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Abstract
Numerous algorithms have been proposed for detecting anomalies (outliers, novelties) in an unsu-
pervised manner. Unfortunately, it is not trivial, in general, to understand why a given sample
(record) is labelled as an anomaly and thus diagnose its root causes. We propose the following
reduced-dimensionality, surrogate model approach to explain detector decisions: approximate the
detection model with another one that employs only a small subset of features. Subsequently, samples
can be visualized in this low-dimensionality space for human understanding. To this end, we develop
PROTEUS, an AutoML pipeline to produce the surrogate model, specifically designed for feature
selection on imbalanced datasets. The PROTEUS surrogate model can not only explain the training
data, but also the out-of-sample (unseen) data. In other words, PROTEUS produces predictive
explanations by approximating the decision surface of an unsupervised detector. PROTEUS is
designed to return an accurate estimate of out-of-sample predictive performance to serve as a
metric of the quality of the approximation. Computational experiments confirm the efficacy of
PROTEUS to produce predictive explanations for different families of detectors and to reliably
estimate their predictive performance in unseen data. Unlike several ad-hoc feature importance
methods, PROTEUS is robust to high-dimensional data.
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1 Introduction

Detection of “anomalous” samples (records, instances), called anomaly detection, is an
important problem in machine learning. It is conceptually related to outlier and novelty de-
tection in several application settings. The anomalous samples may indicate mislabelled data,
catastrophic measurements or data entry errors, bugs in data wrangling and preprocessing
software, or other interesting phenomena.

Numerous unsupervised algorithms (e.g., IF [32], LOF [7], LODA [44]) to detect
anomalies (hereafter detectors) have been proposed. The most advanced ones detect
anomalies in a multi-dimensional fashion, simultaneously considering all feature values.
Unfortunately, detectors, in general, do not explain why a sample was considered as abnormal,
leaving human analysts with no guidance about their root causes, insight to take corrective
actions, or remedy their effect.
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Several methods for explaining anomalies have been proposed, hereafter explainers.
The explanations often take the form of a subset of features called a subspace in the literature.
The idea is that by examining only the explaining features suffices to determine whether the
sample is an anomaly or not according to the detector.

Existing methods can be categorized to those that provide local explanations (point-
based) that pertain to a single sample, or global explanations (a.k.a. set-based) to
simultaneously explain all training samples. The latter is important in order to reduce the
burden of human analysts to inspect possibly different explanations for each anomaly. We
should stress that global explanation is different from clustering as the former’s objective
is to provide a subspace segregating the anomalous from normal samples. Explainers may
be specific to a detection algorithm or detector-agnostic, hence applicable post-hoc to
any detection algorithm. As reported by several independent experimental studies, e.g. [17],
there is no detector outperforming all others on all possible datasets. Hence, researchers
cannot just design a specific explainer for the optimal detector; it may thus be preferable
to design optimal agnostic explainers. Explainers may also be categorized as descriptive
in the sense that they explain the samples used to train the detector. Explainers that
return explanations that generalize to unseen data are predictive ones. The importance
of predictive explanations has been recognised in Explainable AI to avoid recomputing
explanations on every new batch of data.

Figure 1 illustrates how predictive explanations can be used in data validation pipelines
monitoring the data fed to downstream ML models. Given that in real application settings
it is difficult or even impossible to label data as anomalous or normal [17], unsupervised
detectors are initially used to spot anomalies. Then, a predictive anomaly explainer could
be used by human analysts to reveal the root causes of the detected anomalies and decide
subsequent corrective actions. It is essentially a surrogate model 1, trained with a small
subset of the original features that serve as explaining feature subspace. Depending on the
quality of the approximation of the decision boundary of an unsupervised detector, the
surrogate model can be also used to detect anomalies in fresh data, i.e., new batches of data,
by completely bypassing the need to rerun the detector.

In this paper, we propose a novel method to produce global, predictive explana-
tions called PROTEUS2. PROTEUS is detector agnostic, and can be used to approximate
the decision boundary of any detector. We should stress that prior work on detector agnostic
explainers like CA-Lasso [38] and SHAP [34] but also detector specific explainers like LODA
[44] produce explanations that are only local and descriptive.

PROTEUS essentially constructs a reduced-dimensionality, surrogate model that approx-
imates the behavior of a detector with fewer features. Since the detector is labelling the
samples as anomalies or not, the problem of finding such a model reduces to a supervised
predictive modeling with feature selection problem. In order for the surrogate model to also
explain unseen samples, it has to approximate the detector’s decision boundary and not
simply interpolate the anomalies (overfit) in the training data. To this respect, the quality
of approximation should be estimated using out-of-sample performance estimation protocols
like K-fold cross validation (CV). To build the model, any combination of feature selection
algorithm with a classifier could be employed. However, ideally one should optimize the com-
bination of algorithms and their hyper-parameter values to achieve the best approximation
with the samples at hand.

1 A surrogate model is an interpretable model that is trained to approximate the predictions of a black
box model [39]

2 Proteus or Πρωτϵυs in Greek, means “first” and is a minor sea God and son of Poseidon.
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Figure 1 Predictive Anomaly Explanation Pipeline.

The above requirements for tuning and estimating generalization performance of predictive
models are nowadays addressed in the automated machine learning (AutoML) systems
[23]. In this respect, producing predictive anomaly explanations can be solved as
an AutoML problem. Unfortunately, the majority of existing tools such as auto-sklearn
do not perform feature selection. In addition, they do not exploit the fact that the data
can be augmented with new samples (pseudo-samples) that can be labelled by the detector,
to improve performance. Finally, their performance estimates are often overestimated [51],
particularly for imbalanced datasets. To address the above issues, PROTEUS makes the
following contributions:
(1) In Section 2, we introduce a novel AutoML engine specifically designed to support

feature selection and classification on imbalanced datasets. Unlike existing explainers,
PROTEUS outputs not only a small-sized feature subset serving as explanation but also
a surrogate model fitted on this subset to explain unseen samples, as well as a reliable
out-of-sample (predictive) performance estimation.

(2) To produce such output, PROTEUS AutoML relies on advanced design choices described
in Section 3, such as supervised oversampling, group-based stratification, and a special
variant of Cross-Validation with Bootstrap Bias Correction (BBC) [53].

