defined as follows:
(P0) Every relation Rσ is a per, i.e., Rσ is symmetric and transitive.
(P1) ⟨x, x⟩ ∈ Rσ, ⟨c, c⟩ ∈ Rσ, for every variable x and constant c of type σ.
(P2) If ⟨M1, M2⟩ ∈ Rσ and M1 −→βη M ′

1, then ⟨M ′
1, M2⟩ ∈ Rσ.

(P3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ→τ , ⟨N1, N2⟩ ∈ Rσ, and either
⟨(λx : σ. M ′

1)N1, M2N2⟩ ∈ Rτ whenever M1
+−→βη λx : σ. M ′

1 and M2 is stub-
born, or ⟨(λx : σ. M ′

1)N1, (λx : σ. M ′
2)N2⟩ ∈ Rτ whenever M1

+−→βη λx : σ. M ′
1 and

M2
+−→βη λx : σ. M ′

2, then ⟨M1N1, M2N2⟩ ∈ Rτ .

From now on, we only consider families of relations R satisfying conditions (P0)-(P3) of
Definition 12. Definition 5 remains the same, except that it uses the new reduction relation
−→βη.

▶ Definition 13. For any type σ, a nonempty relation C ⊆ Λσ ×Λσ is a R-logical candidate
iff it satisfies the following conditions:
(R0) C is a per.
(R1) C ⊆ Rσ.
(R2) If ⟨M1, M2⟩ ∈ C and M1 −→βη M ′

1, then ⟨M ′
1, M2⟩ ∈ C.

(R3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ, and either ⟨λx : γ. M ′
1, M2⟩ ∈ C whenever

M1
+−→βη λx : γ. M ′

1 and M2 is stubborn, or ⟨λx : γ. M ′
1, λx : γ. M ′

2⟩ ∈ C whenever
M1

+−→βη λx : γ. M ′
1 and M2

+−→βη λx : γ. M ′
2, then ⟨M1, M2⟩ ∈ C.

Definition 6 remains unchanged, but we repeat it for convenience.

▶ Definition 14. The logical relations [[σ]] are defined as follows:

[[σ]] = Rσ, σ a base type,

[[σ → τ ]] = {⟨M1, M2⟩ | ⟨M1, M2⟩ ∈ Rσ→τ , and for all N1, N2,

if ⟨N1, N2⟩ ∈ [[σ]] then ⟨M1N1, M2N2⟩ ∈ [[τ ]]}.

Lemma 7 also holds.

▶ Lemma 15. If R is a family of relations satisfying conditions (P0)-(P3), then each [[σ]] is
a R-logical candidate that contains all pairs of stubborn terms in Rσ.

Proof. Careful inspection reveals that the proof of Lemma 7 remains unchanged. This is
because, for a simple term M :

If M ∈ Λσ→τ and there is a reduction MN
+−→βη Q where Q is an I-term, we must have

M
+−→βη λx : σ. M1, even w.r.t. the reduction relation +−→βη . ◀
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Properties (P4) and (P5) are unchanged, but we repeat them for convenience.

▶ Definition 16. Properties (P4) and (P5) are defined as follows:
(P4) If ⟨M1, M2⟩ ∈ Rτ , then ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ .
(P5) If ⟨N1, N2⟩ ∈ Rσ and ⟨M1[N1/x], M2[N2/x]⟩ ∈ Rτ , then
⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rτ .

Lemma 9 also extends to βη-reduction.

▶ Lemma 17. If R is a family of relations satisfying conditions (P0)-(P5) and for every
⟨N1, N2⟩, (⟨N1, N2⟩ ∈ [[σ]] implies ⟨M1[N1/x], M2[N2/x]⟩ ∈ [[τ ]]), then ⟨λx : σ.M1, λx : σ.M2⟩
∈ [[σ → τ ]].

Proof. This time, a few changes to the proof of Lemma 9 have to be made to take η-reduction
rules into account.

