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Preface

This Festschrift volume accompanies a colloquium held at the University of Pennsylvania
on May 24–25, 2024 in celebration of the distinguished career of Val Tannen. Attendants
gathered from all over the world to express their admiration for Val as a researcher as well
as their love for him as a person. We are lucky to have him as a role model: a teacher, a
mentor, a collaborator, a colleague, a friend (several categories often apply).

The articles presented here are scientific offerings from some of us to Val. They pertain
to some of the many areas of his research interests. Our one regret is that, to preserve the
element of surprise, we could not collaborate with Val on these papers, nor could we at least
ask for his feedback. This is a pity, as Val is famously unfailingly insightful, always honest,
and extremely generous with his time.

Val has contributed seminally to the principles of both programming languages and
databases and also to the cross-pollination and unification of the two areas. He also
contributed to bioinformatics and to systematic and evolutionary biology. For lack of space,
we cannot do justice here to his manifold contributions, and can only include a few highlights.

One of Val’s major contributions is the use of structural recursion, together with other
ideas from functional programming and type theory, to inform the design of query languages
for post-relational data. Besides providing the theoretical underpinning for query optimization
over nested-relational, complex-valued and object-oriented data, his work yielded – through
the use of comprehensions – a standard technique for embedding relational databases in
programming languages. Modern database systems support user-defined aggregates using a
template that is an instance of Val’s techniques.

Val was instrumental in unifying a series of classic database optimization techniques
that had been previously developed independently and implemented in different phases of
the optimizer, with only limited interaction. Examples include rewriting using materialized
views, join minimization, semantic optimization, index- and hash-based query evaluation, all
of which were unified by reduction to query minimization under constraints. This enabled
a novel, chase-based optimization approach in which these techniques, as well as other
techniques that had not been explicitly articulated, are implicitly considered simultaneously.
This allows them to feed off each other synergistically to yield plans that standard phase-based
optimization will necessarily miss even if given unbounded computational resources. Val’s
work on chase-based optimization brought a purely abstract concept, the “chase”, introduced
for theoretical studies of logical constraints, to the attention of developers of query optimizers.

A highly celebrated outcome of Val’s work is the invention of provenance semirings, which
yield a generalization of many adjuncts to relational databases, such as probabilistic databases,
C-tables, bag semantics, and even database security, enabling their unified treatment. In
addition, provenance semirings provide a widely adopted general formalism for defining,
capturing, storing, reasoning about, and optimizing data provenance. By now, the elegant
concept of K-relations is widely known, well beyond the database research community, and
has been applied in domains as diverse as operating systems, programming languages, and
verification. Closer to home, Val’s work has inspired database researchers to use K-relations
as a tool in analyzing the fine-grained complexity of query evaluation, or to extend relational
query optimization techniques to tensor processing systems.

Val’s work features a common leitmotif: the surprising unification of seemingly disparate
concepts and theories. Such unification is not achieved by devising complicated hybrid
unions of these theories, but rather by distilling them down to their essence in sublimely
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0:x Preface

elegant style, thus exposing their commonality. Unsurprisingly, some of his PhD students
nicknamed Val the Great Unifier. We hereby dub him the Amazingly Insightful Great
Unifier, a well-deserved title whose acronym is moreover a nod to the sharp wit that earned
him a reputation as a delightful conversationalist. We are looking forward to many more
conversations with him, both scientific and social in nature.

May 2024

Antoine Amarilli
Peter Buneman
Daniel Deutch
Alin Deutsch
Zack Ives
Dan Suciu

Also on behalf of the contributing authors listed below.
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Abstract
In recent times, the demand for transparency and accountability in AI-driven decisions has intensified,
particularly in high-stakes domains like finance and bio-medicine. This focus on the provenance
of AI-generated conclusions underscores the need for decision-making processes that are not only
transparent but also readily interpretable by humans, to built trust of both users and stakeholders.
In this context, the integration of state-of-the-art Large Language Models (LLMs) with logic-oriented
Enterprise Knowledge Graphs (EKGs) and the broader scope of Knowledge Representation and
Reasoning (KRR) methodologies is currently at the cutting edge of industrial and academic research
across numerous data-intensive areas. Indeed, such a synergy is paramount as LLMs bring a layer of
adaptability and human-centric understanding that complements the structured insights of EKGs.
Conversely, the central role of ontological reasoning is to capture the domain knowledge, accurately
handling complex tasks over a given realm of interest, and to infuse the process with transparency
and a clear provenance-based explanation of the conclusions drawn, addressing the fundamental
challenge of LLMs’ inherent opacity and fostering trust and accountability in AI applications. In this
paper, we propose a novel neuro-symbolic framework that leverages the underpinnings of provenance
in ontological reasoning to enhance state-of-the-art LLMs with domain awareness and explainability,
enabling them to act as natural language interfaces to EKGs.
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1:2 Explaining Enterprise Knowledge Graphs with LLMs and Ontological Reasoning

1 Introduction

In today’s data-driven industrial landscape, adhering to the principles of Fairness, Account-
ability, Transparency, and Ethics (FATE) has become paramount for AI applications [44].
Indeed, the absence of transparency in AI’s decision-making processes prevents stakeholders
and users from assessing their fairness, detecting potential biases, and verifying their overall
reliability. This is particularly relevant in high-stakes domains such as finance and bio-
medicine, where there is an increasing demand for a clear, comprehensible, natural language
explanation of AI’s conclusions (i.e., their provenance) to back trustworthy critical decisions.
Such a feature would act as a bridge between the opaque inner workings of AI and human
comprehension, fostering informed decision-making and mitigating risks associated with
black-box models, in favour of users’ trust and adherence to ethical standards [35].

This requirement has gained further traction with the recent breakthrough of AI-based
chatbots and Large Language Models (LLMs) [46], which has marked a significant turning
point in the field of Natural Language Processing (NLP) and a pivotal shift in the access to
data and knowledge towards more natural, user-friendly, and high-level paradigms. Notably,
LLMs such as OpenAI’s GPT [55] and Meta’s Llama [61] have transcended traditional
academic and industrial applications, capturing the general public’s attention towards
generative AI capabilities. However, concerns persist regarding their lack of factual knowledge
and accuracy over enterprise domains, even when fine-tuning is involved [5], and, more
importantly, their opaqueness due to a very limited explainability of their conclusions [66].

Conversely, traditional Knowledge Representation and Reasoning (KRR) [48] approaches
are inherently domain-aware and explainable [24]. Indeed, logic-based reasoning in query
answering, often referred to as ontological reasoning [22], allows for FATEness, as it is
designed to provide factual conclusions augmented with the logically consequential steps, in
the form of top-down logical inference, that led to such results [25, 24]. For this reason, in the
database and the AI communities, we are observing the surge of increasingly mature, efficient,
and scalable intelligent systems with reasoning capabilities, backed by expressive logic-based
KRR formalisms. Among them, database query languages based on logic programming,
such as Datalog and its extensions [1, 22, 20, 21], are a yardstick for AI systems rooted
in ontological reasoning, thanks to their effective trade-off between expressive power and
computational complexity [11, 28, 48]. Leveraging such systems, domain-specific knowledge
can be captured by combining factual data from corporate databases with business-level
definitions as ontologies in Enterprise Knowledge Graphs (EKGs), and further augmented by
reasoning over them. Despite this, the interaction remains query-based, often operating at a
low level and lacking flexibility, thus proving itself challenging for non-specialists.

In light of these considerations, it becomes clear why neuro-symbolic methodologies are at
the forefront of academic and industrial interest. Indeed, their goal to synergistically combine
the intrinsic domain-expertise and transparency of deductive systems with the power of
LLMs in understanding and generating fluent and interpretable text holds immense potential
to build more intelligent, versatile, and explainable AI-based applications on KGs, paving the
way for a new era of transparent data-driven decision-making within organizations [54, 31, 42].

With the goal of contributing to such a pivotal challenge, this paper strives to strengthen
LLMs in their use as explainable NL interfaces to EKGs by leveraging the power of ontological
reasoning. In simple terms, our goal consists in enabling the answer to “why this conclusion”
questions in natural language and posed by the user over an EKG. We operate in the context
of the Vadalog [14, 8] system, a Datalog-based reasoning engine for knowledge graphs,
that finds many industrial applications [12, 15, 10, 4, 3, 32, 62]. We employ Vadalog
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to explore the factual information derived by applying the domain rules in high-stakes
domains of interest, via the well-known chase procedure [53] of databases. This enables us
to augment Llama 2-70B models with the derived domain knowledge and the provenance
of the inferred conclusions, while preserving their human-like orientation and flexibility at
handling question-answering tasks in natural language.
More in detail, our contributions can be summarized as follows.

We present a chase verbalization technique to enhance the domain expertise and
explanation capabilities of LLMs by leveraging ontological reasoning over knowledge
graphs and use cases in relevant domains.
We deliver such an approach in KGLM, a novel neuro-symbolic pipeline to build
LLM-powered explainable interfaces to EKGs by interacting with chase-based reasoning
engines such as the Vadalog system.
We provide a practical application of KGLM by integrating it within KG-Roar [13, 6],
a framework we developed to showcase Vadalog reasoning on financial use cases.

Related Work. Numerous studies have been conducted to investigate different aspects
of provenance, namely its tracking, storing, and presentation [18, 26, 36, 58, 43, 47]. A
longstanding challenge is dealing with the complexity of provenance expressions, with the
goal of presenting them in a user-comprehensible form. To this aim, semirings models [40,
39, 56, 59] are the benchmark for their ability to present the provenance in an efficient and
mathematically elegant form. These structures capture the two key aspects of data usage in
provenance: joint contribution (represented by addition) and alternative sources (represented
by multiplication). This allows for a concise representation of how various inputs contribute
to the final output, enabling reasoning about aspects like confidence, access control, and
cost associated with the data lineage. However, this kind of representation is still not easily
accessible by non-expert users. In other studies, some graph-based representations of the
provenance have been proposed [23, 27, 60], allowing, for instance, user control over the
provenance graph, i.e., by visually tracking contributors and sources. While they have the
advantage of enhancing user interaction and inspection, they are still not the most natural
way of interacting and understanding the provenance. A more recent line of research attempts
to present provenance and answer to queries in natural language [33, 29, 49, 30, 19]. In most
cases, these efforts only support queries of low complexity and the NL sentence depends
on the quality of an input query asked in natural language. In other cases, explanations
are fragmented, presenting rules without a cohesive narrative [19]. Additionally, linking
provenance representation to an input query does not allow unlocking innovative uses of such
precious information, such as exploiting it for generating a training corpus for LLMs. Current
models are very effective for general tasks, but often struggle when it comes to specific
domains. For example, it has been shown that FinBert [51] and BloombergGPT [64], two
fine-tuned models on financial textual data, outperform generic LLMs on question-answering
tasks. In such a context, provenance information from business reasoning tasks could be a
valuable resource for generating a corpus of domain-specific knowledge to be injected into an
LLM for fine-tuning or via Retrieval-Augmented Generation [50] (RAG) mechanisms.

Overview. The remainder of this paper is organized as follows. In Section 2 we provide
essential background notions on ontological reasoning and introduce the Vadalog system.
In Section 3 we illustrate the verbalization technique for LLM explanation and the KGLM
pipeline. Section 4 delves into the application of KGLM within KG-Roar. Our conclusions
are drawn in Section 5.

Tannen’s Festschrift
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2 Ontological Reasoning in the Vadalog System

To guide our discussion, we first lay out some preliminary notions on ontological reasoning
over enterprise knowledge graphs, with a specific focus on the Vadalog system and the
chase procedure at its foundation.

Relational Foundations. Let C and V be disjoint countably infinite sets of constants
and variables, respectively. A (relational) schema S is a finite set of relation symbols (or
predicates) with associated arity. A term is either a constant or a variable. An atom over S
is an expression of the form R(v̄), where R ∈ S is of arity n > 0 and v̄ is an n-tuple of terms.
A database (instance) over S associates to each symbol in S a relation of the respective arity
over the domain of constants. The members of the relations are called tuples or facts.

Dependencies. A Vadalog program consists of a set of tuples and tuple-generating
dependencies (TGDs), i.e., function-free Horn clauses of the form ∀x̄∀ȳ(φ(x̄, ȳ)→∃z̄ ψ(x̄, z̄)),
where φ(x̄, ȳ) (the body) and ψ(x̄, z̄) (the head) are conjunctions of atoms over the respective
predicates, x̄, ȳ are vectors of universally quantified variables and constants, and z̄ is a vector
of existentially quantified variables. Quantifiers can be omitted and conjunction is denoted
by comma. A predicate is intensional (IDB) if it occurs in at least one head of the schema S,
otherwise it is extensional (EDB) [1, 25, 38]. A fact corresponding to an intensional predicate
is intensional, otherwise it is extensional.

Vadalog Extensions. Real-world applications may require support for multiple features
that extend the declarative language. Among them, aggregate functions, namely sum, prod,
min, max and count, as well as SQL-like grouping constructs, are particularly relevant. In
the Vadalog context, support for aggregate functions is achieved by means of monotonic
aggregations [63]. Other essential extensions, integrated in Vadalog to address real-world
scenarios, include negations and negative constraints of the form φ(x̄, ȳ)→⊥, where φ(x̄, ȳ)
is a conjunction of atoms and ⊥ denotes the truth constant false to model disjointness or non-
membership, as well as expressions in rule bodies, modelled with comparison (>,<,≥,≤, ̸=)
and algebraic (+,−, ∗, /, etc.) operators.

Reasoning Task. KRR approaches model KGs as the combination of an extensional com-
ponent, essentially the ground business data in a database, and an intensional component,
which formally describes the business knowledge as a set of rules in a declarative language
such as Vadalog. Performing ontological reasoning over the KG augments it with new
inferred knowledge derived from the application of the rules over the business data. More
formally, given a database D and the query Q = (Σ, Ans), where Σ is the set of rules and
Ans an n-ary predicate, a reasoning task consists of finding an instance J such that a tuple
t̄ ∈ J if and only if t̄ ∈ Q(D) and for every other instance J ′ such that t̄ ∈ J ′ if and only if
t̄ ∈ Q(D), there is a homomorphism h from J to J ′.

Chase Procedure. The semantics of a Vadalog program can be defined in an operational
way with the chase procedure [45, 53]. It enforces the satisfaction of a set Σ of rules over a
database D, incrementally augmenting D with facts entailed via the application of the rules
over D, until fixpoint. While Vadalog guarantees that such fixpoint exists when only the
core features are used [14], the joint presence of algebraic operations and recursion must be
carefully handled, as even simple Datalog programs can be in general non-terminating [1].
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A TGD σ : φ(x̄, ȳ)→ψ(x̄, z̄) is applicable to D if there exists a homomorphism θ such that
θ(φ(x̄, ȳ)) ⊆ D. Then, a chase step adds the fact θ(ψ(x̄, z̄)) to D, if not already in D. The
chase graph G(D,Σ) is the directed acyclic graph with the facts from the chase Σ(D) as
nodes and an edge from a node n to a node m if m derives from n (and possibly other facts)
via a chase step [20]. A comprehensive examination of reasoning termination in Vadalog
has been thoroughly explored in dedicated works [16, 9].

▶ Example 1 (Trading Activity). Let us consider a simple trading activity managed with a
smart contract. Here, D contains a log over time of buy/sell orders from the traders who
invest in it as well as market information, e.g., asset prices (Price), or market shutdowns
(MarketClosed). The following set Σ contains the Vadalog rules governing the basic
functioning of the market, i.e., under which conditions the orders are accepted and how
profits and losses are computed.

Open(x, y, t1),¬MarketClosed(t1)→ Accepted(x, y, t1) (σ1)
Accepted(x, y, t1),Price(p1, t1), k = y ∗ p1 → Position(x, y, k, t1) (σ2)

Close(x, t2),Price(p2, t2),Position(x, y, k, t1),
t2 > t1, pl = y ∗ p2 − k → Return(x,pl) (σ3)

If a trader x wants to open a position (buy) on a certain asset of size y at time t1 and the
market is open at t1, the order is accepted (rule σ1). If the order by x is accepted and the
asset price at t1 is p1, then x holds a position on the market at time t1 of size y and of
notional (total value) k equal to y ∗ p1 (rule σ2). If, later at t2, trader x decides to close
its position (sell) and the price at t2 is p2, then x gets returns (profits or losses) from its
trading activity as y ∗ p2 − k (rule σ3).

Let us also consider an excerpt of database D = {Open(EGTech,0.3,1), Price(124,1),
Price(147,9), Close(EGTech,9), MarketClosed(5)}. Figure 1 illustrates the chase graph
derived from the activation of Σ over D. Specifically, rule σ1 generates the fact Accep-
ted(EGTech,0.3,1), as the market is not closed at time 1. Then, the fact Position(EGTech,0.3,
37.2,1) is derived via rule σ2. Finally, as trader EGTech closes the position, i.e., sells the
asset, at time 9 and the price goes up to 147$, then EGTech gets a profit of 6.9$ as return
via rule σ3.

Open(EGTech,0.3,1) MarketClosed(5)

Accepted(EGTech,0.3,1) Price(124,1)

Position(EGTech,0.3,37.2,1)Close(EGTech,9) Price(147,9)

Return(EGTech,6.9)

σ1 σ1

σ2 σ2

σ3
σ3 σ3

Figure 1 Instance of chase graph for Example 1.
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The Vadalog System. The Vadalog system is a state-of-the-art ontological reasoning
engine that leverages the theoretical underpinnings of the chase procedure and the vast
experience of the database community on provenance to power efficient, scalable, and
explainable reasoning tasks over critical business domains and large enterprise KGs [8].

To achieve this, it adopts a streaming data processing architecture based on the pipes
and filters style [14, 7]. Here, the set of logic rules Σ and the queries are translated into
active data scans (linear scans for linear TGDs, join scans for join TGDs, and an output scan
for the query), connected by intermediate buffers in a processing pipeline. The reasoning
process is performed as a data stream along the pipeline, where each filter (i.e., scan) reads
tuples from the respective parent, from the output scan down to the external data stores
that inject ground facts into the pipeline. Interactions between scans occur by means of
primitives open(), next(), get(), close(), which open the parent stream, ask for the presence
of a fact to fetch, obtain it, and close the communication, respectively. Since, for each
filter, multiple parent filters may be available, Vadalog selects which one to invoke (via
next() call) by employing specific routing strategies (round-robin, shortest path, etc.) that
manage a priority queue of the sources. This methodology allows Vadalog to keep track
of the provenance of each result, derived from one or more chase steps. Unlike traditional
semi-naive approaches [1], Vadalog generalizes the volcano iterator model [37], operating in
a pull-based query-driven fashion in which, ideally, facts are materialized only at the end of
the chase procedure and if they contributed to the reasoning task.

Figure 2 illustrates Vadalog processing pipeline for the scenario in Example 1 given, as
ontological reasoning task, the query q of finding the returns for the trader EGTech. Here
the output filter o sends a next() message to the query processor, which propagates it to
the TGDs scans. Note that each filter in the figure is labelled with the corresponding rule
number from the above scenario.

Input Sources

Output Sources

o

σ1

q

σ2 σ3

Query
Processor

next()

next()

ne
xt
()

next()

Figure 2 Processing pipeline of Vadalog for Example 1.
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3 Overview of the KGLM Pipeline
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Figure 3 Visual overview of the KGLM pipeline.

Logic-oriented Enterprise Knowledge Graphs and Knowledge Representation and Reasoning
approaches are at the forefront of explainable AI, which is as of today an area of paramount
importance for both the academic community and the industry sector. Current research in
KRR focuses on developing ontological reasoning systems, such as Vadalog, that effectively
combine factual knowledge (extensional knowledge) with formally defined domain expertise
(intensional knowledge) expressed through logical rules. In this context, integrating state-
of-the-art Large Language Models with logic-oriented EKGs holds immense promise for
developing explainable and human-oriented AI tools. A significant challenge, however,
lies in the mismatch between the technologies. In fact, KRR systems require queries to
be formulated in their specific formalisms, with knowledge generation restricted to what
reasoning rules can capture. In contrast, LLMs lack the comprehensive domain models
that are a cornerstone of KRR approaches. One promising approach involves leveraging the
strengths of both paradigms in a synergistic fashion. Indeed, LLMs excel at natural language
generation, allowing them to translate the complex relationships and entities within EKGs
into human-understandable explanations. EKGs, in turn, provide LLMs with a foundation
of factual knowledge, provenance, and ontological reasoning, thus mitigating the risk of
inconsistencies and biases often present in LLMs’ outputs.

Vadalog-powered KGLM. Specifically, we identify two main synergies between LLMs and
logic-based EKGs. On the one hand, we can leverage the reasoning output, enriched by the
provenance of each conclusion, to inject domain-specific knowledge for fine-tuning an LLM.
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On the other hand, we can exploit the text manipulation capabilities of such models to enable
a natural language navigation of the EKG, presenting its inferred edges and provenance in
a human-like form. In the context of the Vadalog system, we recall that the provenance
is provided by leveraging the chase procedure. Indeed, the chase graph resulting from a
reasoning process corresponds to a directed acyclic graph representation of how each output
fact was derived from the input facts by applying one or more Vadalog rules.

We develop such synergies between Vadalog-powered EKGs and LLMs in KGLM,
the first, to the best of our knowledge, neuro-symbolic framework to enhance state-of-
the-art LLMs with domain awareness and explainability, making them suitable to act as
natural language interfaces to EKGs. Indeed, as further showcased later in this section
and in Section 4, the features provided by KGLM are highly complementary, and have
as their foundation a so-called verbalizer module that deterministically translates the KG
into natural language sentences. Such verbalizations can then either be used as input to
build question-answering fine-tuning corpora for LLMs, or they can be composed to retrieve
the NL explanation of how a certain result was derived in the chase, which can then be
injected into the LLM to achieve more fluent explanations that, in industrial applications,
represent readable business reports. Indeed, these integrations can potentially enable a proper
neuro-symbolic reasoning behavior by combining unstructured information with internal
business rules to derive novel knowledge.

Reasoning Use Cases. To support our discussion, let us consider two scenarios involving a
financial Enterprise Knowledge Graph. Specifically, we refer to an ownership KG, where the
extensional component consists of Owns relationships, as depicted in Figure 4.
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…
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Figure 4 Portion of ownership knowledge graph. Nodes are companies. Solid edges are owns
relationships with their shares.

On top of the KG, we can formalize an intensional component into Vadalog rules, which
augment the graph with new knowledge in the form of novel edges.

▶ Example 2 (Company Control). This scenario allows analysts to understand who has
decision power in companies, based on who controls the majority of votes, in a “one-share
one-vote” assumption. To this end, the task augments the ownership graph with “control”
edges, as follows [41]: A company x directly owning s shares of a company y, controls such
shares via y itself (rule σ4). If x controls a company z and z owns s shares of y, then x

controls s shares of y via z (rule σ5). Finally, if x controls the majority of the shares of y,
directly or indirectly, then x controls y (rule σ6).

Owns(x , y, s)→ ControlledShares(x , y, y, s) (σ4)
Control(x , z),Owns(z , y, s)→ ControlledShares(x , z , y, s) (σ5)

ControlledShares(x ,_, y, s), ts = sum(s), ts > 0.5→ Control(x , y) (σ6)
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▶ Example 3 (Close Link). Integrated ownership refers to the total stake a single entity
holds in another entity, considering both direct and indirect ownership throughout the
graph, with finite or infinite paths [52]. The value of integrated ownership I is calculated as
limϵ→0

∑
Pi∈Bϵ

wϵ(Pi), where Bϵ is the set of all paths P = [x, p1, . . . , pk, y] in the ownership
graph such that x ̸= pi for i = 1, . . . , k, and where wϵ(P ) = Π(pi,pj)∈Pw(pi, pj) > ϵ, with
w(pi, pj) representing the direct ownership of pi on pj , ϵ ∈ R+, and 0 < ϵ ≤ 1. Note
that integrated ownership differs from simple ownership used in Example 2. Applying this
formulation to the regulation of the European Central Bank [34], we can say that x is in
close link with y if: (i) the integrated ownership of x on y is at least 20% (rule σ7); (ii) y is
in close link with x (rule σ8); (iii) there is a third company z, whose integrated ownership on
x and y is at least 20% (rule σ9).

IntOwns(x , y, s), s > 0.2→ CloseLink(x , y) (σ7)
CloseLink(x , y)→ CloseLink(y, x) (σ8)

IntOwns(x , y, s1 ), IntOwns(x , z , s2 ), s1 > 0.2, s2 > 0.2,
x ̸= y, x ̸= z, y ̸= z → CloseLink(y, z) (σ9)

The result of the application of the above Vadalog rules to the excerpt of the ownership
Knowledge Graph is shown in Figure 5. In the rest of the section, we will provide an
overview of how KGLM operates to address the two LLM-EKG synergies introduced, namely,
chase-based LLM fine-tuning and chase-based explanation retrieval. Figure 3 illustrates the
high-level pipeline of the framework.
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Figure 5 Portion of ownership knowledge graph from Figure 4 augmented with new edges by
reasoning on the scenarios from Example 2 and 3. Nodes are companies. Solid edges are owns
relationships with their shares (int owns omitted to avoid clutter). Dashed edges respectively denote
control relationships (orange, directed) and close links (purple, undirected).

3.1 Chase-based LLM Fine-tuning
The goal of this KGLM task is to synthesize question-answering fine-tuning corpora that
cover the entire “reasoning space” of the domain of interest, conveying domain-specificity and
provenance-awareness to the LLM. Algorithm 1 and Algorithm 2 provide the pseudo-code
describing the task, corresponding to the left path of the pipeline in Figure 3.

The first step consists in the execution of the ontological reasoning task of interest with
the Vadalog system. Given an extensional knowledge D and the set Σ of Vadalog rules
encoding the domain knowledge as the intensional component, the KG is built by augmenting
D with the new inferred edges. Consequently, the corresponding chase graph Σ(D) is
generated (line 2 Algorithm 1). In the presence of results deriving from the application of
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Algorithm 1 Reasoning and plan verbalization in KGLM.
1: function ReasoningAndPlanVerbalization(D,Σ, glossary)
2: chase ← Vadalog.reason(D,Σ) ▷ chase generation
3: aggrChase ← ∅
4: for each step in chase do ▷ chase aggregation
5: stepAggrContrib ← ∅
6: if hasAggregate(step.getRule()) then
7: stepAggrContrib ← collectAggrContributors(step, chase)
8: aggrStep ← aggregateStep(step, stepAggrContrib)
9: aggrChase ← verbChase ∪ {aggrStep}

10: verbRules ← verbalizeRules(Σ, glossary) ▷ rules verbalization
11: verbPlan ← verbalizePlan(Σ.getLogicPlan(), verbRules)
12: return (aggrChase, verbPlan)

Algorithm 2 Chase-based LLM fine-tuning task in KGLM.
1: function ChaseBasedFineTuning(aggrChase, verbPlan,model, threshold)
2: tokenizedCorpus ← filter(generate(verbPlan)) ▷ tokenized corpus generation
3: chaseCorpus ← ∅
4: for each aggrStep in aggrChase do ▷ chase corpus generation
5: chasePromptResp ← map(tokenizedCorpus, aggrStep)
6: chaseCorpus ← chaseCorpus ∪ {chasePromptResp}
7: for each pair ⟨prompt, resp⟩ in chaseCorpus do ▷ quality-driven optimization
8: qualityScore ← checkQuality(⟨prompt, resp⟩)
9: if qualityScore ≤ threshold then

10: chaseCorpus ← chaseCorpus \ {⟨prompt, resp⟩}
11: else
12: chaseCorpus ← chaseCorpus ∪ paraphrase(⟨prompt, resp⟩)
13: fineTuningCorpus ← postprocess(chaseCorpus)
14: fineTunedModel ← fineTune(model,fineTuningCorpus) ▷ model fine-tuning
15: return fineTunedModel

aggregation functions, the chase is further processed to collect all the contributors that
led to the resulting aggregated value by unfolding the corresponding path of chase steps
altogether [2, 9] (line 9 Algorithm 1).

Here, as previously introduced, our framework uses a verbalizer component to transform
Σ into a set of natural language sentences via a deterministic transformation. To achieve
this, the verbalizer is equipped with a domain glossary, containing descriptions of the terms
and predicates involved in the rules (line 10 Algorithm 1). In the case of the company control
scenario introduced in Example 2, the glossary in Figure 6 could be employed.

Predicate Description
Owns(x, y, s) <x> owns <s> shares of <y>

ControlledShares(x, z, y, s) <x> controls <s> of <y> via <z>
Control(x, y) <x> controls <y>

Figure 6 Domain glossary for the company control scenario.
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Plan Parts Verbalized Plan Tokenized Corpus Fine-Tuning Corpus

𝑂𝑤𝑛𝑠 𝑥, 𝑦, 𝑠 →
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑𝑆ℎ𝑎𝑟𝑒𝑠

𝑥, 𝑦, 𝑦, 𝑠
↓

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑𝑆ℎ𝑎𝑟𝑒𝑠
𝑥, 𝑦, 𝑦, 𝑠 ,

ts = sum s ,
ts > 0.5

→ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝑥, y)

Since <x> owns <s> shares of 
<y>, then <x> controls <s> of 

<y> via <y>. Since <x> 
controls <s> of <y> via <y> 
and <ts> is the sum of <s> 
and <ts> is higher than 0.5, 

then <x> controls <y>

Q1: How does <x> exercise
control over <y>?

A1: <x> controls <y> as it 
owns <s> shares, 

which is the majority

Q1: How does A exercise 
control over B?

A1: A controls B as it 
owns 0.56 shares, 

which is the majority
Q2: How does <x> have a 

majority over <y>?
A2: <x> controls <y> because it 
owns a total combined number 

<ts> of its shares, 
through its subsidiaries

Q2: How does A have a 
majority over C?

A2: A controls C because it 
owns a total combined number 

0.62 of its shares, 
through its subsidiaries

… … …

𝐼𝑛𝑡𝑂𝑤𝑛𝑠 𝑥, 𝑦, 𝑠 ,
𝑠 > 0.2

→ 𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑛𝑘(𝑥, 𝑦)

Since <x> has an integrated 
ownership of <s> over <y>, 
and <s> is over 0.2, then <x> 
and <y> are in close link

Q1: Are <x> and <y> 
in a close link relationship?

A1: <x> and <y> are in a close link 
relationship, as the integrated 
ownership <s> of <x> over <y> is 

higher than 0.2

Q1: Are B and D 
in a close link relationship?
A1: B and D are in a close link 
relationship, as the integrated 
ownership 0.51 of B over D is 

higher than 0.2
… … …

𝑂𝑝𝑒𝑛 𝑥, 𝑦, 𝑡! ,
¬ 𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑙𝑜𝑠𝑒𝑑 𝑡!
→ 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑥, 𝑦, 𝑡!)

↓
𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑥, 𝑦, 𝑡! ,
𝑃𝑟𝑖𝑐𝑒 𝑝!, 𝑡! ,
𝑘 = 𝑦 ∗ 𝑝!

→ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥, 𝑦, 𝑘, 𝑡!)

Since the trader <x> at time 
<𝑡!> sends an order to open 
a position of size <y> and it 
is not true that <𝑡!> is a 
time when the market is 

closed, then the order of size 
<y> by <x> is accepted at 

time <𝑡!>. Since the order of 
size <y> by <x> is accepted 
and the price is <𝑝!> at time 

<𝑡!>, then <x> holds a 
position of size <y> and 
notional <k> at time <𝑡!>

Q1: When did <𝑥> send 
an order to open a position 

with notional <𝑘>?
A1: The order to open that 

position was sent at time <𝑡!> 

Q1: When did EGTech send 
an order to open a position 

with notional 37.2?
A1: The order to open that 
position was sent at time 1

Q2: Why was the order 
sent by trader <𝑥> 

at time <𝑡!> accepted?
A2: Because at time <𝑡!> 
the market was open

Q2: Why was the order 
sent by trader EGTech
at time 1 accepted?
A2: Because at time 1 
the market was open

… … …

Figure 7 Generation of domain-specific corpora from scenarios in Examples 1-3 for LLM fine-
tuning. Parts of interest of the plan are extracted, verbalized and passed to an LLM for generating
the Q&A pair. Then, based on the actual chase graph, the final corpus is generated.

The NL translation of the rules leverages the select-project-join semantics, rewriting logic-
based rules into textual “since-then closures”. All Vadalog syntactic elements are converted
into their textual counterparts. Conjunctions are rendered as “and” tokens, built-in operators
are represented with specific keywords, e.g., > becomes “is higher than”, and the same occurs
for aggregations, e.g., x = count(y) becomes “x is the total number of y”, etc. Moreover,
rule variables are converted into tokens acting as placeholders. For instance, with respect
to Example 2, the rule Owns(x, y, s)→ ControlledShares(x, y, y, s) (rule σ4) is verbalized as:
“Since < x > owns < s > shares of < y >, then < x > controls < s > of < y > via < y >”.

Then, with the verbalization of the rules available, we can generate a fine-tuning corpus
to train an LLM to answer novel questions, which might relate to simple information retrieval
tasks or more complex ones, i.e., involving an effort toward reasoning on novel input data. To
generate the fine-tuning corpus, we exploit the effectiveness of powerful pre-trained LLMs [17],
such as GPT-4 and Llama 2, in text understanding and manipulation capabilities. In fact,
we can ask it to act as a human agent and synthesize a set of possible prompt-response pairs
based on an input text. Note that here we have two goals: 1) minimizing the number of “calls”
to the LLM, for cost- and time-efficiency reasons; 2) avoiding any ground value (coming
from the EKG) being disclosed to the LLM, for data protection reasons. Thus, we leverage
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the regularity of logical languages and resort to a lifting technique based on the creation
of a logic plan out of Σ (line 11 Algorithm 1). Intuitively, a plan is the equivalent in our
context of a database execution plan and can be seen as the dependency graph of the rules
of Σ, where nodes represent rules and edges stand for head-body dependencies (similarly, at
a high level, to Vadalog’s processing pipeline introduced in Section 2). By sending natural
language excerpts of the plan, obtained from the aggregation of the verbalized rules, we can
automatically generate a corpus of tokenized question-answers, which capture the knowledge
encoded in the rules and their interconnections (line 2 Algorithm 2). With such an approach,
we achieve a corpus generation pipeline that is cost- and time-effective and that protects
confidential data. The tokenized set of prompt-response pairs is then passed on to filters,
which discard low-quality pairs. For instance, pairs in which the LLM generates new tokens
are discarded. Such a step could also resort to a human-in-the-loop approach: in fact, as the
pairs are a finite and relatively small set of templates, a validator could be hired to discard
non-informative ones.

Finally, we materialize the actual fine-tuning corpus via the chase graph. For each new
fact derived from chase procedure, we look up the corresponding verbalized portion of the
plan and the tokenized corpus pairs. Each pair is instantiated by mapping the tokens to the
corresponding constant arguments of the fact (line 4 Algorithm 2). In Figure 7, we provide
some examples of tokenized corpora and their instantiations over artificial data for each of our
presented use cases. The corpus undergoes a more thorough quality check where each pair is
filtered according to a BERT-score-based scoring model that returns a so-called R-score, to
evaluate generated text on coherence and factual consistency with the input text [65] (line 7
Algorithm 2). The threshold under which a pair is dropped can be selected by the user. The
filtered-in pairs are enhanced via NLP paraphrasing to improve generalization, cleansed with
additional post-processing procedures, and finally injected into the LLM for domain-specific
question-answering fine-tuning (line 14 Algorithm 2).

3.2 Chase-based Explanation Retrieval
The chase-based fine-tuning discussed above enables us to inject into the LLM the awareness
of the full domain of interest, encapsulating both factual data and the logical connections
between them in the form of provenance. However, due to the closed-book nature of the
approach [57], we empirically observed how the fine-tuned model alone is not able to effectively
address complex questions regarding why and how a certain fact exists in the augmented
KG. Indeed, answering such explanatory questions often involves composing back along the
provenance paths that led, from extensional facts, to infer intensional ones in the reasoning
process. To address this, we extended KGLM with a dedicated module that supports the
LLM in correctly handling such questions by retrieving the chase-based explanations and
injecting them into the model to enrich its answers. Algorithm 1 and Algorithm 3 provide the
pseudo-code describing the task, corresponding to the right path of the pipeline in Figure 3.

The procedure assumes that the first steps, introduced in the context of the LLM fine-
tuning task, have already occurred. The reasoning task was performed by Vadalog (line 2
Algorithm 1), the chase graph was generated, contributors to aggregations were collected
(line 9 Algorithm 1), and the logic plans were translated into combinations of natural language
sentences corresponding to the rules in Σ (line 11 Algorithm 1).

Now, let us consider a user interacting with the KG and asking questions about a possible
explanation of generated facts. As summarized in Figure 8, this can be performed by either
selecting the corresponding edge of the KG or in NL with a prompt-based interaction,



T. Baldazzi et al. 1:13

Algorithm 3 Chase-based LLM explanation retrieval task in KGLM.
1: function ChaseBasedExplRetrieval(chase, verbPlan,model, glossary, query)
2: fact ← extractFact(model, query, glossary) ▷ queried fact extraction
3: factStep ← extractStep(chase, fact)
4: explanationSubgraph ← {factStep}
5: predecessors ← {factStep}
6: while not predecessors.isEmpty() do ▷ explanation subgraph creation
7: currentStep ← predecessors.dequeue()
8: currentPreds ← getPredecessors(currentStep, chase)
9: for each predStep in currentPreds do

10: if not predStep in explanationSubgraph then
11: explanationSubgraph ← explanationSubgraph ∪ {predStep}
12: predecessors.enqueue(predStep)
13: detExplanation ← concatenate(map(verbPlan, explanationSubgraph))
14: refExplanation ← model.refine(detExplanation)
15: return model.answer(query, refExplanation)

depending on the application KGLM is running into. In both cases, the LLM can extract
from the question the corresponding fact of interest, whose explanation is requested by
leveraging the model’s acquired knowledge of the KG and the glossary (line 2 Algorithm 3).

Selection of the 
edge to explain

Direct Graph 
Selection

Prompt NL 
Interaction

A

C
"How does company A exert 

control over company C?"

Figure 8 Possible interactions with KGLM to select facts to explain.

At this point, the actual retrieval process begins. First, the chase step that led to
the inference of the fact is identified in the chase graph (line 3 Algorithm 3). As we are
interested in the full explanation of the fact, we then perform a back-composition along the
provenance paths (according to the previously mentioned unfolding approach [2, 9]), from
the fact of interest up to the extensional ones that began such sequences of rule activations
during the reasoning process. The result is an explanation subgraph of the chase graph,
featuring both the facts and the activated rules in the paths (line 6 Algorithm 3). For
instance, let us consider the portion of ownership KG in Figure 5, augmented with control
edges derived from the reasoning task. Now, we may wonder “How does company A exert
control over company C?” and submit such a request to KGLM as an NL prompt-based
interaction. First, the LLM identifies the fact “Control(A,C )” of interest. Once the fact
has been correctly identified, the corresponding trace is retrieved from the chase graph, as
shown in Figure 9.

Next, we leverage the previously generated verbalized plan, mapping its tokens to the
corresponding constant arguments of the facts in the subgraph. By concatenating the
resulting verbalized chase steps, we obtain the deterministic NL explanation of the fact
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Figure 9 An instance of explanation subgraph for the company control scenario.

of interest as a sequence of “Since {body}, then {head}” sentences (line 13 Algorithm 3).
Note that the final order of the verbalizations reflects the breadth-first traversal of the graph
and thus respects logical dependency. However, the explanation produced by the verbalizer
can be long, complex, and hard to read, especially in the presence of complex provenance
paths. For instance, continuing with our example, we get the following explanation for fact
“Control(A,C )”: “Since A owns 0.56 shares of B, then A controls 0.56 of B via B. Since A
controls 0.56 of B via B and 0.56 is higher than 0.5, then A controls B. Since A controls B
and B owns 0.62 shares of C, then A controls 0.62 of C via B. Since A controls 0.62 of C
via B and 0.62 is higher than 0.5 then A controls C”. To make it more understandable, we
leverage the text manipulation capabilities of our model, improving fluency and clarity of the
result. By prompting the LLM with the following request: “Please produce a more readable
version of the explanation: . . . ”, we achieve a refined report that is highly accurate in content
and comprehensible (line 14 Algorithm 3). For instance, the above explanation becomes:
“A’s direct ownership of 0.56 of B translates to its control over B. With B’s ownership of
0.62 of C, A, through B, also controls 0.62 of C. As the percentage exceeds 0.5, A effectively
controls C”. Finally, the explanation is passed to our domain-aware model, acting as KG
interface, to answer the original user question (line 15 Algorithm 3).