(3) Thorough computational experiments presented in Section 4 we show the efficacy and
robustness of PROTEUS in synthetic and real datasets of increasing dimensionality.
Last but not least, our experiments show that PROTEUS approximates accurately the
performance of a specific explainer (LODA) in a detector-agnostic fashion.

This is a substantial extension of our short paper published at ICDE 2021 [41]. This paper’s
additional contributions are four-fold:
(4) We formally define in Section 2 descriptive and predictive explanations originally intro-

duced in our work.
(5) We assess in Section 5 the merit of the idea to use PROTEUS to correct the decisions

of the unsupervised anomaly detectors. Specifically, we study the disagreements of
classification to anomalies between the surrogate PROTEUS model and the detector. We
show that PROTEUS can often correct the false positives of false negatives as identified
by the detector.

(6) We propose a new visualization method for presenting the global explanations found by
PROTEUS as spider charts. The visualizations provide insight regarding the combination
of feature values that lead to calling a sample as anomalous or not.

Tannen’s Festschrift
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(7) We survey in Section 6 several categories of related work on explaining anomalies in
unsupervised and supervised settings, positioning the predictive explanation of PROTEUS
w.r.t. each category.

Finally, in Section 7 we conclude the paper and discuss directions of future research.

2 Problem Definition

In this section, we formalize the notion of descriptive explanations inspired by [19] and we
introduce the novel concept of predictive explanations.

Let D = {x1, . . . , xn} be a dataset of n samples, where each sample x ∈ Rd. An
Anomaly Detector A is essentially a function that scores the “anomalousness” of samples
in D according to an unsupervised Anomaly Model: ωA : Rd → R. Continuous scores are
then converted into dichotomous decisions using a threshold choice method [55]. Given a
threshold T and sample x ∈ D, a binary Anomaly detector is a function ωl

A : R→ {0, 1}
defined as follows: ωl

A(x) = 1[ωA(x) > T ]. The value ωl
A(x) = 1, semantically denotes the

identification of an anomaly.

▶ Definition 1. The descriptive explanation D of a set of anomalies O = {x | ωl
A(x) =

1, x ∈ D}, is a subset of features S, where |S| = b ≪ d, that maximizes the cumulative
score for a set of anomalies:

D = argmax
S

∑
x∈O

ωA(x[S])

s.t. |S| = b (1)

where [·] denotes the projection of x over the features in S composing its explanation.

A global descriptive explanation algorithm strives to reveal the subspace that maximizes the
cumulative anomaly score for a set of identified anomalies, given a specific anomalousness
criterion such as distance, isolation etc. Such explanations are called descriptive as they
are computed for every new batch of anomalous and normal samples. In order to make
explanations also discriminative for unseen data, we need to consider predictive explanations
i.e., a hyperplane of reduced dimensionality that separates the anomalies from the normal
samples when training a classifier over the output of an unsupervised anomaly detector. To
produce explaining hyperplanes we need to evaluate alternative surrogate models built using
different classification algorithms h ∈ H, where h is fitted in a lower dimensional space,
produced in turn by different feature selection algorithms g ∈ G that consider the labels
returned by different anomaly detectors.

In a nutshell, predictive explanations are produced by solving an AutoML problem [23].
We denote the combination of an algorithm g and h with their respective hyper-parameter
values a and b as a configuration θ, which is a function f = h(g(·, a), b). The function f

first applies the specified feature selection algorithm g with hyper-parameters a to some
input data and the result is then used to train a classifier h with hyper-parameters b. Let
Dl = {(x1, ŷ1), ..., (xn, ŷn)} be the augmented dataset D enriched with the anomaly labels
as indicated by the detector model: ŷi = ωl

A(xi).

▶ Definition 2. The predictive explanation P is the hyperplane that comprises of a minimal
subset of features S leading to an optimal surrogate model h w.r.t. a performance metric Q:

P = argmax
S

max
h

Q(h(Dl[S]))
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Figure 2 Proteus AutoML Pipeline for Anomaly Detection and Explanation.

Given the dataset Dl, the objective is to build a reduced-dimensionality surrogate model
f trained with some data Dl

train to best approximate the detector’s decision boundary. To
assess the quality of the approximation, f has to generalize to unseen data Dl

test which were
not used during the training of f . Therefore, the objective is to find the configuration θ∗

that contains the tuple ⟨h∗, g∗, a∗, b∗⟩ maximizing a performance metric Q:

θ∗ = argmax
θ

Q(f(Dl
train, θ), Dl

test) (2)

The last step is to train the best configuration using all available data, to produce the final sur-
rogate model f(Dl, θ∗) i.e., a model h∗(Dl[S], b∗) that is used to predict the “anomaloussness”
of unseen samples using only a subset of features S = g∗(Dl, a∗).

As anomalies are rare, the quality of performance of a predictive explanation requires
evaluation metrics that are insensitive to the class distribution. In this respect, PROTEUS
relies on optimizing the area under the Receiver Operating Characteristic (ROC AUC)
curve (hereafter AUC). Given a minimal subset of features and a classifier, AUC equals the
probability that the classifier scored higher an anomalous than a normal sample. Discovering
such minimal subset is a challenging task as the search space is exponential and features
in the input dataset may be both irrelevant or redundant w.r.t. to the predictive outcome.
PROTEUS relies on effective and efficient feature selection algorithms [31, 52, 50] to extract
predictive explanations in a supervised setting.

3 Producing Global, Predictive Explanations with PROTEUS

Figure 2 illustrates the main steps of the pipelines automatically generated by PROTEUS.
We proceed with explaining each step as well as the underlying design choices.

Producing Predictive Explanations as a Supervised Task. First, the anomaly detector
runs in dataset D for producing the anomaly scores which are then transformed into binary
labels (anomaly or not) in dataset Dl. Producing a surrogate model of lower dimensionality
becomes a supervised, binary classification task with feature selection, where the outcome is
the label of the unsupervised detector. We note that data are standardized for subsequent
steps.