We need to reexamine the case where

(λx : σ. M1)N1
+−→βη Q1

and Q1 is an I-term (and similarly for (λx : σ.M2)N2
+−→βη Q2). The reduction is necessarily

of the form either

(λx : σ. M1)N1
∗−→βη (λx : σ. M ′

1)N ′
1 −→βη M ′

1[N ′
1/x] ∗−→βη Q1,

where M1
∗−→βη M ′

1 and N1
∗−→βη N ′

1, or

(λx : σ. M1)N1
∗−→βη (λx : σ. (M ′

1x))N ′
1 −→βη M ′

1N ′
1

∗−→βη Q1,

where M1
∗−→βη M ′

1x, with x /∈ FV (M ′
1), and N1

∗−→βη N ′
1.

The first case is as in Lemma 9, we have

M1[N1/x] ∗−→βη M ′
1[N ′

1/x] ∗−→βη Q1.

In the second case, as x /∈ FV (M ′
1), we have M ′

1N ′
1 = (M ′

1x)[N ′
1/x]. Since M1

∗−→βη M ′
1x

and N1
∗−→βη N ′

1, we have

M1[N1/x] ∗−→βη (M ′
1x)[N ′

1/x] = M ′
1N ′

1
∗−→βη Q1.

Thus, in all cases,

M1[N1/x] ∗−→βη Q1 and M2[N2/x] ∗−→βη Q2,

and since ⟨M1[N1/x], M2[N2/x]⟩ ∈ [[τ ]], by (R2) and (R0), we have ⟨Q1, Q2⟩ ∈ [[τ ]]. ◀

Since Lemma 15 and Lemma 17 hold, so does the extension of Lemma 10 to βη-provability.

▶ Lemma 18. Given a family of relations R satisfying conditions (P0)-(P5), for every pair
⟨M1, M2⟩ of type σ, for every pair of substitutions φ1 and φ2 such that ⟨φ1(y), φ2(y)⟩ ∈ [[γ]]
for every y : γ ∈ FV (M1) ∪ FV (M2), if ⊢βη M1

.= M2 : σ, then ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ]].
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Proof. The proof is similar to that of Lemma 10, but we also need to treat the case of the
(η)-axioms. Recall that the proof shows that ⟨M [φ1], M [φ2]⟩ ∈ [[σ]] for every term M of type
σ. In particular, this holds for the term λx : σ. (Mx) where x /∈ FV (M). By (R2), we have

⟨((λx : σ. (Mx))[φ1], M [φ2]⟩ ∈ [[τ ]].

This concludes the proof. ◀

▶ Theorem 19. If R is a binary relation on λ-terms satisfying conditions (P0)-(P5), then for
every provable equation ⊢βη M1

.= M2 : σ, we have ⟨M1, M2⟩ ∈ Rσ (in other words, every
equation provable in the equational βη-theory of λ→ satisfies the binary predicate defined by
R).

Proof. Apply Lemma 18 to every βη-provable equation M1
.= M2 : σ and to the pair of

identity substitutions, which is legitimate since ⟨x, x⟩ ∈ [[γ]] for every variable of type γ (by
Lemma 15). Thus, ⟨M1, M2⟩ ∈ [[σ]] for every βη-provable equation M1

.= M2 : σ, and thus
⟨M1, M2⟩ ∈ Rσ, ◀

Several variations of Lemma 18 and Theorem 19 are possible. We can use βη-convertibility
instead of βη-reduction in Definition 12, Definition 13, and Definition 16. We can drop
symmetry from (R0) and (P0), or drop (R0) and (P0) altogether. In these last two cases, we
obtain a version of Lemma 18 by suitably restricting provability. Further investigations are
required.

As in the case of β-conversion, it is possible to prove strong normalization and the
Church-Rosser property for −→βη, using Theorem 19. To do this consider the relation R
defined as ⟨M1, M2⟩ ∈ R iff M1

∗←→βη M2, and both M1 and M2 reduce to the same unique
normal form. Properties (P0)-(P5) are easily verified.

Obviously, it would be interesting to find more general conditions than properties (P0)-(P5)
for which our theorems still hold. We leave this an an open problem.
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