4 KGLM Integration for Financial Applications

We recently introduced KG-Roar [13], a framework we created to showcase ontological
reasoning with Vadalog on real-world cases that can be suitably modeled with a KG. It
consists of a web-based environment designed for the interactive development and navigation
of logical KGs derived from augmenting an input graph database with intensional definitions
of new nodes and edges in the form of Vadalog programs. Such programs are user-defined
or pre-built code snippets encapsulated in reasoning widgets (as illustrated in Figure 10),
and act as a metaphor for capturing and integrating business-specific knowledge into the KG,
thus enriching its representational power. Indeed, KG-Roar offers an interactive productivity
environment where the user can select widgets of interest and augment the KG interactively
at runtime with new knowledge thanks to the scalability and responsiveness of the underlying
Vadalog reasoning engine. A virtual representation of the KG is provided in an interactive
visualization window within the environment. The goal of KG-Roar is to enable users to
perform complex analyses, seamlessly building, browsing, and querying even complex and
large knowledge graphs, such as the European ownership KG of financial companies.

KGLM in KG-Roar. To support such a purpose, we enrich the KG-Roar environment
with the KGLM framework presented in the previous section. Going beyond the visual
representation of the derived edges in the KG, often unsatisfactory as missing the actual
motivation for their existence (i.e., their provenance), we provide users with a knowledge pal
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that enables natural language-based interactions with the underlying KG. Specifically, such
an agent acts as a chatbot, standing upon Llama 2-70B models that are specialized in the
domain of interest by leveraging KGLM’s chase-based fine-tuning corpora. Depending on
the nature of the user question, it performs distinct actions to provide the answer.

In case of descriptive queries, i.e., questions that are focused on investigating the specifics
of a certain fact in the KG, the knowledge pal leverages the expertise of the domain,
acquired via fine-tuning, and the verbalized rules provided in a RAG-like mechanism to
generate the answer. For instance, in the context of Example 1, to the question “What
is the notional of EGTech’s position at time 1?”, it responds with “EGTech’s notional
at time 1 is 37.2$, equal to the product between 124$, the price of the asset at that time,
and 0.3, the size of the opened position”.
In case of explanatory queries, i.e., more complex questions that are focused on investig-
ating why a certain fact exists in the KG (that is, its provenance), the knowledge pal
retrieves the full chase-based explanation of the fact from KGLM, further enhancing
its readability and providing it to the user as an accurate business report. For instance,
in the context of Example 1, to the question “How does EGTech make profits from its
trading activity?”, it responds with “By opening a position of size 0.3 at time 1, having
the position accepted with an initial price of 124$ and a notional of 37.2$ at time 1, and
then closing it at time 9 with a final price of 147$, thus achieving a profit of 6.9$”.

Let us consider the application of the company control scenario from Example 2 and the close
link one from Example 3 to showcase KGLM’s integration into KG-Roar. As previously
mentioned, KGLM supports the selection of the fact to explain from the corresponding edge
in the knowledge graph. Thus, it is possible to click on an edge in the visualized KG to
request the corresponding explanation, as illustrated in Figure 11. In the presence of highly
connected KGs, such as the one in Figure 12, the visual exploration becomes less intuitive
and the request can directly be prompted in NL to the knowledge pal. In both cases, the
generated response will be presented in a dedicated box that can be interactively explored
by highlighting tagged entities both in the text and in the visualized KG, and KG-Roar
will zoom in on the portion of the graph involved.

Figure 10 Financial use cases in the form of executable widgets.
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Figure 11 Instance of explanation panel for company control use case via direct graph selection.

Figure 12 Instance of explanation panel for close link use case via prompt NL interaction.

5 Conclusion

In today’s industrial landscape, we observe an increasingly pressing demand for AI applications
to sustain transparency, fairness, and accountability of decision-making processes, especially
in high-stakes domains like finance and bio-medicine. To achieve this, novel neuro-symbolic
solutions are rising to bridge the gap between the opaque nature of ML-based technologies
such as LLMs and the required human-interpretable provenance of their responses.

In this paper, we strived to contribute to such a paradigm shift by presenting KGLM, the
first, to the best of our knowledge, neuro-symbolic pipeline that enhances LLMs with domain-
specific knowledge and provenance-based explainability by leveraging the inherent domain-
awareness of Knowledge Representation and Reasoning methodologies at the foundation
of the Vadalog system. Capitalizing on our experience in the financial field, we built a
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framework that can act as a natural language interface to Enterprise Knowledge Graphs,
empowering business analysts to investigate the rationale behind data investigation performed
via reasoning tasks in a human-oriented fashion. We also integrated our solution into a
well-established KG environment for financial tasks, KG-Roar, which allows such users to
conduct graph-based data analysis, now enhanced by the possibility of interacting with them
in natural language. By further leveraging provenance information, we also aim to expand
our KGLM framework in future works, injecting reasoning capabilities into Large Language
Models in a chain-of-thought fashion to directly reason over EKGs, possibly enriched by
additional unstructured data. We believe that such contributions could become significant
assets for organizations, enabling them to harness the advanced capabilities of LLMs without
sacrificing the clarity and accountability of informed decision-making processes.
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over finite structures using traversal invariance. We summarize this as (N)L = FO + (breadth-first)
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1 Presentation invariance

A common phenomenon in mathematics is that some property or quantity is defined in terms
of some additional structure, but ends up being invariant of it. Dimension of a vector space
and Euler characteristic of a manifold are important examples of this phenomenon; they are
defined in terms of a given basis or simplicial complex respectively, but are invariant of the
particular one chosen.

This state of affairs is very common in descriptive complexity theory. For example,
suppose we want to compute the parity of a given finite set X. If we are given some linear
ordering (X,<), there is an inductive program computing the parity of X, but the result
computed is independent of the particular ordering. Therefore, we call parity order-invariant
LFP: computable by an LFP program with a given order, but independent of the specific
choice.

The celebrated result of Immerman and Vardi [6, 11] that LFP logic captures polynomial-
time queries over families of ordered finite structures can be recast as, order-invariant LFP
logic captures polynomial-time queries over all finite structures. Since then, a wide array of
correspondences have been identified between known complexity classes on one hand, and
invariant forms of LFP, MSO, or first-order logic on the other. For example, first-order
logic and LFP logic invariant in arbitrary numerical predicates captures AC0 and P/poly
respectively [9].

Our contribution. We give a novel characterization of logarithmic and nondeterministic
logarithmic space queries using presentation-invariant first-order definability (Theorems 28
and 29). The presentations in question are traversals and breadth-first traversals respectively,
which are certain types of linear orders on finite graphs.
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2:2 Traversal-Invariant Characterizations of Logspace

This is to our knowledge the first characterization of L or NL that does not rely on any
sort of recursion or sequential computation, however limited, such as a function algebra,
fixed-point logic, programming language, or automaton.

We find it fascinating and mysterious that passing from traversals to breadth-first
traversals in the presentation causes a jump from L to NL in definability power. It begs
the question, what other complexity classes can be characterized by certain types of graph
search?

Structure of this paper. In Section 2, we discuss traversal- and breadth-first traversal-
invariant definability, and show the definability of undirected and directed reachability
respectively. In Section 3, we present descriptive-theoretic characterizations of L and NL
(Theorems 28 and 29).

Preliminaries and notation. We assume familiarity with basic graph theory, automata
theory, and model theory, including the notion of interpretation. We will denote graphs
and other first-order structures by uppercase Roman letters. By “graph” we always mean
“undirected graph;” we will say ”directed graph” when we need to. We denote families of
structures in a common signature by captial calligraphic letters, e.g., K.

2 Traversals

Traversals are absolutely fundamental in computer science. They give us systematic ways
of exploring a finite graph or other sort of network, and lie at the foundation of all sorts of
sophisticated algorithms and techniques. Let us isolate the simplest possible version, which
we call generic graph search, and which operates over a finite nonempty graph G.
1. Initialize a set S to some vertex in G, and repeat the following until G \ S is empty.
2. If there is some vertex in the boundary of S, add it to S. Otherwise, add any element of

G \ S to S.
Generic graph search is nondeterministic, insofar as it does not specify which vertex to add to
S. Important refinements of this algorithm include breadth-first and depth-first search, which
specify additional heuristics for how to add vertices to S, without being fully deterministic.

In common parlance, the word traversal can refer either to the algorithm or the linear
orders of G they produce, but in the current work we reserve the term “traversal,” “breadth-
first traversal,” and “depth-first traversal” for the latter. In this paper, we do not work with
depth-first traversals, but we will come back to them in the last section.

▶ Definition 1. For a finite graph G, (G,<) is a traversal (resp. breadth-first traversal,
depth-first traversal) in case some instance of generic graph search (resp. breadth-first search,
depth-first search) of G visits its vertices in order <.

Corneil and Krueger [2] discovered that, in fact, these traversals are first-order definable
in the language of ordered graphs.

▶ Lemma 2. For any finite graph G and linear ordering < of its vertices
(G,<) is a traversal iff

(G,<) |= (∀u < v < w)(uEw → (∃x < v)xEv),

(G,<) is a breadth-first traversal iff

(G,<) |= (∀u < v < w)(uEw → (∃x < v)x ≤ u ∧ xEv),

and (G,<) is a depth-first traversal iff

(G,<) |= (∀u < v < w)(uEw → (∃x < v)x ≥ u ∧ xEv).
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Note that connected components of G induce intervals in a traversal. Notice also how the
definitions of breadth-first traversal and depth-first traversal refine the notion of traversal in
opposing ways: given a vertex v that occurs between two endpoints u and w of a single edge,
v must have some prior neighbor in a plain traversal. In a breadth-first traversal, there must
be some prior neighbor less than or equal to u, and in a depth-first traversal, there must be
some prior neighbor greater than or equal to u.

It is an easy but important fact that

▶ Lemma 3. Every finite graph admits a traversal; a fortiori, every finite graph admits both
a breadth-first traversal and a depth-first traversal.

In the present paper we characterize L and NL using traversals and breadth-first traversals
respectively; it is an open question whether depth-first traversals similarly characterize some
complexity class.

2.1 Traversal-invariant definability
We now present the fundamental definability-theoretic concepts in this paper. We use the
standard model-theoretic notion of an interpretation in this definition; for details see the
Appendix. If K is some family of structures in a common signature, by a “query over K,” we
mean a boolean query, i.e., an isomorphism-closed subset of K.2

▶ Definition 4. Suppose K ⊆ K+ are signatures, K is a nonempty family of K-structures,
and P is a nonempty family of K+-structures, such that for any A ∈ P, its K-reduct A|K is
in K.

A first-order sentence φ over P is (K,P)-invariant in case for any two structures A and
B in P with the same domain, if A|K ∼= B|K , then A |= φ ⇐⇒ B |= φ.

▶ Definition 5. An n-pointed graph is a graph expanded with n constants. Let Γn be the
language of n-pointed graphs, i.e., a binary relation symbol and n constant symbols.

▶ Definition 6. Let G′ be a family of finite n-pointed graphs, T be the set of all expansions
of structures in G′ by any traversal, and φ be a (G′, T )-invariant sentence. Then for any
G ∈ G′, we write

G |= (T <)φ

to indicate that for some (equivalently, any) traversal < of G, (G,<) |= φ. Similarly, we
write

G |= (B <)φ

if φ is (G′,B)-invariant where B is the set of all expansions by breadth-first traversals.

▶ Definition 7. Let K be a signature, K be some family of K-structures and Q a query
over K. We say that Q is basic traversal-invariant definable if there exists some n ∈ N, a
family of finite n-pointed graphs G′, a (G′, T )-invariant sentence φ, and an interpretation
π : Γn → K, such that

2 We will represent n-ary queries over K by boolean queries over the family of structures obtained by
expanding every structure in K by any n points.
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2:4 Traversal-Invariant Characterizations of Logspace

1. π is an interpretation K to G′, and
2. for any A ∈ K,

A ∈ Q ⇐⇒ Aπ |= (T <)φ,

where T is the set of all expansions by a traversal of all graphs in G′.3

We define basic breadth-first traversal (BFT)-invariant definable similarly. We also write
A |= ((T <)φ)π to mean Aπ |= (T <)φ.

Note that in our definition of traversal- or BFT-invariant definability, G′ is not required
to be the family of all finite n-pointed graphs, though it typically will be. Note also that K
must be a family of finite structures if there is to be a interpretation π : K → G′.

▶ Definition 8. Let K be a signature, K be some family of K-structures and Q a query over
K. Then Q is traversal-invariant definable (resp. BFT-invariant definable) if it is a boolean
combination of basic traversal-invariant (resp. basic BFT-invariant) definable queries.

We collect some important examples:

▶ Lemma 9. The following queries are traversal-invariant definable over the indicated
families of structures K:
1. Undirected st-connectivity, over all finite 2-pointed graphs.
2. The family of all acyclic graphs, over all finite graphs.
3. The family of all bipartite graphs, over all finite graphs.
4. The family of even-sized finite linear orders, over all finite linear orders.

Proof. Let G∈ be the family of all finite 2-pointed graphs with constants s and t. The binary
reachability relation is actually definable by a single (G∈, T )-invariant sentence, which says
that there is no w with no prior neighbor such that s < w ≤ t or t < w ≤ s. Since components
of G induce intervals in (G,<), this formula asserts there is no interval separating s and t

into separate connected components.
Acyclicity is similarly the spectrum of a (G, T )-invariant sentence. A graph is acyclic iff,

relative to any traversal, no vertex has two or more prior neighbors.
The square of a graph G = (V,E) is the graph G2 = (V,E2), where E2(x, y) iff x and y

are connected by a path of length exactly two. Then G is bipartite iff G2 is disconnected.
Since G2 is definable as a translation of G under an interpretation π : G → G, and since
connectivity is traversal-invariant definable, so is bipartiteness.

The parity of a linear order is also equivalent to the connectivity of a translation.
Specifically, connect u and v by an edge iff u = v ± 2 mod n, where n is the size of the
order. Then the resulting graph is either a single cycle or a union of two cycles depending on
whether n is odd or even respectively. ◀

Since, e.g., connectivity and acyclicity are not Gaifman-local queries [3, 9], it follows that
traversal-invariance is strictly more expressive than order-invariance.

3 See the Appendix for the definition of notions and notations involving interpretations.
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2.2 Directed reachability
Here we deal with the question of directed st-connectivity using BFT invariance. In fact, we
will need something more than the directed graph structure, but the result will be invariant
of it, an apparent asymmetry with the undirected case that will be resolved in the next
section.

This construction is substantially more sophisticated than our examples above. We reduce
directed reachability to an equidistance problem over undirected graphs, which we solve with
the appropriate BFT-invariant sentence.

▶ Definition 10. If A is a finite structure, we say that a successor expansion (A,S) of A
is a structure of the form (A,min,max, S), where min and max are constants and S is a
successor function on a total order with endpoints min and max.

If K is a signature, let (K,S) be the signature of successor expansions of K-structures.4
If K is a family of finite K-structures, let KS be the family of all successor expansions of
structures in K.

▶ Definition 11 (Successor Invariance). For any family K of finite structures, let KS be the
set of all successor expansions of K. A query Q over KS is successor-invariant in case for
any A,B ∈ KS , if A|K ∼= B|K , then A |= Q ⇐⇒ B |= Q.

For any C ∈ K, we say C |= (SS)Q iff some (equivalently, any) successor expansion of
C satisfies Q.

▶ Definition 12. Let Dn be the family of all finite n-pointed directed graphs, and Gn be the
family of all finite n-pointed graphs. Let DS

n be the family of all successor expansions of all
finite directed n-pointed graphs.

The interpretation ρ. We present an interpretation defined in [10] that translates directed
successor graphs into undirected graphs. Let (x, y, z) be the constants of Γ3 and (s, t) be the
constants of (Γ2, S). Consider the binary interpretation ρ : Γ3 → (Γ2, S) defined by

Eρ(u, a; v, b) ≡
(
S(a) = b ∧ E′(u, v)

)
∨

(
S(b) = a ∧ E′(v, u)

)
.

xρ = (s,min)

yρ = (s,max)

zρ = (t,max),

where E′(u, v) abbreviates E(u, v) ∨ u = v. Then ρ is an interpretation DS
2 → G3, because

the predicate Eρ is visibly symmetric. Note that ρ is also quantifier-free. We can express
the st reachability problem on D ∈ DS

2 into an equidistance problem on Dρ, cf. Figure 1 for
an example. A proof of the following lemma appears in [10] and is deferred to the Appendix.

▶ Lemma 13. For any graph D ∈ DS
2 , there is a directed path from s to t in D iff the

vertices y and z are equidistant from x in Dρ. Even stronger, if there is no directed path
from s to t in D, then either d(x, z) is undefined or |d(x, y) − d(x, z)| ≥ 2, where d indicates
distance in Dρ.

4 Note that there is no symbol for the order with respect to which S is a successor function in the signature
(K, S).
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1 2 3 4

a s x• • • •y

s t a • • • •

b b • • • •

t • • • •z

Figure 1 A directed graph to the left, with its undirected ρ-translation to the right. There is
an edge between (u, i) and (v, i + 1) on the right exactly when u = v or there is a directed edge
u → v on the left. Consequently, there is a directed path s⇝ t on the left exactly when y and z are
equidistant from x on the right. Here there is no such path s⇝ t, d(x, y) = 3, and d(x, z) = 7.

▶ Definition 14. Let G′
3 be the family of finite 3-pointed undirected graphs with constants

x, y, z such that x and y lie in the same connected component and, if z does as well, then
|d(x, y) − d(x, z)| ̸= 1.

By Lemma 13, ρ is in fact an interpretation DS
2 → G′

3.

Breadth-first traversals and quasi-levels. On a graph with a distinguished source for each
connected component, vertices are naturally partitioned into levels according to their distance
from their respective source. If we fix a BFT of a graph, and let the source of each connected
component be its least element, then the resulting levels induce intervals in that traversal.5

Moreover, every edge of the graph is either within levels or between adjacent levels. The
least neighbor of every vertex (except the source) is in the previous level.

It is probably impossible to recognize when two nodes are in the same level using first-order
logic on graphs, even given a BFT. However we can do almost as well.

▶ Definition 15. Let (V,E,<) be a finite graph expanded by a breadth-first traversal. A
quasi-level is a nonempty interval I of (V,E) such that w ∈ I ⇐⇒ p(w) < v ≤ w, where v
is the least element of I and p(w) the least neighbor of w (cf. Figure 2).

Observe that it is easy to define when two vertices v and w occur in a common quasi-level,
by the formula

(p(w) < v ≤ w) ∨ (p(v) < w ≤ v).

Notice that if two vertices occur in a common quasi-level, then their distances from
their (necessarily common) source cannot differ by more than 1. If two vertices occur in no
common quasi-level, then either they are in different connected components, or the distances
from their common source cannot be equal.

5 Recall that connected components induce intervals of a traversal, so it suffices to observe that levels
induce intervals within connected components.
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v1

v3

v7

v15v14

v6

v13v12

v2

v5

v11v10

v4

v9v8

Figure 2 {v2, v3}, {v3, v4, v5}, {v6, . . . , v11}, and {v13, v14, v15} are quasi-levels but {v5, . . . , v11}
and {v4, v5, v6} are not. In the first counterexample, v11 ∈ I, but p(v11) = v5, the least element of I,
and in the second counterexample, p(v7) < v4 < v7 and v4 is the least element of I, but v7 /∈ I.

The interpretation τ . We define a 2-dimensional interpretation τ : Γ6 → Γ3. Let

(x1, y1, z1, x2, y2, z2)

be the constants in Γ6 and (x, y, z) be the constants in Γ3. Given G ∈ G3, the domain of Gτ

consists of “two copies” of G, which we achieve by ∂τ (u, v) ⇐⇒ v = x∨ v = y. Within each
copy, we inherit the edge relation from G, and we let, e.g., xi be the vertex corresponding to
x in copy i. We do not put any edges between the two copies except for connecting x1 and
x2. Notice that τ is quantifier-free.

▶ Definition 16. Let G′
6 be {Gτ : G ∈ G′

3}.

Then (by definition), τ is an interpretation G′
6 → G′

3. Moreover,

▶ Theorem 17. Let B be the set of all expansions of graphs in G′
6 by a breadth-first traversal.

There is a (G′
6,B)-invariant formula ψ such that for any (G, x, y, z) ∈ G′

3,

d(x, y) = d(x, z) =⇒ Gτ |= (B <)ψ

|d(x, y) − d(x, z)| ≥ 2 =⇒ Gτ |= ¬(B <)ψ,

where the second case also contains all those graphs where x, y, and z are not all connected.

(The proof is deferred to the Appendix.)
By composing the interpretation ρ with the interpretation τ , we see that for any successor

expansion of a finite 2-pointed directed graph D ∈ DS
2 , there is a path from s to t in D if

and only if Dρτ |= (B <)ψ. Hence,

▶ Corollary 18. The directed reachability query is BFT-invariant definable over DS
2 .

3 Descriptive Complexity

In this section we obtain the main results of this paper: a characterization of deterministic
and nondeterministic logarithmic space by traversal and breadth-first traversal invariance
quantifiers respectively.

3.1 Multihead finite automata
A nondeterministic multihead finite automaton (NMFA) is an automaton with a single tape,
finitely many heads on that tape, and a finite control. Unlike a Turing machine, the tape is
not infinite; rather, it is initialized to the input string plus two special characters on either

Tannen’s Festschrift



2:8 Traversal-Invariant Characterizations of Logspace

side to mark the left and right endpoints. Also unlike a Turing machine, the heads cannot
write, they can only move left, right, or stay put depending on which characters they are
reading. A single state is designated as accepting; if the computation enters this state then
we say it halts. The language of an NMFA is exactly the set of strings it halts on.

Formally, an NMFA consists of a set Q of states, some number k ∈ N of heads, an input
alphabet Σ, a start state q0 ∈ Q, an accept state qf ∈ Q, and a transition relation δ which
relates k-tuples in Σ ∪ {▷, ◁} with {−1, 0, 1}k. If any head is reading the left (respectively
right) endpoint character, no subsequent transition may move that head right (respectively
left). Futhermore, if the current state is qf , then the transition relation moves all heads to
the left (if possible) or fixes them if they are already at the left endpoint.

A configuration of an NMFA consists of the input string, the current state, and the
location of the heads. The transition relation induces a relation on the space of configurations
in the natural way. The intial configuration is the one in which the state is q0 and all heads
are at the left. The final configuration is the same but with state qf . By the stipulation of
the transition relation, if an NMFA enters qf , then it will always enter the final configuration.

The configuration graph of an NMFA on a particular input x is a 2-pointed directed
graph whose vertices are the set of configurations on x and whose edge relation is the graph
of the relation induced by the transition function. The source and sink are the initial and
final configurations respectively.

Strings and pointed graphs as structures. Let Γ2 be the language of 2-pointed graphs,
and let (Γ2, S) be the language of 2-pointed successor graphs, with two (additonal) constants
min and max, and a successor function.

Let Σ be a finite alphabet. We think of a string x = x0x1 . . . xn−1 in Σ⋆ as a finite
structure with domain {0, 1, . . . , n− 1}, a predicate σ for each σ ∈ Σ with semantics

(∀i < n) x |= σ(i) ⇐⇒ xi = σ,

constants min and max naming 0 and n− 1, and finally a successor function taking index i
to index i+ 1.6

We henceforth overload the meaning of Σ to indicate not only an alphabet, but also the
signature of strings in that alphabet, so that the terms “finite Σ-structure” and “member of
Σ⋆” denote the same objects.

Crucial to our work is that for a fixed NMFA, there is an interpretation that takes an
input string and translates it into the associated configuration graph.

▶ Theorem 19. For every NMFA M with alphabet Σ there is an interpretation π : Γ2 → Σ
such that for every sufficiently long string x ∈ Σ⋆, xπ is isomorphic to the configuration
graph of M on input x.

Furthermore, we can expand π to an interpretation π : (Γ2, S) → Σ, so that xπ is a
successor expansion of the above configuration graph.

Moreover, π can be made quantifier-free.

(The proof is deferred to the Appendix)

▶ Definition 20. An NMFA M is symmetric (SMFA) in case, for any input x, the configu-
ration graph of M on x is undirected.

6 This is a common, “folklore,” method of representing strings as structures. Often one takes a total
ordering < over the indices of a string instead of the successor function (see Libkin [7]), but for our
purposes, either will work.
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Computability by NMFAs is known to capture exactly nondeterministic logarithmic space
(NL) [4], and computability by SMFAs captures at least logarithmic space (L).7

3.2 Capturing L and NL
Canonical encodings. For any finite structure A, any linear order (A,<), and any fixed
alphabet Σ of size at least 2, there is a canonical encoding of (A,<) as a string in Σ⋆.

This construction is the foundation of all results in descriptive complexity, and can be
found in numerous texts, e.g., [7]. We will not repeat it here. We do note, however, that any
successor expansion (A,S) of A induces a linear order – hence every successor expansion of
any finite structure has a canonical encoding.

Even more importantly, this canonical encoding is definable as the translation induced by
a quantifier-free interpretation. The details are complicated, but can be found in Section 9.2
of [7].

▶ Theorem 21. For every signature L, there is a quantifier-free interpretation µ : Σ → (L, S)
such that for every successor expansion (A,S) of any finite L-structure A, (A,S)µ is the
canonical encoding of (A,S).

We now state the definition of a complexity-bounded query over finite structures, for
which we need to imagine models of computation that take finite structures as input. We
follow the standard method in descriptive complexity, which is to take a model of computation
that operates on strings, and feed it the encoding (A,S)µ of a structure A. Of course this
encoding is not canonical given only A; for a well-defined query, we demand that the result
of the computation is invariant of the particular expansion (A,S).

Now we are in a position to state:

▶ Theorem 22. For every signature L and every logarithmic space query Q over finite
L-structures, there is a quantifier-free interpretation γ : Γ2 → (L, S) such that for every
sufficiently large finite L-structure A,

A ∈ Q ⇐⇒ A |= (SS) ((T <)φ)γ ,

where (T <)φ is the sentence in the language of 2-pointed ordered graphs asserting that the
distinguished vertices are connected.

Proof. Let µ : Σ → (L, S) be the interpretation given by L in Theorem 21, let M be an
SMFA deciding Q, let π : Γ2 → Σ be the associated interpretation from Theorem 19, and let
γ = µπ. Fix a finite L-structure A and an arbitrary successor expansion (A,S).

Then M accepts the string (A,S)µ iff A ∈ Q. But, (A,S)µπ = (A,S)γ is the configuration
graph of M on (A,S)µ, so M accepts (A,S)µ just in case the distinguished vertices of (A,S)γ

are connected. In other words,

A ∈ Q ⇐⇒ (A,S)γ |= (T <)φ.

Therefore,

A ∈ Q ⇐⇒ (A,S) |= ((T <)φ)γ ,

and since the right hand side is independent of the particular successor expansion,

A ∈ Q ⇐⇒ A |= (SS) ((T <)φ)γ . ◀

7 In [1], Axelsen considers the more restrictive reversible MFAs, which are both deterministic and
backwards deterministic, and shows that they capture L. It is plausible that this might allow us to
strengthen our results even further.
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▶ Theorem 23. For every signature L and every NL query Q over finite L-structures, there
is a quantifier-free interpretation γ : Γ6 → (L, S) such that for every sufficiently large finite
L-structure A,

A ∈ Q ⇐⇒ A |= (SS) ((B <)ψ)γ ,

where ψ is the sentence from Theorem 17 in the language (Γ6, <).

Proof. Let µ : Σ → (L, S) be the interpretation given by L in Theorem 21, let M be an
NMFA deciding Q, let π : (Γ2, S) → Σ be the associated interpretation from Theorem 19.
Recall the interpretations ρ : Γ3 → (Γ2, S) and τ : Γ6 → Γ3 from Section 2.2. Finally, let
γ = µπρτ . Fix a finite L-structure A and an arbitrary successor expansion (A,S).

Then M accepts the string (A,S)µ iff A ∈ Q. But M accepts (A,S)µ just in case there
is a path from source to sink over the graph (A,S)µπ. By Corollary 18, this occurs just in
case (A,S)µπρτ |= (B <)ψ. But (A,S)µπρτ = (A,S)γ .

Since the above is independent of the particular successor expansion S,

A ∈ Q ⇐⇒ A |= (SS)((B <)ψ)γ ,

which completes the proof. ◀

3.3 Logspace-computable traversals
In the other direction, we want to show that traversals and breadth-first traversals are
computable in L and NL respectively. These constructions rely on the computability
in logarithmic space of undirected st-connectivity, and furthermore on the existence of
logarithmic space universal exploration sequences [8].

Given an ordered graph G and a vertex v, it is possible to construct, in logarithmic space,
the index of the least vertex u in the connected component of v. Simply iterate through the
vertices of G in order, testing connectivity with v, until we find a vertex that is connected.

▶ Theorem 24. There is a logarithmic space Turing machine which, for every finite ordered
graph (G,<), computes a traversal (G,≺) in the following sense: given the canonical encoding
of (G,<) and (indices of) two of its vertices v and w, accepts or rejects according to whether
v ≺ w.

Proof. Given two vertices v and w in G, first test whether they are in the same connected
component. If not, let v0 and w0 be the least elements in the connected components of v
and w respectively, and compare v and w according to whether v0 < w0.

Otherwise, let v0 be the least element of their common connected component. If n = |G|,
construct (using space logarithmic in n) a universal exploration sequence, and explore the
connected component of v and w according to that sequence starting with v0. Let v ≺ w iff
the first occurrence of v precedes the first occurrence of w.

We must show (G,≺) is a traversal. Notice that connected components induce intervals. If
v is not the least vertex in some connected component, then its first occurrence in the universal
exploration sequence has some immediate predecessor u which is a neighbor. Therefore, in
the traversal, u ≺ v; hence, v has some preceding neighbor. ◀

Canonical BFT of an ordered graph. Unlike the case of ordinary traversals, where the
traversal (G,≺) of (G,<) depends on some family of universal exploration sequences, we
will define a canonical breadth-first traversal (G,≺B) of an ordered graph (G,<) and show
that it can be computed in nondeterminstic logspace.
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▶ Definition 25. Given a finite ordered graph (G,<) and vertices v, w ∈ G, let v0 and
w0 be the <-least elements of the connected components of v and w respectively. Let <⋆

be the ordering on finite sequences of vertices that orders them first by length, and then
lexicographically. Let v⃗ be the <⋆-least path from v0 to v. Then,
1. if v0 ̸= w0, then v ≺B w ⇐⇒ v0 < w0,
2. if v0 = w0 then v ≺B w ⇐⇒ v⃗ <⋆ w⃗.

▶ Lemma 26. For any finite ordered graph (G,<), (G,≺B) is a breadth-first traversal.

(Proof deferred to appendix.)

▶ Theorem 27. There is a logarithmic space nondeterministic Turing machine which, on
input a finite ordered graph (G,<) and vertices v, w ∈ G, decides whether or not v ≺B w.

Proof. As in the proof of Theorem 24, given two vertices v and w, first test whether v0 = w0
(i.e., whether they’re in the same connected component). If not, decide v ≺B w according to
whether v0 < w0.

Otherwise we argue that we can construct the sequence v⃗ = (v0, . . . , vℓ−1, v) in the
following sense: given an index for vi, we can test whether it’s equal to v; if not, we can
construct the index of vi+1, all in logarithmic space.

If we can do this, then we decide v ≺B w by comparing v⃗ <⋆ w⃗. First we compare their
lengths: we simultaneously construct (vi+1, wi+1) from (vi, wi), until the first index is v or
the second is w. Unless this happens at the same stage, we are done. (Since (vi+1, wi+1)
overwrites (vi, wi), this remains in logarithmic space.)

Otherwise, we start over, and simultaneously construct (vi, wi) until we (necessarily) find
the first index at which they differ. Then we decide v ≺B w according to which is larger.

It remains to show how to construct vi+1 from vi. Orient all edges in G so that they
increase distance from v0. Then vi+1 is the <-least vertex x such that there is an edge (vi, x)
and a directed path (x, v). Since we can compute directed reachability in nondeterminstic
logarithmic space, we can find vi+1 in nondeterminstic logarithmic space as well. ◀

At this point we are ready to state two of the central results of this paper.

▶ Theorem 28. The following are equivalent:
1. Q is a logspace-decidable query over finite K-structures.
2. There is a quantifier-free interpretation π : Γ2 → (K,S) such that for all sufficiently large

finite K-structures A,

A ∈ Q ⇐⇒ A |= (SS) ((T <)φ)π,

where φ is the formula expressing undirected st-connectivity.
3. There is a traversal-invariant definable query R over finite (K,S) structures such that for

any finite K-structure A,

A ∈ Q ⇐⇒ A |= (SS)R

Proof. Implication 1 ⇒ 2 is exactly Theorem 22. Implication 2 ⇒ 3 is immediate, as
((T <)φ)π is by definition a traversal-invariant definable query, and traversal-invariant
queries are closed under finite differences. It remains to show 3 ⇒ 1.

It suffices to show that the traversal-invariant definable query R is logspace computable
over finite (K,S) structures, as given an encoding of a K-structure A, a logspace Turing
machine can always compute a successor relation on the domain of A, by using the particular
encoding in which A is presented.
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Since logspace-computable queries are closed under boolean combinations, it suffices
to show that any basic traversal-invariant definable query is logspace computable. Since
logspace computable queries are closed under elementary interpretations, it suffices to show
that for any class G′ of finite graphs, every (G′, T ′)-invariant formula is logspace computable
over graphs in G′, where T ′ is the family of all expansions of graphs in G′ by traversals.

But for this, it suffices to show that any first-order sentence in the language of ordered
graphs is logspace computable given an encoding of a finite graph, where the order is
the traversal defined in Theorem 24. Since logspace queries are closed under first-order
combinations, it suffices to check that given any encoding of a graph and two vertices therein,
we can test whether they are equal, test whether they are connected by an edge, or compare
them according to the canonical traversal.

The first two are true, and the last is exactly Theorem 24. ◀

By replacing “L” by “NL” and “traversal” by “breadth-first traversal” throughout, we get

▶ Theorem 29. The following are equivalent:
1. Q is an nlogspace-decidable query over finite K-structures.
2. There is a quantifier-free interpretation π : Γ6 → (K,S) such that for all sufficiently large

finite K-structures A,

A ∈ Q ⇐⇒ A |= (SS) ((B <)ψ)γ ,

where ψ is the sentence of Theorem 17.
3. There is a breadth-first traversal-invariant definable query R over finite (K,S) structures

such that for any finite K-structure A,

A ∈ Q ⇐⇒ A |= (SS)R

Structures with successor. Suppose the signature K contains the unary function symbol
S, and that K is a family of finite K-structures in which S is interpreted by a successor
function. Then the quantifier (SS) in any successor-invariant query (SS)R is superfluous
over K; i.e., for any A ∈ K,

A |= R ⇐⇒ A |= (SS)R.

The reason is that the interpretation of S in R is independent of the particular successor
function on A that we choose, so we might as well choose the one native to A.

In particular, for such families K, we can drop the (SS) quantifier from the traversal- or
breadth-first traversal-invariant queries R of Theorems 28 and 29. In particular, let us take
the case of strings over a finite alphabet Σ, which are the original setting for logspace and
nlogspace queries, and also successor structures as described in Section 3. Then we have

▶ Corollary 30. For any family Q ⊆ Σ⋆,
1. Q is logspace-decidable iff there is a traversal-invariant definable query R such that for

every string x ∈ Σ⋆, x ∈ Q ⇐⇒ x |= R, and
2. Q is nlogspace-decidable iff there is a breadth-first traversal-invariant definable query R

such that for every string x ∈ Σ⋆, x ∈ Q ⇐⇒ x |= R.
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3.4 Discussion and open questions
Our results are the first presentation-invariant characterizations of L and NL, and, to our
knowledge, the largest known complexity classes characterized by first-order logic extended by
invariant definability of an elementary class of presentations. They demonstrate the surprising
power of interpretations (even quantifier-free ones!) and establish a new foundational
correspondence between graph traversals and complexity classes.

The elephant in the room is whether depth-first traversal invariance captures a meaningful
complexity class, like polynomial time. While we have been able to find depth-first invariant
definitions of certain suggestive queries (like vertex-avoiding paths), we still do not have very
strong evidence one way or the other. More generally, there are a variety of graph traversals
and a variety of associated presentations (such as the ancestral relation of the traversal tree)
which might correspond to interesting complexity classes.

Finally, we have extended these notions of definability to arbitrary infinite structures by
requiring that the underlying order be well-founded. (Since well-orders are not elementarily
definable, this circumvents the usual “Beth definability” obstacle to studying presentation
invariance over infinite structures.) Whereas separating traversal-invariant from BFT-
invariant definability over classes of finite structures requires separating L and NL, it is
plausibly easier to separate them over arbitrary classes, and it is plausible that this will
inform the finite case. This work is ongoing.
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A Interpretations and change of signature

We review the basic definitions behind interpretations, following the exposition of Hodges [5],
except that we also allow for functional signatures (see below). There is no new mathematical
content here; however, getting the definitions and terminology straight is terribly important,
since we use interpretations extensively.
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▶ Definition 31. Let L and K be signatures and k ∈ N. An elementary k-ary interpretation
π : L → K is a first-order K-formula ∂π(x̄), for each constant symbol c ∈ L a variable-free
K-term cπ, and for each relation symbol r ∈ L, a first-order K-formula rπ(x̄1, . . . , x̄n), where
n is the arity of r, and the length of each tuple throughout is k.

An interpretation is quantifier-free in case ∂π and each rπ is quantifier-free.

▶ Definition 32. Given an elementary k-ary interpretation π : L → K and a first-order
L-term or L-formula α, its translation απ, is a K-formula given by the following recursion:
1. If α is a variable x, then απ is a k-tuple of (distinct) variables x̄.
2. If α is a constant symbol c, then απ is cπ.
3. If α is the atomic formula r(α1, . . . , αn), then απ is rπ(απ, . . . , απ),
4. If α is a boolean combination of formulas ϑ, then απ is the same boolean combination of

formulas ϑπ,
5. If α is ∃xϑ, then απ is the formula ∃x̄ ∂π(x̄) ∧ ϑπ, and
6. If α is ∀xϑ, then απ is the formula ∀x̄ ∂π(x̄) → ϑπ.

In the definition below, ∂π[Ak] denotes the subset of Ak on which ∂π holds.

▶ Definition 33. Suppose π : L → K is an interpretation and A is a K-structure. Then the
π-translation Aπ is the L-structure with domain ∂π[Ak] with the denotation of λ given by
λπ, for each λ ∈ L.

(Note that even though the arity of λπ is nk as a K-formula, it defines an n-ary relation
over Aπ, whose elements are k-tuples of A.)

Functional signatures. In a very particular case (see successor expansions, Definition 10)
we will want to consider signatures with function symbols, and exactly once (Theorem 19),
we will want to define an interpretation π : L → K where L has some function symbol
f(x1, . . . , xn). In this case fπ(x⃗1, . . . , x⃗n) is a definition by cases, where each case is a
first-order K-formula, and the definiens inside each case is a k-tuple of K-terms in the free
variables (x⃗1, . . . , x⃗n), where k is the arity of π. In a quantifier-free interpretation, each case
must be a quantifier-free K-formula.

Functional signatures also generalize signatures with constants, which are nullary function
symbols. For a constant symbol c, cπ is a definition by cases, where each case is a k-tuple of
variable-free K-terms.

It is common practice in finite model theory to replace functions by their graph relations,
thus working with purely relational signatures. The only reason for considering functional
signatures here is to make certain interpretations quantifier free (cf. Theorems 28 and 29);
in the purely relational setting, these interpretations would contain quantifiers.

Injective interpretations. Usually an interpretation will also contain a first-order K-formula
eqπ(x̄, ȳ) defining when we regard two k-tuples as equal. (For example, when interpreting
rational numbers by pairs of integers, we say (a, b) = (c, d) ⇐⇒ ac− bd = 0.) In case eqπ

is simply equality of tuples (as above), π is called an injective interpretation. Here we do
not deal with any interpretations with a nontrivial equivalence relation. Therefore, it is
convenient to drop the word “injective” and simply refer to interpretations.

▶ Lemma 34 (Fundamental property of interpretations). Suppose that π : L → K is an
elementary interpretation. Then for every K-structure A, every n-ary L-sentence φ, and
every x̄1, . . . , x̄n in the domain ∂π[Ak] of Aπ,

A |= φπ(x̄1, . . . , x̄n) ⇐⇒ Aπ |= φ(x̄1, . . . , x̄n).
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Note that on the left-hand side, (x̄1, . . . , x̄n) is regarded as an nk-tuple of elements in A,
and on the right-hand side, it is regarded as an n-tuple of elements in Aπ.

▶ Definition 35. Suppose that π : L → K, L is a class of L-structures, and K is a class of
K-structures. Then π is an interpretation K → L in case for every A ∈ K, Aπ ∈ L.

Properties of interpretations ρ and τ

Lemma 13. For any graph D ∈ DS
2 , there is a directed path from s to t in D iff the vertices

y and z are equidistant from x in Dρ. Even stronger, if there is no directed path from s to t
in D, then either d(x, z) is undefined or |d(x, y) − d(x, z)| ≥ 2, where d indicates distance in
Dρ.