Oversampling. Dl is expected to be highly imbalanced (w.r.t. the outcome), as anomalies
are rare. Imbalanced datasets are statistically challenging for any ML classifier. One technique
to alleviate the problem is oversampling the minority class. We focus on synthetic minority
oversampling, i.e., the samples are perturbed by adding noise to the values of the features,
creating new samples called pseudo-samples. In common (unsupervised) oversampling
methods, for small enough perturbations the pseudo-samples are assumed to remain in the

Tannen’s Festschrift
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minority class. An assumption that strongly depends on the definition of what is considered
“small-enough”. However, one can take advantage of the detector model produced in the first
step is available to query regarding the label of a pseudo-sample. In other words, PROTEUS
oversampling is supervised as in case of explanation methods for black-box predictive models
[45]. Intuitively, oversampling probes the region around the anomalies and perturbs these
samples to examine if they cross the detector’s decision boundary or not. It thus effectively
increases the available sample size for the classification, potentially increasing the quality of
the approximation with the surrogate model. For each anomalous sample a it produces ps

pseudo-samples per anomaly by adding a perturbation vector p to a: a′ ← a + p. Each p

follows a multi-variate (d-dimensional) normal distribution with zero mean and an isotropic,
diagonal, covariance matrix σI; σ is a hyper-parameter of the algorithm which we set to 0.1
for all the computational experiments. If a′ is labelled as an anomaly it is appended to the
oversampled dataset Daug, otherwise, another pseudo-sample is produced.

Hyper-Parameter Optimization Space. To produce small-sized explanations, PROTEUS
relies on feature selection algorithms, while to produce the surrogate model, a classifier is
required. Most classification algorithms also accept a set of hyper-parameter values that also
need to be tuned. We will call a combination of feature selection and classification algorithms
and their hyper-parameters values as a configuration. Each configuration is a pipeline that
accepts a dataset and produces a classification model and corresponding selected features.
PROTEUS searches the configuration space for the one that leads to an optimal model by
performing a simple grid search. This is, the search space of configurations is formed by the
Cartesian product G ×H (see Figure 2) where G (H, respectively) is the set of all feature
selection (classification) algorithms with bounded hyper-parameter values. As our choices
for feature selection algorithms, we include the Statistical Equivalent Signatures (SES) [31],
Forward-Backward with Early Dropping (FBED) [52], and Lasso. All of them guarantee
to return the optimal feature subset (Markov Blanket in Bayesian Networks) under certain
broad (but different for each algorithm) conditions, removing not only irrelevant, but also
redundant features. In general, SES and FBED tend to return smaller feature subsets than
Lasso, with a small drop in predictive performance [52].

Moreover, as anomaly explanation targets human analysts, we limit the number of features
selected up to 10, ranking them based on their score given by the corresponding algorithm
(e.g. Lasso coefficients). We selected linear as well as non-linear classifiers considering two
facts (a) the extensive experimental results of [12], (b) the fact that deep neural network
architectures are almost certain to overfit in very low sample sizes, both in terms of total
sample size and the size of the rare class. The present selection of classifiers comprises of: (i)
Support Vector Machines, (ii) Random Forest and (iii) K-Nearest-Neighbors. Due to space
constraints, we report the hyper-parameters in our GitHub repository3. Finally, the number
of pseudo-samples to create per anomaly, called ps is also tuned as a hyper-parameter taking
values in {0, 3, 10}. Of course, additional classifiers and feature selection algorithms can be
easily integrated in PROTEUS. In total, PROTEUS tried 1800 configurations.

Estimating Performance for Tuning. What is considered as the optimal configuration, out
of all tried, is the one that leads to models with the highest expected out-of-sample (unseen
samples) predictive performance. It is important to estimate this quantity accurately, i.e.,
with small variance. A smaller variance of estimation increases the probability that the

3 https://github.com/myrtakis/PROTEUS

https://github.com/myrtakis/PROTEUS
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truly optimal configuration will be selected, and thus improves the quality of the final model.
Estimation is challenging when there are only few anomalies in the dataset. Indicatively, the
synthetic dataset used in our experiments (see Section 4.1) contains 10 anomalies out of 867
samples.

To estimate the expected out-of-sample performance, PROTEUS employs a Stratified,
R-Repeated K-fold Cross Validation with Grouping protocol. We now explain each part of the
protocol. We assume that the reader is familiar with the Standard K-fold Cross Validation
(CV, hereafter). The Stratified CV is a variant where the partitioning to folds is performed
under the constraint that the distribution of the classes in each fold is approximately the
same as the one in the full dataset [53]. Stratification reduces the variance of estimation for
imbalanced data and classes with very few samples (ibid). To further reduce the variance of
estimation we repeat the CV process multiple times R and take the average (R-Repeated
CV). Multiple repeats reduce the variance component due to the stochasticity of the specific
partitioning [53]. Finally, we come to Grouping. By CV with Grouping we indicate a variant of
CV that handles grouped samples (a.k.a. as clustered samples in statistics, not to be confused
with clustering of samples). These are samples that are not independently sampled and may
be correlated given the data distribution. Such samples are repeated measurements on the
same subject, as an example. In our context, an anomaly and its pseudo-samples are grouped:
information from a pseudo-sample in the training set leaks to predicting the corresponding
anomaly in the test fold. To avoid information leakage, CV with grouping partitions to folds
with the constraint that all samples of a group remain in the same fold. In our experiments,
we set the number of folds K = 10 and the repeats R = 5. Hence, each application of the
current version of PROTEUS trains (K ·R ·# Configurations + 1) · ps = 90, 003 models.

Producing the Final Surrogate Model and Feature Subset. The final model is trained
using all available samples (the full Daug) with the best configuration found, denoted with
⟨F ∗, C∗⟩ in Figure 2. This configuration also produces the final subset selection (anomaly
explanation). The reasoning is that most algorithms (and hence, configurations) are expected
to produce better quality models and improved feature selection with more available sample.
The models trained during the CV are only employed for selecting the optimal configuration
and providing estimates.

Estimating the Out-of-Sample Performance. We now consider how the performance
estimate of the final model is produced. Let us assume that 1000 configurations are tried
and the best found has a CV estimate of 0.90 AUC. Unfortunately, the CV estimate of the
best configuration is optimistic and should not be returned, i.e., the actual AUC is expected
to be lower. The reason is that our estimate is the best out of 1000 tries [52, 24]. The
phenomenon is conceptually similar to the multiple hypothesis testing problem in statistics.
In small sample sizes, the over-optimism is particularly striking. Recent work shows that
most AutoML tools do not correct for this optimism [51]. In this respect, we apply the
Bootstrap Bias Correction (BBC, hereafter) to our CV estimates [53] that corrects for this
optimism. This leads to returning conservative estimates of performance on average.

4 Experimental Evaluation

PROTEUS was implemented in Python 3.6 and evaluated on several synthetic and real-world
datasets described subsequently. The code and the datasets used in our experiments are
available in our GitHub repository. All experiments were performed in a Linux Desktop
computer with a 4-core Intel i5 processor and 32GB of memory.

Tannen’s Festschrift
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Table 1 Characteristics of datasets and AUC performance of detectors during training. We
denote the parent synthetic dataset as P. Synthetic, the number of features and samples as #F and
#S and the anomaly ratio as A.R.

Dat. Name #F #S A.R. IF LOF LODA
P. Synthetic 5 867 1% 0.96 1.0 0.92
W. Br. Cancer 30 377 5% 0.95 0.94 0.96
Ionosphere 33 358 36% 0.85 0.93 0.87
Arrhythmia 257 452 15% 0.80 0.74 0.75

4.1 Synthetic and Real Datasets
We focus on datasets where the samples are independent and identically distributed (i.i.d.)
and contain numerical features. We employ a synthetic dataset, where anomalies have been
simulated so that a minimal, global, predictive explanation (feature subset) is both achievable
and known. The presence of this gold-standard allows us to evaluate how well PROTEUS
identifies it. Specifically, we selected randomly one of the 100-dimensional datasets introduced
in [25]. Some anomalies have been generated in a way that makes them outliers according
to a subset of 2 of these features, call it S2d, and some according to a subset with 3 (other)
features, call it S3d. Thus, the subset of these 5 features S = S2d∪S3d forms the gold-standard
of global explanation for all anomalies. On this parent synthetic dataset, we added irrelevant
features with randomly selected values following a normal distribution with zero mean and
standard deviation of one. We ended up with 5 synthetic datasets having 20, 40, 60, 80 and
100 dimensions. All of them contain 867 samples with 10 anomalies i.e., the anomaly ratio
is ≈ 1%. Such datasets have been frequently used in the literature of anomaly explanation
[38, 10, 26, 43], because: (a) the features in an explaining subspace (e.g, S2d) are correlated
so they cannot be selected independently; (b) anomalies are recognized as such either in
S2d or S3d, but in no other strict subset. Thus, only multivariate detection algorithms and
corresponding models will achieve high performance. Hence, PROTEUS must approximate a
potentially more complex model.

We additionally consider real-world datasets that are widely-used in the evaluation of
anomaly detectors. Specifically, we selected the Wisconsin-Breast Cancer, Ionosphere and
Arrhythmia, originally from the UCI Machine Learning repository, as defined for anomaly
detection purposes in Outlier Detection DataSets (ODDS) repository4. They were chosen to
ensure that the detectors employed achieve reasonable performance, and thus explanation
makes sense. The dataset characteristics and detector performances are shown in Table 1.
Wisconsin-Breast Cancer and Ionosphere contain two classes. The minority classes in both
datasets are considered as anomalies. For Arrhythmia, eight sub-classes were merged to form
the anomaly class. Finally, we added irrelevant features following the procedure described in
synthetic datasets constructing three additional datasets per real-world dataset with 30%,
60% and 90% irrelevant feature ratio.

4.2 Experimental Setting
In our experiments, we selected three widely-used unsupervised anomaly detectors that employ
different anomalousness criteria, namely Local Outlier Factor (LOF) [7] as a representative of
density-based, Isolation Forest (IF) [32] as a representative of isolation-based and Lightweight
On-line Detector of Anomalies (LODA) [44] as a representative of projection-based detectors.

4 http://odds.cs.stonybrook.edu/

http://odds.cs.stonybrook.edu/
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Regarding the hyper-parameters, for IF we used 100 trees and 256 sub-sample size, for LOF
we used K = 15 and for LODA we used 100 projection vectors as proposed by the respective
authors. To assess the predictive power of a surrogate model produced by PROTEUS we
stratified and splitted each dataset into 70% for training and 30% was held out for testing. In
each dataset, the detectors run on training and test set before adding irrelevant features. The
anomaly threshold T is set as the anomaly ratio for each dataset. The detectors performances
are demonstrated in Table 1.

4.3 Feature Importance Alternatives
We compare the original PROTEUS system, employing feature selection methods (call
it PROTEUSfs), with the PROTEUS pipeline instantiated only with feature importance
methods from related explanation methods. We note that these alternatives have been
developed to provide descriptive explanations; within the PROTEUS pipeline, they are
coupled with a classification model, hyper-parameter values are optimized, and they are
turned into predictive explanations.

The research question to study is whether methods specifically developed for explanations
in the form of feature importance scores offer additional advantages over the feature selection
methods, everything else being equal (i.e,. the rest of the PROTEUS pipeline). All alternative
methods produce local explanations, i.e., for individual samples. Importance scores for a
given feature are calculated for each sample (local scores). We compute the local scores
only for the anomalous samples. To incorporate them into PROTEUS and select features
for global explanations, the local scores are averaged out for each feature to produce a final
feature importance score, as proposed in [33]. As a final feature selection, we select the
top-K features with the highest importance scores. In our experiments, K is set to 10,
which is the maximum number of features allowed to be selected by PROTEUSfs and the
feature importance methods. Regarding the hyper-parameters for the feature importance
alternatives, we used the ones proposed by the respective authors. We evaluate the following
alternatives:
(1) Lightweight On-line Detector of Anomalies or LODA, hereafter, [44] is an anomaly

detector that also returns local feature importance scores. LODA is included as it has
shown an excellent trade-off between computational efficiency and anomaly detection
performance as a detector [37]. As a feature importance method is selected as a
representative of a detector-specific explanation method. As such, the results of
its explanation method are shown only for the experiments where LODA is also used
as the detector. We should stress that when comparing with LODA, the objective is
to approximate its performance as the explanation is strongly coupled to the detection
process. The resulting PROTEUS variant is called PROTEUSLODA.