Proof of Lemma 13. (Adapted from [10]) Fix a graph D and let n be the number of vertices
in D. Identify the vertices of D with {0, 1, . . . , n − 1} such that S(i, i + 1). Then in Dρ,
there is a path

x = (s, 0) − (s, 1) − · · · − (s, n− 1) = y,

of length n− 1, and this is moreover the distance between x and y, by considering the second
coordinate.

If t is reachable from s in D, then that must be witnessed by some directed path
(s = r0 → r1 → · · · → rℓ−1 = t) of length ℓ ≤ n. Then

(r0, 0) − (r1, 1) − · · · − (rℓ−1, ℓ− 1) − (rℓ−1, ℓ) − · · · − (rℓ−1, n− 1)

is a path in Dρ from x to z of length exactly n − 1. Again by considering the second
coordinate, we can see that there is no shorter path. Hence y and z are equidistant from x.

Conversely, suppose that there were a path in Dρ from x to z in Dρ of length exactly
n− 1. Then it must be of the form

(u0, 0) − (u1, 1) − · · · − (un−1, n− 1),

where u0 = s, un−1 = t, and for each i, either ui = ui+1 or ui → ui+1 in D. Hence the ui

witness a directed path from s to t.
Moreover, observe the parity of the second coordinate in any path must alternate. Hence,

the length of any path from (s, 0) to (t, n− 1) must be equal to n− 1 modulo 2. Therefore,
if there is no directed path from s to t in D, then in Dρ then any path from x to z in Dρ

must have length at least n+ 1. This is at least 2 greater than d(x, y), which is n− 1. ◀

Theorem 17. Let B be the set of all expansions of graphs in G′
6 by a breadth-first traversal.

There is a (G′
6,B)-invariant formula ψ such that for any (G, x, y, z) ∈ G′

3,

d(x, y) = d(x, z) =⇒ Gτ |= (B <)ψ

|d(x, y) − d(x, z)| ≥ 2 =⇒ Gτ |= ¬(B <)ψ,

where the second case also contains all those graphs where x, y, and z are not all connected.

Proof of Theorem 17. Let ψ assert that all six constants (x1, . . . , z2) occur in the same
connected component; moreover, if x1 < x2, then y2 and z2 occur in the same quasi-level,
and if x2 < x1, then y1 and z1 occur in the same quasi-level. (To show that ψ is invariant, it
suffices to show that ψ is correct.)
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Fix a graph (G, x, y, z) ∈ G′
3 such that d(x, y) = d(x, z). Consider its translation, and

expand this by an arbitrary breadth-first traversal. We may assume that all constants
(x1, . . . , z2) lie in the same connected component; otherwise ψ evaluates to false, which is
correct as not all of (x, y, z) are connected.

Suppose that x1 < x2. Let w be the least element of < in the connected component of x1.
Then w must be in G1, so any path from w to y2 or z2 must pass through the edge (x1, x2).
Hence,

|d(x, y) − d(x, z)| = |d(x2, y2) − d(x2, z2)| = |d(w, y2) − d(w, z2)|.

In other words, the desired quantity is exactly the difference in distance between y2 and x2
to the source. We know that this difference is either equal to 0 or at least 2, and ψ correctly
distinguishes these two cases by testing whether y2 and z2 occur in the same quasi-level.

Similarly, if x2 < x1, ψ distinguishes |d(x, y) − d(x, z)| = 0 from |d(x, y) − d(x, z)| ≥ 2 by
testing whether y1 and z1 occur in the same quasi-level. ◀

B Defining configuration graphs by interpretation

Theorem 19. For every NMFA M with alphabet Σ there is an interpretation π : Γ2 → Σ
such that for every sufficiently long string x ∈ Σ⋆, xπ is isomorphic to the configuration
graph of M on input x. Furthermore, we can expand π to an interpretation π : (Γ2, S) → Σ,
so that xπ is a successor expansion of the above configuration graph. Moreover, π can be
made quantifier-free.

Proof of Theorem 19. Let k be the number of heads in M. Then k+1 will be the dimension
of π. The domain of the interpretation ∂π just stipulates that the first coordinate is less than
q, the number of states of M.

We can now establish a bijection between the domain of π and configurations of M with
input x, for any string x such that |x| ≥ q. A configuration is simply specified by current
state and the location of the heads, which correspond to the first and remaining k coordinates
of the domain respectively. Since x is sufficiently long, there are enough choices in the first
coordinate for all states of M.

Let u⃗ and v⃗ be arbitrary configurations of M on input an arbitrary string of length at
least q. We want to define Eπ(u⃗, v⃗) to hold just in case the configuration v⃗ is reachable from
u⃗ in one step. This is definable by a boolean combination of formulas of the following form:
1. ui is the minimum or maximum index,
2. σ ∈ Σ is the character at index, and
3. indices ui and vi are identical or adjacent.
Each of these formulas is quantifier-free definable in the language Σ, by e.g.,
1. ui = 0 or ui = n− 1,
2. σ(ui), and
3. ui = vi or S(ui) = vi or ui = S(vi)
respectively, where 0 and n− 1 are aliases for min and max respectively. Finally,

sπ = (0, 0, . . . , 0), tπ = (S(0), 0, . . . , 0).

This is because all heads are at the left in the initial or final configuration, 0 is the start
state, and 1 is the halt state.

Now for any string x of length at least q, not only is the domain of xπ in bijection with
the configurations of M on x, but relative to this bijection πE defines the graph of “next,”
and πs and πt are the initial and final configurations respectively. Hence xπ as a structure is
isomorphic to the configuration graph of M on input x.
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To expand π to an interpretation from ΓS
2 , we need to define a successor function on

(k+1)-tuples of indices, given a successor function on indices. This is easy to do by mimicking
the standard “increment-by-one” algorithm on numbers written in some fixed radix.8 ◀

First-order definitions of traversals
Lemma 26. For any finite ordered graph (G,<), (G,≺B) is a breadth-first traversal.

Proof of Lemma 26. Connected components of G induce intervals of (G,≺B), so it suffices
to assume that G is connected. Let v0 be the least element of G (unambiguously with respect
to either order).

Suppose v is a non-minimal vertex and let v⃗ = (v0, v1, . . . , vℓ−1, v). Since <⋆-least shortest
paths are closed under prefixes, vi ≺B v for each v; in particular, |v⃗ℓ−1| = ℓ− 1.

Let u be the ≺B-least neighbor of v, and u⃗. Since u ⪯B vℓ−1, |u⃗| ≤ ℓ− 1. Since (u⃗, v) is
a path from v0 to v of length at most ℓ, and since ℓ is the distance from v0 to v, |u⃗| = ℓ− 1.

Since u and vℓ−1 are the same distance from v0, we have

u⃗ ≤⋆ (v0, . . . , vℓ−1) ∧ (v0, . . . , vℓ−1, v) ≤⋆ (u⃗, v).

Therefore u⃗ = (v0, . . . , vℓ−1). In particular, u = vℓ−1.
Finally, suppose that v and w are arbitrary non-minimal vertices of G, and that v ≺B w.

Let v† and w† be the second-to-last elements of v⃗ and w⃗ respectively. Then v† and w† are
the ≺B-least neighbors of v and w, so it suffices to show that v† ⪯B w†.

However, v⃗ = (v⃗†, v) and w⃗ = (w⃗†, w). Since v⃗ <⋆ w⃗, v⃗† ≤⋆ w⃗†, which concludes the
proof. ◀

8 This is the only point in which we have to define Sπ where S is a function symbol, here we use a
definition by cases in which every case is a quantifier-free term guarded by a quantifier-free formula.
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Abstract
Semiring provenance evaluates database queries or logical statements not just by true or false but by
values in some commutative semiring. This permits to track which combinations of atomic facts are
responsible for the truth of a statement, and to derive further information, for instance concerning
costs, confidence scores, number of proof trees, or access levels to protected data. The focus of this
approach, proposed and developed to a large extent by Val Tannen and his collaborators, has first
been on (positive) database query languages, but has later been extended, again in collaboration
with Val, to a systematic semiring semantics for first-order logic (and other logical systems), as well
as to a method for the strategy analysis of games.

So far, semiring provenance has been studied for finite structures. To extend the semiring
provenance approach for first-order logic to infinite domains, the semirings need to be equipped with
addition and multiplication operators over infinite collections of values. This needs solid algebraic
foundations, and we study here the necessary and desirable properties of semirings with infinitary
operations to provide a well-defined and informative provenance analysis over infinite domains. We
show that, with suitable definitions for such infinitary semiring, large parts of the theory of semiring
provenance can be succesfully generalised to infinite structures.
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1 Introduction

Semiring provenance was proposed in 2007 by Val Tannen in the seminal paper [7], together
with Todd Green and Grigoris Karvounarakis. It is based on the idea to annotate the
atomic facts in a database by values in some commutative semiring, and to propagate these
values through a database query, keeping track whether information is used alternatively or
jointly. This approach has been successfully applied to many variants of database queries,
including conjunctive queries, positive relational algebra, datalog, nested relations, XML,
SQL-aggregates, graph databases (see, e.g., the surveys [8, 3]). Depending on the chosen
semiring, provenance valuations give practical information about a query, beyond its truth
or falsity, for instance concerning the confidence that we may have in its truth, the cost
of its evaluation, the number of successful evaluation strategies, and so on. Beyond such
provenance evaluations in specific application semirings, more precise information is obtained
by evaluations in provenance semirings of polynomials or formal power series, which permit
us to track which atomic facts are used (and how often) to compute the answer to the query.

While semiring provenance had for a long time been restricted to negation-free query
languages, a new approach for dealing with negation has been proposed in 2017 by Grädel
and Tannen [4], based on transformations into negation normal form, quotient semirings
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of polynomials with dual indeterminates, and a close relationship to semiring valuations
of games. In particular, this provides a semiring provenance analysis for full first-order
logic (over finite domains). Further such a provenance analysis can be applied to many
other logics and query languages with negation, and also permits a reverse provenance
analysis, i.e., finding models that satisfy various properties under given provenance tracking
assumptions, with potential applications to explaining missing query answers or failures of
integrity constraints, and to using these explanations for computing repairs. An updated
exposition of this approach can be found in [6].

If we investigate semiring provenance, beyond applications to finite data, as a general
semiring-based semantics for first-order logic (and other logical systems), the question arises
whether this semantics also makes sense over infinite domains, and what properties of the
underlying semirings are needed to make such an extension possible and meaningful. This is
the question that we want to study in this paper.

The obvious problem is the interpretation of quantifiers. A semiring interpretation π,
over the universe A, assigns to a formula ψ(ā) a value π[[ψ(ā)]] in some commutative semiring
S. This is defined by induction on ψ, and for the quantifiers, we have that

π[[∃xφ(x, b̄)]] :=
∑
a∈A

π[[φ(a, b̄)]] and π[[∀xφ(x, b̄)]] :=
∏
a∈A

π[[φ(a, b̄)]],

so for infinite universes, we need to equip the semirings with infinitary addition and multi-
plication operations, with suitable algebraic properties.

In some cases this is completely straightforward and unproblematic, for instance for finite
min-max semirings or, more generally, for semirings induced by some complete lattice (with
suprema and infima as semiring operations). There are other semirings, for instance the
natural semiring N = (N,+, ·, 0, 1), which do not admit infinitary operations, but which
can be easily completed to one that does so, such as N∞ = N ∪ {∞} where there is an
obvious natural definition for infinitary addition and multiplication. But such extensions are
not always obvious, for instance for semirings of polynomials. Further there are important
semirings, such as the tropical semiring T = (R∞

+ ,min,+,∞, 0) where the definition of the
infinitary operations (here infimum and infinitary sum) is obvious, but it is not clear whether
all relevant algebraic properties of the semiring operations also hold for their infinitary
versions. In the case of the tropical semiring, we shall see that most of the basic algebraic
properties do generalise to the infinite, with the exception of the distributive law which, in
its strong form, does only hold on countable domains, but not on uncountable ones. Of
course this poses the questions, what algebraic properties of infinitary semiring operations are
actually needed for a well-defined and meaningful semiring semantics. We shall systematically
study necessary and desirable algebraic properties of such infinitary operations and, on this
basis, propose a definition of infinitary semirings. We will discuss examples of such semirings,
focussing on one side on the case of absorptive infinitary semirings and, on the other side,
define extensions of the polynomial semiring N[X] to a semiring of generalised power series,
for which we can establish a universality property, similar to the one of N[X] in the finite
case.

Using these infinitary semirings, we shall discuss semiring provenance for first-order logic
on possibly infinite structures and show that a large part of the theory developed for the finite
case does indeed carry over to infinite domains. In particular, we establish that the Sum-of-
Proof-Trees-Theorem, saying that the semiring valuation of a first-order sentence coincides
with the sum of the valuations of its proof trees also holds on infinite domains, provided that
the underlying infinitary semiring satisfies an appropriate distributivity property.
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2 Commutative Semirings

▶ Definition 1 (Semiring). A commutative semiring is an algebraic structure S = (S,+, ·, 0, 1)
with 0 ̸= 1, such that (S,+, 0) and (S, ·, 1) are commutative monoids, · distributes over +,
and 0 · s = s · 0 = 0.

In this paper, we only consider commutative semirings and simply refer to them as
semirings. A semiring is naturally ordered (by addition) if s ≤ t :⇔ ∃r(s + r = t) defines
a partial order. Notice that ≤ is always reflexive and transitive, so a semiring is naturally
ordered if, and only if ≤ is antisymmetric, i.e. r ≤ s and s ≤ r only hold for s = r. In
particular, this excludes rings.

A semiring S is idempotent if s+ s = s for each s ∈ S and multiplicatively idempotent
if s · s = s for all s ∈ S. If both properties are satisfied, we say that S is fully idempotent.
Finally, S is absorptive if s + st = s for all s, t ∈ S or, equivalently, if multiplication is
decreasing in S, i.e. st ≤ s for all s, t ∈ S. Every absorptive semiring is idempotent, and
every idempotent semiring is naturally ordered.

Application semirings. There are many applications which can be modelled by semirings
and provide useful practical information about the evaluation of a formula.

The Boolean semiring B = (B,∨,∧,⊥,⊤) is the standard habitat of logical truth.
A totally ordered set (S,≤) with least element s and greatest element t induces the min-
max semiring (S,max,min, s, t). Specific important examples are the Boolean semiring,
the fuzzy semiring F = ([0, 1],max,min, 0, 1), and the access control semiring, also called
the security semiring [2].
A more general class (than min-max semirings) is the class of lattice semirings (S,⊔,⊓, s, t)
induced by a bounded distributive lattice (S,≤). Clearly, lattice semirings are fully
idempotent.
The tropical semiring T = (R∞

+ ,min,+,∞, 0) is used to annotate atomic facts with a
cost for accessing them and to compute minimal costs for verifying a logical statement.
It is not fully idempotent but absorptive.
The Viterbi semiring V = ([0, 1]R,max, ·, 0, 1), which is in fact isomorphic to T via
y 7→ − ln y can be used for reasoning about confidence.
An alternative semiring for this is the Łukasiewicz semiring L = ([0, 1]R,max,⊙, 0, 1),
where multiplication is given by s⊙ t = max(s+ t− 1, 0). It is isomorphic to the semiring
of doubt D = ([0, 1]R,min,⊕, 1, 0) with s⊕ t = min(s+ t, 1). Both L and D are absorptive
semirings.
The natural semiring N = (N,+, ·, 0, 1) is used to count the number of proof trees or
evaluation strategies that estabish the truth of a sentence. It is also important for bag
semantics in databases.

Provenance semirings. Provenance semirings of polynomials provide information on which
combinations of literals imply the truth of a formula. The universal provenance semiring over
a finite set X is the semiring N[X] of multivariate polynomials with indeterminates from X

and coefficients from N. Other provenance semirings are obtained, for example, as quotient
semirings of N[X] induced by congruences for idempotence and absorption. The resulting
provenance values are less informative but their computation is more efficient.

By dropping coefficients from N[X], we get the free idempotent semiring B[X] whose
elements are (in one-to-one correspondence with) finite sets of monomials with coefficient
1. It is the quotient induced by x+ x ∼ x.
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3:4 Semiring Provenance in the Infinite

If, in addition, exponents are dropped, we obtain the Why-semiring W(X) of finite sums
of monomials with coefficient 1 that are linear in each indeterminate. In this semiring,
addition is idempotent but multiplication is not.
The free absorptive semiring S(X) consists of 0, 1 and all antichains of monomials with
respect to the absorption order ≽. A monomial m1 absorbs m2, denoted m1 ≽ m2, if
it has smaller exponents, i.e. m2 = m ·m1 for some monomial m. It is the quotient of
N[X] induced by x+ xy ∼ x.
Finally, (PosBool(X),∨,∧,⊥,⊤) is the semiring whose elements are classes of equivalent
(in the usual sense) positive Boolean expressions with Boolean variables from X. Its
elements are in bijection with the positive Boolean expressions in irredundant disjunctive
normal form. This is the lattice semiring freely generated by the set X. It arises from
S(X) by dropping exponents.

For treating logical formalisms with fixed-point constructions, such as Datalog or LFP,
provenance semirings with more general objects than polynomials are needed (see [1, 7].
Examples include the semirings of formal power series (with possibly infinite sums of
monomials) such as N∞[[X]] and the semirings S∞(X) of generalised absorptive polynomials
(admitting infinite exponents). Further, all these provenance semirings can be equipped with
dual indeterminates for treating negation, see [6].

3 Semirings with Infinitary Operations

3.1 Basic Properties of an Infinitary Operation
We first treat the two semiring operations, addition and multiplication, separately, and then
look at their connections. The properties of the individual operations are discussed in terms
of addition, but apply to multiplication analogously.

So let S = (S,+, 0) be a commutative monoid which we want to expand by an infinitary
operation

∑
that maps every sequence (si)i∈I (over an arbitrary index set I) to a value∑

i∈I si ∈ S. The infinitary sum should be compatible with the finite sum and respect the
basic algebraic properties of the monoid. We thus have the following requirements.

Partition invariance (infinite associativity): For each partition (Ij)j∈J of I we have∑
i∈I

si =
∑
j∈J

∑
i∈Ij

si.

Bijection invariance (infinite commutativity): For every bijection σ : J → I∑
i∈I

si =
∑
j∈J

sσ(j).

Compatibility with the finite: For each finite index set I = {i0, . . . , in}∑
i∈I

si = si0 + · · · + sin .

Partition invariance is actually a very strong property which, in particular, implies
bijection invariance. Indeed, consider the partition (Ij)j∈J of I into singleton sets Ij =
{σ(j)}. Then partition invariance (together with compatibility with finite sums) implies that∑
i∈I si =

∑
j∈J

∑
i∈Ij

si =
∑
j∈J sσ(j). Bijection invariance also justifies that we consider

operations over index sets rather than, for instance, transfinite sequences.
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Most natural infinitary operations on monoids satisfy these properties. Nevertheless
there are quite simple constructions that violate, for instance, infinite associativity, even for
certain naturally ordered monoids with an infinite sum defined as the supremum of its finite
subsums.

▶ Example 2. Let S = N∪ {ω, ω′} with the (commutative) addition that extends the natural
addition on N by n + ω = ω for n ∈ N and ω + ω = ω + ω′ = ω′ + ω′ = ω′. Defining∑
i∈I si = sup{

∑
i∈I0

si : I0 ⊆fin I} we have a summation operator where, for the sequence
(sn)n∈N with s0 = ω and sn = 1 for n > 0, we have that the finite sum takes are all the
values n ≤ ω, and hence∑

n∈N
sn = sup{n : n ≤ ω} = ω but s0 +

∑
n≥1

sn = s0 + sup{n : n < ω} = ω + ω = ω′,

so partition invariance fails.

3.2 Compactness and its Consequences
However, these three requirements do not suffice to avoid “pathological” definitions with
undesirable behaviour. Consider, for instance, the monoid (N∪ {∞},+, 0) with the infinitary
sum defined by

∑
i∈I si = ∞ for all infinite I (and satisfying compatibility with + for finite

index sets). This violates, for instance, the following two natural properties.

Neutrality:
∑

respects the neutral element if
∑
i∈I si =

∑
i∈I,si ̸=0 si.

Idempotence:
∑

respects idempotent elements if for all s ∈ S such that s + s = s, also∑
i∈I s = s for every index set I ̸= ∅.

To guarantee these, and other, desirable properties, we propose compactness properties
which essentially say that if the infinitary operation takes different values on two sequences
(si)i∈I and (tj)j∈J then this is already witnessed by finite subsets, in the sense that some
finite subsequence of one takes a value that is not assumed by any finite subsequence of the
other. More formally:

Compactness: The operator
∑

is compact if for all (si)i∈I and (tj)j∈J we have that∑
i∈I

si =
∑
j∈J

tj whenever
{∑
i∈I0

si : I0 ⊆fin I
}

=
{ ∑
j∈J0

tj : J0 ⊆fin J
}
.

Strong compactness: The operator
∑

is strongly compact if for all (si)i∈I and (tj)j∈J and
all s, t we have that

s+
∑
i∈I

si = t+
∑
j∈J

tj whenever
{
s+

∑
i∈I0

si : I0 ⊆fin I
}

=
{
t+

∑
j∈J0

tj : J0 ⊆fin J
}
.

▶ Lemma 3.
1. Every compact operator respects idempotent elements.
2. If a partition invariant operator respects idempotent elements then it also respects the

neutral element.
3. If

∑
is partition invariant and respects idempotent elements, then there exists, for every

s ∈ S, a unique element ∞ · s :=
∑
i∈I s for every infinite I.

4. If
∑

is strongly compact, and s+ p = s then s+
∑
i∈I p = s for every index set I.
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3:6 Semiring Provenance in the Infinite

Proof. (1) If s+s = s then for each index set I, the values
∑
i∈I0

s for finite I0 ⊆ I are s and
0. Taking J = {0, 1} and t0 = 0 and t1 = s we also have s and 0 as values for subsequences.
Thus, by compactness,

∑
i∈I s = t0 + t1 = 0 + s = s.

For (2) we note that since 0 is an idempotent element, we have that
∑
j∈J 0 = 0 for all

index sets J . It follows by partition invariance that∑
i∈I

si =
∑
i∈I

si ̸=0

si +
∑
i∈I

si=0

0 =
∑
i∈I

si ̸=0

si.

For (3) we first observe that the bijection invariance of an infinitary summation operator
implies that

∑
i∈I s =

∑
j∈J s for every s ∈ S and all index sets I, J of the same cardinality.

Hence there exists, for every s ∈ S and every infinite cardinal κ, a unique element κ·s =
∑
i∈I s

for every index set I of cardinality κ. Obviously, ω · s is idempotent, and we can decompose
any index set of size κ into a partition of sets of size ω. By partition invariance, and the
respect of idempotent elements, it follows that κ · s = ω · s =: ∞ · s. To prove (4), we note
that s+ p = s implies that s+

∑
i∈I0

p = s for all finite I0. With J = ∅ and t = s, strong
compactness implies that s+

∑
i∈I p = s for every index set I. ◀

But compactness also has consequences for finite sums. Recall that a finite monoid
S = (S,+, 0) is aperiodic if for every s ∈ S there exists some n ∈ N such that (n+ 1)s = ns.

▶ Lemma 4. The compactness property, even just for finite sums, in a finite monoid
S = (S,+, 0) implies that S must be aperiodic.

Proof. If S is not aperiodic then there exist s ∈ S and some minimal n ∈ N such ns ̸=
(n+ 1)s = ks for some k < n. But then the sums

∑n
i=1 s and

∑n+1
i=1 s have different values

although they have the same sets of values for subsums, namely {0, s, 2s, . . . , ns}, which
contradicts compactness. ◀

We further notice that the existence of an infinitary operation with (some of) these
properties can also have implications for the purely finitary properties of the monoid S =
(S,+, 0). Recall that S is +-positive if s+ t = 0 only holds for s = t = 0. Further, (S,+, 0)
is naturally ordered, if s ≤ t :⇔ ∃r(s+ r = t) is a partial order. Since ≤ is always reflexive
and transitive this is the case if, and only if, ≤ is antisymmetric, i.e. s ≤ t and t ≤ s imply
that s = t. Obviously, a naturally ordered monoid is +-positive, but the converse is not true.

▶ Lemma 5. If S = (S,+, 0) admits a partition invariant infinitary sum that respects the
neutral element, then S is +-positive. If this sum is strongly compact then S is naturally
ordered.

Proof. Suppose that s + t = 0. Since
∑

is partition invariant and respects the neutral
element we have that 0 =

∑
i∈N(s+ t) = s+

∑
i∈N(t+ s) = s+ 0 = s. For the second claim,

suppose that s+ r = t and t+ q = s. For p = r+ q we thus have that s+ p = s and t+ p = t.
We have to prove that s = t. By Lemma 3, strong compactness implies that s+

∑
i∈N p = s

and t+
∑
i∈N p = t. But then, partition invariance implies that

s = s+
∑
i∈N

p = s+
∑
i∈N

(r + q) = (s+ r) +
∑
i∈N

(q + r) = t+
∑
i∈N

p = t. ◀

▶ Lemma 6. There is a monoid S = (S,+, 0) that admits a partition-invariant and compact
infinitary sum such that S is not naturally ordered and the sum therefore violates strong
compactness. In particular, compactness does not imply strong compactness.
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Proof sketch. Consider the monoid M := (N4 ∪ {∞},+, 0) with a + ∞ = ∞ for all a
where the infinitary sum is defined by

∑
i∈I si = ∞ if there are infinitely many nonzero

summands si ≠ 0, and otherwise,
∑
i∈I si corresponds to the usual finite sum of all (finitely

many) nonzero summands. Clearly, M is naturally ordered by the usual component-wise
partial order on N4 with an adjoined top element ∞. Moreover, the infinitary sum is both
partition-invariant and bijection-invariant.

To construct S, we set a := (1, 0, 0, 0), b := (0, 1, 0, 0), c := (0, 0, 1, 0) and d := (0, 0, 0, 1),
and we identify a+ c ∼ b and b+ d ∼ a. Let ∼ be the minimal congruence relation on M

that satisfies this and set S := M/∼. It can be shown that such a congruence relation exists
and that it satisfies a ̸∼ b and is compatible with the infinitary sum on M . Moreover, the
infinitary sum on S inherits partition-invariance from the infinitary sum on M .

Further, it is possible to show that the infinitary sum on S is still compact. However, S is
not naturally ordered, since a ̸∼ b implies [a]∼ ̸= [b]∼, but by definition, we have [a]∼ ≤ [b]∼
and [b]∼ ≤ [a]∼ due to [a]∼ + [c]∼ = [a+ c]∼ = [b]∼ and [b]∼ + [d]∼ = [b+ d]∼ = [a]∼. With
Lemma 5, it follows that the infinitary sum on S cannot be strongly compact. ◀

Although compactness and strong compactness of an infinitary operation are powerful
and convenient properties, there is the problem that they are not always easy to verify,
and that there are relevant semirings where multiplication is not compact, as for instance
N∞[[X∞]], an infinitary extension of N[X] to be defined in Section 5, which does not even
respect idempotent elements. We therefore will work with the following simpler property,
which by Lemma 3 is implied by compactness, is easier to establish, and suffices for our
proofs.

Unique infinite powers:
∑

has unique infinite powers if for every s ∈ S, there exists a
unique element ∞ · s with ∞ · s :=

∑
i∈I s for every infinite I.

3.3 Distributivity
The requirements that relate the two algebraic operations in a commutative semiring are
the distributive law s(r + t) = sr + st and the fact that the neutral element of addition is
multiplicatively annihilating, i.e. 0 · s = 0 for all s. If an infinitary product

∏
is partition

invariant and compatible with finite products, then it follows immediately that
∏
i∈I si = 0

whenever si = 0 for some i ∈ I. The generalisation of the distributive law to infinitary
operations is more complicated and comes in a weak and a strong variant:

Weak distributivity: For each index set I and all s

s ·
∑
i∈I

si =
∑
i∈I

(s · si).

Strong distributivity: For every index set I and every collection (Ji)i∈I of index sets∏
i∈I

∑
j∈Ji

sj =
∑
f∈F

∏
i∈I

sf(i),

where F is the set of all choice functions f : I →
⋃
i∈I Ji such that f(i) ∈ Ji for all i ∈ I.

For finite index sets I, strong distributivity is implied by weak distributivity via a rather
straightforward induction. For infinite index sets the situation is more complicated.

We first observe that strong distributivity holds for the completion N∞ = N ∪ {∞}
of the natural semiring (N,+, ·, 0, 1) (with the natural extensions of finite addition and
multiplication from N to finite and infinitary addition and multiplication on N∞).
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▶ Proposition 7. The semiring N∞ satisfies strong distributivity.

Proof. Given an expression
∏
i∈I

∑
j∈Ji

sj over N∞, we argue by case distinction.
If

∏
i∈I

∑
j∈Ji

sj = 0, then there is some i ∈ I such that sj = 0 for all j ∈ Ji. But
then every choice function f ∈ F has the property that sf(i) = 0 which implies that also∑
f∈F

∏
i∈I sf(i) = 0.

If
∏
i∈I

∑
j∈Ji

sj ̸= 0, then there exists, for each i ∈ I, some j ∈ Ji such that sj ̸= 0.
Hence there is a choice function f ∈ F such that

∏
i∈I sf(i) ̸= 0.

We next discuss the cases where
∏
i∈I

∑
j∈Ji

sj = ∞. Assume that sk = ∞ for some
k ∈ Ji, so

∑
j∈Ji

sj = ∞. For the choice function that selects k ∈ Ji, and nonzero elements
in the other index sets, we have

∏
i∈I sf(i) = ∞, and hence

∑
f∈F

∏
i∈I sf(i) = ∞. Another

possible case with
∑
j∈Ji

sj = ∞ appears when there are infinitely many j ∈ Ji with sj ̸= 0.
Then there are infinitely many choice functions f ∈ F such that sf(i) ̸= 0 for all i, so again∑

f∈F
∏
i∈I sf(i) = ∞. Finally it may be the case that

∏
i∈I

∑
j∈Ji

sj = ∞ because there
are infinitely many i ∈ I, such that

∑
j∈Ji

sj > 1. We distinguish two possibilities. Either
there are infinitely many i, for which there exists some j ∈ Ij with sj ≥ 2. Selecting these
elements, and (by the argument above) non-zero values for the other indices gives us a choice
function f ∈ F such that

∏
i∈I sf(i) = ∞. The other possibility is that there exist infinitely

many i ∈ I with at least two indices j ∈ Ij with sj = 1. But this implies that there are
not just one, but infinitely many choice functions f ∈ F such that sf(i) ̸= 0 for all i, so∑
f∈F

∏
i∈I sf(i) = ∞.

Suppose finally that
∏
i∈I

∑
j∈Ji

sj = n where 1 ≤ n < ∞. Then there exists a finite
index set I0 ⊂ I, such that

∏
i∈I

∑
j∈Ji

sj =
∏
i∈I0

∑
j∈Ji

si and that
∑
j∈Ji

sj = 1 for all
i ∈ I \ I0. This implies that in each such Ji there is precisely one j such that sj = 1, and
that sk = 0 for k ≠ j. Let F ′ be the subset of those choice functions in F that select for
each i ∈ I \ I0 the unique j ∈ Ji with sj = 1. Notice that

∏
i∈I sf(i) = 0 for all f ∈ F \ F ′.

Further, let F0 be the set of choice functions on I0. Each f ∈ F0 uniquely extends to a choice
function in f ′ ∈ F ′, with

∏
i∈I0

sf(i) =
∏
i∈I sf ′(i). We further note that each sum

∑
j∈Ji

sj
cannot exceed n, so it can only have finitely many non-zero entries and can be written as a
finite sum. By (finite) distributivity, we have∑

f∈F

∏
i∈I

sf(i) =
∑
f ′∈F ′

∏
i∈I

sf ′(i) +
∑

f∈F\F ′

∏
i∈I

sf(i) =
∑
f∈F0

∏
i∈I0

sf(i) =
∏
i∈I0

∑
j∈Ji

sj = n. ◀

It is easy to verify that N∞ also satisfies all other properties mentioned above, including
(strong) compactness. The same holds for other semirings that are obtained by completing a
semiring without infinitary operations by an element ∞ to which the appropriate infinite
sums and infinite products evaluate. This includes, for instance, the polynomial semirings
N[X] ∪ {∞} and B[X] ∪ {∞}, for finite sets X of indeterminates.

But there are also important semirings for which strong distributivity depends on the
cardinality of the index sets that we consider. We illustrate this for the tropical semiring
T = (R∞

+ ,min,+,∞, 0) (whose infinitary operations are, of course, infimum and the natural
infinitary sum). Weak distributivity holds for arbitrary index sets. However, this is not the
case for strong distributivity.

▶ Proposition 8. In the tropical semiring, strong distributivity holds for countable index sets,
but fails for uncountable ones.

Proof. We first prove the failure of strong distributivity for uncountable index sets. Let
Ji = ω for all i in some uncountable index set I, and let (sj)j∈ω be any sequence of positive
real numbers that converges to 0. Strong distributivity would mean that∑

i∈I
inf
j∈ω

sj = inf
f∈F

∑
i∈I

sf(i)
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where F ranges over all choice functions f : I → ω. However, the left side is 0 since the
infimum of (sj)j∈ω is 0. But every choice function f : I → ω must hit some n ∈ ω infinitely
often so for every f we have that

∑
i∈I sf(i) ≥ ∞ · sn = ∞. Hence the right side evaluates to

∞, and strong distributivity fails.
Next we observe that, for all index sets I and (Ji)i∈I ,∑
i∈I

inf
j∈Ji

sj ≤ inf
f∈F

∑
i∈I

sf(i).

Indeed, for all f ∈ F we clearly have that infj∈Ji
sj ≤ sf(i). Summation is monotone, so it

follows that
∑
i∈I infj∈Ji sj ≤

∑
i∈I sf(i) and since this holds for all f ∈ F it also holds for

the infimum.
Finally, it remains to show that for countable I and all (Ji)i∈I , we have that∑
i∈I

inf
j∈Ji

sj ≥ inf
f∈F

∑
i∈I

sf(i).

We know that this holds for finite I, so we assume now that I is countably infinite. Without
loss of generality we can take I = ω, and we set qi := infj∈Ij

sj and q :=
∑
i∈ω qi. We have

to show that inff∈F
∑
i∈ω sf(i) ≤ q. If q = ∞, there is nothing to prove. Otherwise q and

hence also all qi are finite. Fix any ε > 0. Since infj∈Ji
sj = qi we can find, for every i < ω,

some j ∈ Ji such that sj ≤ qi + ε2−(i+1). Let fε be a choice function that maps each i ∈ ω

to some j ∈ Ji with this property. We then have that∑
i∈ω

sfε(i) ≤
∑
i∈ω

(qi + ε2−(i+1)) =
∑
i∈ω

qi + ε ·
∑
i∈ω

2−(i+1) = q + ε.

Since this holds for all ε > 0 we conclude that inff∈F
∑
i∈I sf(i) ≤ q. ◀

The same proposition, with almost exactly the same proofs, holds also for the Viterbi
semiring V, the Łukasiewicz semiring L and the semiring of doubt D.

3.4 Monotonicity
In a naturally ordered semiring, an important property is that both addition and multiplication
are monotone in each argument: if s1 ≤ t1 and s2 ≤ t2 then s1 + s2 ≤ t1 + t2 and s1s2 ≤ t1t2.
By partition invariance it immediately follows that also the infinitary sum is monotone in
each argument.

▶ Lemma 9. If si ≤ ti for all i ∈ I, then
∑
i∈I si ≤

∑
i∈I ti.

Proof. For each i ∈ I, we have that ti = si + δi for some element δi ∈ S. Hence
∑
i∈I ti =∑

i∈I(si + δi) =
∑
i∈I si +

∑
i∈I δi. ◀

Monotonicity of multiplication is implied by the distributive law: if t1 = s1 + δ1 and
t2 = s2 + δ2 then t1t2 = s1s2 + s1δ2 + s2δ1 + δ1δ2, so s1s2 ≤ t1t2. Monotonicity of infinitary
products in each single argument follows by the same argument. If tj = sj + δ for some j ∈ I,
and si = ti for all other i ∈ I then

∏
i∈I ti = (sj + δ)

∏
i∈I\{j} si =

∏
i∈I si + δ

∏
i∈I\{j} si.

Assuming strong distributivity, we can apply this argument simultaneously to each factor.

▶ Lemma 10. If S satisfies strong distributivity, and si ≤ ti for all i ∈ I, then
∏
i∈I si ≤∏

i∈I ti.
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Proof. Again, let ti = si + δi and let F be the set of all choice functions f that map each
i ∈ I to either si or δi. Further, let f0 ∈ F be the function that maps all i ∈ I to si. By
strong distributivity, we have that∏
i∈I

ti =
∏
i∈I

(si+ δi) =
∑
f∈F

∏
i∈I

f(i) =
∏
i∈I

f0(i)+
∑

f∈F\{f0}

∏
i∈I

f(i) =
∏
i∈I

si+
∑

f∈F\{f0}

∏
i∈I

f(i)

so
∏
i∈I si ≤

∏
i∈I ti. ◀

Given that strong distributivity does not hold in all interesting semirings, we should add
monotonicity to our list of desired properties for infinitary semiring operations.

Monotonicity: For each index set I and all families (si)i∈I and (ti)i∈I such that si ≤ ti
(w.r.t. the natural order) we also have that∑

i∈I
si ≤

∑
i∈I

ti and
∏
i∈I

si ≤
∏
i∈I

ti.

The requirement of monotonicity for the infinitary sum is redundant since it is implied
by partition invariance, but monotonicity of infinitary products does not seem to follow from
weaker properties than strong distributivity.

▶ Example 11. Let S = N ∪ {∞} with the natural definition of infinitary sum, but with
an infinitary product that evaluates to 0, if there are infinitely many finite factors different
from 1. More precisely,

∏
i∈I

si =


∞ if si = ∞ for some i ∈ I and si ̸= 0 for all i ∈ I∏
i∈I0

si for I0 ⊆fin I such that si = 1 for all i ∈ I \ I0

0 otherwise.

The infinitary product is not monotone since
∏
i<ω 1 = 1 but

∏
i<ω 2 = 0. Strong distributiv-

ity of course also fails, as witnessed by
∏
i<ω(1 +1). One can readily verify that the infinitary

operations in this semiring satisify all the other properties that we discussed, including strong
compactness.

3.5 Infinitary Semirings
We are now ready to propose a definition for semirings with infinitary operations.

▶ Definition 12. An infinitary semiring, also called ∞-semiring, is a commutative, naturally
ordered semiring S = (S,+, ·, 0, 1), together with two infinitary operations

∑
and

∏
that

satisfy the following properties:
partition invariance (infinite associativity), and hence also bijection invariance (infinite
commutativity),
compatibility with finite addition and multiplication,
neutral elements are respected,
there are unique infinite powers,
weak distributivity, and
monotonicity.
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This should be seen as a working definition that reflects our current state of investiga-
tions. There are of course alternative possibilities. For instance we could impose (strong)
compactness of infinitary sums and products as a basic property, which would imply that
idempotent and neutral elements are respected, and that there exist unique infinite powers.
We further note that the requirement that the additive neutral element is respected is in
fact redundant, as it is implied by weak distributivity and partition invariance. Indeed,∑
i∈I 0 =

∑
i∈I(0 · 0) = 0 ·

∑
i∈I 0 = 0 and therefore

∑
i∈I si =

∑
i∈I,si=0 si +

∑
i∈I,si ̸=0 si =∑

i∈I,si ̸=0 si. However, it can be shown that the requirement that the multiplicative neutral
element is respected by infinitary products does not follow from the other properties (for a
counterexample, take (N∞, ·, 1) and set all infinite products of non-zero values to ∞). We
could also require strong distributivity, which we chose to omit from the definition because
we want to include in our study some relevant semirings that (for arbitrary index sets) only
satisfy the weak distributive law. Instead, we introduce the following variant.

▶ Definition 13. Let κ be an infinite cardinal. An infinitary semiring is κ-distributive if it
satisfies strong distributivity for products of cardinality < κ. That is, it satisfies∏

i∈I

∑
j∈Ji

sj =
∑
f∈F

∏
i∈I

sf(i)

for all sets I with |I| < κ (and sets Ji of arbitrary cardinality). It is strongly distributive if
it satisfies strong distributivity for all index sets.

The tropical semiring, the Viterbi semiring, and the Łukasiewicz semiring are examples
of ω1-distributive semirings.

Homomorphisms between ∞-semirings should be compatible with the infinitary operations.
We again introduce a weaker variant for a more fine-grained analysis.