(2) Kernel SHAP (stands for SHapley Additive exPlanations) [34] is a model-agnostic
method for local explanation of predictive models producing local feature scores. It is
considered state-of-the-art, having outperformed LIME [45]. As Kernel SHAP does not
produce a predictive model itself we consider it as a descriptive method. We use the
proposed kernel as in the original publication of SHAP. Kernel SHAP is included as
a representative of a model-agnostic feature importance method, leading to the
variant PROTEUSSHAP .

(3) CA-Lasso [38], is a representative of a model-agnostic, local feature importance
specifically pertaining to anomaly explanation. It selects k-nearest neighbors
per outlier ai and k other random samples. To overcome the class imbalance, the
authors oversample ai adding pseudo-samples around it, labelling them as anomalies by

Tannen’s Festschrift
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assumption, until the two classes are balanced. The explanation problem is then turned
into binary classification per outlier solved with Lasso. The feature importance of each
feature for ai corresponds to the Lasso coefficients. Rather than learning the decision
boundary of individual anomalies PROTEUS builds a binary classifier to explain all the
anomalies spotted by an unsupervised detector. In that sense, feature selection in [38]
generates local explanations per anomaly that do not generalize to unseen anomalies.
Moreover, PROTEUS oversampling is supervised (by the detector) while numerous
feature selection and classification algorithms along with the optimization of their
hyper-parameter values. Finally, out-of-sample (predictive) performance is estimated by
PROTEUS using AUC for subset selection instead of accuracy as originally proposed in
[38]. The resulting PROTEUS variant is called PROTEUSCA−Lasso.

4.4 PROTEUS Performance Estimation
The objective of this experiment is to assess the effect of PROTEUS design choices, specifically
the BBC and Grouping, to provide an accurate performance estimation. Figure 3 depicts
the train estimates and test performance when PROTEUS is employed with the design
choices described in Section 3, i.e., BBC and CV with Grouping. The dashed black diagonal
line indicates the zero bias: points above the diagonal indicate underestimation (negative
bias) and below overestimation (optimistic bias). To show the accuracy of the estimation
of PROTEUS design choices, we fit a loess curve5 on train and test performances for every
combination (258 in total) of datasets (synthetic and real), detectors (IF, LOF and LODA)
and feature selection methods (general purpose and feature importance methods). Ideally,
we would want the loess curve to fit exactly the diagonal. Observe that with lower AUC
performances PROTEUS tends to overestimate while with higher performances PROTEUS
returns a more conservative estimation. In both cases, the points are close to the ideal
diagonal line.

To further show the efficacy of the proposed design choices to provide an accurate
performance estimation, in Figure 4 we compare the loess curves for train and test estimates
for (i) BBC and Grouping (our design choices), (ii) no BBC (i.e., CV estimate) and Grouping
(iii) BBC and no Grouping and (iv) no BBC and no Grouping. To quantify the bias for
each of the four alternatives, we use the Residual Sum of Squares (RSS) to measure the
discrepancy between the train and test performance. When PROTEUS is employed with
BBC and Grouping (i), it gives the most accurate estimation of out-of-sample performance
(with RSS(i) = 0.05) than when using any of the three alternative design choices (with RSS(ii)
= 0.88, RSS(iii) = 0.11 and RSS(iv) = 0.25).

4.5 Relevant Features Identification Accuracy
The goal of this experiment is to verify whether the features discovered during the training
phase by PROTEUSfs and the feature importance alternatives are part of the gold-standard
feature subset S. For this experiment we used the synthetic datasets. To assess the quality
of the global explanation E in terms of features, we compute precision(S, E) = |S ∩ E|

|E|

and recall(S, E) = |S ∩ E|
|S| . As we select the top-10 features to form the explanation and

S contains 5 features, the precision for the feature importance alternative methods will
be up to 0.5. The recall and precision curves are depicted in Figure 5. Feature selection

5 https://en.wikipedia.org/wiki/Local_regression

https://en.wikipedia.org/wiki/Local_regression
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Figure 3 Bias between train and test AUC performances of PROTEUS implemented with BBC
and CV with grouping.

methods employed by PROTEUSfs exhibit the highest precision never dropping below 0.5,
independently of the employed detector or dataset dimensionality. We observed that precision
is 0.5 when Lasso is selected and higher when FBED is selected. We should stress that SES
was never selected by PROTEUS for the synthetic datasets. FBED removed most of the
irrelevant features leading to a predictive model with less than 10 features to approximate
the decision boundary of the corresponding detector. PROTEUSfs achieves almost optimal
recall regardless of the dimensionality and the employed detector. A slight drop in recall
is observed when the precision higher than 0.8 (achieved only by FBED), while recall is
optimal when Lasso is selected. Moreover, PROTEUSfs feature selection methods are robust
to increasing data dimensionality and irrelevant feature ratio where CA-Lasso and SHAP
seem to be particularly sensitive.

4.6 PROTEUS Generalization Performance

The objective of this experiment is to assess the generalization performance of PROTEUS
without (PROTEUSfull) and with feature selection (PROTEUSfs) as well as with the various
feature importance alternatives, (PROTEUSCA−Lasso, PROTEUSSHAP , PROTEUSLODA).
Figure 6 depicts the AUC performance for each method in test set. Regarding the synthetic
datasets, PROTEUSfs achieves very high AUC across the increasing data dimensionality
with a minimum of 0.96. CA-Lasso and SHAP instead exhibit lower performances as they do
not retrieve, as showed in the previous experiment, many of the relevant features. Observe
that in the synthetic dataset PROTEUSfs generalizes better than PROTEUSfull , i.e., when
using all the available features.

Regarding the real datasets, similar trends are observed with PROTEUSfs achieving
consistently a very high generalization performance with a minimum of 0.8 in Arrhythmia
in the presence of 2,570 dimensions and 90% irrelevant feature ratio. PROTEUSfs seems
to approximate in a detector-agnostic manner, the optimal performance of LODA’s feature
importance method when LODA is used as the detection algorithm. This is due to the
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Figure 4 Bias between train and test AUC performance of PROTEUS implemented with 4
alternatives.

fact that LODA’s explanations are tailored to its detection algorithm; however, if LODA’s
detection performance was poor in a dataset, the provided explanation would be of less
value for the analysts. The feature selection methods employed by PROTEUSfs, are able
to discover the relevant features leading to predictive models with very high performance
regardless of the data dimensionality (and the increasing relevant feature ratio) and capture
accurately the decision boundary of every employed unsupervised detector.