▶ Definition 14 (∞-semiring homomorphisms). Let κ be an infinite cardinal, and let S,S ′ be
infinitary semirings. A semiring κ-homomorphism h : S → S ′ is a semiring homomorphism
such that for all sequences (si)i∈I in S with |I| < κ, we have that

h
(∑
i∈I

si

)
=

∑
i∈I

h(si) and h
(∏
i∈I

si

)
=

∏
i∈I

h(si).

Further h is called an ∞-semiring homomorphism, if it is a semiring κ-homomorphism for
all κ.

Of course, the term infinitary semiring does not imply that the semiring has infinitely
many elements. Quite to the contrary:

▶ Proposition 15. Every finite semiring, in which both addition and multiplication induce
aperiodic monoids, expands to an ∞-semiring (in which, moreover, both operations are
strongly compact).

Proof. Let (S, ·, 1) be the multiplicative monoid of the semiring. Since it is aperiodic, there
exists, for every s ∈ S, a minimal number ns such that sns+1 = sns and hence sn = sns

for all n ≥ ns. We put s∞ := sns . We can now define an infinitary product
∏
i∈I si by

reducing it to a finite product. For every s ∈ S, let ms := min(ns, |{i ∈ I : si = s}|)
and set

∏
i∈I si :=

∏
s∈S s

ms . The definition of infinitary sums is completely analogous.
It is easily verified, that the required properties are inherited from finite addition and
multiplication. Since the infinitary operations reduced to the finite ones, strong compactness
is also straightforward. ◀
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Let us next consider infinite lattice semirings, induced by some partial order (S,≤).

▶ Proposition 16. An infinite lattice semiring expands to an ∞-semiring if, and only if, the
underlying order is a complete lattice in which finite infima distribute over arbitrary suprema.

Proof. In a complete lattice semiring where finite infima distribute over arbitrary suprema,
the desired infinitary operations are suprema and infima, which obviously satisfy all required
properties. For the converse implication, it suffices to show that in any expansion to an
∞-semiring, infinitary summation is given by suprema. As required, this implies the existence
of arbitrary suprema and thus completeness of the lattice, and the weak distributive law w.r.t.
the semiring operations reduces to weak distributivity of the lattice operations. Suppose that
there are elements (xi)i∈I such that z :=

∑
i∈I xi is not the supremum of {xi | i ∈ I} =: X.

By partition invariance, xi⊔
∑
j∈I,j ̸=i xi = z for each i ∈ I, so z is an upper bound of X. Thus,

there must exist some other upper bound y for X such that z ̸≤ y. But weak distributivity
yields y⊓z = y⊓

∑
i∈I xi =

∑
i∈I(y⊓xi) =

∑
i∈I xi = z and thus z ≤ y, a contradiction. ◀

There are two main further classes of semirings that we consider. A particularly useful
class is the class of infinitary absorptive semirings, studied in the next section. Recall that
absorption has the consequence that multiplication is decreasing, which leads to dualities
that permit to carry over a number of classical logical properties to semiring semantics. The
other relevant class consists of the semirings that extend the natural semiring N or semirings
of polynomials such as N[X], where multiplication is increasing.

4 Infinitary Absorptive Semirings

Recall that a semiring S is absorptive if s+ st = s for all s, t ∈ S or, equivalently, 1 + t = 1
for all t ∈ S. Every absorptive semiring is idempotent (i.e., s + s = s for all s ∈ S) and
every idempotent semiring is naturally ordered. In naturally ordered semirings, addition
and multiplication are monotone w.r.t. the natural order. Further in absorptive semirings,
multiplication is decreasing (i.e., s · r ≤ s for all s, r ∈ S).

We will introduce the notion of infinitary absorptive semirings. These are based on
absorptive semirings, with some additional properties that permit to define natural infinitary
addition and multiplication operations, based on infima and suprema.

▶ Definition 17. An infinitary absorptive semiring is the expansion of an absorptive semiring
S which satisfies the additional properties that

the natural order (S,≤) is a complete lattice.
S is (fully) continuous: for every non-empty chain C ⊆ S, the supremum

⊔
C and the

infimum
d
C are compatible with addition and multiplication, i.e.

s ◦
⊔
C =

⊔
(s ◦ C) and s ◦

l
C =

l
(s ◦ C),

where (s ◦ C) := {s ◦ c : c ∈ C} for every s ∈ S and ◦ ∈ {+, ·}.

As a consequence, we can define natural infinitary addition and multiplication operations
in S, by taking suprema of finite subsums and infima of finite subproducts:∑

i∈I
si :=

⊔
I0⊆I

I0 finite

(∑
i∈I0

si

)
and

∏
i∈I

si :=
l

I0⊆I
I0 finite

( ∏
i∈I0

si

)
.
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Since addition is idempotent in absorptive semirings, the infinitary addition is in fact the
same as the supremum:

∑
i∈I si =

⊔
i∈I si. However, unless multiplication is also idempotent

(so that the semiring is a lattice semiring), infinitary products need not coincide with infima.
Indeed, we note that there are infinitary absorptive semirings in which the natural order is a
completely distributive lattice (i.e., infima and suprema satisfy a strong distributive law),
but strong distributivity does not hold for the infinitary semiring operations defined above.
One such example is the Viterbi semiring V: the natural order for V is just the usual linear
order on the real interval [0, 1], which is a completely distributive lattice, but we have seen
that the strong distributive law fails on V for uncountable index sets.

Most of the common application semirings mentioned in Sect. 2 are in fact absorptive
(with the notable exception of the natural semiring) and permit the expansion to an infinitary
absorptive semiring. Among the semirings of polynomials mentioned in Sect. 2, only S(X)
and PosBool(X) are absorptive semirings whereas N[X], B[X], and W(X) are not.

It remains to show that infinitary absorptive semirings are indeed ∞-semirings, i.e. that
they satisfy all the properties required by Definition 12. Since the infinitary properties are
based on suprema and infima, this is straightforward in most cases. For the weak distributivity
law, this is a direct consequence of the continuity of multiplication. The only property that
requires work, and also makes use of continuity of multiplication, is the partition invariance
of infinitary products (whereas for infinite sums partition invariance is trivial, because they
are just suprema).

▶ Lemma 18. Products in infinitary absorptive semirings are partition invariant.

Proof. To simplify notation, we define the abbreviation s(I0) :=
∏
i∈I0

si for finite index sets
I0 ⊆fin I. We thus have to prove that∏

i∈I
si =

l

I0⊆finI

s(I0) !=
l

J0⊆finJ

( ∏
j∈J0

l

H0⊆finIj

s(H0)
)

=
∏
j∈J

∏
i∈Ij

si.

We prove both directions. First fix a finite set I0 ⊆fin I. Since (Ij)j∈J is a partition, there
is a finite set J0 ⊆fin J such that I0 ⊆

⋃
j∈J0

Ij . Moreover, for each i ∈ Ij we clearly have
si ≥

d
H0⊆finIj

s(H0) by considering H0 = {i}. Using absorption (abs) and monotonicity
(m), we have

s(I0) =
∏
i∈I0

si
(abs)
≥

∏
i∈Ij

j∈J0

si
(m)
≥

∏
j∈J0

l

H0⊆finIj

s(H0) ≥
l

J0⊆finJ

∏
j∈J0

l

H0⊆finIj

s(H0)

which proves direction “≥”.
For the other direction, fix a finite set J0 = {j1, . . . , jk} ⊆fin J . Recall that s(I0) is a

finite product and thus associative (a). Together with continuity of multiplication (c), we get
l

I0⊆finI

s(I0) ≤
l

I0⊆fin
⋃

j∈J0

Ij

s(I0) =
l

Hj1 ⊆finIj1

. . .
l

Hjk
⊆finIjk

s(Hj1 ∪ · · · ∪Hjk
)

(a)=
l

Hj1 ⊆finIj1

. . .
l

Hjk
⊆finIjk

(s(Hj1) · · · s(Hjk
))

(c)=
( l

Hj1 ⊆finIj1

aHj1

)
· · ·

( l

Hjk
⊆finIjk

aHjk

)
=

∏
j∈J0

l

H0⊆finIj

s(H0),

which closes the proof. ◀
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The natural notion of homomorphisms between infinitary absorptive semirings are the
fully-continuous homomorphisms (which are compatible with suprema and infima of chains
in the same way as the semiring homomorphisms). Since infinitary operations are defined
through suprema and infima1, they are preserved by fully-continuous homomorphisms.

▶ Proposition 19. Every fully-continuous homomorphism h : S → S ′ between infinitary
absorptive semirings is an ∞-semiring homomorphism.

5 Polynomials and Power Series

The semirings N[X] of multivariate polynomials with a (finite) set X of indeterminates
and coefficients from N play a fundamental role for the provenance analysis of database
queries and first-order sentences. This is due to the fact that N[X] is the semiring that
is freely generated by X and has the universal property that every function h : X → S
into an arbitrary commutative semiring S uniquely extends to a semiring homomorphism
h : N[X] → S.

The question arises, whether we can extend N[X] to an infinitary semiring that has
corresponding universal properties. We must be able to infinitely often add the same
monomial (e.g., x+x+x+. . . ), add infinitely many different monomials (e.g., x+x2+x3+. . . )
and multiply the same variable infinitely often (e.g., x ·x ·x · . . . ). To address these issues, we
extend N[X] by allowing coefficients in N∞, using formal power series instead of polynomials,
and allowing exponents in N∞ (as is done for generalised absorptive polynomials). We thus
obtain semirings of generalised power series over X, denoted N∞[[X∞]]. Infinite summation
in N∞[[X∞]] is straightforward and infinite products can be defined by considering the sum
over all possible factorisations of a given monomial. Here are the formal definitions.

▶ Definition 20. Fix a finite set X of indeterminates. A monomial is a function m : X → N∞

that associates with each indeterminate an exponent. Let M be the set of all monomials.
A generalised power series is a function P : M → N∞ associating with each monomial its

coefficient. We obtain the semiring N∞[[X∞]] of generalised power series with the infinitary
sum and product defined by∑

i∈I
Pi :=

(
m 7→

∑
i∈I

Pi(m)
)

and
∏
i∈I

Pi =
(
m 7→

∑
(mi)i∈splits(m)

∏
i∈I

Pi(mi)
)
.

Here, splitsI(m) is the set of sequences (mi)i∈I of monomials with m =
∏
i∈I mi. We may

omit the index I if it is clear from the context.

The corresponding definition with an infinite set X of indeterminates is not consistent
with Definition 12, since it does not have unique powers. For the polynomial P =

∑
i<ω xi, we

have that Pω is different from Pω1 . Therefore, we only use finite sets of indeterminates. We
further note that N∞[[X∞]], even with a single indeterminate, does not preserve idempotent
elements and hence is not compact. Indeed, let Q :=

∑
i<ω ∞ · xi. Then Q2 = Q but

Qω = ∞ · x∞ +Q ̸= Q. Nevertheless N∞[[X∞]] turns out to be an important ∞-semiring,
playing a similar role as N[X] does in the finite case. To establish that N∞[[X∞]] is an
∞-semiring, we begin with somewhat technical observations about infinite powers.

1 Fully-continuous homomorphisms commute with suprema and infima of chains by definition, and thus
also with suprema/infima of the directed sets in the definition (based on arguments in [9]).
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▶ Lemma 21. Let P ∈ N∞[[X∞]] and I an infinite index set. The only possible coefficients
of

∏
i∈I P are 0, 1, and ∞.

Proof. Let Q =
∏
i∈I P , fix a monomial m and assume that Q(m) ̸= 0. Consider a sequence

(mi)i∈I ∈ splits(m) with value
∏
i∈I P (mi) > 0. If there is a monomial v that occurs only

finitely often (but at least once) in (mi)i, then by permuting the occurrences of v with other
monomials in the sequence, we obtain infinitely many pairwise different sequences in splits(m)
with the same value. Since Q(m) is the sum over all sequences in splits(m), this implies
Q(m) = ∞. Similarly, if two different monomials v, v′ occur infinitely often in (mi)i, we can
again obtain infinitely many different permutations of the sequence and Q(m) = ∞.

So the only possibility for Q(m) < ∞ is that all sequences (mi)i with
∏
i∈I P (mi) > 0

consist of only one monomial, i.e. mi = mj for all i, j ∈ I. Assume towards a contradiction
that two such sequences exist, say (v)i∈I ∈ splits(m) and (w)i∈I ∈ splits(m). Since |ω| + |I| =
|I|, we can construct a sequence (ui)i∈I that consists of countably many repetitions of v, and
|I| many repetitions of w. All indeterminates occurring in v or w must have exponent ∞ in
m, hence also (ui)i ∈ splits(m). But this sequence uses two monomials infinitely often which
implies Q(m) = ∞, contradiction.

Hence Q(m) < ∞ implies that there is only one sequence (mi)i ∈ splits(m) with value∏
i∈I P (mi) > 0, and since mi = mj for all i, j this value must be either 1 or ∞. ◀

▶ Lemma 22. N∞[[X∞]] has unique infinite powers.

Proof. We recall that N∞ satisfies compactness and thus has unique infinite powers. The
unique power property for summation in N∞[[X∞]] is inherited from N∞, as summation is
defined pointwise by summing over the coefficients of each monomial.

Multiplication requires more work. Notice that the set M of monomials is countable,
since X is finite. Let P ∈ N∞[[X∞]] and I, J two infinite index sets. It suffices to prove that

Q :=
∏
i∈I

P ≤
∏
j∈J

P =: R

due to symmetry. Fix a monomial m and a sequence (mi)i∈I ∈ splitsI(m). Consider the set
of monomials {mi | i ∈ I} occurring in this sequence. We partition this set into a set M0 of
monomials that occur only finitely often and a set M∞ of monomials that occur infinitely
often. Let I0 ⊆ I be the set of indices i with mi ∈ M0. Since M0 is countable and each
m ∈ M0 occurs finitely often, I0 is countable as well. We further fix an enumeration of the
set M∞ (which is countable as well).

We now construct a sequence (vj)j∈J ∈ splitsJ(m) by first constructing a sequence
(wl)l∈L ∈ splitsL(m) for some index set L and then applying a bijection f : J → L. We define
L as follows:

L = I0 ∪̇ (ω × ω) ∪̇ J.

We next define the elements of the sequence (wl)l∈L. We first need a “padding element” m∞
(in case |J | > |I|). If M∞ ̸= ∅, we choose an arbitrary but fixed m∞ ∈ M∞. If M∞ = ∅,
then M0 contains infinitely many monomials (each of which occurs finitely often in (mi)i∈I).
Recall that m =

∏
i∈I mi and consider the indeterminates X0 ⊆ X with finite exponents

in m. Since the exponents are finite, there can be only finitely many monomials in M0
containing an indeterminate in X0 (recall that X is finite!). Consider the infinitely many
monomials in M0 not containing an indeterminate in X0. Among these, we choose m∞
so that P (m∞) is minimal. Notice that when P (m∞) > 1, then by minimality there are
infinitely many monomials m′ ∈ M0 with P (m′) > 1, and hence

∏
i∈I P (mi) = ∞ (†).
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We are now ready to define the sequence (wl)l∈L.
if l ∈ I0, we set wl = ml (i.e., we copy all finitely often occurring monomials),
if l = (n,m) ∈ ω×ω, we set wl to the n-th monomial in M∞ (i.e., we repeat each monomial
in M∞ infinitely often); if M∞ = ∅ we set wl = m∞ (or we omit the (ω × ω)-part),
if l ∈ J , we set wl = m∞ (this is only for padding so that L has the right cardinality).

By construction, the monomials in (wl)l∈L match the monomials in (mi)i∈I in the
following sense: each monomial appears either infinitely often in both sequences, or the same
finite number of times in both sequences. The only exception is m∞ in the case M∞ = ∅,
but in this case we know that m∞ contains only indeterminates that have exponent ∞ in
m. It follows that the products of the two sequences result in the same monomial m, so
(wl)l∈L ∈ splitsL(m) as claimed.

It further follows (using compactness of N∞) that the values of the sequences are also
equal:

∏
i∈I P (mi) =

∏
l∈L P (wl). Again, the case M∞ = ∅ needs special attention. If

P (m∞) = 0, then both sequences have value 0 and are equal. If P (m∞) = 1, then repeating
m∞ does not affect the value of the sequence. If P (m∞) > 1, then we have

∏
l∈L P (wl) = ∞

due to the padding, but in this case also
∏
i∈I P (mi) = ∞ by (†) and the equality still holds.

We can finally define the sequence (vj)j∈J ∈ splitsJ(m). Notice that |L| = |J | since J is
infinite and both I0 and ω × ω are countable. We thus have a bijection f : J → L and can
set vj = wf(j). Since f is bijective, (vj)j∈J has the same product and value as (wl)l∈L, and
thus also as (mi)i∈I .

We still have to prove that Q(m) ≤ R(m). (This does not immediately follow from
the above argument, since we have to sum over all sequences, but different sequences
(mi)i∈I could be mapped to the same sequence (vj)j∈J .) We proceed by a case distinction
using Lemma 21. The case Q(m) = 0 is trivial. If Q(m) = 1, then the construction
of (vj)j∈J witnesses R(m) ≥ 1. The only other possibility is Q(m) = ∞. If there is a
sequence (mi)i∈I ∈ splitsI(m) with value ∞, then by the above construction also R(m) = ∞.
Otherwise there must be a sequence (in fact infinitely many) (mi)i∈I ∈ splitsI(m) with value
1 < s < ∞. At least two distinct monomials must occur in (mi)i∈I (otherwise the value
would be 0, 1, or ∞), and, by construction, these monomials must also be contained in the
sequence (vj)j∈J . It follows that there are infinitely many pairwise different permutations of
(vj)j∈J , and since all of these sequences occur in the summation we have R(m) = ∞. ◀

Most of the other requirements for ∞-semirings follow by applying the properties of
infinitary operations in N∞ to coefficients and exponents.

▶ Theorem 23. N∞[[X∞]] is a strongly distributive ∞-semiring.

Proof. It follows directly from the definition that addition and multiplication in N∞[[X∞]]
are compatible with finite operations and respect neutral elements, and we have already
considered infinite powers in Lemma 22. It then suffices to prove partition invariance and
strong distributivity, as these imply all remaining properties.

Partition invariance of addition follows immediately from the respective property of N∞,
as addition is defined by adding coefficients. For multiplication, fix a partition (Ij)j∈J of I.
Using strong distributivity of N∞, it remains to prove for each monomial m:(∏

j∈J

∏
i∈Ij

Pi

)
(m) =

∑
(mj)j∈splitsJ (m)

∏
j∈J

∑
(vi)i∈splitsIj

(mj)

∏
i∈Ij

Pi(vi)

=
∑

(mj)j∈splitsJ (m)

∑
f∈F

∏
j∈J

∏
i∈Ij

Pi(f(j, i))

!=
∑

(ui)i∈splitsI (m)

∏
i∈I

Pi(ui).
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Here, F is the set of choice functions that choose (vi)i ∈ splitsIj
(mj) for each j. To simplify

the presentation, we let f(j, i) = vi for the chosen sequence (i.e., we include the index i as
argument).

We prove both directions of the last equality. First let (ui)i ∈ splitsI(m). Set mj =∏
i∈Ij

ui. Then (mj)j ∈ splitsJ(m) by comparing exponents and using partition invariance
of N∞. For i ∈ Ij , we define f(j, i) = ui. Since each i occurs in exactly one Ij , we
have

∏
j∈J

∏
i∈Ij

Pi(f(j, i)) =
∏
i∈I Pi(ui) by partition invariance of N∞. Notice that our

construction (ui)i 7→ ((mj)j , f) is injective, so direction ≥ holds (by partition invariance of
addition in N∞).

For the other direction, let (mj)j ∈ splitsJ (m) and f ∈ F . For each i ∈ I, pick the unique
j with i ∈ Ij and set ui = f(j, i). Then (by partition invariance of N∞ in each exponent):∏

i∈I
ui =

∏
j∈J

∏
i∈Ij

ui =
∏
j∈J

∏
i∈Ij

f(j, i) =
∏
j∈J

mj = m,

so (ui)i ∈ splitsI(m). Applying the same argument to the coefficients yields∏
i∈I

Pi(ui) =
∏
j∈J

∏
i∈Ij

Pi(ui) =
∏
j∈J

∏
i∈Ij

Pi(f(j, i)).

Again, the mapping ((mj)j , f) 7→ (ui)i we construct is injective, so direction ≤ holds as well.

To prove strong distributivity, let (Ij)j∈J be a partition of I and F be the set of choice
functions f with f(j) ∈ Ij . Strong distributivity then follows from strong distributivity and
partition invariance of N∞:(∏

j∈J

∑
i∈Ij

Pi

)
(m) =

∑
(mj)j∈splitsJ (m)

∏
j∈J

∑
i∈Ij

Pi(mj)

=
∑

(mj)j∈splitsJ (m)

∑
f∈F

∏
j∈J

Pf(j)(mj)

=
∑
f∈F

∑
(mj)j∈splitsJ (m)

∏
j∈J

Pf(j)(mj)

=
(∑
f∈F

∏
j∈J

Pf(j)

)
(m). ◀

We now establish a kind of universal property of N∞[[X∞]]. This shows, in particular,
that N∞[[X∞]] is the free strongly distributive ∞-semiring.

▶ Theorem 24 (κ-universality). Let S be a κ-distributive ∞-semiring. Every mapping
h : X → S extends uniquely to a semiring κ-homomorphism h : N∞[[X∞]] → S.

Proof. For every element s ∈ S there exist unique elements ∞ · s =
∑
i∈I s and s∞ =

∏
i∈I s

for all infinite index sets I. Thus, n · s and sn are well-defined for all s ∈ S and n ∈ N∞. We
first lift h to monomials m by setting h(m) :=

∏
x∈X h(x)m(x). By partition invariance, h

commutes with (finite and infinitary) products of monomials:

h(
∏
i∈I

mi) =
∏
x∈X

h(x)
∑

i∈I
mi(x) =

∏
x∈X

∏
i∈I

h(x)mi(x) =
∏
i∈I

∏
x∈X

h(x)mi(x) =
∏
i∈I

h(mi).

We write power series P ∈ N∞[[X∞]] as P =
∑
m∈M (P (m) · m). Then h is uniquely

defined by h(P ) :=
∑
m∈M (P (m) ·h(m)). We need to show that h commutes with the (finite

and infinitary) semiring operations. Since infinitary operations are compatible with the finite
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ones, it suffices to prove that h commutes with the infinitary sum and product. This is easy
for summation (over index sets of arbitrary cardinality) due to partition invariance:

h
(∑
i∈I

Pi

)
=

∑
m∈M

(∑
i∈I

Pi(m)
)

· h(m) =
∑
m∈M

∑
i∈I

(Pi(m) · h(m)) =
∑
i∈I

h(Pi).

For products, we use partition invariance (pi) and strong distributivity (sd) for the cardinality
of I. Let F be the set of (unrestricted) functions f : I → M . Then,∏

i∈I
h(Pi) =

∏
i∈I

∑
m∈M

(Pi(m) · h(m)) (sd)=
∑
f∈F

∏
i∈I

Pi(f(i)) · h(f(i))

(pi)=
∑
m∈M

∑
(mi)i∈splits(m)

(∏
i∈I

(Pi(mi) · h(mi))
)

(pi)=
∑
m∈M

∑
(mi)i∈splits(m)

(∏
i∈I

Pi(mi) ·
∏
i∈I

h(mi)
)

=
∑
m∈M

∑
(mi)i∈splits(m)

((∏
i∈I

Pi(mi)
)

· h(m)
)

(pi)=
∑
m∈M

( ∑
(mi)i∈splits(m)

∏
i∈I

Pi(mi)
)

· h(m) = h
(∏
i∈I

Pi

)
. ◀

▶ Remark 25. Notice that Theorem 24 no longer holds if we drop the exponent ∞. It is not
clear how the infinite power x · x · x · · · is then defined, but we can argue by case distinction
that in any case, the universal property is violated.

If
∏
i<ω x = 0, then h(

∏
i<ω x) = 0 ̸= 1 =

∏
i<ω h(x) for h(x) = 1 (say in the Viterbi

semiring).
If P =

∏
i<ω x ̸= 0, then there must a monomial m (with finite exponents) and coefficient

P (m) = n > 0. For h(x) = 1
2 into the Viterbi semiring, we then get h(P ) ≥ h(n ·m) =

n · h(m) = h(m) > 0, but also
∏
i<ω h(x) = ( 1

2 )∞ = 0, contradiction.

▶ Remark 26. Observe that N∞[[X∞]] is not fully continuous. To see this, consider the
decreasing chain Pi =

∑
i<j<ω x

j , where the monomial xi disappears in the i-th step and the
infimum is thus 0. Then x∞ ·

d
i Pi = x∞ · 0 = 0, but

d
i(x∞ · Pi) =

d
i ∞ · x∞ = ∞ · x∞.

Similar constructions of universal infinitary semirings are possible for smaller classes of
semirings. For idempotent semirings, the appropriate semiring is B[[X∞]], which is constructed
in the same way as N∞[[X∞]] but with Boolean coefficients. The above proofs can easily be
adapted to show that B[[X∞]] is a strongly distributive ∞-semiring and satisfies κ-universality
for all idempotent κ-distributive semirings.

For absorptive semirings, the appropriate choice are generalised absorptive polynomials
S∞(X), for a finite set X of indeterminates. These are known to be the freely generated
absorptive, fully-continuous semirings (cf. [1]). Since fully-continuous homomorphisms are also
∞-homomorphisms (by Proposition 19), S∞(X) is universal also for all infinitary absorptive
semirings (notice that we do not have to assume strong distributivity here). More recently,
a version of S∞(X) with infinite indeterminate set X was studied in [11]. The resulting
semiring is no longer fully continuous, but it is still κ-universal for infinitary absorptive
semirings in the sense of Theorem 24 (i.e., assuming κ-distributivity of the target semiring).

Additionally requiring idempotence of multiplication leads to the class of lattice semirings.
For a finite set X of indeterminates, the freely generated lattice semiring, also called
PosBool(X), is finite and hence infinitary operations become trivial. For infinite X, one can
consider the free completely distributive lattice (see, e.g., [10]) which, in our terminology, is
universal for all strongly distributive infinitary lattice semirings.
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6 Semiring Provenance for First-Order Logic

For a given finite relational vocabulary τ , we denote by Litn(τ) the set of literals Rx̄ and
¬Rx̄ where R ∈ τ and x̄ is a tuple of variables from {x1, . . . , xn}. The set LitA(τ) refers to
literals Rā and ¬Rā that are instantiated with elements from a universe A.

▶ Definition 27 (S-interpretation). Given an ∞-semiring, S, a mapping π : LitA(τ) → S
is an S-interpretation (of vocabulary τ and universe A). We say that S is model-defining
if exactly one of the values π(L) and π(¬L) is zero for any pair of complementary literals
L,¬L ∈ LitA(τ).

An S-interpretation π : LitA(τ) → S inductively extends to valuations π[[φ(ā)]] of in-
stantiated first-order formulae φ(x̄) in negation normal form. Equalities are interpreted by
their truth value, that is π[[a = a]] := 1 and π[[a = b]] := 0 for a ̸= b (and analogously for
inequalities). Based on that, the semantics of disjunction and existential quantifiers is defined
via (possibly infinitary) sums, while conjunctions and universal quantifiers are interpreted as
(possibly infinitary) products.

π[[ψ ∨ ϑ]] := π[[ψ]] + π[[ϑ]] π[[ψ ∧ ϑ]] := π[[ψ]] · π[[ϑ]]

π[[∃xφ(x, b̄)]] :=
∑
a∈A

π[[φ(a, b̄)]] π[[∀xφ(x, b̄)]] :=
∏
a∈A

π[[φ(a, b̄)]]

Negation is handled via negation normal form (denoted nnf), i.e. for every ψ ∈ FO we
identify π[[¬ψ]] with π[[nnf(¬ψ)]]. This will allow us to compare valuations π[[ψ]] and π[[¬ψ]] in
a meaningful way. We now examine, which of the basic properties of first-order provenance,
as listed for instance in [6] extend to the infinitary case. We start with the fundamental
property for first-order provenance which is just the simple fact that semiring valuations are
compatible with semiring homomorphisms. This obviously translates to the infinitary case,
for homomorphisms that also preserve infinitary sums and products.

▶ Proposition 28 (Fundamental Property). Let π : LitA(τ) → S be an S-interpretation with
universe A of cardinality at most κ, and let h : S → S ′ be a semiring κ-homomorphism.
Then, (h ◦ π) is an S ′-interpretation and h(π[[φ(ā)]]) = (h ◦ π)[[φ(ā)]] for all φ(x̄) ∈ FO(τ)
and instantiations ā ⊆ A.

Naturally ordered semirings are +-positive, and this trivially extends to infinite sums:∑
i∈I si = 0 only if si = 0 for all i ∈ I. Recall that a semiring is positive if it is +-positive

and has no divisors of 0. However, in many relevant positive semirings it my be the case
that an infinite product evaluates to 0, although all its factors are positive. Simple examples
are products

∏
i<ω si with si ≤ 1 − ε in the Viterbi semiring. We shall see that this may

lead to the sometimes undesirable effect, that the semiring valuation of a true sentence may
evaluate to 0.

▶ Definition 29. We call an ∞-semiring ∞-positive if it is positive, and any infinitary
product of non-zero elements is also non-zero.

The characterisation of positive semirings by homomorphisms into the Boolean semiring
extends to ∞-positivity.

▶ Lemma 30. An ∞-semiring S is ∞-positive if, and only if, †S : S → B, defined by

†S (s) =
{

⊤ if s ̸= 0
⊥ if s = 0

is an ∞-homomorphism.
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A model-defining S-interpretation π : LitA(τ) → S defines the unique (classical) structure
Aπ with universe A, such that Aπ |= L for a literal L ∈ LitA(τ) if, and only if, π(L) ̸= 0. We
can identify Aπ with its canonical B-interpretation †S ◦ π which maps the true literals to ⊤,
and the false ones to ⊥. (Notice that †S ◦ π is well-defined for every semiring, although †S is
an ∞-homomorphism, only for ∞-positive semirings.)

Here is an associated semantical notion. We call S truth-preserving (for first-order logic)
if for every model-defining S-interpretation and every sentence ψ ∈ FO(τ) we have that
π[[ψ]] ̸= 0 if, and only if Aπ |= ψ.

▶ Proposition 31. A ∞-semiring S is truth-preserving if, and only if, it is ∞-positive.

Proof. If S is ∞-positive then †S is an ∞-homomorphism. Given any model-defining
S-interpretation π, then by the fundamental property,

Aπ |= ψ ⇐⇒ (†S ◦ π)[[ψ]] = ⊤ ⇐⇒ †S(π[[ψ]]) = ⊤ ⇐⇒ π[[ψ]] ̸= 0.

Conversely, assume that S is an infinitary semiring that is not ∞-positive. Then there exists
a non-empty finite or infinite sequence (sa)a∈A such sa ≠ 0 for all a ∈ A, but

∏
a∈A sa = 0.

We use this to define an S-interpretation with universe A and one unary predicate P such
that π(Pa) = sa (and π(¬Pa) = 0) for all a ∈ A. The model defined by π is Aπ = (A,P )
with P = A, and clearly Aπ |= ∀xPx. However, π[[∀xPx]] =

∏
a∈A sa = 0, so S is not

truth-preserving. ◀

Many interesting semiring interpretations in provenance analysis do not define a single
structure but a whole class of structures (with common universe and common vocabulary). In
general, we can assume that such interpretations are consistent, in the sense that valuations
of complementary literals satisfy certain constraints, although they need not be as strict
as those for model-defining interpretations. We examine how such constraints for literals
constrain the valuations of arbitrary first-order sentences.

▶ Proposition 32. Let π : LitA(τ) → S be a S-interpretation.
If for every L ∈ LitA(τ) at least one of π(L) and π(¬L) is 0 then for any sentence
ψ ∈ FO, at least one of π[[ψ]] and π[[¬ψ]] is 0.
If for every L ∈ LitA(τ) we have π(L) · π(¬L) = 0 then for any sentence ψ we have
π[[ψ]] · π[[¬ψ]] = 0.

Proof. If ψ is not a literal, then there exists a finite or infinite collection of (φi)i∈I of
sentences such that one of the values π[[ψ]] and π[[¬ψ]] is the sum

∑
i∈I [[φi]], and the other is

the product
∏
i∈I π[[¬φi]]. To prove the first claim, assume that π[[ψ]] and π[[¬ψ]] are both

non-zero. It follows that all values π[[¬φi]] are non-zero. But by induction hypothesis, this
implies that all values π[[φi]], and hence also their sum, must be 0, so we have a contradiction.

For the second claim, assume by induction hypothesis, that π[[φi]] · π[[¬φi]] = 0 for all
i ∈ I. With weak distributivity, it then follows that

π[[ψ]] · π[[¬ψ]] =
∑
i∈I

π[[φi]] ·
∏
j∈I

π[[¬φj ]] =
∑
i∈I

(
π[[φi]] ·

∏
j∈I

π[[¬φj ]]
)

=
∑
i∈I

(
π[[φi]] · π[[¬φi]] ·

∏
j∈I\{i}

π[[¬φj ]]
)

= 0. ◀

Proposition 32 holds in arbitrary ∞-semirings and supports a kind of “consistency”, with
the two kinds coinciding when the semiring has no divisors of 0. A related question concerns
the constraint that complementary literals are not both mapped to 0, i.e. they are not both
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considered false under the same interpretation. We would like to conclude that this constraint
as well translates to arbitrary sentences. But this is, in general, true only for ∞-positive
∞-semirings.

▶ Proposition 33. Let π : LitA(τ) → S be an S-interpretation into a ∞-positive ∞-semiring.
If for every L ∈ LitA(τ) we have π(L) ̸= 0 or π(¬L) ̸= 0 (equivalently, π(L) + π(¬L) ̸= 0)
then for any sentence ψ we have π[[ψ]] ̸= 0 or π[[¬ψ]] ̸= 0 (equivalently, π[[ψ]] + π[[¬ψ]] ̸= 0).

Proof. Towards a contradiction, suppose that π[[ψ]] = π[[¬ψ]] = 0. As in the proof above,
take sentences (φi)i∈I such that one of the values π[[ψ]] and π[[¬ψ]] is the (finite or infinite)
sum

∑
i∈I [[φi]], and the other is the (finite or infinite) product

∏
i∈I π[[¬φi]]. Since S is

∞-positive, it follows that π[[¬φi]] = 0 for at least one i ∈ I. By induction hypothesis,
π[[φi]] ̸= 0, which, by +-positivity, contradicts the assumption that π[[ψ]] = 0. ◀

The example given in the proof of Proposition 31 shows that the condition of ∞-positivity
is necessary for this proposition.

7 Proof Trees

A fundamental theorem for the provenance analysis of first-order logic says that, for every
semiring interpretation (over a finite domain) the valuation of a first-order sentence coincides
with the sum of the valuations for its proof trees or, equivalently, the sum of the valuations of
the strategies for the verifier in the associated model checking game. In game theoretic terms
this has been shown in [5], and in terms of proof trees, this is presented in [6]. The question
arises under which conditions this theorem generalises to semiring interpretations over infinite
domains. For this purpose, we inspect the proof of the Sum-of-Proof-Trees-Theorem [6, Sect.
3.5] to see what properties of the infinitary semiring operations are needed for extending the
proof to infinite domains. We first recall the relevant definitions.

An evaluation tree for a sentence ψ ∈ FO(τ) on a (possibly infinite) universe A is a
directed tree T whose nodes are labelled by formulae φ(ā), where φ(x̄) is an occurrence2 of
a subformula in ψ whose free variables x̄ are instantiated by a tuple ā of elements from A,
such that the following conditions hold.

The root of T is ψ.
A node φ ∨ ϑ has one child which is labelled by either φ or ϑ.
A node φ ∧ ϑ has two children labelled by φ and ϑ, respectively.
A node ∃y φ(ā, y) has one child labelled φ(ā, b) for some b ∈ A.
A node ∀y φ(ā, y) has for each for all b ∈ A a child labelled by φ(ā, b) for all b ∈ A.
The leaves of T are literals L ∈ LitA(τ).

For any literal L, #L(T ) ∈ N ∪ {∞} denotes the number of occurrences of L in T . The
valuation of T for a semiring interpretation π : LitA(τ) → S into an infinitary semiring S is
defined as

π(T ) :=
∏

L∈LitA(τ)

π(L)#L(T ).

Since S has unique infinite powers, there is a well-defined value π(L)∞ ∈ S, hence π(T ) is
well-defined for all S-interpretations π into ∞-semirings.

2 Notice that we consider different occurrences of the same subformula as separate objects. In particular,
a sentence φ ∨ φ has twice as many evaluation trees as φ.
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A proof tree for π and ψ ∈ FO(τ) is an evaluation tree T with π(T ) ̸= 0. If π is clear
from the context, we write T (ψ) for the set of all proof trees for π and ψ.

▶ Theorem 34 (Sum of Proof Trees). Let A be domain of cardinality < κ, and let S be a
κ-distributive ∞-semiring. For every semiring interpretation π : LitA(τ) → S and every
sentence ψ ∈ FO(τ), we have that

π[[ψ]] =
∑

T ∈T (ψ)

π(T ).

Proof. We proceed by induction on ψ.
Let ψ be a literal. If π(ψ) = 0 then ψ has no proof tree, so the sum over the valuations
of its proof trees is 0. Otherwise ψ has precisely one proof tree which is the literal itself.
In both cases, the desired equality holds trivially.
Let ψ = φ ∨ ϑ. A proof tree T for ψ has the root ψ followed by a proof tree T ′ for either
φ or for ϑ; clearly π(T ) = π(T ′). Thus

π[[ψ]] = π[[φ]] + π[[ϑ]] =
∑

T ′∈T (φ)

π(T ′) +
∑

T ′∈T (ϑ)

π(T ′) =
∑

T ∈T (ψ)

π(T ).

Let ψ = φ ∧ ϑ. A proof tree T for ψ has the root ψ, attached to which are a proof tree
T ′ for φ and a proof tree T ′′ for ϑ. We can thus identify every T ∈ T (ψ) with a pair
(T ′, T ′′) ∈ T (φ) × T (ϑ), and since #L(T ) = #L(T ′) + #L(T ′′) for every literal L we
have that, π(T ) = π(T ′)π(T ′′). It follows, by weak distributivity, that

π[[ψ]] = π[[φ]] · π[[ϑ]] =
∑

T ′∈T (φ)

π(T ′) ·
∑

T ′′∈T (ϑ)

π(T ′′)

=
∑

(T ′,T ′′)∈T (ψ)

π(T ′)π(T ′′) =
∑

T ∈T (ψ)

π(T ).

If ψ = ∃y φ(y), then a proof tree T for ψ consists of the the root ψ, attached to which is
a proof tree Ta for φ(a), for some a ∈ A. Clearly π(T ) = π(Ta). It follows, by partition
invariance of the infinitary sum, that

π[[ψ]] =
∑
a∈A

π[[φ(a)]] =
∑
a∈A

∑
Ta∈T (φ(a))

π(Ta) =
∑

T ∈T (ψ)

π(T ).

Let finally ψ = ∀y φ(y). A proof tree for ψ consists of the the root ψ attached to which
are proof trees Ta for φ(a), for all a ∈ A. We can thus identify such a proof tree with a
choice function T that associates with every a ∈ A a proof tree Ta ∈ T (φ(a)), and thus
T (ψ) with the set of such choice functions. Further, for every literal L, we have that
#L(T ) =

∑
a∈A #L(Ta) and therefore π(T ) =

∏
a∈A π(Ta). It follows, by κ-distributivity

for the index set A, that

π[[ψ]] =
∏
a∈A

π[[φ(a)]] =
∏
a∈A

∑
T ∈T (φ(a))

π(T ) =
∑

T ∈T (ψ)

∏
a∈A

π(Ta)) =
∑

T ∈T (ψ)

π(T ). ◀

▶ Example 35. To see that κ-distributivity is not only used in the proof, but is indeed
necessary for the the Sum-of-Proof-Trees-Theorem, we present an example of a semiring
interpretation into the Viterbi semiring V = ([0, 1]R,max, ·, 0, 1) (a ω1-distributive ∞-semiring
whose infinitary operations are supremum and infinite product) over the uncountable domain
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P∞(N) of infinite sets of natural numbers and the vocabulary of one binary relation E. The
interpretation π : LitP∞(N)({E}) → V is defined by

π(Eab) :=
{

0 if a ∩ b = ∅
1 − 1

2+min(a∩b) otherwise.

Let ψ := ∀x∃yExy. If the Sum-of-Proof-Trees-Theorem were true also in this case, we would
have that

π[[ψ]] = sup
T ∈T (ψ)

π(T ).

But this is not the case. On the one side, we have that

π[[ψ]] =
∏

a∈P∞(N)

sup
b∈P∞(N)

π(Eab) = 1.

Indeed, for every infinite subset a ⊆ N and every n ∈ N we can take b := a ∩ [n,∞), and we
then have that π(Eab) ≥ 1 − 1

2+n which implies that supb∈P∞(N) π(Eab) = 1 for every a.
On the other side, the proof trees in T (ψ) are in one-to one correspondence with the

functions e : P∞(N) → P∞(N) such that a ∩ e(a) ̸= ∅ for all a. Let Te be the proof tree
associated with e. From its root ψ, Te branches out to the nodes ∃yEay, for all a ∈ P∞(N),
each of which has a unique child Eab, namely the one with b = e(a). The valuation of Te is

π(Te) =
∏

a∈P∞(N)

π(Eae(a)) =
∏
n∈N

(1 − 1
2+n )#{a: min(a∩e(a))=n}.

Since there are uncountably many a ∈ P∞(N) there exist n ∈ N such that min(a∩ e(a)) = n

for infinitely (in fact uncountably) many a. Hence π(Te) is an infinite product in which
infinitely many factors are (1 − 1

2+n ), hence π(Te) = 0. Since this holds for all e, and hence
all proof trees for ψ we have that

sup
T∈T (ψ)

π(T ) = 0 ̸= 1 = π[[ψ]].

Similar examples can be constructed for the semirings T, L and D.

An interesting application of the Sum-of-Proof-Trees-Theorem concerns interpretations
into semirings with dual indeterminates, as proposed in [4] and further studied in [6].

Let X, X̄ be two disjoint finite sets of indeterminates together with a one-to-one cor-
respondence X ↔ X̄, and denote by x ∈ X and x̄ ∈ X̄ two elements that are in this
correspondence. We shall use X for positive literals Rā and X̄ for negated literals ¬Rā. By
convention, if we annotate Rā with x, then x̄ can only be used to annotate ¬Rā, and vice
versa. We refer to x and x̄ as complementary variables.

Analogous to the construction of the semiring N[X, X̄] of dual-indeterminate polynomials
in [4] we can define the semiring of dual-indeterminate power series N∞[[X∞, X̄∞]] as the
quotient of N∞[[(X ∪ X̄)∞]] via the congruence induced by x · x̄ = 0, or, equivalently, as the
semiring of power series with indeterminates in X ∪ X̄ whose monomials do not contain
complementary variables. We can multiply such power series as above, provided that we
eliminate the monomials with complementary variables afterwards.

Most of the results and applications exhibited in [6] generalise to this setting. As an
example, we mention the information that the Sum-of-Proof-Trees-Theorem delivers for
model-compatible interpretations.

Tannen’s Festschrift
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▶ Definition 36. A model-compatible N∞[[X∞, X̄∞]]-interpretation is a semiring interpreta-
tion π : LitA(τ) → N∞[[X∞, X̄∞]] such that for each atom Rā one of the following (mutually
exclusive) three properties holds:
1. π(Rā) = x and π(¬Rā) = x̄ for some x ∈ X, or
2. π(Rā) = 0 and π(¬Rā) = 1, or
3. π(Rā) = 1 and π(¬Rā) = 0.

Contrary to model-defining interpretations, a model-compatible interpretation π defines,
in general, not a single structure, but a class of structures compatible with π, consisting of
all structures A (with universe A and vocabulary τ) such only those literals L ∈ LitA(τ) can
be true in A for which π(L) ∈ X ∪ X̄ ∪ {1}.

▶ Corollary 37. Let π : LitA(τ) → N∞[[X∞, X̄∞]] be model-compatible and let ψ be sentence
in FO(τ). Then the power series π[[ψ]] describes all proof trees that verify ψ using premises
from the literals that π maps to indeterminates or to 1.

Specifically, each monomial c xe1
1 · · ·xek

k in π[[ψ]] stands for c distinct proof trees that use
e1 times the literal annotated by x1, . . . , and ek times the literal annotated by xk, where
x1, . . . , xk ∈ X ∪ X̄. In particular, when π[[ψ]] = 0 no proof tree exists, and hence there is no
model of ψ that is compatible with π.

8 Summary and Conclusion

Up to now, semiring provenance has essentially been restricted to finite data, typically
to database queries against a finite, possibly annotated, database, to first-order sentences
evaluated over a finite domain, or to the strategy analysis for a (possibly infinite) game,
played on a finite game graph.

In this paper we have provided foundations for semiring provenance over infinite domains.
This required to expand semirings by infinitary sum and product operators, and we have
investigated in detail the necessary, or at least desirable, algebraic properties that should
hold for these operators. Clearly the infinitary operators must be compatible with finite sums
and products. Partition invariance, a natural generalisation of associativity, turned out to be
a quite strong property which also implies bijection invariance, the natural generalisation of
commutativity. However, we have seen that these basic properties do not suffice to exclude
“pathological” operators, and we have investigated a number of other algebraic properties,
including (strong) compactness, the respect of neutral and idempotent elements, and the
existence of unique powers. We have seen that compactness is a very powerful property,
which implies the other ones, but since it is sometimes hard to verify, and does in fact not
hold in all interesting semirings, we have decided not to impose it as a necessary requirement
in our definition of infinitary semirings. Instead we work with the weaker requirements that
neutral elements are respected and that there exist unique infinite powers.

Distributivity and monotonicity are the fundamental algebraic properties that govern the
interplay of sums and products in (naturally ordered) semirings. The generalisation of the
distributive law from finite to infinitary semirings comes in two variants, a weak one and a
strong one. While weak distributivity is unproblematic in the semirings we consider, it turned
out that strong distributivity is more delicate. In some important semirings it does not hold
for arbitrary index sets but only for countable ones. On the other side, strong distributivity
is an important property which, for instance, implies monotonicity and is also used later in
the Sum-of-Proof-Trees-Theorem. We decided to omit strong distributivity in our definition
of infinitary semirings, and to require only weak distributivity and monotonicity. Instead we
have introduced also the variant of a κ-distributive infinitary semiring.
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Based on this algebraic analysis, and on the requirements for provenance valuations
on infinite structures, we thus have come to a proposal for an appropriate definition of
infinitary semirings. We have also discussed the appropriate notions of homomorphisms
among infinitary semirings. We have studied how finite semirings and infinite lattice semirings
can be expanded to infinitary semirings, and we have seen that the extension N∞ of the
natural semiring N is a strongly distributive infinitary semiring. For the class of absorptive
semirings, multiplication is decreasing and hence infinitary operations can be defined in a
natural way by suprema and infima over finite subsets. Finally we have investigated the
generalisation of the universal semiring of multivariate polynomials, N[X], to an infinitary
semiring N∞[[X∞]] of generalised power series. We have proved that N∞[[X∞]] is indeed
universal for strongly distributive infinitary semirings.

In the last two sections, we have shown that, based on these infinitary semirings, the
provenance analysis for first-order logic can indeed be extended from finite structures to
infinite ones, preserving the basic results of the theory. In particular, we have proved that
the Sum-of-Proof-Trees-Theorem, saying that the semiring valuation of a first-order sentence
coincides with the sum of the valuations of its proof trees, also holds on domains < κ,
provided that the underlying infinitary semiring is κ-distributive. Further, we have briefly
discussed the use of dual indeteminates (for treating negation) which leads to semirings of
dual-indeterminate generalised power series. The Sum-of-Proof-Trees-Theorem, applied to a
model-compatible interpretation into such a semiring, gives valuations that describe all proof
trees of a sentence, with precise information, which of the tracked literals are actually used
in a proof tree, and how often.

A limitation of this result is that the semirings of generalised power series have only
finitely many indeterminates. This means that although we can deal with infinite structures,
we can track inside of these only finitely many literals, and take the truth values of the others
for granted. Over an infinite universe, a model-compatible interpretation thus defines a class
of structures in which the truth values of all but finitely many literals coincide. In this way,
we can thus track finite data embedded into an infinite background structure, but not the
collection of all atomic facts in an infinite structure. For the Sum-of-Proof-Trees-Theorem as
such, no such restriction applies, so it can be used for provenance valuations in application
semirings over arbitrary infinite domains.

To overcome this limitation of N∞[[X∞]], we would need universal provenance semirings
with infinitely many variables. We have seen that for N∞[[X∞]] itself, the extension to infinite
sets X would not be consistent with our definition of infinitary semirings, but such extensions
seem possible in settings of absorptive provenance semirings such as S∞(X) and PosBool(X),
and perhaps also for Why-semirings. But this will have to be studied elsewhere.
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Abstract
Among the many research accomplishments of Val Tannen, his work on provenance and semirings is
probably the most widely known. In this paper, we discuss questions that arise when applying this
general framework to the setting of curated databases, and in particular the setting where we can
have multiple annotations on the same data, as well as annotations on annotations.
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1 Background

By rights, Val Tannen should be a co-author of this short discussion because most of the
ideas arose from ongoing conversations with him about the need to put several annotations
on the same structure. There are various reasons for wanting to do this, the most important
being that it is common in practice to find structures with multiple annotations, and the
distinction between annotation and data is not always clear.

What we want to do in this paper is first to compare provenance and annotation:
provenance being something that describes, or is intrinsic to, the formation of data; annotation
being something that is superimposed on data after its formation. Second, to look at the
commonplace practice of having multiple annotations on a structure. How do we represent
annotations on annotations, and how well does this fit with the elegant theory of semirings [8]
for which Val Tannen is responsible?

Provenance and annotation have been studied together by the database community for 25
years or more [2,6,16,17]. They are obviously connected: provenance is a form of annotation,
and provenance may tell us how annotations should propagate through queries. Green,
Karvounarakis and Tannen’s original work [8] on semirings referred to them as “provenance
semirings”, other researchers [10,12] have used the term “annotation semirings”. What we
claim is that provenance and annotation are also fundamentally different and it is worth
examining these differences.

1.1 Provenance
While there is an unending sequence of attempts to define, characterize, formalize and
standardize provenance, all of them agree that provenance concerns the properties of the
process by which something has been formed and used. Provenance of any kind is hence an
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account of the history of an object. As such we do not expect to modify it. Indeed, there are
efforts, both in databases [14] , and more generally [15], to ensure that one does not “rewrite
history”. One might argue that, ideally, everything should carry its provenance, and that
provenance – whatever definition one chooses – is an unalterable, intrinsic, property of an
object. This does not mean that there has to be a unique model of provenance; but if one
has two definitions of provenance there has to be a notion of consistency and a method to
combine the two. For instance, in [9] there is a hierarchy of semirings that shows how one
semiring may be “more informative” with respect to provenance than another.

1.2 Annotation
Whereas the database community started to worry seriously about provenance and annotation
at the start of the millennium, the practice of annotating data was widespread in curated
databases at least ten years earlier. In stark contrast to provenance, annotations are regarded
as being added to, or superimposed upon, existing data. For instance, the widely used
Swissprot/Uniprot [1] database is regarded as a secondary database built on top of underlying
sequence data (the primary data). Similarly, geospatial databases may be regarded as
annotations on a terrestrial coordinate system.

Informally, annotation has the following properties: annotations are placed on data
after it has been created; annotations do not “influence” the data they annotate; and if
the underlying data changes, annotations may become invalid. Of course, without a proper
representation of the notions of time, influence or update in a database, we cannot expect
to formulate these conditions. But, in practice they are understood and follow naturally
from keeping annotated data in a separate database together with a copy or view of the
underlying primary data.

The curators and users of curated databases typically know which parts of the database
are imported from the primary data and which fields are added as annotation. The distinction
between annotation and the primary data is hence conveyed by some elementary form of
provenance although this provenance information is not necessarily explicitly represented in
the database.

2 Provenance and Simple Annotation

As a practical illustration of provenance and annotation in a curated database, Table 1 shows
the relational schema of the object table of the GtoPdb [13] database. This is a base table and
several other tables, all of which describe various substances, implicitly inherit and extend this
schema. In this table, the columns object_id, name, abbreviation, and systematic_name form
the primary data. The columns last_modified and old_object_id record some rudimentary
provenance information. All other columns are annotation, either commenting on the primary
data, or (like in_gctp) recording whether the primary data should be exported in a particular
view on the database.

What is remarkable about this schema is first that most of it is annotation and second,
as we shall see, that most of the annotation fields can usefully be given a semiring structure.
It is also interesting that last_modified, a field that we have associated with provenance also
has a simple semiring structure.

As we noted above, provenance appears to be a form of annotation. This is in particular
true for the last_modified and old_object_id columns in Table 1. Conversely, if as in [2,9],
one wants to study the propagation of annotations through queries, one should understand
provenance. If, for example, we want to know whether a tuple in the result of a query should
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Table 1 Schema of the GtoPdb [13] object table.

Column Type
object_id integer
name varchar(1000)
abbreviation varchar(100)
systematic_name varchar(100)
old_object_id integer
last_modified date
comments text
structural_info_comments text
annotation_status integer
only_iuphar boolean
grac_comments text
only_grac boolean
no_contributor_list boolean
quaternary_structure_comments text
in_cgtp boolean
in_gtip boolean
gtip_comment text
in_gtmp boolean
gtmp_comment text
cite_id varchar(20)

be included in a view specified by a field in_gctp, then we should be able to use provenance
to determine the value of that field. In fact one can use semirings and the semiring semantics
of relational algebra to describe the propagation of such fields. If there is only a single
annotation column C, and if the values in this column can be ascribed a semiring structure
K, such as is for example the case for the in_cgtp column in Table 1 where K is the Boolean
semiring, then we can simply propagate the annotation C by means of the semiring semantics
introduced in [8].
▶ Remark. Before continuing our discussion, it is worth noting that we have to be careful in
choosing the semiring K we intend to work in. Indeed, the formal definition of K-relations
proposed in [8] interprets all tuples that are annotated with the semiring’s additive unit 0 as
being absent from the database, i.e., non-existent. This need not be the semantics that one
wants. For example, in GtoPdb database and assuming that in_cgtp is the only annotation
attribute, a value of 0 in in_cgtp does not mean that the tuple is non-existent or should
be deleted. Rather, it means that the tuple should not be exported to the gctp view. This
difference can be resolved by moving to a semiring other than the Boolean semiring. This
alternate semiring has pairs (b1, b2) of booleans as elements; where b1 = 0 implies that b2 = 0
and where b1 = 0 indicates that the tuple is really not present. Otherwise, b1 = 1 indicates
tuple presence and b2 indicates whether the tuple is exported to in_gctp. The semiring
operations are defined pointwise in the obvious manner. For reasons of parsimony we will
ignore this issue and continue to work with the Boolean semirings for fields such as in_gctp.

The GtoPdb object table (Table 1) illustrates the common practice in curated databases
of having multiple annotations; and this leads to the following question, central to this paper.

How does one collectively propagate this multitude of annotations? In particular,
can we always cast this as a form of semiring provenance and, if so, what is the
semiring structure required? Moreover, how may we implement such propagation?

Tannen’s Festschrift
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I1 =

A B . . . X Y Z

a1 b1 . . . 1 1 0
a2 b2 . . . 0 1 0
a3 b3 . . . 0 0 0
a4 b4 . . . 1 1 1

I2 =

A B . . . A
a1 b1 . . . {X, Y }
a2 b2 . . . {Y }
a3 b3 . . . ∅
a4 b4 . . . {X, Y, Z}

I3 =

A B . . . A′

a1 b1 . . . X

a1 b1 . . . Y

a2 b2 . . . Y

a4 b4 . . . X

a4 b4 . . . Y

a4 b4 . . . Z

together with the base instance I

and πAB...I3 ⊆ I

Figure 1 Three ways of annotating with sets.

To give some insights into this question, let us restrict our attention, at least for the
purpose of this section, to the setting where there are multiple annotations, but all of these
annotations are of the same form. We will return to distinct forms in Section 3.

To start our discussion, we remark that the GtoPdb object table exhibits the following
two forms of annotation that commonly arise in curated databases. The first of these we
shall call believers. This is a catch-all term we will use for people or agents that “approve”
of a tuple. For example it is common for curators of a database to review (and possibly
correct) parts of a database. In another scenario a database may “export” a number of
smaller databases or views, and tuples may be tagged with the set of views that they should
be included in. In particular, the in_gctp, in_gtip, and in_gtmp columns in Table 1 represent
such tags. Note that while may view a single believer annotation as single Boolean value,
the set of multiple believer annotations taken together is a set-valued annotation.

A second and ubiquitous form of annotation are comments. Again, we may view a single
comment as a single string. Multiple comments are commonplace, however, and in practice
they are represented by concatenating strings in such a way that the reader can separate them.
Hence, a single comment annotation typically encodes a set of comment values. Columns
like structural_info_comments in Table 1 are clearly comments annotations.

Consider the setting where there is only one of these forms of annotation – believers or
comments – on the primary data. Figure 1 shows three possible methods of representing
such annotated tables. The first, which applies only to believers, adds a new Boolean column
for each curator or view to the primary database table. This method is only practical if we
may assume that the set of possible curators or views is known and small. If this is not the
case, and if one has the luxury of working systems that support nested tables [4] one can
add a column that simply contains the set of curators (respectively, views or comments) as
shown by I2. Otherwise (and also common practice) one may add an auxiliary table – with
the appropriate foreign key constraint – that specifies a binary relation between the primary
data and the believers respectively comments. This third method I3 is often used in practice
when curators or contributors details are also kept in the database.

The first two representation methods I1 and I2 naturally lend them to a semiring-based
semantics for carrying the annotations through queries. For both believers and comments
these semirings are semirings of sets, straightforward but different. In the case of believers
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and representation method I1, the added Boolean columns can be viewed as boolean vectors
of a fixed dimension, which clearly form a semiring. If as in I2 we are using a set-valued
column then we want the lattice of subsets of believers as the appropriate semiring. For
example, if tuples r, t1 and t2 are respectively believed by sets R, T1 and T2 then the set of
people who believe in the tuple with provenance polynomial r1(t1 + t2) is R ∩ (T1 ∪ T2): we
are using the semiring of subsets of some set – a distributive lattice.

On the other hand, if R, T1 and T2 are sets of comments, we would expect to see the tuple
with polynomial r1(t1 + t2) annotated with R ∪ T1 ∪ T2. Here we are using a commutative
idempotent monoid – a degenerate semiring in which the two binary operations coincide and
the empty set is the multiplicative unit. This is also the semiring used in lineage [6].

By contrast, representation method I3, while ubiquitous in practice, does not immediately
seem to lend itself to a semiring-based semantics. The reason is that the values in the
annotation column A′ in the auxiliary table (being the individual believers or comments)
does not necessarily have a natural semiring interpretation. For: which individual believer
corresponds to the product or sum of two individual believers?

We find it interesting to remark, however, that we may instead view representation
method I3 as a means to implement the annotation propagation semantics of method I2 under
the above-described distributive lattice and lineage semirings. Whereas a straightforward
implementation of I2 requires systems that support nested tables (as the annotation column
contains a set), method I3 is able to implement this using ordinary flat relational database
management systems. In particular, when we view I2 as a nested relation then I3 together
with the base instance I is a particular form of a so-called shredded representation of I2 [5,7,11].
It is possible to simulate full nested relational algebra (NRA) by means of ordinary flat
relational algebra (RA) on shredded representations [5,7], something that also Val has worked
on [11]. Hence, we may indeed view I3 and particular relational algebra queries on I3, as a
way to simulate semiring-based querying on on I2.

In full generality, however, shredding requires that RA is endowed with the ability to
invent new identifiers. This is required to simulate the creation of new (deeply) nested
sets. In the particular case of annotation-propagation that we are interested in here and the
specific case where the only NRA operations that we want to do on set-based attributes in
I2 are intersection and union (our semiring operations), it seems that one does not require
the ability to invent new identifiers. Indeed, because there is a functional dependency from
the non-annotation attributes in I2 to the set-based annotation attribute A, we may always
“identify” a set (including newly created ones) simply by means of the tuple of non-annotation
attributes. Moreover, if we only intend to propagate the annotation on I2 through positive
relational algebra queries, then it seems that the simulating shredded queries on I2 will
also be positive. A full verification of these conjectures has not appeared in the literature,
however, to the best of our knowledge.

A connected interesting and possibly open question is the following: even if from a
theoretical point of view we can always “identify” nested sets by means of the tuple of
non-annotated values in method I3, we almost certainly do not want to do this in practice
because such tuples can be very wide. Indeed, in the simulating shredded queries we will
often have to join using the identifier columns as join fields, and thus the fewer join fields
the better. Hence the question: when is it possible to use only a subset of the non-attribute
columns as set-identifier keys in the shredded representation? How does this work if we have
primary key information on the primary data?

Tannen’s Festschrift
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3 Multiple annotations

Beyond illustrating some distinctions between annotation and provenance, the GtoPdb
example shows that multiple annotations on a tuple are commonplace. Moreover, where
semirings may be associated with annotations, different semirings serve different purposes.

That we have so many annotations on a single tuple in the GtoPdb example is partly due
to database design. Take, for example, the view specified by in_gtmp=true. Since object_id
is a key one could place the gtmp_comment field in another table with key object_id and the
appropriate key inclusion. Multiple uses of this transformation would be confusing to say
the least, and the database designers rightly kept all this information in the same place.

If we do keep this information in the same place, we have to allow that two annotations
may differ on what tuples are mapped to a semiring zero, so that we have to allow the explicit
appearance of zero in an annotation column. As remarked in Section 2, in the familiar
representation of a singly-annotated relation as a K-relation, the tuples annotated with a
zero are not present.

In Section 1.2 we made the informal observation that if we changed the underlying data
then an annotation could become invalid. In the case of a tuple annotation, upon what parts
of a tuple does an annotation depend? In particular does one annotation depend on another?
In Table 1 it is unlikely that a change to abbreviation could alter the validity of in_gtmp.
However the gtmp_comment field is only going to be present if in_gtmp is true. We can
informally define the scope of an annotation as that part of a tuple (both non-annotation
columns and annotation columns) it annotates and say that two annotations are independent
if neither is in the scope of the other.

For independent annotations there is an obvious method of treating them as a single
annotation. For example, if we have a semiring K1 for believers and K2 for comments then
there is an obvious product semiring defined on K1 ×K2 with all operations defined pointwise.
We have seen this before: in the column-based representation of I1 in figure 1, the annotation
columns X and Y taken together can be regarded as the product of two Boolean-valued
annotations.

A more interesting problem arises when the annotations are not independent. That is
when one annotation depends on, or is within the scope of, another. This is also common
in curated databases, and happens with both believer and comments annotations. For
example, it is possible for one curator to verify or check the work of another, so “A verifies
B’s verification of ...” presupposes that B verified something. It can also happen when one
view is a sub-view of another, and it is possible to provide comments on top of comments, or
on top of verifications.1

For such correlated annotations, it is not immediate how we may view them as semiring
elements. In fact, it is not a priori clear how representation methods I1 and I2 of Figure 1
extend to this setting. By contrast, for method I3, the shredded representation of the
annotation, the extension is straightforward: starting with schema R we want to add two
annotation attributes A and A′. We construct the instances I, IA and IAA′ over the schemas
R, R ∪ {A} and R ∪ {A, A′} that satisfy the inclusions πRIA ⊆ I and πR∪{A′}IAA′ ⊆ IA.
The following questions now arise: can we still view this as a shredded representation of
generalized version of I2? If so, can we view the annotation attribute of generalized I2 as
having a semiring structure? In discussions that we have had with Val on this topic, it seems
that a semiring structure exists, but that the elements in the domain of this semiring must
be themselves K-relations. Full answers to these questions are still open.

1 Somewhat confusingly “A believes that B believes ...” does not imply that “B believes ...” so we really
cannot regard this as an annotation on an annotation.
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The comment semiring can be treated similarly. The generalization of I3 described above
works equally well for comments on comments except that we are using the degenerate
semiring with only union. What is interesting is that it is common to build up chains of
comments of indefinite length. This can also be easily represented in the semiring framework.
If C is the domain of comments and C∗ is the set of sequences over C then the monoid we
need is the prefix-closed subsets of C∗, which is closed under union.

4 Closing and further questions

The foregoing account of annotation in curated databases is not just a theoretical exercise.
As we have already mentioned, the base “object” table in GtoPdb [13] has six Boolean fields
for views and six comment fields each of which pertains to one of those fields. Tens of other
tables inherit from this table; moreover many other tables in the database have a comment
field. Understanding which comments are relevant to a tuple in the output of a query is a
non-trivial task in practice. Another interesting field that can be regarded as an annotation,
but also part of the provenance is a “time of last modification” – which may be represented
in some semiring.

As our discussion illustrates, it is not always clear how to cast the propagation of
annotation as an application of querying under the semiring semantics. In particular, ensuring
that multiple annotations can be suitably propagated seems to require us to form semirings of
increasingly rich structure: semirings of sets, product semirings, and (in Section 3), semirings
of K-relations. Further research is required to complete this picture of multiple annotation
propagation and the induced semiring structure.

We close our discussion with two further topics.
We introduced the notion of the scope – the set of attributes in a tuple that is subject

to some annotation. Do the rules for combining annotations still hold? For example, if a
projection loses some or all the attributes in the scope of an annotation, do we want to keep
that annotation?

We also defined scope informally in terms of update to a tuple. But we have no model for
update, and this brings up the question of how annotation behaves under update. Provenance
and update have been studied in [3], but does this tell us anything about annotation; and is
there a larger picture that includes semirings?

Finally, although we have suggested that the scope of an annotation could be part of a
tuple, why could it not be even broader. Could we annotate data values, tables, columns, as
well as arbitrary views?
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Abstract
In practice, one frequently encounters queries that extract tabular results from graph databases by
employing grouping and aggregation. This paper introduces a technique for rewriting the group-by
list of graph queries in order to increase aggregation parallelism in graph engines that conform to a
modern instantiation of the Bulk-Synchronous-Parallel computation model.
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1 Introduction

It is a long-standing tradition in both database research and practice to conceptualize data as
a graph, in which vertices model the entities of the application domain and edges model their
relationships. This tradition preceded the advent of the relational model, starting with the
network database model; it co-existed with the relational model from its inception, in form
of the Entity/Relationship model; it matured into dedicated database systems conforming
to the semistructured model and its specializations as XML and JSON [1]; it was recently
rejuvenated in form of the property graph data model by strong commercial demand from
the industrial sector; and it culminated in the just-released GQL standard [11], the first
ISO/ANSI query language standard since SQL.

An invariant throughout most of this evolution has been the need for queries that cross
models by extracting data from the underlying graph and presenting it in tabular form.
Research on the property graph model and this class of queries is not simply a revisit of the
plethora of results developed for the semistructured model. Two recent developments raise
novel research challenges:

(i) Recent industrial demand for expressing graph analytic tasks requires the output tables
to be the result of grouping and aggregation, as inspired by SQL. This has led to
incorporating aggregation primitives as first-class citizens into graph query languages,
as opposed to treating them as an afterthought in the era of semistructured data
research.

(ii) New query evaluation strategies are called for due to the recent development of novel
parallel computing paradigms motivated by today’s distributed and cloud infrastruc-
tures.

This paper focuses on maximizing the degree of parallelism for the aggregation task when
run in a graph engine that conforms to a commercially implemented parallel computation
paradigm called Edge-Map/Vertex-Reduce (EMVR). The solution involves exploiting integrity
constraints to rewrite the group-by list of queries in ways that expose opportunities to
distribute the computation over independently working processors.

EMVR is an instantiation of Valiant’s Bulk-Synchronous Parallel (BSP) model of com-
putation [19]. The results presented here can be ported to other currently circulating
instantiations of the BSP model for graphs.
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c p

Customer Product
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timestamp quantity name

cid

price category

name

address

Figure 1 Modeling customers and products as vertices, and sales as edges.

The remainder of this paper is organized as follows. Section 2 describes the property graph
model, and Section 3 introduces the EMVR computation paradigm. Section 4 illustrates a
grouping and aggregating graph query that serves as the running example for the subsequent
discussion. Section 5 illustrates a class of EMVR plans that can generically support the
class of queries represented by the running example. These plans contain a parallelism-
limiting bottleneck, which can be removed by exploiting knowledge of integrity constraints.
Section 6 illustrates such an optimized plan for the running example. Section 7 describes our
optimization approach, which is based on reducing the problem to relational minimization
under integrity constraints. We conclude in Section 8.

2 The Property Graph Data Model

Per the GQL standard [11], property graphs comprise vertices and binary edges connecting
them. In object-oriented fashion, vertices are uniquely determined by an internal identifier.
Edges may be directed or undirected. Both vertices and edges have a set of attributes, called
properties, which are key-value pairs with the key giving the property name. Both vertices
and edges may have a type, which specifies their property names and the types of their
property values. The GQL standard allows both a typed version which specifies a graph
schema, and a schema-free version. Since our interest is in exploiting integrity constraints,
we focus on the typed graph version here.

▶ Example 1. Assume we wish to model a domain revolving around customers who buy
products. Individual customers are modeled as vertices of type Customer, with attributes
cid, name and address. Products are modeled as vertices of type Product, with attributes
pname, price and category. The fact that a customer represented by vertex c has bought a
product represented by vertex p is modeled by a directed edge of type Bought oriented from
c to p. The edge is adorned with attributes timestamp and quantity (see Figure 1). Figure
2 shows a graph modeling a history of sales. ⌟

3 The Edge-Map/Vertex-Reduce Graph Computation Model

The Edge-Map/Vertex-Reduce (EMVR) model of computation is an instantiation to graphs
of Valiant’s BSP paradigm (described below). It organizes parallel processing of the graph
into vertex functions and edge functions. Each vertex/edge is thought of as an independent
processor that can run a vertex/edge function in parallel with the other vertices/edges.

The computation is a sequence of steps guided by the active vertex set. A step can be of
either vertex or edge kind. A vertex step maps the vertex function in parallel over all active
vertices. An edge step maps the edge function in parallel over all edges incident to the active
vertex set. Among other tasks, each step computes the next active vertex set. The next
step can start only when the current step has completed (which requires a synchronization
barrier).
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c1
p1

c2

p2
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Figure 2 A graph showing multiple sales.

The Reduce phase of the EMVR step consists in aggregating the values generated by
mapping the vertex or edge functions. In the EMVR model, aggregation is performed by
accumulators. Accumulators are containers that store a data value, accept inputs, and
aggregate these inputs into the stored data value using a binary operation ⊕.1.

Since the only available EMVR implementation we are aware of is provided by the
TigerGraph company, we adopt the syntax of its query language, GSQL, to denote accumulator
types [7].

▶ Example 2. In GSQL,

SumAccum < float >

denotes the type of accumulators that sum up their floating point inputs. Each accumulator
of this type has its stored value initialized to 0 at construction time. During operation, it
adds each received input into the stored value using binary addition. ⌟

GSQL provides built-in accumulators that perform the standard aggregations one has
come to expect of query languages (sum, average, min, max, logical or, logical and, etc.). It
also supports user-defined accumulators, whose behavior is specified by providing the initial
stored value and the binary operation ⊕.

There are two kinds of accumulators: global or vertex-attached. A global accumulator
has a single instantiation for the entire computation. A vertex-attached accumulator has one
instantiation for every vertex.

Accumulator implementations need to ingest inputs generated in parallel by the invocations
of the vertex and edge functions. Race conditions are avoided by using an exclusive locking
mechanism, which effectively serializes the inputs. The order in which inputs are incorporated
into the stored value is nondeterministic. However, if the binary operation ⊕ is associative
and commutative, the final result of the aggregation is well-defined. This is the case for all
built-in accumulators (the average accumulator is implemented to maintain the sum and the
count of its inputs, both of which have associative and commutative binary operations).

1 The inspiration and theoretical underpinnings for thinking about database aggregation in this way go
back to Val Tannen’s work [12]
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3.1 Predecessor BSP Models
Valiant’s Bulk-Synchronous Parallel (BSP) model [19] includes three main components:
a number of processors, each with its own local memory and ability to perform local
computation; a communication environment that delivers messages from one processor to
another; and a barrier synchronization mechanism. A BSP computation is a sequence of
supersteps. A superstep comprises of a computation stage, where each processor performs
a sequence of operations on local data, and a communication stage, where each processor
sends a number of messages. The processors are synchronized between supersteps, i.e. they
wait at the barrier until all processors have received their messages.

The vertex-centric computational model was introduced by Google’s Pregel [15] system
as an adaptation to graph data of the BSP model. In the vertex-centric model, each vertex
plays the role of a processor that executes a user-defined program. Vertices communicate
with each other by sending messages via outgoing edges, or directly to any other vertex
whose identifier they know (e.g. discovered during computation).

Each vertex is identified by a vertex ID. It holds a state, which represents intermediate
results of the computation; a list of outgoing edges; and an incoming message queue. Edges
are identified by the IDs of their source and destination vertices, and they can also store state.
The computation is organized in supersteps delimited by a synchronization barrier, as dictated
by the BSP paradigm. During each superstep, each vertex runs the same vertex program
in parallel. The vertex program is designed from the perspective of a vertex, operating on
local data only: the vertex state, the received messages, and the incident edges. Based on
these inputs, the vertex program can modify the vertex state, send messages to neighbors
along the edges, and decide whether the vertex remains active for the next superstep. If an
inactive vertex receives a message, it is reactivated. At the beginning of a computation all
vertices are activated. The computation halts when all vertices are inactivated and no more
messages are in transit.

3.2 Examples of BSP graph engines
A vertex-centric BSP model was first introduced in Google’s Pregel [15], followed by a
proliferation of open-source and commercial implementations, some running on distributed
clusters, others realizing vertex communication via a shared memory. Examples include
open-source implementations such as Giraph [4], GPS (Graph Processing System) [17] and
Apache Spark with its Pregel API GraphX [5]. Graph engines realizing communication via a
shared memory include GraphLab [13], Signal/Collect [18], and PowerGraph [8].

Surveys of the landscape can be found in [16, 20], while comparative experimental
evaluations have been reported in [3, 9, 14].

More recently, TigerGraph introduced its commercial engine [7], which implements an
Edge-Map/Vertex-Reduce API by exploiting thread parallelism within a server as well as
distributed parallelism across computing nodes in a cluster.

4 A Grouping and Aggregating Graph Query

The following query conforms to the syntax introduced by GSQL, TigerGraph’s query
language. It is also close to the syntax of the recently released GQL standard [11], which is
inspired by GSQL.2

2 The GQL standard admits two syntactic flavors: an SQL-like one inspired by TigerGraph’s GSQL, and
one inspired by Neo4j’s Cypher language (not shown here).
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SELECT c.cid, sum(b.quantity * p.price) AS revenue INTO T
FROM (c:Customer) -[b:Bought]-> (p:Product)
WHERE p.category = ’Toys’
GROUP BY c.cid

The clauses are mostly familiar from SQL.
The exception is the FROM clause, which, instead of SQL tables, specifies graph patterns.

Round parentheses denote pattern fragments to be matched against vertices, while arrows
with square parentheses are to be matched against edges (the arrow specifies the orientation
for directed edges; it is omitted for undirected edges). Vertex and edge types are specified
to the right of the colon delimiters, and variables to the left. In this example, the pattern
matches directed edges b of type Bought oriented from a vertex c of type Customer to a
vertex p of type Product. Each match can be thought of as a tuple whose attribute names
are the three variables, and whose values are the identities of the matched vertices and edges.
These tuples are collected in a bag referred to as the binding table. For the example sales
graph in Figure 2, the binding table is

c b p
c1 c1 −→ p1 p1
c1 c1 −→ p2 p2
c2 c2 −→ p2 p2

The remaining clauses manipulate the binding table analogously to SQL: the WHERE clause
keeps only the matches whose product category is ’Toys’; the GROUP BY clause groups by the
the customer vertex attribute cid (assumed here to be a key); finally, the SELECT clause
aggregates the groups by summing up the product prices, to obtain the revenue per customer.
The result is output into a table called T, as directed by the INTO sub-clause.

GSQL, Cypher and GQL are significantly more expressive than the example query, for
instance admitting multi-hop patterns that match sequences of edges, regular expressions
for specifying complex shapes of traversed paths, conjunctions of such regular expression
patterns, composition of query blocks, etc. These are not discussed in this paper, which
focuses on the tables produced by grouping and aggregation.

5 Supporting Tables with Accumulators

Like many real-life graph queries, our example query crosses between data models, extracting
a table from the input graph data.

At first glance, this raises a challenge to supporting this class of queries in a graph engine
based on the EMVR model of computation, as the latter is centered around vertices and
edges and has no notion of relational tables as first-class citizens.

However, tables can be supported as syntactic sugar in the EMVR model, being imple-
mentable as accumulators (this is the case for TigerGraph’s GSQL implementation). We
borrow GSQL’s syntax to denote the types and operations of accumulators.

For our running example query, the GSQL compiler implements table T as an accumulator
of type

GroupByAccum<int cid, SumAccum<float> revenue>

which denotes accumulators that contain a set of key-value pairs, each pair corresponding to
a group. In each pair, the cid field is the integer group key, and the revenue field contains
the associated value, which is in turn a nested accumulator that sums up its floating point
inputs (its type is denoted in GSQL as SumAccum<float>).

Tannen’s Festschrift
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This group-by accumulator takes as input key-value pairs (k, v), aggregating them into
its contents as follows. Identify the group of k and its associated revenue accumulator r (if
no such group exists yet, create one, initializing r’s contents to 0). Insert the value v into r;
since r is of type SumAccum<float>, this will add v to the current stored value of r.

An EMVR plan for the example query is shown below.

construct global accumulator @@T of type
GroupByAccum<int cid, SumAccum<float> revenue>

define F(edge b of type ’Bought’ from c to p) {
if p.category = ’Toys’ then

@@T += (c.cid -> b.quantity * p.price)
end

}

for each edge e of type ’Bought’ do in parallel
F(e)

end

In the above pseudocode, we borrow the GSQL syntax for signalling that an identifier
denotes a global accumulator: prepend two @ characters to its name. Thus, @@T is a global
accumulator called T . Recall that globality means that there is only one instance of @@T

for the entire query.
We also borrow from GSQL the syntax for inserting a key-value pair (k, v) into a group-

by accumulator @@acc: @@acc += (k -> v). Notice the function F , which is applied to
individual edges. F inserts the revenue from the individual sale modeled by the b edge into
the nested revenue accumulator associated to customer c’s cid attribute (c.cid): @@T +=
(c.cid -> b.quantity * p.price).

The for loop maps F over all relevant edges in parallel. The order in which the various
invocations of F write into @@T is not determined, depending on how they interleave at
runtime. Nevertheless, the semantics of the plan is well-defined, as the result is race-free and
interleaving-invariant. Race freedom is ensured via an exclusive locking mechanism that all
invocations of F use to write into @@T . Interleaving invariance follows from the fact that
@@T aggregates product prices using addition, which is commutative and associative.

When the plan’s execution completes, the result is centralized in the global accumulator
@@T . GSQL allows subsequent query blocks to refer to the table T , in which case their plan
accesses the contents of accumulator @@T instead.

6 Changing Grouping Criteria to Increase Parallelism

While the EMVR plan in Section 5 shows that tables can be supported using accumulators,
we observe that this plan features only limited potential for parallel evaluation. Despite the
function F being mapped in parallel over all relevant edges, each write operation to global
accumulator @@T involves the acquisition of an exclusive lock to avoid race conditions. This
effectively serializes the invocations of F , turning the operation of writing to the global
accumulator into a bottleneck.

Parallelism can be dramatically unlocked by observing that, since attribute cid is a key
for Customer vertices, each group corresponds to precisely one such vertex. This enables
the removal of the global accumulator bottleneck @@T by replacing it with many vertex-
attached accumulators, one located at each Customer vertex. By writing only into its own
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accumulator, each vertex can work on its own group independently of the other vertices,
yielding an eminently parallelizable plan. We detail this alternate plan below.

attach to each ’Customer’ vertex its own
accumulator of type SumAccum<float>, called @revenue

define F_opt(edge b of type ’Bought’ from c to p) {
if p.category = ’Toys’ then

c.@revenue += b.quantity * p.price
end

}

for each edge e of type ’Bought’ do in parallel
F_opt(e)

end

Following GSQL syntax, the single leading @ indicates that the @revenue accumulators are
vertex-attached. The type of these accumulators, SumAccum<float>, states that they each
take floating-point inputs and add them to their stored value.

Also following GSQL syntax, c.@revenue denotes the @revenue accumulator attached
to vertex c.

Notice that the edge function Fopt writes into c.@revenue, the accumulator of Customer

vertex c. Only the writes due to edges adjacent to c compete for access to this accumulator
and require serialization. Thus, each @revenue accumulator serializes only as many writes as
the degree of c, which is likely a much smaller quantity than the number of writes serialized
by the global accumulator @@T , namely the total count of Bought edges in the graph.

Upon completion of the plan’s execution, there is no centralized data structure holding
table T . This table is virtual; its contents are distributed across Customer vertices. The
components of each virtual tuple t ∈ T resides a the corresponding vertex c, with t.cid stored
in c.cid and t.revenue stored in c.@revenue.

7 Reduction to Relational Minimization under Constraints

We present an optimization technique that reasons about the structure of the graph to
automatically rewrite global-accumulator-based plans (like the one in Section 5) into vertex-
accumulator-based plans (like the one in Section 6) whenever possible.