4.7 PROTEUS RunTime Performance

In the subsequent experiment, we demonstrate the execution time of the feature selection
methods employed by PROTEUS. Figure 7 depicts the runtime comparison between the
ad-hoc feature importance methods and the feature selection algorithms. The employed
methods are specifically designed to search efficiently the exponential search space and thus
require less than two seconds on average in 100-dimensions to select features, exhibiting a
steady execution time. In contrast, SHAP is the most expensive method; as we had to explain
the outcome of any employed detector, we used Kernel SHAP which is model-agnostic. Given
the fact that SHAP is optimized only for particular families of algorithms, e.g. tree-based,
its execution time is particularly sensitive to data dimensionality because the Shapley values
must be calculated for all the input features. Recall that in PROTEUS we tried three
classifiers resulting 30 combinations according to their hyper-parameters and three feature
selection algorithms resulting 20 combinations according to their hyper-parameters including
the full selector, i.e., when the full feature space is considered. Thus, the total number of
configurations tried in PROTEUS is 600. Each configuration requires 2 seconds on average
to complete regardless of the dataset dimensionality.
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Figure 5 Precision and Recall performance of discovered features when explaining IF, LOF and
LODA on synthetic datasets w.r.t. increasing data dimensionality (% irrelevant feature ratio).

5 Contrasting PROTEUS Surrogate Models with Unsupervised
Anomaly Detectors

In this section, we are investigating possible disagreements between PROTEUS’s surrogate
models and unsupervised Anomaly Detectors, namely detected anomalies explained as normal
points or vice-versa.

To assist human analysts in spotting such suspicious samples, we introduce an original
visualization method based on spider charts. The proposed Spider Anomaly Explanation
(SAE) charts is essentially a 2D visualisation of multivariate data projected over the explaining
subspaces returned by PROTEUS. The chart has a “web-like” form with concentric circles
and several spokes where each one corresponds to a specific feature. Extreme values of the
features are depicted near the center or near the outermost circle. Then, a mutli-dimensional
sample is represented as an irregular polygon intersecting every spoke according to the
quantile its feature values falls in.

In this work, we propose a variation of spider charts tailored to anomaly explanation.
First, instead of plain feature values, we consider each concentric circle in the chart to
represent one of the four quantiles where the center corresponds to the 0 quantile and the
outermost circle corresponds to the 1 quantile. Then, every feature value is translated to a
quantile ranging from 0 to 1. Hence, the normal region in the chart is the interquartile range
(IQR) containing 50% of the values. Finally, we reverse the samples with extreme low values
belonging to quantiles 0 - 0.25 to the 0.75 - 1 quantiles so that both low and high extremes
can be identified near the outermost circle, far from the normal region. When a sample’s
value intersect with a spoke in the quantiles 0.75 - 1, it means that at least 75% of values for
the particular feature fall below the sample’s value.

In Figure 8 we demonstrate two SAE charts when explaining the LOF detector in the
Ionosphere dataset. The explanation produced by PROTEUS comprises of 9 features. In
Figure 8a both PROTEUS’s surrogate model and LOF agreed on the labels of these two
samples. We can observe that the normal sample falls entirely into the normal (green) region

Tannen’s Festschrift



8:14 AutoML for Explainable Anomaly Detection (XAD)

Figure 6 AUC test performance averaged over the three detectors on synthetic and real datasets
w.r.t. increasing dimensionality (% irrelevant feature ratio).

while the anomalous sample deviates significantly in every feature. Figure 8b illustrates
two samples where PROTEUS’s surrogate model disagrees with LOF on their labels. LOF
identified the blue sample as anomaly while PROTEUS identified it as normal. We can
clearly observe that this sample was erroneously detected by LOF as it falls entirely into the
normal region. For the other conflict (the red sample) it is not as obvious as in the former
case because it deviates w.r.t. a subset of the features of the explanation. This sample is an
anomaly according to the gold standard that was not detected by LOF. However, PROTEUS
considered this sample an anomaly, extracting three features (Radar 10, 9 and 25) where it
takes extreme values. We should finally stress that since PROTEUS strives to explain all
the anomalies simultaneously, it is likely that an anomalous sample deviates w.r.t. a subset
of the explaining subspace.

To quantify the utility of a PROTEUS explanation to reveal errors made by an unsu-
pervised detector we introduce two metrics that rely on the gold standard available for
each dataset. We consider as conflicts the suspicious samples for which the PROTEUS’s
surrogate model predicts a different label than the detector. Subsequently, we define two sets
of conflicts following the notation of Section 2 where ωl

A is the detector model, f(·, θ∗) is the
PROTEUS’s surrogate model equipped with the best found hyper-parameters, “1” denotes
an anomaly and “0” denotes a normal sample.

▶ Definition 3. Anomaly Normal Conflicts (ANC): Each sample that the detector model
labels as anomaly while PROTEUS’s surrogate model labels as normal.

ANC = {s | ωl
A(s) = 1 ∧ f(s, θ∗) = 0},

▶ Definition 4. Normal Anomaly Conflicts (NAC): Each sample that the detector model
labels as normal while PROTEUS’s surrogate model labels as anomaly.

NAC = {s | ωl
A(s) = 0 ∧ f(s, θ∗) = 1}
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Figure 7 Average runtime of feature selection/importance methods on synthetic datasets of
increasing dimensionality.

Based on the two previous sets we define two metrics to quantify the utility of a PROTEUS
explanation.

▶ Definition 5. True Normal Discovery (TND): The ratio of conflicted samples that PRO-
TEUS’s surrogate model labelled correctly as normals according to the True Normals in the
gold standard.

TND = |ANC ∩ True Normals|
|ANC |

▶ Definition 6. True Anomaly Discovery (TAD): The ratio of conflicted samples that
PROTEUS’s surrogate model labelled correctly as anomalies according to the True Anomalies
in the gold standard.

TAD = |NAC ∩ True Anomalies|
|NAC |

When there are no conflicts, i.e., PROTEUS approximates perfectly the detector’s decision
boundary (AUC = 1 on test set), the two metrics are not defined (ANC and NAC are empty).
In case of conflicts, TND and TAD range between 0 and 1. Values close to 1 indicate that
PROTEUS’ surrogate model disagrees with the detector model and it labels suspicious
samples correctly w.r.t. the gold standard. In contrast, values close to 0 indicate that
PROTEUS disagrees incorrectly with the detector. Clearly, the number of conflicts is higher
when PROTEUS exhibits low AUC performance.