The crux of the reasoning consists in deciding whether the original group-by list can be
replaced with a single vertex variable while preserving the partition of the binding table
into groups. If this is possible, then the output table can be virtualized and distributed as
illustrated in Section 6. In not possible, groups do not correspond to individual vertices
and therefore need to be hosted somewhere else; in the EMVR model, the only alternative
is a global accumulator (as illustrated in Section 5). The global-accumulator-based plans
are always am available choice, and in the general case may be unavoidable. However, they
restrict parallelism, so we seek alternatives whenever possible.

It turns out that we need not devise a customized algorithm for this optimization task.
Instead, we can reduce it to the well-studied problem of minimization of relational queries
under integrity constraints, for which there exist sound and complete algorithms [6, 10]. The
technically interesting exercise consists in defining the reduction, which we present below.

Tannen’s Festschrift
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7.1 Encoding vertex types as relations
We encode each vertex type V T as a homonymous relational table, whose columns correspond
to V T ’s attributes. We also prepend a column intended to hold the object id of the vertex.

▶ Example 3. In our example, assuming that the Customer vertex type has attributes cid,
name and address, it is encoded as a table

Customer(id, cid, name, address).

Similarly, assuming that the Product vertex type has attributes pno, pname, price and
category, we encode it as table

Product(id, pno, pname, price, category). ⌟

7.2 Encoding edge types as relations
We encode each edge type ET as a homonymous relational table whose columns correspond
to ET ’s attributes. We also prepend two columns, intended to hold the ids of the edge’s
source and target vertices.

▶ Example 4. In our example, assuming that the Bought edge type has attributes timestamp

and quantity, it is encoded as a table

Bought(c, p, timestamp, quantity). ⌟

7.3 Encoding the group-by list as a relational query
The list of group-by attributes is the one we seek to rewrite. Since the problem we reduce
to is query minimization under constraints, we encode this list as a relational query whose
body contains the relational encoding of the type information for the variables of the original
query’s graph pattern.

▶ Example 5. We show the encoding of the group-by list of our running example query as a
relational conjunctive query:

G() ← GroupBy(cid), Customer(c, cid, name, address),
Bought(c, p, timestamp, quantity), P roduct(p, pno, pname, price, category).

Notice the use of the predicate GroupBy to label the elements of the group-by list. We seek
to rewrite this to

G() ← GroupBy(c), Customer(c, cid, name, address),
Bought(c, p, timestamp, quantity), P roduct(p, pno, pname, price, category)

which groups by the vertex id instead of the cid attribute. ⌟

Note that the encoding queries in Example 5 are boolean (they have no distinguished
attributes). A natural encoding alternative that we initially considered would have chosen to
place the group-by list elements as distinguished variables in the query head (G(cid) and G(c)
in the example). However, this would have potentially required the rewriting to change the
type of the query output: for instance, assume alphanumerical strings for the cid attribute,
and unsigned integers for the vertex id. More gravely, even if we ignore typing information,
there are cases when the original group-by list has a different length than the rewritten one,
requiring a change in the arity of the query head. Standard query minimization would no
longer apply in this case, as it always preserves the arity of the query.
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▶ Example 6. Assuming that persons are identified by their name, date of birth, and place of
birth, and that the original query seeks to group by persons, the alternate encoding scheme
we considered would yield a query like

G(name, dob, place)← Person(p, name, dob, place).

We seek to rewrite the group-by list to use the vertex id instead. In relationally encoded
form, this would amount to obtaining

G(p)← Person(p, name, dob, place)

which would technically fall outside the purview of standard query minimization. ⌟

The reason why this more natural encoding disables standard query minimization is
fundamental: minimization preserves equivalence to the original query, and the concept
of equivalence between queries with different output types/arity seems meaningless. It is
conceivable (and we were tempted!) to define a more relaxed version of query equivalence
(and therefore minimization) that changes the arity of the query head and it would be possible
to adapt state-of-the-art algorithms [6] accordingly. The benefit of the alternate encoding
introduced here is that it reuses the standard theory and algorithms with no change.

▶ Example 7. Revisiting Example 6, our actually adopted encoding scheme yields

G()← GroupBy(name), GroupBy(dob), GroupBy(place), P erson(p, name, dob, place)

for the original group-by list, and

G()← GroupBy(p), P erson(p, name, dob, place)

for its rewritten form.
Notice how this encoding into boolean queries avoids the issue of arity and/or type

discrepancy between original and rewritten query output. ⌟

7.4 Encoding the vertex id using relational dependencies
The property graph data model regards vertices through an object-oriented lens: each vertex
is an object with an id that uniquely identifies it. This fact is crucially exploited in rewriting
the group-by list and therefore must be captured in the relational encoding.

The consequence for the encoding is that the id column acts as a key for the table
modeling the vertex type. The standard way to express key constraints in a relational setting
is to resort to functional dependencies [2].

▶ Example 8. We can express the fact that the id of Customer vertices uniquely determines
each vertex, in particular the values of the vertex attributes, using the functional dependency

Customer(c, cid1, name1, address1) ∧ Customer(c, cid2, name2, address2)
−→ cid1 = cid2 ∧ name1 = name2 ∧ address1 = address2.

⌟

Functional dependencies like the one shown in Example 8 are useful in optimizing the body
of the query reflecting from the graph patterns in the FROM clause and the conditions in
the WHERE clause. This kind of optimization is beyond the scope of this paper, as it can
be tackled by standard rewriting techniques such as the ones in [6, 10]. Here, we focus on
optimizing the group-by list. Unfortunately, this optimization requires a kind of rewriting
that standard algorithms for minimization under constraints cannot achieve using functional
dependencies alone.

Tannen’s Festschrift
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Intuitively, the reason is that the rewriting needs to drop certain atoms from the query
body and introduce new ones instead: in Example 7, atoms GroupBy(name), GroupBy(dob),
GroupBy(place) need to be dropped, and atom GroupBy(p) added; in Example 5, atom
GroupBy(cid) needs to be dropped in favor of adding atom GroupBy(c). These opera-
tions require as justification a class of relational dependencies known as tuple-generating
dependencies (TGDs) [2]. We therefore add to the relational encoding appropriate TGDs.

▶ Example 9. The fact that the id of Customer vertices uniquely determines each vertex,
in particular the values of the vertex attributes, implies that, once the query groups by the
vertex id, it can just as well group by any of the vertex attributes without changing the
contents of the groups. We capture this with the following TGD:

Customer(c, cid, name, address) ∧GroupBy(c) → GroupBy(cid)
∧ GroupBy(name)
∧ GroupBy(address)

⌟

7.5 Encoding vertex key constraints as relational dependencies
Another crucial ingredient on which the reasoning about the group-by list is based is the
knowledge about vertex keys, i.e. attribute sets whose values uniquely determine the
vertex. Vertex keys are analogous to their relational counterpart, the relational key integrity
constraint. And yet, for our purposes the encoding of vertex key constraints requires TGDs,
in contrast to the standard representation of relational keys using functional dependencies.
The motivation is analogous to the one discussed for encoding knowledge about vertex ids.

▶ Example 10. In our running example, the cid attribute value determines the Customer

vertex. Consequently, cid is a key for the encoding relational table, and this information is
typically captured by the functional dependency

Customer(c1, cid, name1, address1) ∧ Customer(c2, cid, name2, address2)
−→ c1 = c2

which states that the Cid attribute determines the identity of the Customer vertices. As
per our previous discussion, this functional dependency does not suffice for rewriting the
group-by list, as it needs to drive the introduction and dropping of GroupBy atoms. What
is needed is a tuple-generating dependency such as

Customer(c, cid, name, address) ∧GroupBy(cid) −→ GroupBy(c).

Intuitively, this TGD states that, if the query already groups by the cid attribute, it might
just as well group by the vertex id without changing the contents of the resulting groups. ⌟

7.6 Putting it all together: rewriting the group-by list
Our technique for rewriting the group-by list involves the following steps:
1. Encode the group-by list as a relational conjunctive query Q using the types inferred for

the variables in the original graph pattern.
2. Encode the vertex id and vertex key information for each vertex type using relational

dependencies; call their set Σ.
3. Feed Q and Σ to an algorithm for minimization under constraints (such as the Provenance-

Aware Chase&Backchase (PACB) [6, 10]). The algorithm is invoked as a black box, which
returns a set of rewritings of Q.

4. Inspect the rewritings, keeping those that contain a single GroupBy atom, the argument
of which is a variable that binds to vertex identifiers.
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Any rewriting found in Step 4 admits a plan in which each group is computed in parallel
at its corresponding vertex, and in which the per-group aggregation is implemented by
vertex-attached accumulators. In case of multiple qualifying rewritings, the selection can be
informed by cost information (cost-based selection is beyond the scope of this paper).

▶ Example 11. For the running example, we obtain the first query from Example 5 and the
set Σ comprising the dependencies from Examples 8, 9, and 10. The PACB algorithm run
on this query with Σ yields two minimal rewritings, corresponding to both queries shown
in Example 5. They are both minimal, but only the second query satisfies the criteria of
Step 4 above. From this rewriting, we can directly generate a plan that aggregates groups in
vertex-attached accumulators at the Customer vertices.

Though understanding the inner workings of the PACB algorithm is not necessary since
the latter is used as a black box, we sketch them for this example in order for the reader to
better appreciate the need to design the encoding in its current form.

The PACB starts from query

G() ← GroupBy(cid), Customer(c, cid, name, address),
Bought(c, p, timestamp, quantity), P roduct(p, pno, pname, price, category).

It chases this query with the vertex-key-encoding dependency

Customer(c, cid, n, a) ∧GroupBy(cid) −→ GroupBy(c)

from Example 10, to obtain

G() ← GroupBy(cid), Customer(c, cid, name, address),
Bought(c, p, timestamp, quantity), P roduct(p, pno, pname, price, category),
GroupBy(c) .

Note the addition of the GroupBy(c) atom. This query encodes a group-by list that includes
both the attribute cid and the identifier c of Customer vertices.

A further chase step applies, with the vertex-id-encoding dependency

Customer(c, cid, name, address) ∧GroupBy(c) → GroupBy(cid)
∧ GroupBy(name)
∧ GroupBy(address)

from Example 9, yielding

G() ← GroupBy(cid), Customer(c, cid, name, address),
Bought(c, p, timestamp, quantity), P roduct(p, pno, pname, price, category)
GroupBy(c) ,

GroupBy(name), GroupBy(address) .

Notice the addition of the last two Groupby atoms. No further chase steps apply.
Intuitively, the algorithm has at this point inferred that, given that the original query

was grouping by the cid attribute of Customer vertices, it is safe to add the vertex identity
and all other Customer vertex attributes to the group-by list as this won’t change the group
contents.

The PACB algorithm now seeks minimal rewritings of the original query among the
subqueries of the chase result (see [6] for details on how this search is directed to avoid
exhaustively inspecting all subsets of atoms in the chase result). Notice that both queries

Tannen’s Festschrift
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from Example 5 are found this way. The first query coincides with the original user query
(unsurprisingly, as its singleton group-by list is necessarily minimal). More interestingly, it
turns out that the second query is an equivalent rewriting (the PACB checks equivalence by
chasing, and this time the TGD from Example 9 is instrumental).

Also note that the second query satisfies the requirement of having a single GroupBy

atom, whose variable c binds to vertex identifiers (namely those of Customer vertices). It is
therefore the one returned by Step 4 of our optimization technique. ⌟

Let’s call a group-by list Unary Vertex-Grouping (UVG) if it contains a single variable,
which binds to vertex identifiers. We say that a query is UVG if its group-by list is UVG. UVG
queries admit plans based on vertex-attached accumulators, thus avoiding the aggregation
bottleneck caused by the use of global accumulator to simulate the output table. Our
technique is guaranteed sound and complete for finding UVG rewritings.

▶ Theorem 12. The technique described here is guaranteed to find precisely all UVG rewritings
of a given query’s group-by list under a given set of vertex key constraints.

This follows from the fact that all TGDs involved in the relational encoding are so-called full,
for which the chase procedure is guaranteed to terminate [2]. In addition, it follows from the
soundness and completeness of the PACB algorithm whenever the chase terminates [6, 10].

7.7 Exploiting Additional Classes of Constraints
Since our approach is based on a reduction to relational minimization under constraints, as
long as the constraints in the graph schema admit encoding as dependencies for which the
chase terminates, the PACB remains a sound and complete minimization procedure. We can
exploit such constraints for free, allowing them to synergistically interact with each other to
uncover further UVG rewritings.

One class of frequently encountered constraints pertains to the cardinality of edges when
viewed as relationships between the connected nodes. Many-to-one and one-to-one constraints
can also be exploited to uncover UVG rewritings of the group=by list.

▶ Example 13. Assume that the graph in our running example provides information on the
customer’s city via a LivesIn edge.

Consider the following variation of our running example query, in which we wish to list
the customer cid, the name of the city they live in, and the revenue from the sales to this
customer.

SELECT c.cid, cty.name, sum(b.quantity * p.price) AS revenue INTO T
FROM (cty:City) <-[:LivesIn]- (c:Customer) -[b:Bought]-> (p:Product)
GROUP BY c.cid, cty.name

Assume that the graph schema declares, as above, that the attribute cid is a key for
Customer vertices. Additionally, it states that attribute name is a key for City vertices,
and that the LivesIn edge is many-to-one (customers live in at most one city). In that case
the above query can be equivalently rewritten to

SELECT c.cid, cty.name, sum(b.quantity * p.price) AS revenue INTO T
FROM (cty:City) <-[LivesIn]- (c:Customer) -[b:Bought]-> (p:Product)
GROUP BY c
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whose new group-by list makes explicit the fact that each group is determined by a Customer

vertex. Table T can once again be virtualized and distributed across Customer vertices by a
plan based on vertex-attached accumulators.

The rewritten group-by list is obtainable by feeding the PACB the dependencies from
Example 11, accompanied by the encoding of the key constraint for City vertices,

City(cty, name, population) ∧GroupBy(name) −→ GroupBy(cty)

and the encoding as a TGD of the many-to-one constraint on the LivesIn edge:

LivesIn(cust, cty) ∧GroupBy(cust) −→ GroupBy(cty).

Intuitively, the latter dependency states that, once the query groups by Customer vertex id,
it can just as well group by the City vertex id without changing the groups, because the
Customer vertex determines the City vertex. ⌟

In general, we capture a many-to-one constraint on an edge of type ET with the TGD

ET (src, tgt, . . .) ∧GroupBy(src) −→ GroupBy(tgt),

where the dots stand for the edge attributes.
One-to-one constraints on an edge are captured by two TGDs, corresponding to the

many-to-one TGDs in each direction.
We can uncover further rewriting opportunities by exploiting any additional class of

constraints, as long as they are expressible as relational dependencies, and as long as the
chase with the resulting set of dependencies terminates.

8 Conclusion

For graph queries that return tables by performing grouping and aggregation in an engine
conforming to the edge-map/vertex-reduce paradigm, the grouping criteria determine the
degree of parallelism of the aggregation task. By exploiting the integrity constraints in the
graph schema, the user query’s group-by list can be equivalently rewritten to expose the
maximally available degree of aggregation parallelism. This applies more generally to all
models in the class of vertex-centric computation models. There is no need to devise novel
algorithms for rewriting the group-by list under integrity constraints - it suffices to devise
a novel encoding scheme that reduces the problem to relational query minimization under
dependencies. This enables us to leverage the sound and complete PACB minimization
algorithm introduced in Peter Buneman’s Festschrift [6].
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Abstract
This paper reports Fishing Fort, a graph analytic system developed in response to the following
questions. What practical value can we get out of graph analytics? How can we effectively deduce
the value from a real-life graph? Where can we get clean graphs to make accurate analyses possible?
To answer these questions, Fishing Fort advocates to unify logic deduction and ML prediction by
proposing Graph Association Rules (GARs), a class of logic rules in which ML models can be
embedded as predicates. It employs GARs to deduce graph associations, enrich graphs and clean
graphs. It has been deployed in production lines and proven effective in online recommendation,
drug discovery, credit risk assessment, battery manufacturing and cybersecurity, among other things.
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1 Introduction

When working with practitioners in industry, we often hear the following questions.
(1) What practical value can we get out of big data analytics? After a decade of study,

people are still scrambling to find killer apps of big data analytics. While the success of
machine learning (ML) should be at least partly attributed to big data, people have higher
expectations from big data analytics to help them solve problems at hand, e.g., optimize
a costly step in a manufacturing process or find the use of an old drug for a new disease.
Besides, big data analytics gets credits for making an advance only if it is not entirely
ML-based, i.e., it approaches the problem not by simply training and applying an ML model.

(2) How should we analyze big data, ML prediction or logic deduction? Data analytics
is often approached by employing either ML models or logic rules. However, neither of the
two is superior to the other. On the one hand, it is hard to discover a small number of
accurate logic rules to cover different cases of our application and data. On the other hand,
ML predictions are probabilistic and hard to explain; practitioners may not want to make
critical decisions based on ML predictions alone. Is it possible to unify the two and benefit
from both?

(3) Where can we get clean data for analytics? Real-life data is often dirty, as evidenced
by duplicates, semantic inconsistencies, stale data and missing values commonly found in
practice. Dirty data has been a longstanding challenge. To make practical use of big data
analytics, it is a must to clean the data. Indeed, data-driven decisions based on dirty data
can be worse than making decisions with no data. For instance, “as a healthcare, retail, or
financial services business you cannot afford to make decisions based on yesterday’s data” [9].
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In an effort to tackle these questions, we have developed Fishing Fort, a system for deducing
associations among entities in graphs. Fishing Fort has been deployed in the production lines
of several domains, and has proven effective there. The system is named in memory of the
siege of Diaoyu (Fishing) Fortress (a.k.a. Diaoyu Castle), a battle during which the fourth
khagan of the Mongol Empire was severely wounded to death by the defenders, and a battle
that changed the history of China and the world. The system has several unique features.

(1) Unification of ML and logic. Fishing Fort unifies ML prediction and logic deduction
by employing a class of Graph Association Rules (GARs) [17]. A GAR is composed of a
graph pattern to identify related entities, and a dependency on the entities to disclose their
association, correlation and interaction. Taken together, the pattern and dependency reveal
regularities among entities in graphs. Moreover, a GAR may embed ML models as predicates.
As a consequence, GARs may embed ML predictions in logic deduction, and moreover, explain
local predictions of ML models such as graph neural networks (GNNs) [26, 27, 4].

(2) Accurate association deduction. Fishing Fort deduces associations with GARs. It
supports algorithms for discovering GARs from real-life graphs [13], conducting (batch and
incremental) deduction [17] and making event predictions [18]. It has found successful
applications in early drug discovery [11], lithium-ion battery manufacturing, risk control for
bank loans, cyber attack detection and online recommendation in e-commerce [10], among
other things.

(3) Data enrichment and cleaning. Fishing Fort can also be used to improve the quality
of real-life graphs. Given a graph G, it enriches G by extracting data that pertains to the
entities of G from external data sources, e.g., knowledge graphs [19]. It detects and fixes
errors in the (enriched) graph by employing a special form of GARs [12], in polynomial time
(PTIME). The fixes computed are logical consequences of the rules and accumulated ground
truth (i.e., validated facts); hence if the rules and ground truth are correct, so are the fixes.

Organization. The remainder of the paper is organized as follows. Section 2 defines GARs.
Section 3 presents the architecture of Fishing Fort and showcases how it deduces associations
with GARs in real-life applications. Section 4 shows how Fishing Fort enriches and cleans
graphs with (a special form) of GARs. Finally, Section 5 discusses future plans.

2 Unifying ML prediction and Logic Deduction

This section reviews basic notations (Section 2.1), and defines Graph Association Rules
(GARs) (Section 2.2). It also reports the complexity for reasoning about GARs (Section 2.3).

2.1 Preliminaries
Assume three countably infinite sets of symbols, denoted by Ω, Υ and U , for labels, attributes
and constants, respectively. We consider graphs G = (V, E, L, FA), where (a) V is a finite
set of vertices, (b) E ⊆ V × Ω × V is a finite set of edges, where each e = (v, l, v′) in E

denotes an edge from vertex v to v′ that is labeled with l ∈ Ω, (c) L is a function such that
for each vertex v ∈ V , L(v) is a label from Ω, and (d) each vertex v ∈ V carries a tuple
FA(v) = (A1 = a1, . . . , An = an) of attributes of a finite arity, where Ai ∈ Υ and ai ∈ U ,
written as v.Ai = ai, and Ai ̸= Aj if i ̸= j, representing properties. Different vertices may
carry different attributes, which are not constrained by a schema.

A graph pattern is Q[x̄] = (VQ, EQ, LQ, µ), where (1) VQ (resp. EQ) is a finite set of
pattern nodes (resp. edges), (2) LQ assigns a label LQ(u) ∈ Γ to each pattern node u ∈ VQ,
(3) x̄ is a list of distinct variables; and µ is a mapping that assigns a distinct variable to each
node v in VQ. For x ∈ x̄, we use µ(x) and x interchangeably when it is clear in the context.



W. Fan and S. Liu 6:3

A match of pattern Q[x̄] in graph G is defined as a homomorphism h from Q to G such
that (a) for each node u ∈ VQ, LQ(u) = L(h(u)); and (b) for each pattern edge e = (u, l, u′)
in Q, e′ = (h(u), l, h(u′)) is an edge in G. We denote the match as a vector h(x̄), consisting
of h(x) for all x ∈ x̄ in the same order as x̄, denoting entities identified by Q.

2.2 Graph Association Rules
GARs are defined with predicates. A predicate of pattern Q[x̄] is one of the following:

p ::= l(x, y) | x.A ⊗ y.B | x.A ⊗ c | M(x.Ā, y.B̄),

where ⊗ is one of =, ̸=, <, ≤, >, ≥; l ∈ Ω; x and y are variables in x̄; c is a constant in U ; A

and B are attributes; and x.Ā is a list of attributes at “vertex” x; similarly for y.B̄.
The predicates are classified as follows. (1) Logic predicates: link predicate l(x, y) indicates

the existence of an edge labeled l from vertex x to y; variable predicate x.A⊗y.B and constant
predicate x.A ⊗ c check the correlation and interaction of attribute values. (2) ML predicates:
M(x.Ā, y.B̄) is a pre-trained ML model that returns true iff M predicts true at (x.Ā, y.B̄).
Here M can be any ML model that returns Boolean (e.g., M ≥ σ for a predefined bound σ).

Rules. A GAR (Graph Association Rule) is a pair of a graph pattern and a dependency [17]:

φ = Q[x̄](X → p0),

where Q[x̄] is a graph pattern, X is a conjunction of predicates of Q[x̄], and p0 is a single
predicate of Q[x̄]. We refer to Q[x̄] and X → p0 as the pattern and dependency of GAR φ,
respectively, and to X and p0 as the precondition and consequence of φ, respectively.

Intuitively, Q in a GAR identifies entities in a graph, and X → p0 is applied to the entities.
Predicates x.A ⊗ c and x.A ⊗ y.B specify value associations of attributes. Link predicates
enforce edge existence to deduce missing links. Moreover, one can “plug in” pre-trained ML
models M for entity resolution [33], link predictions [44] and similarity checking [8]. For
each application domain, Fishing Fort maintains a library of pre-trained ML models.

We can uniformly express various ML models we used as link prediction for l(x, y), where
the label l can indicate (1) a predicted link, (2) the match of x and y as the same entity,
linked by a dummy edge with “=” as l, or (3) semantic similarity between vertices x and y

linked by an edge with “≈” as l, indicating that x and y are “semantically” close.
We will showcase GARs for real-life applications in Section 3.
As shown in [17], graph functional dependencies (GFDs) [23], graph entity dependencies

(GEDs) [20] and graph pattern association rules (GPARs) [22] are special cases of GARs. GARs
extend these graph dependencies by supporting ML and link predicates. Note that link
predicates mutate the topological structure of a graph. Besides the primitive predicates
above, Fishing Fort also supports, e.g., local 2-dimensional Weisfeiler-Leman (local 2-WL)
test [27], to explain GNN-based recommendations and link predictions. It is known that
such GNN models are no more expressive than local 2-WL test [27].

Semantics. Consider a GAR φ = Q[x̄](X → p0). Denote by h(x̄) a match of pattern Q in a
graph G, and by p a predicate of Q[x̄]. We write h(µ(x)) as h(x), where µ is the mapping
in Q from x̄ to vertices in Q. A match h(x̄) satisfies a predicate p, denoted by h(x̄) |= p, if
one of following conditions is satisfied: (a) when p is l(x, y), there exists an edge with label l

from h(x) to h(y); (b) when p is x.A ⊗ y.B, the vertex h(x) (resp. h(y)) carries attribute A

(resp. B), and h(x).A ⊗ h(y).B; similarly for constant predicate h(x).A ⊗ c; and (c) when p

is M(x.Ā, y.B̄), the ML model M predicts true at (h(x).Ā, h(y).B̄).

Tannen’s Festschrift



6:4 Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction

We write h(x̄) |= X if h(x̄) |= p for all p in a set X of predicates. We write h(x̄) |=
X → p0 if whenever h(x̄) |= X, then h(x̄) |= p0. We say that a graph G satisfies GAR
φ = Q[x̄](X → p0), denoted by G |= φ, if for all matches h(x̄) of Q[x̄] in G, h(x̄) |= X → p0.
We say that G satisfies a set Σ of GARs, denoted by G |= Σ, if for all GARs φ ∈ Σ, G |= φ.

For p = x.A ⊗ c, we use h(p) to denote h(x).A ⊗ c; similarly for the other predicates. For
a set X of predicates, we denote by h(X) the collection of h(p) for all p in X. For a set Γ of
validated facts of the forms u.A ⊗ v.B and u.A ⊗ c for vertices u, v in a graph G, we say that
h(p) is validated with Γ if it is enclosed in Γ; in particular, for p = M(x.Ā, y.B̄), the values
of h(x).A and h(y).B are enclosed in Γ for all corresponding A ∈ Ā and B ∈ B̄; similarly for
h(X). As will be seen in Section 3.1, we check validated facts to deduce reliable associations.

2.3 Complexity
There are three classical problems for dependencies, stated as follows.

The satisfiability problem is to decide, given a set Σ of GARs, whether there exists a graph
G such that G |= Σ and for each GAR Q[x̄](X → p0) ∈ Σ, Q has a match in G? Intuitively,
this is to ensure that all GARs can be applied to G at the same time without conflicts.

A set Σ of GARs implies a GAR φ, denoted by Σ |= φ, if for all graphs G, if G |= Σ then
G |= φ, i.e., φ is a logical consequence of Σ. The implication problem is to decide, given a set
Σ of GARs and a GAR φ, whether Σ |= φ? Intuitively, the implication analysis can help us
remove redundant GARs in rule discovery and speed up association analyses with GARs.

The validation problem is to decide, given a graph G and a set Σ of GARs, whether
G |= Σ? Intuitively, this is to settle the complexity of association analyses with GARs.

To simplify the implication analysis, we consider ML predicates of the form M(x.Ā, y.B̄) ≥
σ for a predefined σ. Moreover, we assume that the ML models in a set of GARs are
independent, i.e., they are trained for different purposes and do not overlap/entail each other,
e.g., models for predicting the anomaly and capacity of battery cells in battery manufacturing.

It has been shown that the satisfiability, implication and validation are coNP-complete,
NP-complete, and coNP-complete for GARs, respectively [17, 20]. Here we assume that given
two lists of attributes x.Ā and y.B̄, checking M(x.Ā, y.B̄) is in PTIME in the sizes |x.Ā| and
|y.B̄|, as commonly found in practice for pre-trained M. The complexity bounds are the
same as for reasoning about GEDs [20]. Moreover, the implication and satisfiability analyses
are no harder than their counterparts for relational conditional functional dependencies [14].

3 Deducing Graph Associations

This section first presents the architecture and workflow of Fishing Fort (Section 3.1), and
then showcases its applications in different domains (Section 3.2).

3.1 The Architecture of Fishing Fort
As shown in Figure 1, Fishing Fort supports both association deduction, and graph enrichment
and cleaning. For each application domain, it maintains a set Γ of ground truth, and references
relevant external knowledge graphs KG. Given a real-life graph G, it first enriches G by
extracting relevant data from KG and cleans the enriched G; to simplify the discussion, we
refer to the enriched and cleaned graph also as G. After the preprocessing step, Fishing Fort
then discovers a set Σ of GARs for the application, and deduces associations from G with
the GARs of Σ; in the process it accumulates ground truth for subsequent analyses. Below
we focus on association deduction, and defer data enrichment and cleaning to Section 4.

Association deduction is carried out by the following main modules and algorithms.
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Figure 1 The architecture of Fishing Fort.

Rule discovery. Fishing Fort implements the parallel algorithm of [13] for discovering GARs.
To scale with a large graph G, it employs three strategies. (1) Application-driven discovery.
Given an application A, Fishing Fort trains an ML model MA to identify vertices, edges
and properties in G that pertain to A. It reduces G to a smaller graph GA that consists
only of the data pertaining to A. Moreover, it discovers A-relevant rules, i.e., GARs with
consequence predicates selected by MA. (2) Sampling. It samples a set H of graphs from
GA such that each graph is at most ρ% of GA and consists of representative entities in GA
and their surrounding subgraphs, for a predefined bound ρ%. Denote by ΣG and ΣH the set
of A-relevant rules discovered from G and H, respectively. Fishing Fort guarantees that given
bounds σ and γ%, it samples H such that (a) at least γ% of rules in ΣG are covered by ΣH ,
and (b) each of these rules can be applied at least σ times on the entire G, i.e., the rules
in ΣH have recall above γ% and support above σ over the original graph G. (3) Parallel
scalability. Fishing Fort employs data-partitioned parallelism. It partitions G and distributes
the fragments across different machines. It works on the fragments in parallel and guarantees
to reduce runtime when more machines are used, i.e., the parallel scalability [29]. Hence in
principle, it can scale with large graphs G by using more machines when needed.

Association deduction. Fishing Fort deduces link and value associations from graph G, by
chasing G with the set Σ = ΣH of GARs discovered. More specifically, it applies a GAR
Q[x̄](X → p0) to G only if there exists a match h of Q in G such that h |= X and the
h(X) is validated with the ground truth in Γ (see Section 2.2); if so, it deduces association
h(p0) and adds h(p0) to Γ as validated facts for subsequent deduction. To carry this out, it
implements a combination of the parallel algorithms of [17, 21], and supports two modes: (1)
batch mode, to deduce all associations from G at once, and (2) incremental mode, to deduce
changes online to associations in response to updates to G. In both modes, users may also
opt to pick entities of their interest and deduce associations pertaining to these entities only.
Moreover, it explains ML predictions if requested by users (see Section 3.2.1).

Fishing Fort provides the following performance guarantees. (a) The chase is Church-
Rosser [1], i.e., it guarantees to terminate and converge at the same result no matter what
GARs in Σ are used and in what order the rules are applied. (b) The deduced associations are
logical consequences of the GARs of Σ and ground truth of Γ; hence if Σ and Γ are correct,
so are the deduced associations. (c) Its deduction algorithm is also parallelly scalable.
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Implementation. Fishing Fort is implemented on top of GRAPE [24], a graph engine that
parallelizes single-machine graph algorithms based on a fixpoint model in terms of partial
evaluation and incremental computation. GRAPE was acquired by Alibaba Group and
renamed as GraphScope [16]; it supports 90+% of daily graph computations of Alibaba.

3.2 Fishing Fort in Action
We next present example applications of Fishing Fort, along with GARs discovered from
real-life data. The graph patterns of the GARs are depicted in Figure 2.

3.2.1 Online Recommendation
ML models have been widely used in e-commerce to recommend items to users. The models
are often classified as collaborative filtering (CF) and content-based (CB). CF identifies user
preference and makes recommendation by learning from user-item historical interactions,
e.g., users’ previous ratings and browsing history, and CB primarily compares the contents of
users and items such as user profiles and item features. However, a single strategy, either CF
or CB, often does not suffice in practice. For example, instead of exploring new interesting
items, CF tends to find similar ones w.r.t. the user’s past interaction due to its collaborative
nature. It does not work well when the interaction data is sparse and when a recommender
system starts cold. To rectify these limitations, hybrid models have been explored to unify
interaction-level similarity and content-level similarity. However, the hybrid approach often
requires training a new ML model starting from scratch. Moreover, the ML models usually
compute a prediction score, i.e., recommendation strength, between each user x and item
y, and recommend y to x only if the score is above some predetermined thresholds. As a
result, these ML models often make false positive (FP) or false negative (FN) predictions,
especially in the “fuzzy area” where the predicted scores are near the thresholds, i.e., an area
where the prediction strengths are neither sufficiently large nor sufficiently small.

Another issue concerns the explanation of ML predictions M(x, y), to tell why an item y

is recommended to user x. The need for this is twofold, (a) to provide the users with insights
and establish their trust in the predictions, and (b) help developers debug ML models by
revealing errors or bias in training data that result in adverse and unexpected behaviors.

Fishing Fort has been deployed at e-commerce companies to reduce FPs and FNs of ML
recommendation models, and provide local explanations of GNN-based recommendations. It
improves the average click-through rate of the companies by up to 50×.

(a) Reducing FPs and FNs of ML predictions. Consider an ML model Mrate(x, y) for
movie recommendations that, given a movie y and a user x, outputs a numeric score, i.e.,
recommendation strength, between (0, 1). The higher the score, the stronger the confidence.
Take 0.5 as the strength threshold, i.e., Mrate recommends y to x if Mrate(x, y) ≥ 0.5.

As an example, GAR φ1 = Q1[x̄](X1∧0.5 ≤ Mrate(x0, x1) ≤ 0.6 → dislike(x0, x1)) corrects
some FPs of ML model Mrate in its “fuzzy area” of recommendations. Together with Q1,
precondition X1 specifies the following: (1) user x0 disliked a high-rating movie x2, which
stars the same actor x4 as movie x1 does; and (2) x0 also disliked another high-rating movie
x3, which is directed by the director x5 of movie x1. Intuitively, model Mrate (especially
if it is CF-based) is inclined to make the recommendation of movie x1 to user x0, since
many other users could have positive interactions with movies x1, x2 and x3 (hence the high
ratings). However, GAR φ1 overrides the prediction with logic conditions X1, because unlike
an average user, user x0 seems to approve neither the leading actor nor the director of movie
x1. Among the matching cases of Q1 in real-world datasets, this rule reduces FPs by 92.3%.
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<latexit sha1_base64="/Uk/wFdwJrlju19MFKYgfunwGpo=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2DcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCJbH1g</latexit>x4

<latexit sha1_base64="aLffjXRmpfSHxCkke74wlRvwtpw=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2TcCDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCKv31h</latexit>x5

(Battery)
has

has

has

(Procedure)

(Procedure)

(Procedure)

next

next
(State 324)

(State 738)

<latexit sha1_base64="I32pnrpBII1QqcWHTy/SA7OYogA=">AAAB0nicbY+7SgNBFIbPxFuMt1XBQpvFIFiFXYvYhtjYCAnkBsmyzE5O4pDZCzsTIS4Liq0vYWMn+hC+hI3P4mSTQhN/GPj4/3MO83uR4FJZ1hfJrayurW/kNwtb2zu7e8b+QUuG45hhk4UijDselSh4gE3FlcBOFCP1PYFtb3Q1zdt3GEseBg01idDx6TDgA86o0pZrHPd8qm4ZFclN6mYsB4lUVGHqGkWrZGUyl8GeQ7FyVP/mb9XPmmu89PohG/sYKCaolF3bipST0FhxJjAt9MYSI8pGdIhdjQH1UTpJ1iE1z7TTNwdhrF+gzMz9vZFQX8qJ7+nJ7JeL2dT8L+s2bCeZnsSApQXdyV5ssAyti5JdLpXrulwVZsrDCZzCOdhwCRW4hho0gcEDvMI7fJAGuSeP5Gk2miPznUP4I/L8A8F/iD4=</latexit>

Mstate

<latexit sha1_base64="I32pnrpBII1QqcWHTy/SA7OYogA=">AAAB0nicbY+7SgNBFIbPxFuMt1XBQpvFIFiFXYvYhtjYCAnkBsmyzE5O4pDZCzsTIS4Liq0vYWMn+hC+hI3P4mSTQhN/GPj4/3MO83uR4FJZ1hfJrayurW/kNwtb2zu7e8b+QUuG45hhk4UijDselSh4gE3FlcBOFCP1PYFtb3Q1zdt3GEseBg01idDx6TDgA86o0pZrHPd8qm4ZFclN6mYsB4lUVGHqGkWrZGUyl8GeQ7FyVP/mb9XPmmu89PohG/sYKCaolF3bipST0FhxJjAt9MYSI8pGdIhdjQH1UTpJ1iE1z7TTNwdhrF+gzMz9vZFQX8qJ7+nJ7JeL2dT8L+s2bCeZnsSApQXdyV5ssAyti5JdLpXrulwVZsrDCZzCOdhwCRW4hho0gcEDvMI7fJAGuSeP5Gk2miPznUP4I/L8A8F/iD4=</latexit>

Mstate

weight0=555g,
weight1=605g

current=3.8A

current=8.8A

<latexit sha1_base64="5oo6b2MwtedpW7wQCxdqdCyyZuk=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PeDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1pyuIBNfGdb9IZmNza3snu5vb2z84PMofnzR1OIkZNlgowrgdUI2CK2wYbgS2oxipDAS2gvFd6reeMNY8VHUzjdCXdKj4gDNqrPTw3HN7+YJbdOdw1om3JIXyWe2bf1Q+q738e7cfsolEZZigWnc8NzJ+QmPDmcBZrjvRGFE2pkPsWKqoRO0n81dnzqVV+s4gjO0o48zV3xsJlVpPZWCTkpqRXvVS8T+vU/f8JD2Jis1ytpO32mCdNK+LXqlYqtlyFVggC+dwAVfgwQ2U4R6q0AAGQ3iBV3gjt4SSEXlcRDNkuXMKf0D0D4QgfVw=</latexit>x0

<latexit sha1_base64="SUoHhhVnD+7acsVGwWNCgLrZv4Q=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PODBC8GLR4i8EtiQ2aGBkdnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1p8uPpNDGdb9IZmNza3snu5vb2z84PMofnzR1OIk5Nngow7jtM41SKGwYYSS2oxhZ4Ets+eO71G89YaxFqOpmGqEXsKESA8GZsdLDc4/28gW36M7hrBO6JIXyWe1bfFQ+q738e7cf8kmAynDJtO5QNzJewmIjuMRZrjvRGDE+ZkPsWKpYgNpL5q/OnEur9J1BGNtRxpmrvzcSFmg9DXybDJgZ6VUvFf/zOnXqJelJVHyWs53oaoN10rwu0lKxVLPlKrBAFs7hAq6Awg2U4R6q0AAOQ3iBV3gjt4SREXlcRDNkuXMKf0D0D4VzfV0=</latexit>x1

<latexit sha1_base64="GteuE0MUR16IL+/D8KKdRnIcUc4=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2OcDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4PA4KVtJJpaq60xVEgmvjul8ktbW9s7uX3s8cHB4dn2RPz5o6nMQMGywUYdwOqEbBFTYMNwLbUYxUBgJbwfhu7reeMNY8VHUzjdCXdKj4gDNqrPTw3Cv0sjk37y7gbBJvRXLli9o3/6h8VnvZ924/ZBOJyjBBte54bmT8hMaGM4GzTHeiMaJsTIfYsVRRidpPFq/OnGur9J1BGNtRxlmovzcSKrWeysAmJTUjve7Nxf+8Tt3zk/lJVGyWsZ289QabpFnIe8V8sWbLVWCJNFzCFdyAByUowz1UoQEMhvACr/BGbgklI/K4jKbIaucc/oDoH4bGfV4=</latexit>x2

<latexit sha1_base64="NEvavALL2JrT/Y9SSOkME9Zx84E=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2JcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCIGX1f</latexit>x3

<latexit sha1_base64="/Uk/wFdwJrlju19MFKYgfunwGpo=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2DcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCJbH1g</latexit>x4

has

has

has

has

next

next

next

(Subnet)

(IPS)

(WAF)

t=t1
type=“Nmap”

t=t2 < t1+1
type=“scanner”

t=t3 < t2+1
type=“Startracker”

t=t4 < t3+1
type=“WannaRen”

(IPS)

(IPS)

<latexit sha1_base64="5oo6b2MwtedpW7wQCxdqdCyyZuk=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PeDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1pyuIBNfGdb9IZmNza3snu5vb2z84PMofnzR1OIkZNlgowrgdUI2CK2wYbgS2oxipDAS2gvFd6reeMNY8VHUzjdCXdKj4gDNqrPTw3HN7+YJbdOdw1om3JIXyWe2bf1Q+q738e7cfsolEZZigWnc8NzJ+QmPDmcBZrjvRGFE2pkPsWKqoRO0n81dnzqVV+s4gjO0o48zV3xsJlVpPZWCTkpqRXvVS8T+vU/f8JD2Jis1ytpO32mCdNK+LXqlYqtlyFVggC+dwAVfgwQ2U4R6q0AAGQ3iBV3gjt4SSEXlcRDNkuXMKf0D0D4QgfVw=</latexit>x0

<latexit sha1_base64="SUoHhhVnD+7acsVGwWNCgLrZv4Q=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PODBC8GLR4i8EtiQ2aGBkdnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1p8uPpNDGdb9IZmNza3snu5vb2z84PMofnzR1OIk5Nngow7jtM41SKGwYYSS2oxhZ4Ets+eO71G89YaxFqOpmGqEXsKESA8GZsdLDc4/28gW36M7hrBO6JIXyWe1bfFQ+q738e7cf8kmAynDJtO5QNzJewmIjuMRZrjvRGDE+ZkPsWKpYgNpL5q/OnEur9J1BGNtRxpmrvzcSFmg9DXybDJgZ6VUvFf/zOnXqJelJVHyWs53oaoN10rwu0lKxVLPlKrBAFs7hAq6Awg2U4R6q0AAOQ3iBV3gjt4SREXlcRDNkuXMKf0D0D4VzfV0=</latexit>x1

<latexit sha1_base64="GteuE0MUR16IL+/D8KKdRnIcUc4=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2OcDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4PA4KVtJJpaq60xVEgmvjul8ktbW9s7uX3s8cHB4dn2RPz5o6nMQMGywUYdwOqEbBFTYMNwLbUYxUBgJbwfhu7reeMNY8VHUzjdCXdKj4gDNqrPTw3Cv0sjk37y7gbBJvRXLli9o3/6h8VnvZ924/ZBOJyjBBte54bmT8hMaGM4GzTHeiMaJsTIfYsVRRidpPFq/OnGur9J1BGNtRxlmovzcSKrWeysAmJTUjve7Nxf+8Tt3zk/lJVGyWsZ289QabpFnIe8V8sWbLVWCJNFzCFdyAByUowz1UoQEMhvACr/BGbgklI/K4jKbIaucc/oDoH4bGfV4=</latexit>x2

(User)

<latexit sha1_base64="NEvavALL2JrT/Y9SSOkME9Zx84E=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2JcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCIGX1f</latexit>x3
<latexit sha1_base64="/Uk/wFdwJrlju19MFKYgfunwGpo=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2DcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCJbH1g</latexit>x4

directed

(Director)
liked

genre=“musical”

(Movie)
<latexit sha1_base64="Zrg70Qaq1WQNs8ZTId2vyUvU1uU=">AAAB0XicbY/NSsNAFIXv1L9a/6KCIG6CRXBVEhd1W+rGjdBi/6ANYTK9rUNnkpCZCiUExa1P4cKl+hK+hBufxTTtQlsPDHycc+9ljhcKrrRlfZHcyura+kZ+s7C1vbO7Z+wftFQwjhg2WSCCqONRhYL72NRcC+yEEVLpCWx7o6tp3r7HSPHAb+hJiI6kQ58POKM6tVzjuCepvmNUxDeJm7EaxBHVmLhG0SpZmcxlsOdQrBzVv/lb9bPmGi+9fsDGEn3NBFWqa1uhdmIaac4EJoXeWGFI2YgOsZuiTyUqJ84qJOZZ6vTNQRClz9dm5v7eiKlUaiK9dDL75GI2Nf/Lug3biacn0WdJIe1kLzZYhtZFyS6XyvW0XBVmysMJnMI52HAJFbiGGjSBwQO8wjt8kFsyIY/kaTaaI/OdQ/gj8vwD9wSHvw==</latexit>

Mrate

directed

(Movie) (Movie)
genre=“war”

genre=“war”

disliked

<latexit sha1_base64="5oo6b2MwtedpW7wQCxdqdCyyZuk=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PeDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1pyuIBNfGdb9IZmNza3snu5vb2z84PMofnzR1OIkZNlgowrgdUI2CK2wYbgS2oxipDAS2gvFd6reeMNY8VHUzjdCXdKj4gDNqrPTw3HN7+YJbdOdw1om3JIXyWe2bf1Q+q738e7cfsolEZZigWnc8NzJ+QmPDmcBZrjvRGFE2pkPsWKqoRO0n81dnzqVV+s4gjO0o48zV3xsJlVpPZWCTkpqRXvVS8T+vU/f8JD2Jis1ytpO32mCdNK+LXqlYqtlyFVggC+dwAVfgwQ2U4R6q0AAGQ3iBV3gjt4SSEXlcRDNkuXMKf0D0D4QgfVw=</latexit>x0
<latexit sha1_base64="SUoHhhVnD+7acsVGwWNCgLrZv4Q=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PODBC8GLR4i8EtiQ2aGBkdnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1p8uPpNDGdb9IZmNza3snu5vb2z84PMofnzR1OIk5Nngow7jtM41SKGwYYSS2oxhZ4Ets+eO71G89YaxFqOpmGqEXsKESA8GZsdLDc4/28gW36M7hrBO6JIXyWe1bfFQ+q738e7cf8kmAynDJtO5QNzJewmIjuMRZrjvRGDE+ZkPsWKpYgNpL5q/OnEur9J1BGNtRxpmrvzcSFmg9DXybDJgZ6VUvFf/zOnXqJelJVHyWs53oaoN10rwu0lKxVLPlKrBAFs7hAq6Awg2U4R6q0AAOQ3iBV3gjt4SREXlcRDNkuXMKf0D0D4VzfV0=</latexit>x1

<latexit sha1_base64="GteuE0MUR16IL+/D8KKdRnIcUc4=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2OcDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4PA4KVtJJpaq60xVEgmvjul8ktbW9s7uX3s8cHB4dn2RPz5o6nMQMGywUYdwOqEbBFTYMNwLbUYxUBgJbwfhu7reeMNY8VHUzjdCXdKj4gDNqrPTw3Cv0sjk37y7gbBJvRXLli9o3/6h8VnvZ924/ZBOJyjBBte54bmT8hMaGM4GzTHeiMaJsTIfYsVRRidpPFq/OnGur9J1BGNtRxlmovzcSKrWeysAmJTUjve7Nxf+8Tt3zk/lJVGyWsZ289QabpFnIe8V8sWbLVWCJNFzCFdyAByUowz1UoQEMhvACr/BGbgklI/K4jKbIaucc/oDoH4bGfV4=</latexit>x2

(User)

<latexit sha1_base64="NEvavALL2JrT/Y9SSOkME9Zx84E=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2JcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCIGX1f</latexit>x3

<latexit sha1_base64="/Uk/wFdwJrlju19MFKYgfunwGpo=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2DcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCJbH1g</latexit>x4

(Director)

disliked
(Movie)

<latexit sha1_base64="Zrg70Qaq1WQNs8ZTId2vyUvU1uU=">AAAB0XicbY/NSsNAFIXv1L9a/6KCIG6CRXBVEhd1W+rGjdBi/6ANYTK9rUNnkpCZCiUExa1P4cKl+hK+hBufxTTtQlsPDHycc+9ljhcKrrRlfZHcyura+kZ+s7C1vbO7Z+wftFQwjhg2WSCCqONRhYL72NRcC+yEEVLpCWx7o6tp3r7HSPHAb+hJiI6kQ58POKM6tVzjuCepvmNUxDeJm7EaxBHVmLhG0SpZmcxlsOdQrBzVv/lb9bPmGi+9fsDGEn3NBFWqa1uhdmIaac4EJoXeWGFI2YgOsZuiTyUqJ84qJOZZ6vTNQRClz9dm5v7eiKlUaiK9dDL75GI2Nf/Lug3biacn0WdJIe1kLzZYhtZFyS6XyvW0XBVmysMJnMI52HAJFbiGGjSBwQO8wjt8kFsyIY/kaTaaI/OdQ/gj8vwD9wSHvw==</latexit>

Mrate

directed

(Movie)

(Movie)

disliked

rating > 4.0

rating > 4.0

<latexit sha1_base64="aLffjXRmpfSHxCkke74wlRvwtpw=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2TcCDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCKv31h</latexit>x5

(Actor)
starred_in

starred_in

directed

<latexit sha1_base64="5oo6b2MwtedpW7wQCxdqdCyyZuk=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PeDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1pyuIBNfGdb9IZmNza3snu5vb2z84PMofnzR1OIkZNlgowrgdUI2CK2wYbgS2oxipDAS2gvFd6reeMNY8VHUzjdCXdKj4gDNqrPTw3HN7+YJbdOdw1om3JIXyWe2bf1Q+q738e7cfsolEZZigWnc8NzJ+QmPDmcBZrjvRGFE2pkPsWKqoRO0n81dnzqVV+s4gjO0o48zV3xsJlVpPZWCTkpqRXvVS8T+vU/f8JD2Jis1ytpO32mCdNK+LXqlYqtlyFVggC+dwAVfgwQ2U4R6q0AAGQ3iBV3gjt4SSEXlcRDNkuXMKf0D0D4QgfVw=</latexit>x0
<latexit sha1_base64="SUoHhhVnD+7acsVGwWNCgLrZv4Q=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PODBC8GLR4i8EtiQ2aGBkdnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1p8uPpNDGdb9IZmNza3snu5vb2z84PMofnzR1OIk5Nngow7jtM41SKGwYYSS2oxhZ4Ets+eO71G89YaxFqOpmGqEXsKESA8GZsdLDc4/28gW36M7hrBO6JIXyWe1bfFQ+q738e7cf8kmAynDJtO5QNzJewmIjuMRZrjvRGDE+ZkPsWKpYgNpL5q/OnEur9J1BGNtRxpmrvzcSFmg9DXybDJgZ6VUvFf/zOnXqJelJVHyWs53oaoN10rwu0lKxVLPlKrBAFs7hAq6Awg2U4R6q0AAOQ3iBV3gjt4SREXlcRDNkuXMKf0D0D4VzfV0=</latexit>x1

<latexit sha1_base64="GteuE0MUR16IL+/D8KKdRnIcUc4=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2OcDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4PA4KVtJJpaq60xVEgmvjul8ktbW9s7uX3s8cHB4dn2RPz5o6nMQMGywUYdwOqEbBFTYMNwLbUYxUBgJbwfhu7reeMNY8VHUzjdCXdKj4gDNqrPTw3Cv0sjk37y7gbBJvRXLli9o3/6h8VnvZ924/ZBOJyjBBte54bmT8hMaGM4GzTHeiMaJsTIfYsVRRidpPFq/OnGur9J1BGNtRxlmovzcSKrWeysAmJTUjve7Nxf+8Tt3zk/lJVGyWsZ289QabpFnIe8V8sWbLVWCJNFzCFdyAByUowz1UoQEMhvACr/BGbgklI/K4jKbIaucc/oDoH4bGfV4=</latexit>x2

<latexit sha1_base64="NEvavALL2JrT/Y9SSOkME9Zx84E=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2JcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCIGX1f</latexit>x3
<latexit sha1_base64="/Uk/wFdwJrlju19MFKYgfunwGpo=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2DcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCJbH1g</latexit>x4

<latexit sha1_base64="aLffjXRmpfSHxCkke74wlRvwtpw=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2TcCDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCKv31h</latexit>x5

<latexit sha1_base64="0+Mvl7RoJMmnTGYVFRci/jByRtU=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PawHLwQvHiHySmBDZocGRmZmNzuDkWz4BK969gP8C3/Ci9/i8DgoWEknlarqTlcYC66N636RzMbm1vZOdje3t39weJQ/PmnoaJwwrLNIREkrpBoFV1g33AhsxQlSGQpshqO7md98wkTzSNXMJMZA0oHifc6osdLDc9fv5gtu0Z3DWSfekhRKZ9Vv/lH+rHTz751exMYSlWGCat323NgEKU0MZwKnuc5YY0zZiA6wbamiEnWQzl+dOpdW6Tn9KLGjjDNXf2+kVGo9kaFNSmqGetWbif957ZoXpLOTqNg0Zzt5qw3WSeO66PlFv2rLlWGBLJzDBVyBBzdQgnuoQB0YDOAFXuGN3BJKhuRxEc2Q5c4p/AHRP4wSfWI=</latexit>x6
<latexit sha1_base64="RlMhnVTcpl+2c1og2ENLQ0Ff8lI=">AAABuXicbU/LTgJBEOzBF+ID1MSLl43ExBPZ9QAHLwQvHiHySmBDZocGRmZmNzuDkWz4BK969gP8C3/Ci9/i8DgoWEknlarqTlcQCa6N636R1Nb2zu5eej9zcHh0nM2dnDZ1OIkZNlgowrgdUI2CK2wYbgS2oxipDAS2gvHd3G89Yax5qOpmGqEv6VDxAWfUWOnhuVfq5fJuwV3A2STeiuTL57Vv/lH5rPZy791+yCYSlWGCat3x3Mj4CY0NZwJnme5EY0TZmA6xY6miErWfLF6dOVdW6TuDMLajjLNQf28kVGo9lYFNSmpGet2bi/95nbrnJ/OTqNgsYzt56w02SfOm4BULxZotV4El0nABl3ANHpSgDPdQhQYwGMILvMIbuSWUjMjjMpoiq50z+AOifwCNZX1j</latexit>x7

(Disease)

(Disease) (Pathway)

(Pathway)

(Disease)

(Drug)

(Gene)

(Gene)

<latexit sha1_base64="5yxE4p43+NrNC600ixr9ynoMLek=">AAAB0XicbY/NSsNAFIXv1L/a+hN1JW6CVXBVki7qtujGjVCxf9CGMJlOa+jMJGQmhRKC4tancOFWd76AT+GD6Npp2oW2Hhj4OOfeyxwvZL5UlvWJciura+sb+c1CcWt7Z9fY22/JII4IbZKABVHHw5IyX9Cm8hWjnTCimHuMtr3R5TRvj2kk/UA01CSkDsdD4Q98gpW2XOOwx7G6I5gl16mbsRwk/Sgepq5RsspWJnMZ7DmUaidf7x/j4nfdNZ57/YDEnApFGJaya1uhchIcKZ8wmhZ6saQhJiM8pF2NAnMqnSSrkJqn2umbgyDSTygzc39vJJhLOeGensw+uZhNzf+ybsN2kulJKkha0J3sxQbL0KqU7Wq5eqPLXcBMeTiCYzgDG86hBldQhyYQuIcXeIU3dIsm6AE9zkZzaL5zAH+Enn4AwfWIbQ==</latexit>

Mdrug
<latexit sha1_base64="5oo6b2MwtedpW7wQCxdqdCyyZuk=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PeDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1pyuIBNfGdb9IZmNza3snu5vb2z84PMofnzR1OIkZNlgowrgdUI2CK2wYbgS2oxipDAS2gvFd6reeMNY8VHUzjdCXdKj4gDNqrPTw3HN7+YJbdOdw1om3JIXyWe2bf1Q+q738e7cfsolEZZigWnc8NzJ+QmPDmcBZrjvRGFE2pkPsWKqoRO0n81dnzqVV+s4gjO0o48zV3xsJlVpPZWCTkpqRXvVS8T+vU/f8JD2Jis1ytpO32mCdNK+LXqlYqtlyFVggC+dwAVfgwQ2U4R6q0AAGQ3iBV3gjt4SSEXlcRDNkuXMKf0D0D4QgfVw=</latexit>x0

<latexit sha1_base64="SUoHhhVnD+7acsVGwWNCgLrZv4Q=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PODBC8GLR4i8EtiQ2aGBkdnZzc5gJBs+waue/QD/wp/w4rc4CxwUrKSTSlV1p8uPpNDGdb9IZmNza3snu5vb2z84PMofnzR1OIk5Nngow7jtM41SKGwYYSS2oxhZ4Ets+eO71G89YaxFqOpmGqEXsKESA8GZsdLDc4/28gW36M7hrBO6JIXyWe1bfFQ+q738e7cf8kmAynDJtO5QNzJewmIjuMRZrjvRGDE+ZkPsWKpYgNpL5q/OnEur9J1BGNtRxpmrvzcSFmg9DXybDJgZ6VUvFf/zOnXqJelJVHyWs53oaoN10rwu0lKxVLPlKrBAFs7hAq6Awg2U4R6q0AAOQ3iBV3gjt4SREXlcRDNkuXMKf0D0D4VzfV0=</latexit>x1

<latexit sha1_base64="GteuE0MUR16IL+/D8KKdRnIcUc4=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2OcDBC8GLR4i8EtiQ2aGBkZnZzc5gJBs+waue/QD/wp/w4rc4PA4KVtJJpaq60xVEgmvjul8ktbW9s7uX3s8cHB4dn2RPz5o6nMQMGywUYdwOqEbBFTYMNwLbUYxUBgJbwfhu7reeMNY8VHUzjdCXdKj4gDNqrPTw3Cv0sjk37y7gbBJvRXLli9o3/6h8VnvZ924/ZBOJyjBBte54bmT8hMaGM4GzTHeiMaJsTIfYsVRRidpPFq/OnGur9J1BGNtRxlmovzcSKrWeysAmJTUjve7Nxf+8Tt3zk/lJVGyWsZ289QabpFnIe8V8sWbLVWCJNFzCFdyAByUowz1UoQEMhvACr/BGbgklI/K4jKbIaucc/oDoH4bGfV4=</latexit>x2

watched

<latexit sha1_base64="/Uk/wFdwJrlju19MFKYgfunwGpo=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2DcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCJbH1g</latexit>x4

(User)

(Movie)

age=[18, 25)

genre=“Action”

(User)
friends

(Movie)
liked

rating>6

year≧2020
genre=“Action”

(Movie)

directed

(Director)
directed

won

(Award)
type=“Academy Award”

<latexit sha1_base64="GgFWUIDNKly91ozuCa7k9xmzSI0=">AAAB0HicbY/NSsNAFIVv/K31LyqI4CZYBFclcVG3pW7cCK30D9oQJtPbOnRmEjJTsYQobn0LwW19Cl/Cjc9imnahrQcGPs659zLHDzlT2ra/jJXVtfWNzdxWfntnd2/fPDhsqmAUUWzQgAdR2ycKOZPY0ExzbIcREuFzbPnD62neesBIsUDW9ThEV5CBZH1GiU4tzzzpCqLvKeHxbeJlrPpxhDTxzIJdtDNZy+DMoVA+rn2zSeWz6plv3V5ARwKlppwo1XHsULsxiTSjHJN8d6QwJHRIBthJURKByo2zBol1njo9qx9E6ZPaytzfGzERSo2Fn05mf1zMpuZ/WafuuPH0JEqa5NNOzmKDZWheFp1SsVRLy1VgphycwhlcgANXUIYbqEIDKDzBO0zgw7gzHo1n42U2umLMd47gj4zXHzElh0M=</latexit>

Mrec

<latexit sha1_base64="NEvavALL2JrT/Y9SSOkME9Zx84E=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2JcGDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCIGX1f</latexit>x3

<latexit sha1_base64="0+Mvl7RoJMmnTGYVFRci/jByRtU=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2PawHLwQvHiHySmBDZocGRmZmNzuDkWz4BK969gP8C3/Ci9/i8DgoWEknlarqTlcYC66N636RzMbm1vZOdje3t39weJQ/PmnoaJwwrLNIREkrpBoFV1g33AhsxQlSGQpshqO7md98wkTzSNXMJMZA0oHifc6osdLDc9fv5gtu0Z3DWSfekhRKZ9Vv/lH+rHTz751exMYSlWGCat323NgEKU0MZwKnuc5YY0zZiA6wbamiEnWQzl+dOpdW6Tn9KLGjjDNXf2+kVGo9kaFNSmqGetWbif957ZoXpLOTqNg0Zzt5qw3WSeO66PlFv2rLlWGBLJzDBVyBBzdQgnuoQB0YDOAFXuGN3BJKhuRxEc2Q5c4p/AHRP4wSfWI=</latexit>x6

<latexit sha1_base64="aLffjXRmpfSHxCkke74wlRvwtpw=">AAABuXicbU/LTgJBEOzBF+ILNfHiZSMx8UR2TcCDF4IXjxB5JbAhs0MDIzOzm53BSDZ8glc9+wH+hT/hxW9xeBwUrKSTSlV1pyuIBNfGdb9IamNza3snvZvZ2z84PMoenzR0OI4Z1lkowrgVUI2CK6wbbgS2ohipDAQ2g9HdzG8+Yax5qGpmEqEv6UDxPmfUWOnhuVvoZnNu3p3DWSfekuRKZ9Vv/lH+rHSz751eyMYSlWGCat323Mj4CY0NZwKnmc5YY0TZiA6wbamiErWfzF+dOpdW6Tn9MLajjDNXf28kVGo9kYFNSmqGetWbif957ZrnJ7OTqNg0Yzt5qw3WSeM67xXzxaotV4YF0nAOF3AFHtxACe6hAnVgMIAXeIU3cksoGZLHRTRFljun8AdE/wCKv31h</latexit>x5

<latexit sha1_base64="JE9oQIQqVtl0XxFbqqaHT1hiZ94=">AAABuXicbU/LTgJBEOzBF+IL9agxG4mJJ7JLDB68EL14hMgrgQ2ZHRoYmZnd7AwmZMPRo1c9+xf8it/gTzg8DgpW0kmlqrrTFUSCa+O6XyS1sbm1vZPezeztHxweZY9P6jocxQxrLBRh3AyoRsEV1gw3AptRjFQGAhvB8GHmN14w1jxUVTOO0Je0r3iPM2qs9FTp3HSyOTfvzuGsE29JcqXzaeX79WJa7mQ/292QjSQqwwTVuuW5kfETGhvOBE4y7ZHGiLIh7WPLUkUlaj+ZvzpxrqzSdXphbEcZZ67+3kio1HosA5uU1Az0qjcT//NaVc9PZidRsUnGdvJWG6yTeiHvFfPFii13Dwuk4Qwu4Ro8uIUSPEIZasCgD2/wDh/kjlAyIM+LaIosd07hD4j+AWHmfUM=</latexit>

Q4

<latexit sha1_base64="pcnp95CM4ZphA4rSM+owecg4ssE=">AAABuXicbU/LTgJBEOzBF+IL9agxG4mJJ7JLIh68EL14hMgrgQ2ZHRoYmZnd7AwmZMPRo1c9+xf8it/gTzg8DgpW0kmlqrrTFUSCa+O6XyS1sbm1vZPezeztHxweZY9P6jocxQxrLBRh3AyoRsEV1gw3AptRjFQGAhvB8GHmN14w1jxUVTOO0Je0r3iPM2qs9FTp3HSyOTfvzuGsE29JcqXzaeX79WJa7mQ/292QjSQqwwTVuuW5kfETGhvOBE4y7ZHGiLIh7WPLUkUlaj+ZvzpxrqzSdXphbEcZZ67+3kio1HosA5uU1Az0qjcT//NaVc9PZidRsUnGdvJWG6yTeiHvFfPFii13Dwuk4Qwu4Ro8uIUSPEIZasCgD2/wDh/kjlAyIM+LaIosd07hD4j+AWM5fUQ=</latexit>

Q5

<latexit sha1_base64="KeMQcy9yP+wND56LkoRrYgzllXs=">AAABuXicbU/LTgJBEOzBF+IL9agxG4mJJ7LrAQ9eiF48QuSVwIbMDg2MzMxudgYTsuHo0aue/Qt+xW/wJ5wFDgpW0kmlqrrTFUSCa+O6XySzsbm1vZPdze3tHxwe5Y9PGjocxwzrLBRh3AqoRsEV1g03AltRjFQGApvB6CH1my8Yax6qmplE6Es6ULzPGTVWeqp2S918wS26czjrxFuSQvl8Vv1+vZhVuvnPTi9kY4nKMEG1bntuZPyExoYzgdNcZ6wxomxEB9i2VFGJ2k/mr06dK6v0nH4Y21HGmau/NxIqtZ7IwCYlNUO96qXif1675vlJehIVm+ZsJ2+1wTpp3BS9UrFUteXuYYEsnMElXIMHt1CGR6hAHRgM4A3e4YPcEUqG5HkRzZDlzin8AdE/ZIx9RQ==</latexit>

Q6 <latexit sha1_base64="yz6YFwdDCrDzH+otoZj+RM8wiuw=">AAABuXicbU/LTgJBEOzBF+IL9agxG4mJJ7LLAWO8EL14hMgrgQ2ZHRoYmZnd7AwmZMPRo1c9+xf8it/gTzg8DgpW0kmlqrrTFUSCa+O6XyS1sbm1vZPezeztHxweZY9P6jocxQxrLBRh3AyoRsEV1gw3AptRjFQGAhvB8GHmN14w1jxUVTOO0Je0r3iPM2qs9FTp3HayOTfvzuGsE29JcqXzaeX79WJa7mQ/292QjSQqwwTVuuW5kfETGhvOBE4y7ZHGiLIh7WPLUkUlaj+ZvzpxrqzSdXphbEcZZ67+3kio1HosA5uU1Az0qjcT//NaVc9PZidRsUnGdvJWG6yTeiHvFfPFii13Dwuk4Qwu4Ro8uIESPEIZasCgD2/wDh/kjlAyIM+LaIosd07hD4j+AWiFfUg=</latexit>
Q9

<latexit sha1_base64="Uz64afLslWN5inbVXmusG7liuJ4=">AAABuXicbU/LTgJBEOzBF+IL9agxG4mJJ7LLAQ5eiF48QuSVwIbMDg2MzMxudgYTsuHo0aue/Qt+xW/wJxweBwUr6aRSVd3pCiLBtXHdL5La2t7Z3UvvZw4Oj45PsqdnDR2OY4Z1FoowbgVUo+AK64Ybga0oRioDgc1g9DD3my8Yax6qmplE6Es6ULzPGTVWeqp2S91szs27CzibxFuRXPlyVv1+vZpVutnPTi9kY4nKMEG1bntuZPyExoYzgdNMZ6wxomxEB9i2VFGJ2k8Wr06dG6v0nH4Y21HGWai/NxIqtZ7IwCYlNUO97s3F/7x2zfOT+UlUbJqxnbz1BpukUch7xXyxasvdwxJpuIBruAUPSlCGR6hAHRgM4A3e4YPcEUqG5HkZTZHVzjn8AdE/Zd99Rg==</latexit>

Q7

<latexit sha1_base64="BYm+mcGe5NHORUT4/Uzig6zXQg8=">AAABuXicbU/LTgJBEOzBF+IL9agxG4mJJ7LLAU28EL14hMgrgQ2ZHRoYmZnd7AwmZMPRo1c9+xf8it/gTzg8DgpW0kmlqrrTFUSCa+O6XyS1sbm1vZPezeztHxweZY9P6jocxQxrLBRh3AyoRsEV1gw3AptRjFQGAhvB8GHmN14w1jxUVTOO0Je0r3iPM2qs9FTp3HayOTfvzuGsE29JcqXzaeX79WJa7mQ/292QjSQqwwTVuuW5kfETGhvOBE4y7ZHGiLIh7WPLUkUlaj+ZvzpxrqzSdXphbEcZZ67+3kio1HosA5uU1Az0qjcT//NaVc9PZidRsUnGdvJWG6yTeiHvFfPFii13Dwuk4Qwu4Ro8uIESPEIZasCgD2/wDh/kjlAyIM+LaIosd07hD4j+AWcyfUc=</latexit>
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Figure 2 Graph patterns in real-life GARs.

In contrast, GAR φ2 = Q2[x̄](X2 ∧ 0.4 ≤ Mrate(x0, x1) ≤ 0.5 → like(x0, x1)) suggests
recommending a war movie x1 to user x0 regardless of the negative ruling of Mrate(x0, x1),
if the following conditions (Q2 and X2) are met: (1) x0 disliked a war movie x4, yet (2) x0
liked a musical x3 directed by x2, the director of movie x1. Model Mrate may infer that x0
is not a fan of war movies based on the interaction with x4. Nonetheless, rule φ2 rejects the
prediction, based on the evidence that x0 is likely a fan of director x2. Over verification
datasets, GAR φ2 reduces FNs of Mrate by 87% for the matching cases of “fuzzy” predictions.

(b) Explaining ML predictions. Consider φ3 = Q3[x̄](X3 → Mrec(x0, x6)), where Mrec is
a GNN-based model, Mrec(x0, x6) indicates that the model recommends movie x6 to user
x0, and X3 is x0.age ≥ 18 ∧ x0.age < 25∧ x2.rating ≥ 6∧x3.genre = “Action” ∧x6.genre =
“Action” ∧x6.year ≥ 2020 ∧x5.type = “Academy Award”. As opposed to the previous rules,
the consequence predicate of this GAR is an ML predicate. Fishing Fort discovers pattern
Q3 and precondition X3 to explain Mrec predictions from the movie-watching history and
friendship of x0, and highlights important features of x0 and x6.

As a concrete example, suppose that the GNN model Mrec recommends a movie y0
“Everything Everywhere All at Once” to a user x0 “Mike”. Then φ3 may provide high-level
rationale behind the recommendation as follows: the movie is recommended to Mike because
Mike is a young adult and has watched action movies before, the movie won the 95th academy
award for best picture, and it is directed by “Daniel Scheinert”, the director of a favorite
movie of a friend Peter of Mike. This provides a local explanation of the prediction.

Unlike previous methods for explaining ML predictions, e.g., SubgraphX [47] and GNNEx-
plainer [46], Fishing Fort not only provides a subgraph as an explanation, but also tells us
what features are decisive for an ML model to make predictions and under what conditions
the predictions can be made. Moreover, Fishing Fort supports a predicate of local 2-WL test,
and therefore, is able to explain common GNN-based recommendations, which is no more
expressive than local 2-WL test [27]. In this way, Fishing Fort deduces local explanations
for individual instances with GARs. Moreover, the rules for a GNN-based recommendation
model M disclose the general behaviors of M and can serve as global explanations of M.

Tannen’s Festschrift
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3.2.2 Early Drug Discovery
Drug discovery is the process of new drug identification, which starts from target selection
and validation, through preclinical screening, to clinical trials [25]. It is time-consuming and
quite expensive. The development of a new drug takes 10–15 years, costs around 2 billion
US dollars, and typically has a high risk of failure (>90%) [50].

To accelerate drug discovery, reduce the cost, and increase the success rate, ML models
have been explored to identify drug-disease associations (DDAs), drug-drug interactions
(DDIs), and protein-protein interactions (PPIs). However, it is costly to train deep-learning
models for accurate predictions, and the predictions often have false positives and false
negatives. Moreover, ML predictions “still lack reliable explanations that are crucial to drug
repurposing and ADR (adverse drug reaction)” [50]. Worse still, noise is often introduced
by “unavoidable inaccuracy” of the ML models, e.g., nonexistent relations and inaccurately
named entities. Add to the complication that the models are often trained on possibly dirty
data, especially when the data comes from multiple sources.

Fishing Fort has been adopted in the early stage of drug discovery. It is used to assist (1)
target identification, to identify the right biological molecules or cellular pathways that can
be modulated by drugs to achieve therapeutic benefits, where PPIs are often crucial, (b) drug
repurposing, to reuse existing drugs for a new disease, and (c) ADR, to disclose undesirable
impacts that do not meet the anticipated therapeutic effects and may cause injuries to
patients. The need for these is evident. For example, target identification is perhaps the
most crucial initial step in drug discovery, and influences the chances of success at every step
of drug development. Traditional target identification usually starts in an academic setting,
and takes from years to decades. Fishing Fort helps select candidate targets and speed up
the process. It identifies DDAs, DDIs and PPIs simply as missing links. Moreover, it has
been used to integrate and clean biomedical libraries and data banks (see Section 4).

As an example, Fishing Fort was used to discover GARs for repositioning of existing
drugs that may have therapeutic effect on a particular type of Parkinson disease. A GAR
is φ4 = Q4[x̄](X4 → l(x0, x1)). Together with Q4, precondition X1 specifies the following:
(1) drug x0 has a known effect on an inborn genetic blood disease x2; (2) disease x1 is the
Parkinson; (3) drug x0 interacts with a gene x3, which shares an effect pathway x4 with
x1; (4) drug x0 can interact with a gene x5, which has an Mdrug-predicted relationship with
x1 (the dashed arrow in Q4), where Mdrug is a pre-trained ML model that predicts the
associations between genes and diseases [40, 34, 44]; and (5) drug x0 has a known effect on a
type of skin cancer x6, which shares an effect pathway with x1. The predicted link l(x0, x1)
(the bold line in Q4) indicates that drug x0 may have impact on Parkinson x1 in some way.

Such GARs suggest five drugs that may have a hidden association with the particular type
of Parkinson’s disease, including Colforsin (Forskolin) [53], Sulindac [36, 6], Tamoxifen [32],
and Tretinoin [43]. Our partners in pharmacy have verified four predictions with published
evidence. The remaining one is undergoing their active lab investigation.

As another example, Fishing Fort discovered GARs for PPIs. Such a GAR is φ5 =
Q5[x̄](Mppi(x0, x0) ≥ δ ∧ X5 → l(x0, x0)), in which Mppi is an RGCN model [37] that
predicts PPIs, δ is a prediction threshold, where each vertex in Q5 denotes a protein and each
edge denotes a known PPI, and X5 specifies additional logic conditions e.g., the domains
and subcellular locations, on proteins in Q5. This GAR identifies the self-interaction l(x0, x0)
on x0. It has found a self-interaction on protein SYT2 (the bold line in Q5) in May 2022,
which coincides the finding published in Nature in the same month [31].

When the consequence p0 of a GAR is an ML model for DDA, DDI or PPI, Fishing Fort
can discover pattern Q and conditions X to explain the ML prediction, along the same lines
as what we have shown in Section 3.2.1 for local explanations of online recommendation.
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3.2.3 Credit Risk Assessment in Banking
Credit risk assessment is crucial for a bank in making decisions on applications for loans. It
is the process of evaluating the likelihood that a borrower will default on a loan obligation.
It helps minimize the risk of loss from defaults while also making credit available to qualified
borrowers, thereby ensuring the bank’s profitability and long-term sustainability.

In practice, a bank can use credit scoring models to rate borrowers based on their personal
financial information, e.g., credit history, cash flows, and debt levels. In addition, it is equally
important to look for other indicators, e.g., the borrower’s social interactions, which may
expose risks in financial health and the potential inability to repay a loan. However, this
requires extensive labor from human experts. One of our FinTech partners employs a team
of 1,000+ data analysts, dedicated to disclosing such hidden indicators.

Fishing Fort provides an automated and comprehensive approach. Better yet, it produces
indicators that are highly explainable. On graphs G that model user/account interactions,
Fishing Fort mined various GARs to assess user risks. A discovered GAR is φ6 = Q6[x̄](X6 ∧
Mrisk(x0) = low → x0.risk = true), where Mrisk(x) is a credit scoring model that evaluates
user x’s default risk as either low, moderate or high, and X6 is the conjunction of the following
conditions: (1) a new user x0 is referred by user x1, who failed to repay a loan x2; and (2)
x0 and x1 shared a device x3 for online banking. The rule suggests that user x0 is likely a
high-risk borrower if both pattern Q6 and precondition X6 are satisfied, despite the low-risk
prediction made by model Mrisk. Intuitively, by taking into account clear evidence of straw
borrowing, GAR φ6 corrects some false negatives of Mrisk predictions.

Another GAR φ7 = Q7[x̄](X7 → x0.risk = true) states that user x0 is likely to default on
a loan if x0 meets the following conditions specified by pattern Q7 and precondition X7: (1)
x0 over-drafted bank account x1 multiple times within the past year; (2) x0 owns a car x2
that is 20+ years old; and (3) x0 is paying only minimum, compulsory liability insurance x3
for the car. It would be difficult for a human expert to discover such a strong indicator of
default risk, since any single factor alone constitutes a mere weak association.

Our partner in personal banking has verified the effectiveness of the GARs mined by
Fishing Fort over real-world borrower data. Both φ6 and φ7 have a lift over 3, whereas the
average lift of an expert-written rule is 2. These rules have been deployed at several banks
because of their competitive performance in identifying high-risk borrowers.

3.2.4 Lithium-ion Battery Manufacturing
An electric vehicle (EV) battery pack consists of thousands of lithium-ion cells. These cells
must have a balanced capacity, since imbalanced cells may reduce EV range and lead to
safety issues such as thermal runaway. An essential phase in the battery manufacturing
process consists of two steps: (a) battery formation, which activates a cell by performing the
initial charge/discharge operation (to form special electrochemical solid electrolyte interphase
at the electrode), followed by battery standing (to stabilize the voltage and cool off); and
(b) battery grading, to fully discharge/recharge the cell and test its capacity. This phase is
costly, taking from 14 to 20+ hours at different production lines in the industry, and demands
specialized devices. It is energy-consuming; per estimation in [48], reducing the battery charge
energy by half can save the production line $65,000 per GWh capacity (assuming a price of
$0.13/kWh). It accounts for more than one third of the total cost of the Lithium-ion battery
cell manufacturing process, and is considered one of the bottlenecks that hinders battery
manufacturers from increasing output and reducing the total cost of battery production.
Therefore, the Battery Formation and Grading System Market has been singled out as a
specialized industry segment [30]. It is crucial for the entire Lithium-ion battery industry,
including batteries for EVs, electronics and energy storage, among other things.
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Fishing Fort provides a cost-effective solution. Traditionally the formation stage first
activates the cell by charging it to a ratio of capacity and then cooling it off for a period of
time. Grading then fully discharges it, recharges it to its maximum capacity, and discharges
it again at a specific rate. It categorizes the capacity of the cell and its performance based
on its individual characteristics. As opposed to full discharge/recharge in the traditional
process, Fishing Fort only partially charges/discharges a cell. For example, it charges the cell
to 50% in the formation stage to activate the cell, and collects data in the process; it then
either grades the cell based on the data without discharging/recharging it, or fully discharges
it and then partially charges it to a certain voltage for grading, to improve the accuracy.
By analyzing the data together with data collected from earlier stages prior to formation,
Fishing Fort can accurately grade the capacity of the cell and moreover, determine whether
the cell is anomalous or not.

To this end, Fishing Fort first discretizes the time-series measurements; it splits the entire
process into consecutive procedures based on their charging/discharging current. It models
the data as a graph G with three types of vertices: (1) Procedure carries an array of attributes
including the procedure ID, its initial/final weights, the initial/final battery state statistics,
and the charging/discharging current; (2) State denotes a state in S; and (3) Battery carries
metadata of a battery cell, e.g., the cell ID, the testing slot ID, and its capacity interval. An
edge denotes a transition between procedures, an association between a battery cell and a
procedure (with range constraints), or an edge between a procedure and a state.

On such a graph G, Fishing Fort discovered GARs for capacity grading. A (simplified)
GAR is φ8 = Q8[x̄](X8 → x0.capacity = 8), where its consequence grades a matching battery
cell as Capacity Interval 8. Together with Q8, X8 specifies the following conditions: (1) the
weight before and after the Electrolyte Filling procedure (x1) is 555 ± 25g and 605 ± 25g,
respectively; (2) its Formation-A procedure (x2) uses a constant charging current at 3.8A,
with initial voltage between 0–100mV and a final state 324 (x4) categorized by Mstate (dashed
arrows in Q8); and (3) its Formation-B procedure (x3) uses a constant charging current at
8.8A, with initial voltage between 3.3–3.4V and final state 738 (x5). Intuitively, this rule
grades the capacity of a battery cell based on the data collected from partial charge/discharge
and from prior stages. It does not require full charge/discharge for the grading step.

In real production, about 3% of the cells have abnormal capacity and thus, should not be
packed and assembled with other cells. Fishing Fort also detects anomalous cells online with
GARs. It trains an ML model Ma, a binary classification model based on LightGBM for
detecting anomaly [28]. It embeds Ma in the GARs as a predicate, and filters false positives
and false negatives of the predictions of Ma by adding logic predicates to the precondition
X. Such a (simplified) GAR is φ′

8 = Q′
8[x̄](x1.pt10 ≤ 1.9 ∧ x1.pt14 ≥ 86 ∧ Ma(x1) = false →

x0.status = anomalous), where pattern Q′
8 is similar to Q8 but does not contain vertices

of State, and x1.pt10 and x1.pt14 are the values of the voltage and the temperature of cell
x0, respectively. GAR φ′

8 overrides the incorrect negative rulings of model Ma by directly
considering erratic measurements, thus effectively reducing the FNs of Ma.

With such GARs, Fishing Fort reduces charging to 35–50% of the full battery capacity, 75–
100% of discharge (in some cases it avoids the grading step completely), and the time for the
capacity grading process from 14 hours to 4 hours. With the data of partial charge/discharge,
it keeps the error rate under 0.4%, a record in the industry. These translate to an 80%
reduction in energy consumption for charging and cooling, cutting equipment costs by half.