Figure 9a contrasts the AUC of PROTEUS against the AUC of the three detectors used to
analyze each real dataset. The former is computed on the test (holdout) set using the labels
produced by a detector and serves as the approximation quality of its decision boundary.
The latter is computed on the train set using the labels of the gold standard and reveals
the effectiveness of a detector to identify anomalies in a dataset. We can easily observe that
the quality of the approximation of a detector’s decision surface by PROTEUS decreases as
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Figure 8 Spider Anomaly Explanation Charts when explaining LOF in Ionosphere using PRO-
TEUS.

the detector’s effectiveness decreases. For instance, in Arrhythmia we observe the lowest
AUCs for the three detectors and also for the surrogate models of PROTEUS. This trend can
be attributed to the fact that some misdetected samples are very hard to classify correctly
without a very complex boundary. However, if the surrogate model needs to learn a more
complex decision surface to segregate the misdetected samples from their neighbors, it makes
the surrogate model prone to overfitting and thus reduces its generalization performance.
Overfitting is avoided thanks to the CV protocol; PROTEUS will strive to select models
that generalize well in unseen data optimizing the out-of-sample AUC performance.

Figure 9b sheds some light on the percentage of conflicting samples between PROTEUS
and unsupervised detectors per dataset. PROTEUS reveals more True Normals with an
average TND ∼ 50% than True Anomalies with an average TAD ∼ 18%. In other words,
PROTEUS seems to be more effective in discovering false alarms. To justify this claim we
consider a 2D reduced visualization using t-SNE [35] of the Arrhythmia dataset projected
over 10-dimensional PROTEUS explanation for LODA. Figures 10b and 10a depict the
agreements between PROTEUS and LODA as circles and their disagreements as rectangles
for ANC and triangles for NAC. Figure 10b illustrates the ANC samples contributing to
the identification of True Normals. As expected, these samples are located within dense
regions, surrounded by normal samples, requiring more complex boundaries to separate. In
contrast, Figure 10a illustrates the NAC samples contributing to the identification of True
Anomalies. These samples lie on sparse areas where less complex boundaries can be built to
separate them. This is because less complex boundaries enable better generalizing models
and thus PROTEUS can classify misdetected normals in sparse areas, not yielding many
True Anomalies.

To conclude, PROTEUS constructs a reduced-dimensionality surrogate model that not
only generalizes well to unseen samples but also provides valuable insights for identifying
False Negatives and False Positives of unsupervised anomaly detectors.
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(a) AUC of anomaly detectors followed by their
approximation quality (AUC) from PROTEUS for
real datasets.

(b) Fraction of samples identified as TND and TAD
according to PROTEUS explanations for different
combinations of detectors and datasets.

Figure 9

(a) (b)

Figure 10 A 2-D reduced t-SNE visualisation of Arrhythmia according to PROTEUS 10-D
explanation for LODA.

6 Related Work

In this section, we survey various categories of related work on explaining anomalies in
unsupervised and supervised settings, partially inspired by [36]. We should stress that
explanations of anomalies in temporal data is beyond the scope of this work [16, 5].

6.1 Explainable Anomaly Detectors
As unsupervised detectors assess the abnormality of multidimensional data on various feature
subspaces, they can also report the subspaces that contributed the most to the anomaly score
of a particular sample. A first example of such explainable anomaly detectors is LODA [44]
which scores samples based on the average log density over an ensemble of one-dimensional
histogram density estimators. Given that each histogram (with sparse projections) scores a
randomly generated subspace, LODA explanations are essentially a list of features ranked
according to their contribution to the anomalousness score of a sample.

Tannen’s Festschrift



8:18 AutoML for Explainable Anomaly Detection (XAD)

LODI [11] and LOGP [10] seek an optimal subspace in which an anomaly is maximally
separated from its neighbors. Both works exploit a dimensionality reduction technique to
measure the anomalousness of a sample in a low-dimensional subspace capable of preserving
the locality around its neighbors while at the same time maximizing its distance from this
neighborhood. Then, the explanation of a sample is the top-k features with the largest
absolute coefficient from the eigenvector with the largest eigenvalue.

In [47], an interactive explanation method is proposed that can be used for any density-
based anomaly detector. [29] introduced a method to detect anomalies in axis-parallel
subspaces, called SOD, that computes the anomaly score of a in a hyperplane w.r.t. to
nearest neighbors in the full space. SOD hyperplanes that contribute most in the anomaly
scores serve as explanations. CMI [6] and HiCS [25] rely on statistical methods to select
subspaces of high-dimensional datasets, where anomalies exhibit a high deviation from normal
samples. Both consider highly contrasting subspaces as explanations of all possible anomalies
in a dataset.

The previous works explain anomalies as a byproduct of an unsupervised detection method.
Given that independent experimental evaluations showed that no detector outperforms all
others for all possible datasets [17, 8, 13, 18], in our work we focus on learning the decision
boundary of any unsupervised anomaly detector that could be used for a particular dataset.
In contrast to the descriptive explanations provided by the aforementioned works, PROTEUS
targets predictive explanations that could be successfully used to detect and explain anomalies
also in unseen data.

6.2 Post-hoc Anomaly Explainers
The primary focus of these methods is to specify a subset of features such that a sample
may obtain a high anomaly score when projected onto these subspaces. Some authors have
referred to this explanation task as “outlying aspects mining” [14, 43].

We first consider works providing local explanations. The seminal work [27] first introduced
the problem of explaining individual outliers with “Intensional knowledge” under the form
of minimal feature subspaces in which they show the greatest deviation from inliers. To
find optimal subspaces, [30] formulates a constraint programming problem that maximizes
differences between neighborhood densities of known outliers and inliers. [26] employs a
search strategy aiming to find a subspace which maximizes differences in anomaly score
distributions of all samples across subspaces while [38] measures the separability per anomaly
using classification accuracy, and then apply Lasso to produce a local explaining subspace.
OAMiner [14] finds the most outlying subspace where a sample is ranked highest in terms
of a probability density measure and OARank [43] ranks features based on their potential
contribution toward the anomalousness of a sample. Rather than learning the decision
boundary of individual anomalies, PROTEUS builds a classifier to explain simultaneously
all the anomalies spotted by an unsupervised detector. Moreover, PROTEUS’s oversampling
is supervised, optimizing the hyper-parameters of various feature selection and classification
algorithms.

Extending earlier work [2] on explaining individual anomalies, [3, 1] focus on explaining
groups of anomalies for categorical data using contextual rule based explanations. Authors
search for <context, feature> pairs, where the (single) feature can differentiate as many
outliers as possible from inliers while sharing the same context. The anomalousness score
of a sample in a subspace is calculated based on the frequency of the value that the outlier
takes in the subspace. It tries to find subspaces E and S such that the outlier is frequent
in one and much less frequent than expected in the other. To avoid searching exhaustively
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all such rules, the method takes two parameters, and, to constrain the frequencies of the
given sample in subspaces E and S, respectively. Similarly, [56] describes anomalies grouped
in time. They construct explanatory Conjunctive Normal Form rules using features with
low segmentation entropy, which quantifies how intermixed normal and anomalous samples
are. They heuristically discard highly correlated features from the rules to get minimal
explanations. The aforementioned works assume that anomalies are scattered and strive
to explain them individually rather than to summarize the explanation of a collection of
anomalies.

The following works perform explanation summarization aiming to explain a set of anom-
alies collectively rather than individually. LookOut [19] exploits a submodular optimization
function to ensure concise summarization. xPACS [36] groups anomalies by generating
sequential feature-based explanations providing a ranked list of feature-value pairs that are
incrementally revealed until the human expert reaches a satisfactory level of confidence. In
contrast to the interactive explanations provided by xPACS, PROTEUS provides a global
feature subspace that could potentially explain even unseen anomalies.

6.3 Explaining Black-box Predictors
Several methods have been recently proposed to explain why a supervised model predicted
a particular label for a particular sample [15, 28, 40, 45]. LIME [45] constructs a linear
interpretable model that is locally faithful to the predictor. In this respect, it draws uniformly
at random (where the number of such draws is also uniformly sampled) pseudo-samples per
every sample to be explained. Note that LIME let the black-box classifier label the generated
pseudo-samples. To the best of our knowledge, LIME has not been successfully used for
imbalanced neighborhoods [54]. Other works [15, 28] explain the model by perturbing the
features to quantify their influence on predictions. However, these works do not aim to
explain multiple examples collectively, as the global explanation problem studied in our work.

Other works aim to produce explanations in the form of feature relevance scores, which
indicate the relative importance of each feature to the classification decision. Such scores have
been computed by comparing the difference between a classifier’s prediction score and the
score when a feature is assumed to be unobserved [46], or by considering the local gradient
of the classifier’s prediction score with respect to the features for a particular example [4].
[48, 49] considered how to score features in a way that takes into account the joint influence
of feature subsets on the classification score, which usually requires approximations due to
the exponential number of such subsets.

The aforementioned works require as input a supervised model rather than an unsupervised
anomaly detector. However, in real application settings it is difficult or even impossible
to label data as anomalous or normal examples [17]. Moreover, PROTEUS provides global
explanations returned by standard feature selection algorithms after learning the decision
boundary of the unsupervised detector.

6.4 Evaluation of Explainers
Existing approaches for evaluating explanation methods in both supervised and unsuper-
vised settings are typically quite limited in their scope. Often evaluations are limited to
visualizations or illustrations of several example explanations [4, 10] or to test whether
a computed explanation collectively conforms to some known concept in the dataset [4],
often for synthetically generated data. [47] proposes a larger scale quantitative evaluation
methodology for anomaly explanations regarding sequential feature explanation methods.
Compared to this study, in our work we assess the predictive performance of a classifier given
an explanation along with the correctness of the learned features of the explanation.

Tannen’s Festschrift



8:20 AutoML for Explainable Anomaly Detection (XAD)

6.5 Imbalanced Learning

One of the main challenges in supervised anomaly detection, is class imbalance: anomalies
are largely underrepresented compared to normal examples. In the following we position
PROTEUS w.r.t. the main imbalanced learning methods [22]. The imbalanced learning
problem is concerned with the performance of learning algorithms in the presence of under-
represented data and severe class distribution skews. We follow the same categorization of
imbalanced learning methods as in [22].

Random oversampling augments the original dataset by replicating examples from the
minority class, while random undersampling removes a random set of majority class examples.
PROTEUS pipelines do not perform random under/over-sampling. The synthetic minority
oversampling technique (SMOTE) [9] generates new minority class examples from the line
segments that join the k minority-class nearest neighbors. Our pipeline generates synthetic
examples close to the original minority examples by adding gaussian noise. SVM SMOTE
[42] is a SMOTE variant that generates the synthetic examples concentrated in the most
critical area, i.e., the boundary discovered by fitting an SVM classifier. Borderline-SMOTE
[20] seeks to oversample the minority class instances in the borderline areas, by defining a
set of “Danger” examples. Adaptive Synthetic Sampling (ADASYN) [21] algorithm uses a
density distribution as a criterion to automatically decide the number of synthetic examples
that need to be generated for each minority example. In comparison to the aforementioned
works, PROTEUS performs a supervised synthetic minority oversampling ensuring that new
samples are anomalies according to the decision boundary of an unsupervised detector that is
currently explained. In addition, we proposed a method to avoid information leakage in the
CV protocol when synthetic oversampling is applied.

7 Conclusion and Future Work

We propose the first methodology for producing predictive, global anomaly explanations
in a detector-agnostic fashion. In particular, we show how with adequate design choices
regarding rare class oversampling and unbiased performance estimation of ML pipelines,
generating predictive, global anomaly explanations boils down to an AutoML problem. As
derived from our experiments, PROTEUS is not only able to discover explaining subspaces of
features relevant to anomalies, but it can also construct predictive models that approximate
effectively and robustly the decision boundary of popular unsupervised detectors (e.g., IF,
LOF, LODA). As future work, it would be interesting to approximate the decision boundary
of a detector directly from the provided anomaly scores rather than converting them to
binary labels. Hence, one could transform the explanation problem into regression with
feature selection.
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