3.2.5 Cyber Attack Detection
Cyber attack detection is increasingly vital to enterprise cybersecurity. It aims to identify,
analyze, and mitigate threats that could compromise the integrity, confidentiality, and
availability of a network. To this end, a common practice is to employ various specialized
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hardware devices for threat detection and prevention, while ensuring compliance with security
standards and regulations. For example, an enterprise network may deploy multiple instances
of (a) Web Application Firewalls (WAF), which monitor, filter and block malicious traffic to
and from a Web application, and (b) Intrusion Prevention Systems (IPS), which examines
network traffic flows to detect and prevent vulnerability exploits.

However, such traditional cybersecurity devices have inherent limitations. First, they
operate by identifying and mitigating known threats through predefined policies for access
control, signatures for byte-level packet inspection and pattern matching, and detection
mechanisms for anomalies; as a result, they can only respond reactively to security threats
and lack the ability to take proactive measures. Second, they often make false positive
(legitimate traffic identified as malicious) and false negative (malicious traffic not detected)
predictions. This can lead to legitimate users being blocked or attackers slipping through
defenses. Worse yet, each single device can only detect a subset of threats depending on its
type, configuration and deployed location. Attackers may devise sophisticated, distributed
and coordinated attacks to evade detection, leading to increasing false negative rates.

Overcoming these limitations requires advanced threat intelligence techniques, which
gather and analyze information about emerging threats from various sources around the
network. Fishing Fort approaches this by means of temporal graph analytics [18]. By
integrating event-level threat intelligence feeds from all devices, Fishing Fort can synthesize
security events in real-time, effectively discovering vulnerabilities and new attack vectors. It
complements hardware-based solutions with a global view over the entire enterprise network.

As an example, consider GAR φ9 = Q9[x̄](X9 → x0.attack = ⟨active, t ∈ [t4, t4 + 1)⟩)
mined from device logs from an enterprise network. It predicts an active attack on subnet x0
within the next one min, if the following event series have been reported where consecutive
events are at most one min apart from each other: (1) an IPS device detects an Nmap event
(x1); (2) a WAF detects a scanner operation (x2); (3) an IPS device reports a Startracker
alert (x3); and (4) an IPS device catches a WannaRen transmission (x4). This rule has
been deployed at a large company, where its accuracy is over 85%. Better still, it allows
preemptive defensive measures before the attacks on the subnet are carried out.

4 Enriching and Cleaning Graphs

Fishing Fort is also able to enrich (Section 4.1) and clean (Section 4.2) real-life graphs.

4.1 Graph Enrichment
It is common to find the data in a real-life graph G1 “incomplete”, witnessed by missing
properties and links. This is because in contrast to relational databases, graph G1 is often
“schemaless”; in such a graph, entities are specified by vertices and their subgraphs with
irregular structures in the absence of constraints. With this comes the need for filling in
the information missing from G1 with data from external graphs G2 that have overlapping
information, thereby improving the accuracy of association analyses in graph G1.

The need for referencing external graphs has been recognized in medical knowledge
discovery [38], which aims to find semantic patterns and improve the accuracy and efficiency
of diagnoses and treatment. As reported in [38, 45], as high as 77% of the discovered patterns
span across heterogeneous biological networks. Moreover, e-commerce requires inspecting mul-
tiple graphs since an average social media user engages 6.6 different platforms [7]. Analyzing
a single platform cannot fully understand users’ interests. In addition, recommendation [41],
information diffusing prediction [51] and network dynamics analysis [49] have been deducing
associations across multiple graphs. Fishing Fort also enriches data for, e.g., drug discovery.
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Fishing Fort implements the data enrichment algorithm of [19]. Given a real-life graph G1
and an external graph G2 with overlapping information, it enriches G1 with only relevant
information from G2, to reduce noise and cost. It develops a graph filtering method to (a)
identify vertices u in G1 and v in G2 that refer to the same real-world entity via heterogeneous
entity resolution [15], and (b) locate relevant data of v in G2 that pertains to u in G1 by
training an ML model. It supports two modes: (1) a physical mode by extracting properties
of v from G2 and enriches u by adding the data to G1; and (2) a virtual mode by discovering
GARs that pertain to entities in G1 across G1 and G2, without physically merging the two;
the discovered GARs are applied to G1 and the filtered subgraphs of G2, again without
merging the two. Fishing Fort supports batch and incremental discovery of such GARs.

For drug discovery, Fishing Fort builds a uniform drug-disease graph by integrating data
from eleven libraries and data banks, including CTD [5], MeSH [35] and BioGrid [2]. Given
data banks G1 = (V1, E1, L1, F1) and G2 = (V2, E2, L2, F2), Fishing Fort “joins” the two as
G⊕(G1, G2) = (V⊕, E⊕, L⊕, F⊕), where V⊕ (resp. E⊕) is a revision of the union V1 ∪ V2
(resp. E ∪ E2) such that u and v are represented as the same (merged) vertex in V⊕ if (u, v)
is a match by parametric simulation [15]; and L⊕ and F⊕ inherit the label and attribute
assignments from G1 and G2. When u and v both carry attribute A, the merged vertex takes
the value v.A from Gi (∈ [1, 2]) if the data in Gi is more reliable. It incrementally enriches
the graph in the physical mode by extracting data from external sources [19]. Moreover, it
cleans the graph by detecting and fixing duplicates and inconsistencies (see Section 4.2).

4.2 Graph cleaning

Critical to graph analytics is the quality of the data in graphs. Real-life graphs often have
duplicates and conflicts. Even knowledge graphs widely in use include such errors. In Yago,
for instance, two different vertices named “Motorola” and “Team Motorola” refer to the same
cycling team sponsored by Motorola, yielding a duplicate. The Baron Hirsch Synagogue,
a building designed by architect George Awsumb, is labeled as a “flagship” of American
Orthodox Judaism, while in DBpedia, this synagogue is classified as a ship. It is known that
26% of triples in knowledge graph NELL bear conflicts [52], and duplicate entities of Wikidata
are involved in 27.8% factual statements it provides [39]. Moreover, noise in biomedical
knowledge graphs is considered a big challenge to drug discovery [50]. Thus, two primitive
issues of graph data quality are (a) entity resolution (ER), to identify vertices that refer to
the same real-world entity, and (b) conflict resolution (CR), to fix inconsistencies among
entities. The situation gets worse when it comes to data merged from multiple sources.

Besides ER and CR, there are two other critical issues of data quality. One is timeliness
(a.k.a. data currency), for how up-to-date the information is. The other is information
completeness, for the availability of data on-hand for analytics. In the real world, data easily
becomes obsolete, and stale data is inaccurate. For instance, “82% of companies are making
decisions based on stale information”, and 85% of the companies witness that “this stale data
is leading to incorrect decisions and lost revenue” [3]. Equally damaging is missing data. As
revealed by a poll on clinical data management challenges in 2018, 77% of the participants
rated missing patient data as a critical problem [42], which may result in incorrect diagnoses.

Hence the need is evident for (c) timeliness deduction (TD), to deduce temporal orders
on attribute values, and (d) missing data imputation (MI), to fill in missing values/links.

One could use GARs to clean graphs. Indeed, GARs can express rules for ER, CR and
MI. However, as indicated in Section 2.3, it is intractable to detect and fix errors with GARs.
Moreover, GARs stop short of supporting temporal ranking and deducing timeliness.



W. Fan and S. Liu 6:13

(company)
type=null

Meta Pla�orms Inc. [2022]

(product) (product)

30 Android Android, iOS427

platformsversion

title
Facebook App

status=deprecatedtitle
Facebook App

version platforms

status=ac�ve

Facebook Inc. [2014]

(company)
type=tech

title

revenue
18B

employees

9K [2014]
76K [2022]

revenue
117B

(lab)

Facebook AI

title

(lab)

Meta AI

title

country
US state

country

US

CA

(person)

Zuckerberg
name

founder founder

create

CEO CEO

create employees

own

own

CntAILab=1

title

CntAILab=1

belo
ng_t

o

Figure 3 A graph G of companies and products.

Graph Cleaning Rules. In light of these, Fishing Fort develops a class of rules, referred to as
GCRs [12]. A GCR has the form of Q[x0, y0](X → p0). It differs from a GAR in the following.
(1) On the one hand, it adopts a restricted form of graph patterns: Q[x0, y0] is a pair

⟨Qx[x0, x̄], Qy[y0, ȳ]⟩ of patterns, where Qx has a “star” shape centered at a vertex x0,
which denotes an entity of interest, and links to a set of characteristic features (leaves);
similarly for Qy. Intuitively, Q[x0, y0] represents two entities x0 and y0 with (possibly)
different types and heterogeneous structures in a schemaless graph. It specifies features
for pairwise comparison between x0 and y0. GCRs employ dual star-shaped patterns
rather than general (possibly cyclic) patterns in GARs. It is in PTIME to check the
matches of such patterns in a graph, as opposed to the intractability of general patterns.

(2) On the other hand, in addition to all the predicates of GARs, GCRs support temporal
predicates x.A ≺ y.B (resp. x.A ⪯ y.B), indicating that attribute y.B is more current
than x.A (resp. at least as current as x.A). Moreover, Fishing Fort trains a temporal
ranking model Mrank (x.A, y.B), which returns true iff Mrank predicts that x.A ⪯ y.B.

(3) GCRs further restrict the preconditions X such that all binary predicates are defined on
two leaves x and y in Qx and Qy of Q, respectively, and each leaf may carry at most
one such predicate (but multiple unary predicates z.A ⊕ c).

GCRs are able to express rules for ER, CR, TD and MI. As an example, DBpedia and Yago
include two company entities having distinct titles “Facebook, Inc.” and “Meta Platforms,
Inc.”, without any timestamp. Worse yet, other data of these entities is either outdated or
missing, e.g., revenue, research labs, and type. There are also two products for the online
social networking service named “Facebook App”. They carry different values for, e.g., current
status, version numbers and platforms, but with few timestamps. In fact, snapshot-based
knowledge graphs, e.g., DBpedia, maintain the “most recent” facts with no timestamps.
Figure 3 depicts such a graph G that includes the product entities u1, u2, and companies v1,
v2. To catch errors, we may use the GCRs below with dual patterns in Figure 4.
(1) ϕ1 = Q1[x0, y0](X1 ∧ x3.val < y3.val → x3.val ≺ y3.val), where X1 is x1.id = y1.id ∧

x2.val = y2.val ∧ Mrank(x4.val, y4.val). It deduces temporal orders from the version
numbers of an online service App (product), i.e., if two services x0 and y0 are created
by the same person, have the same title, and if model Mrank predicts that y0 has newer
value for platforms (specified in X1), then the larger version number of y0 is more current
(for TD). In practice, the version number of an App grows as the platforms evolve.

(2) ϕ2 = Q1[x0, y0](X1 ∧ x3.val ≺ y3.val ∧ x0.status = active → y0.status = active). That is,
if service y0 has newer values for version numbers (by x3.val ≺ y3.val) than x0 and if x0
is active, then with the same condition X1 as in (1), y0 should also be active (for CR).
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(3) ϕ3 = Q2[x0, y0](x1.id = y1.id ∧ x2.status = active ∧ y2.status = active ∧ x3.val = y3.val ∧
x4.val = y5.val → x0.id = y0.id). It identifies two companies x0 and y0 (for ER), if they
have the same CEO and country of location, and if they own active products of the same
title. Here the country property is fetched along different paths in the two stars of Q2.

(4) ϕ4 = Q3[x0, y0](x0.type = tech ∧ y0.type = tech ∧ x1.id = y1.id ∧ Ms(x2.val, y2.val) ∧
x3.val ≺ y3.val → x4.val ≺ y4.val). It deduces that company y0 has a newer revenue than
x0 (for TD) if the number of employees of y0 is more current, and both x0 and y0 are
tech companies with the same CEO and similar titles (checked by ML model Ms).

(5) ϕ5 = Q4[x0, y0](x1.val = y1.val ∧ Me(x2, y2) ∧ x3.id = y3.id ∧ y0.CntAILab = 1 ∧
y3.CntAILab = 1 → belong_to(x2, x3)). The GCR states that if companies x3, y3 and AI
labs x2, y2 are created by persons x0 and y0 of the same name, x3 and y3 are the same
entity, x2 and y2 are identified by an ER model Me, and if y0 and y3 pertain to AI lab
y2, then x2 is an AI lab belonging to x3. It adds a missing link from x2 to x3 (for MI).

Moreover, Fishing Fort leverages the interaction among ER, CR, TD, and MI to improve
the overall quality of the graph. Consider the GCRs above and graph G of Figure 3.
(a) Initially, we deduce that product u2’s version number (427) is more current than the

version (30) of u1 by using GCR ϕ1 (TD).
(b) Then a conflict between the status values of products u1 and u2 is found by GCR ϕ2,

and u2’s status can be rectified to be active (CR).
(c) We next identify companies v1 and v2 by using GCR ϕ3 (ER), where pattern nodes x4

and y5 in Q2 are mapped to vertices with value US.
(d) The type at v1 is then copied from (more reliable) v2 (MI), as a byproduct of ER.
(e) Next the revenue of v2 is verified to be more current than v1, via GCR ϕ4 (TD).
(f) Finally, we deduce a missing link by GCR ϕ5, i.e., the AI lab v3 belongs to v1 (MI).

ER, CR, TD and MI help each other. Indeed, ER step (c), CR step (b), TD steps (a) and
(e), and MI steps (d) and (f) interact with each other in this process. For instance, step (b)
is applicable only after we deduce temporal orders for version numbers in (a); and step (e)
needs the results of ER and MI in (c)-(d), which decide the right type value for company v1.

Complexity. The restrictions on graph patterns and preconditions make it easier to clean
graphs with GCRs. The validation problem becomes tractable for GCRs. Moreover, error
detection and correction with GCRs are also in PTIME (see below). One step further, the
satisfiability and implication problems are in PTIME if we consider GCRs with predicates
x.A ⊕ y.B, x.A ⊕ c and M(x.Ā, y.B̄) only, where ⊕ is either = or ̸= [12]. These problems
become intractable under any of the following conditions, unless P = NP: (a) in the presence
of link predicates, temporal predicates or comparison ≤, <, ≥, >, which are necessary for,
e.g., CR, TD, and MI; or (b) if the restrictions on the preconditions X of GCRs are lifted.
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Algorithms. Given an (enriched) real-life graph G, Fishing Fort discovers a set Σ of GCRs
and detects and fixes errors with the GCRs using the following algorithms.
(a) Rule discovery [12]. Fishing Fort discovers GCRs from samples of G as remarked earlier [13].

In contrast to how it mines GARs, it makes practical use of star patterns to speed up the
discovery process [12]. It computes “scattered matches” of a star pattern, i.e., the matches
(h(x0), h(y0)) of the center nodes in Q[x0, y0], rather than complete homomorphic matches
h of Q. The scattered matches can be computed in PTIME for star patterns via dynamic
programming, as opposed to (possibly) exponential time for complete matches of general
patterns. As shown in [12], it is much faster to discover GCRs than GARs.

(b) Error detection [12]. Employing the discovered GCRs in Σ, Fishing Fort detects errors in
G, i.e., violations of a GCR ϕ = Q[x0, y0](X → p0) in Σ, which are scattered matches
(h(x0), h(y0)) for a match h such that h |= X but h ̸|= p0. The violations can be
duplicates, conflicts, conflicting timeline or missing links/attributes.

(c) Error correction. Fishing Fort enforces GCRs in Σ on graph G via chase [21], to deduce
fixes. Besides ER and CR, in the process it determines temporal orders on graph
properties, and fills in missing values and links by possibly referencing ground truth Γ
and knowledge graph KG. It updates G with the deduced fixes, e.g., new edges for missing
links. Moreover, it adds the fixes to ground truth Γ for subsequent error corrections.
The chase is also Church-Rosser, and the fixes are logical consequences of Σ and Γ, i.e.,
the fixes are validated as long as the GCRs and ground truth are correct. In the process,
it suffices to compute scattered matches of patterns, rather than complete ones.

All these algorithms are parallelly scalable and can scale with large graphs in principle.
Moreover, the error detection and correction algorithms are in PTIME via scattered matches.

5 Conclusion

The novelty of Fishing Fort consists of the following. (1) It makes a first effort to conduct ML
prediction and logic deduction in the same process, by embedding ML models as predicates
in logic rules. As verified by real-life applications, the unification improves the accuracy of
association analyses and the explainability of ML predictions. (2) Fishing Fort automatically
discovers rules from real-life graphs, and it supports not only association analyses but also
data enrichment and cleaning. (3) It can be readily adapted to different domains and has
proven effective in a variety of applications. (4) The algorithms of Fishing Fort are provably
parallelly scalable and hence in principle, can scale with large graphs.

We are currently adapting Fishing Fort to quantitative trading, fraud detection, and
manufacturing industry beyond EV batteries. The preliminary results are quite encouraging.
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Abstract
We prove a general theorem for establishing properties expressed by binary relations on typed
(first-order) λ-terms, using a variant of the reducibility method and logical PERs. As an application,
we prove simultaneously that β-reduction in the simply-typed λ-calculus is strongly normalizing,
and that the Church-Rosser property holds (and similarly for βη-reduction).
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1 Introduction

Logical relations are an important tool used in proving some deep results about various typed
λ-calculi and their models. A special form of the concept of a logical relation first appeared
in Harvey Friedman’s seminal paper [4]. General logical relations were defined and used
extensively in the pioneering work of Plotkin [18] and Statman [19, 21, 20], and later on in a
more general setting by Breazu-Tannen and Coquand [2], Mitchell [15], Mitchell and Moggi
[16], and Abramsky [1], among others. As the name indicates, logical relations are certain
kinds of relations, and they are used to prove relational properties of terms. On the other
hand, reducibility is a tool used in proving properties of terms in various typed λ-calculi.
Typically, it is used to prove strong normalization or normalization, but it can be used to
prove other properties as well. The method was pioneered by Tait [22] for the simply-typed
λ-calculus, and brilliantly extended to various higher-order typed λ-calculi by Girard [9, 10]
(see also Tait [23]). Various expositions and analyses of such proofs are given in Mitchell
[15], Krivine [14], Huet [11], and Gallier [5, 6, 7, 8], among others. Another crucial concept
is that of a partial equivalence relation, or PER. PER’s were introduced by Hyland [12] and
Mulry [17]. PERs are a major tool in defining categories of domains in an effective setting
(see Freyd, Mulry, Rosolini, and Scott [3]). PERs also often show up as logical relations, and
are called logical PERs (see Breazu-Tannen and Coquand [2]).

In this note, we prove a general theorem for establishing properties expressed by binary
relations on typed (first-order) λ-terms, using a variant of the reducibility method and of
logical PERs. This note is written much in the spirit of our earlier papers [6, 8]. Our goal is
to elucidate the conditions under which the technology of reducibility and of logical relations
works. We do this by finding sufficient conditions that a binary relation R on typed λ-terms
need to satisfy for establishing that R holds, using reducibility. The conditions presented in
this paper were inspired by a paper by Koletsos [13].

In this short note, we restrict out attention to the simply-typed λ-calculus, but there is
little doubt that our method can be generalized to all the first-order types (as in [6]), or to
type intersection disciplines (as in [8]). As an illustration, it is easy to show simultaneously
that β-reduction is strongly normalizing and that the Church-Rosser property holds (and
similarly for βη-reduction).
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The generalization to second-order types (or more general types) is much more problematic
(for a discussion of some of the problems, see Breazu-Tannen and Coquand [2]), and is left
as an open problem.

2 R-Logical Candidates for the Arrow Type Constructor →

Let T denote the set of (simple) types. Recall that the set of simple types is defined
inductively from a set of base types and using the type constructor →, i.e. a base type b is a
type, and (σ → τ) is a type whenever σ and τ are types.

The presentation will be simplified if we adopt the definition of simply-typed λ-terms
where all the variables are explicitly assigned types once and for all. More precisely, we have
a family X = (Xσ)σ∈T of variables, where each Xσ is a countably infinite set of variables of
type σ, and Xσ ∩Xτ = ∅ whenever σ ̸= τ . Using this definition, there is no need to drag
contexts along, and the most important feature of the proof, namely the reducibility method,
is easier to grasp. Recall that an untyped λ-term is either a variable x, an application (MN),
or a λ-abstraction λx : σ. M . The terms of the typed λ-calculus λ→ (also called simply-typed
λ-terms) are the λ-terms that respect certain type-checking rules reviewed below.

▶ Definition 1. Given a λ-term M and a type σ, we define the binary relation M : σ (read,
M has type σ) using the following type-checking rules:

x : σ, when x ∈ Xσ,

(we can also have c : σ, where c is a constant of type σ, if there is a set of constants that
have been preassigned types).

x : σ M : τ

λx : σ. M : (σ → τ)
(abstraction)

M : (σ → τ) N : σ

(MN) : τ
(application)

From now on, when we refer to a λ-term, we mean a λ-term that type-checks. We let Λσ

denote the set of λ-terms of type σ, and Λ→ = (Λσ)σ∈T , also called the set of simply-typed
λ-terms. In this section, the only reduction rule considered is β-reduction:

(λx : σ. M)N −→β M [N/x].

Equations between λ-terms of the same type σ are denoted as M
.= N : σ, and equational

provability is defined as follows.

▶ Definition 2. The axioms and inference rules of the equational β-theory of the typed
λ-calculus λ→ are defined below.

x
.= x : σ (reflexivity),

where x is any variable of type σ. We also have axioms c
.= c : σ, where c is a constant of

type σ, when typed constants are present.

(λx : σ. M)N .= M [N/x] : τ (β)
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M1
.= M2 : σ

M2
.= M1 : σ

(symmetry)

M1
.= M2 : σ M2

.= M3 : σ

M1
.= M3 : σ

(transitivity)

M1
.= M2 : (σ → τ) N1

.= N2 : σ

(M1N1) .= (M2N2) : τ
(congruence)

M1
.= M2 : τ

λx : σ. M1
.= λx : σ. M2 : (σ → τ)

(ξ)

The notation ⊢β M
.= N : σ means that the equation M

.= N : σ is provable from the
above axioms and inference rules.

The equational βη-theory of the typed λ-calculus λ→ is obtained by adding the following
axiom to the above axioms and inference rules.

λx : σ. (Mx) .= M : (σ → τ) (η)

where x /∈ FV (M).

The notation ⊢βη M
.= N : σ means that the equation M

.= N : σ is provable from all the
axioms, including (η), and the inference rules.

Given any term M , we can easily show by induction on the structure of M that the
equation M

.= M : σ is provable using the (reflexivity) axioms and the rules (congruence)
and (ξ). Thus, reflexivity holds for all terms, not just variables and constants. The reason
for using a restricted form of the reflexivity axioms is that this makes the proof of Lemma 10
simpler.

It turns out that the behavior of a term depends heavily on the nature of the last typing
inference rule used in typing this term. A term created by an introduction rule, or I-term,
plays a crucial role, because when combined with another term, a new redex is created. On
the other hand, for a term created by an elimination rule, or simple term, no new redex
is created when this term is combined with another term. This motivates the following
definition.

▶ Definition 3. An I-term is a term of the form λx : σ. M . A simple term (or neutral term)
is a term that is not an I-term. Thus, a simple term is either a variable x, a constant c, or
an application MN . A term M is stubborn iff it is simple and, either M is irreducible, or
M ′ is a simple term whenever M

+−→β M ′ (equivalently, M ′ is not an I-term).

Let R = (Rσ)σ∈T be a family of nonempty binary relations, where Rσ ⊆ Λσ × Λσ.

▶ Definition 4. Properties (P0)-(P3) are defined as follows:
(P0) Every relation Rσ is a per, i.e., Rσ is symmetric and transitive.
(P1) ⟨x, x⟩ ∈ Rσ, ⟨c, c⟩ ∈ Rσ, for every variable x and constant c of type σ.
(P2) If ⟨M1, M2⟩ ∈ Rσ and M1 −→β M ′

1, then ⟨M ′
1, M2⟩ ∈ Rσ.

(P3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ→τ , ⟨N1, N2⟩ ∈ Rσ, and either
⟨(λx : σ. M ′

1)N1, M2N2⟩ ∈ Rτ whenever M1
+−→β λx : σ. M ′

1 and M2 is stub-
born, or ⟨(λx : σ. M ′

1)N1, (λx : σ. M ′
2)N2⟩ ∈ Rτ whenever M1

+−→β λx : σ. M ′
1 and

M2
+−→β λx : σ. M ′

2, then ⟨M1N1, M2N2⟩ ∈ Rτ .

Tannen’s Festschrift
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From now on, we only consider families of relations R satisfying conditions (P0)-(P3) of
Definition 4.

▶ Definition 5. For any type σ, a nonempty relation C ⊆ Λσ × Λσ is a R-logical candidate
iff it satisfies the following conditions:
(R0) C is a per.
(R1) C ⊆ Rσ.
(R2) If ⟨M1, M2⟩ ∈ C and M1 −→β M ′

1, then ⟨M ′
1, M2⟩ ∈ C.

(R3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ, and either ⟨λx : γ. M ′
1, M2⟩ ∈ C whenever

M1
+−→β λx : γ. M ′

1 and M2 is stubborn, or ⟨λx : γ. M ′
1, λx : γ. M ′

2⟩ ∈ C whenever
M1

+−→β λx : γ. M ′
1 and M2

+−→β λx : γ. M ′
2, then ⟨M1, M2⟩ ∈ C.

Note that (R3) and (P1) imply that for every type σ, any R-logical candidate C of type
σ contains all pairs ⟨x, x⟩ and ⟨c, c⟩ for all variables and all constants of type σ. More
generally, (R3) implies that C contains all pairs ⟨M1, M2⟩ of stubborn terms in Rσ, and
(P1) guarantees that pairs ⟨x, x⟩ and ⟨c, c⟩ are in Rσ (for every type σ).

By (P3), if ⟨M1, M2⟩ ∈ Rσ→τ is a pair of stubborn terms and ⟨N1, N2⟩ ∈ Rσ is any
pair of terms, then ⟨M1N1, M2N2⟩ ∈ Rτ . Furthermore, M1N1 and M2N2 are also stubborn
since they are simple terms and since they can only reduce to an I-term (a λ-abstraction) if
M1 or M2 reduce to a λ-abstraction, i.e. an I-term. Thus, if ⟨M1, M2⟩ ∈ Rσ→τ is a pair of
stubborn terms and ⟨N1, N2⟩ ∈ Rσ is any pair of terms, then ⟨M1N1, M2N2⟩ ∈ Rτ is a pair
of stubborn terms. Also, observe that if M1

+−→β M ′
1, M2

+−→β M ′
2, and ⟨M1, M2⟩ ∈ C,

then ⟨M ′
1, M ′

2⟩ ∈ C. This follows from (R2) and (R0), since (R0) implies symmetry and
transitivity.

Given a family of relations R, for every type σ, we define the relation [[σ]] as follows.

▶ Definition 6. The logical relations [[σ]] are defined as follows:

[[σ]] = Rσ, σ a base type,

[[σ → τ ]] = {⟨M1, M2⟩ | ⟨M1, M2⟩ ∈ Rσ→τ , and for all N1, N2,

if ⟨N1, N2⟩ ∈ [[σ]] then ⟨M1N1, M2N2⟩ ∈ [[τ ]]}.

▶ Lemma 7. If R is a family of relations satisfying conditions (P0)-(P3), then each [[σ]] is a
R-logical candidate that contains all pairs of stubborn terms in Rσ.

Proof. We proceed by induction on types. If σ is a base type, [[σ]] = Rσ, and obviously,
every pair of stubborn terms in Rσ is in [[σ]]. Since [[σ]] = Rσ, (R0) and (R1) are trivial, (R2)
follows from (P2), and (R3) is also trivial.1

We now consider the induction step.

(R0). By the definition of [[σ → τ ]], symmetry and transitivity are straightforward.

(R1). By the definition of [[σ → τ ]], (R1) is trivial.

(R2). Let ⟨M1, M2⟩ ∈ [[σ → τ ]], and assume that M1 −→β M ′
1. Since ⟨M1, M2⟩ ∈

Rσ→τ by (R1), we have ⟨M ′
1, M2⟩ ∈ Rσ→τ by (P2). For any ⟨N1, N2⟩ ∈ [[σ]], since

1 In fact, if [[σ]] = Rσ, (R3) holds trivially even at nonbase types. This remark is useful is we allow type
variables.
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⟨M1, M2⟩ ∈ [[σ → τ ]], we have ⟨M1N1, M2N2⟩ ∈ [[τ ]], and since M1 −→β M ′
1 we have

M1N1 −→β M ′
1N1. Then, applying the induction hypothesis at type τ , (R2) holds for [[τ ]],

and thus ⟨M ′
1N1, M2N2⟩ ∈ [[τ ]]. Thus, we have shown that ⟨M ′

1, M2⟩ ∈ Rσ→τ and that if
⟨N1, N2⟩ ∈ [[σ]], then ⟨M ′

1N1, M2N2⟩ ∈ [[τ ]]. By the definition of [[σ → τ ]], this shows that
⟨M ′

1, M2⟩ ∈ [[σ → τ ]], and (R2) holds at type σ → τ .

(R3). Let ⟨M1, M2⟩ ∈ Rσ→τ , and assume that ⟨λx : σ. M ′
1, λx : σ. M ′

2⟩ ∈ [[σ → τ ]]
whenever M1

+−→β λx : σ. M ′
1 and M2

+−→β λx : σ. M ′
2, or that ⟨λx : σ. M ′

1, M2⟩ ∈ [[σ → τ ]]
whenever M1

+−→β λx : σ. M ′
1 and M2 is stubborn, where M1 and M2 are simple terms. We

prove that for every ⟨N1, N2⟩, if ⟨N1, N2⟩ ∈ [[σ]], then ⟨M1N1, M2N2⟩ ∈ [[τ ]]. First, we prove
that ⟨M1N1, M2N2⟩ ∈ Rτ , and for this we use (P3). First, assume that M1 and M2 are
stubborn, and let ⟨N1, N2⟩ be in [[σ]]. By (R1), ⟨N1, N2⟩ ∈ Rσ. By the induction hypothesis,
all pairs of stubborn terms in Rτ are in [[τ ]]. Since we have shown that ⟨M1N1, M2N2⟩ is
a pair of stubborn terms in Rτ whenever ⟨M1, M2⟩ ∈ Rσ→τ is pair of stubborn terms and
⟨N1, N2⟩ ∈ Rτ , we have ⟨M1, M2⟩ ∈ [[σ → τ ]].

Now, assume that M1 or M2 is not stubborn. Since by (R0), each [[σ]] is symmetric, we
only need to consider the case where M1 is not stubborn and M2 is stubborn. This case is
similar to the next case, because M2N2 is stubborn for any N2, and we leave it as an exercise.

Consider ⟨M1, M2⟩ ∈ Rσ→τ where M1 and M2 are non stubborn. If M1
+−→β λx : σ. M ′

1

and M2
+−→β λx : σ.M ′

2, then by assumption, ⟨λx : σ.M ′
1, λx : σ.M ′

2⟩ ∈ [[σ → τ ]], and for any
⟨N1, N2⟩ ∈ [[σ]], we have ⟨(λx : σ. M ′

1)N1, (λx : σ. M ′
2)N2⟩ ∈ [[τ ]]. Since by (R1), ⟨N1, N2⟩ ∈

Rσ and ⟨(λx : σ. M ′
1)N1, (λx : σ. M ′

2)N2⟩ ∈ Rτ , by (P3), we have ⟨M1N1, M2N2⟩ ∈ Rτ .
Now, there are two cases.

If τ is a base type, then [[τ ]] = Rτ and ⟨M1N1, M2N2⟩ ∈ [[τ ]].

If τ is not a base type, then the terms M1N1 and M2N2 are simple. We prove that
⟨M1N1, M2N2⟩ ∈ [[τ ]] using (R3) (which by induction, holds at type τ). The case where
M1N1 and M2N2 are stubborn follows from the induction hypothesis. The case where M1N1
is not stubborn and M2N2 is stubborn is similar to the next case, but simpler (and the
symmetric case follows by (R0)).

If both M1N1 and M2N2 are not stubborn terms, observe that if M1N1
+−→β Q1 and

M2N2
+−→β Q2, where Q1 = λy : γ. P1 and Q2 = λy : γ. P2 are I-terms, then the reductions

are necessarily of the form

M1N1
+−→β (λx : σ. M ′

1)N ′
1 −→β M ′

1[N ′
1/x] ∗−→β Q1,

and

M2N2
+−→β (λx : σ. M ′

2)N ′
2 −→β M ′

2[N ′
2/x] ∗−→β Q2,

where M1
+−→β λx : σ. M ′

1, M2
+−→β λx : σ. M ′

2, N1
∗−→β N ′

1, and N2
∗−→β N ′

2. Since
by assumption, ⟨λx : σ. M ′

1, λx : σ. M ′
2⟩ ∈ [[σ → τ ]] whenever M1

+−→β λx : σ. M ′
1 and

M2
+−→β λx : σ. M ′

2, and by the induction hypothesis applied at type σ, by (R2) and (R0),2
⟨N ′

1, N ′
2⟩ ∈ [[σ]], we conclude that ⟨(λx : σ. M ′

1)N ′
1, (λx : σ. M ′

2)N ′
2⟩ ∈ [[τ ]]. By the induction

hypothesis applied at type τ , by (R2) and (R0), we have ⟨Q1, Q2⟩ ∈ [[τ ]], and by (R3), we
have ⟨M1N1, M2N2⟩ ∈ [[τ ]].

Since ⟨M1, M2⟩ ∈ Rσ→τ and ⟨M1N1, M2N2⟩ ∈ [[τ ]] whenever ⟨N1, N2⟩ ∈ [[σ]], we
conclude that ⟨M1, M2⟩ ∈ [[σ → τ ]]. ◀

2 Symmetry and transitivity are needed, but they follow from (R0).
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For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to
(P0)-(P3).

▶ Definition 8. Properties (P4) and (P5) are defined as follows:

(P4) If ⟨M1, M2⟩ ∈ Rτ , then ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ .
(P5) If ⟨N1, N2⟩ ∈ Rσ and ⟨M1[N1/x], M2[N2/x]⟩ ∈ Rτ , then
⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rτ .

▶ Lemma 9. If R is a family of relations satisfying conditions (P0)-(P5) and for every
⟨N1, N2⟩, (⟨N1, N2⟩ ∈ [[σ]] implies ⟨M1[N1/x], M2[N2/x]⟩ ∈ [[τ ]]), then ⟨λx : σ.M1, λx : σ.M2⟩
∈ [[σ → τ ]].

Proof. We prove that ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ and that for every every ⟨N1, N2⟩, if
⟨N1, N2⟩ ∈ [[σ]], then ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ [[τ ]]. We will need the fact that the
sets of the form [[σ]] have the properties (R0)-(R3), but this follows from Lemma 7, since
(P0)-(P3) hold. First, we prove that ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rσ→τ .

Since by Lemma 7, ⟨x, x⟩ ∈ [[σ]] for every variable of type σ, by the assumption of Lemma
9, ⟨M1[x/x], M2[x/x]⟩ = ⟨M1, M2⟩ ∈ [[τ ]]. Then, by (R1), ⟨M1, M2⟩ ∈ Rτ , and by (P4), we
have ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ .

Next, we prove that for every every ⟨N1, N2⟩ ∈ [[σ]], then ⟨(λx : σ.M1)N1, (λx : σ.M2)N2⟩
∈ [[τ ]]. Assume that ⟨N1, N2⟩ ∈ [[σ]]. Then, by the assumption of Lemma 9, we de-
duce that ⟨M1[N1/x], M2[N2/x]⟩ ∈ [[τ ]]. Thus, by (R1), we have ⟨N1, N2⟩ ∈ Rσ and
⟨M1[N1/x], M2[N2/x]⟩ ∈ Rτ . By (P5), we have ⟨(λx : σ.M1)N1, (λx : σ.M2)N2⟩ ∈ Rτ . Now,
there are two cases.

If τ is a base type, then [[τ ]] = Rτ . But we just showed that ⟨(λx : σ.M1)N1, (λx : σ.M2)N2⟩
∈ Rτ , so we have ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ [[τ ]].

If τ is not a base type, then (λx : σ. M1)N1 and (λx : σ. M2)N2 are simple. Thus, we
prove that ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ [[τ ]] using (R3). The case where (λx : σ. M1)N1
and (λx : σ. M2)N2 are stubborn is trivial. The case where (λx : σ. M1)N1 is not stubborn
and (λx : σ. M2)N2 is stubborn is similar to the next case and simpler (and the symmetric
case follows by (R0)).

If (λx : σ. M1)N1 and (λx : σ. M2)N2 are not stubborn and if (λx : σ. M1)N1
+−→β Q1

and (λx : σ. M2)N2
+−→β Q2, where Q1 = λy : γ. P1 and Q2 = λy : γ. P2 are I-terms, then

the reductions are necessarily of the form

(λx : σ. M1)N1
∗−→β (λx : σ. M ′

1)N ′
1 −→β M ′

1[N ′
1/x] ∗−→β Q1,

(λx : σ. M2)N2
∗−→β (λx : σ. M ′

2)N ′
2 −→β M ′

2[N ′
2/x] ∗−→β Q2,

where M1
∗−→β M ′

1, M2
∗−→β M ′

2, N1
∗−→β N ′

1, and N2
∗−→β N ′

2. But ⟨M1[N1/x], M2[N2/x]⟩
∈ [[τ ]], and since

M1[N1/x] ∗−→β M ′
1[N ′

1/x] ∗−→β Q1,

and

M2[N2/x] ∗−→β M ′
2[N ′

2/x] ∗−→β Q2,

by (R2) and (R0), we have ⟨Q1, Q2⟩ ∈ [[τ ]]. Since ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rτ

and ⟨Q1, Q2⟩ ∈ [[τ ]] whenever (λx : σ. M1)N1
+−→β Q1 and (λx : σ. M2)N2

+−→β Q2, by (R3),
we have ⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ [[τ ]]. ◀
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▶ Lemma 10. Given a family of relations R satisfying conditions (P0)-(P5), for every pair
⟨M1, M2⟩ of type σ, for every pair of substitutions φ1 and φ2 such that ⟨φ1(y), φ2(y)⟩ ∈ [[γ]]
for every y : γ ∈ FV (M1) ∪ FV (M2), if ⊢β M1

.= M2 : σ, then ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ]].

Proof. First, we prove the lemma, but in the case where M1
.= M2 : σ is provable in the

proof system of Definition 2 without using the axioms (β) or (η). We proceed by induction
on the proof of M1 = M2.

x
.= x : σ (reflexivity)

Obvious, since by assumption, ⟨φ1(x), φ2(x)⟩ ∈ [[σ]].

M1
.= M2 : σ

M2
.= M1 : σ

(symmetry)

By the induction hypothesis, ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ]]. Since by Lemma 7 (R0), every [[γ]]
is symmetric, we also have ⟨M2[φ2], M1[φ1]⟩ ∈ [[σ]].

M1
.= M2 : σ M2

.= M3 : σ

M1
.= M3 : σ

(transitivity)

By the induction hypothesis, ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ]] and ⟨M2[φ2], M3[φ3]⟩ ∈ [[σ]]. Since
by Lemma 7 (R0), every [[γ]] is transitive, we also have ⟨M1[φ1], M3[φ3]⟩ ∈ [[σ]].

M1
.= M2 : (σ → τ) N1

.= N2 : σ

(M1N1) .= (M2N2) : τ
(congruence)

By the induction hypothesis, ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ → τ ]] and ⟨N1[φ1], N2[φ2]⟩ ∈ [[σ]].
By the definition of [[σ → τ ]], we get ⟨M1[φ1]N1[φ1], M2[φ2]N2[φ2]⟩ ∈ [[τ ]], which shows that

⟨(M1N1)[φ1], (M2N2)[φ2]⟩ ∈ [[τ ]],

since M1[φ1]N1[φ1] = (M1N1)[φ1] and M2[φ2]N2[φ2] = (M2N2)[φ2].

M1
.= M2 : τ

λx : σ. M1
.= λx : σ. M2 : (σ → τ)

(ξ)

Consider any ⟨N1, N2⟩ ∈ [[σ]], and any substitutions φ1 and φ2 such that ⟨φ1(y), φ2(y)⟩
∈ [[γ]] for every y : γ ∈ (FV (M1) ∪ FV (M2)− {x}). Thus, the substitutions φ1[x := N1] and
φ2[x := N2] have the property that ⟨φ1(y), φ2(y)⟩ ∈ [[γ]] for every y : γ ∈ FV (M1)∪FV (M2).
By suitable α-conversion, we can assume that x does not occur in any φ1(y) or φ2(y) for every
y ∈ dom(φ1) ∪ dom(φ2), that N1 is substitutable for x in M1, and that N2 is substitutable
for x in M2. Then, M1[φ1[x := N1]] = M1[φ1][N1/x] and M2[φ2[x := N2]] = M2[φ2][N2/x].
By the induction hypothesis applied to ⟨M1, M2⟩, φ1[x := N1], and φ2[x := N2], we have

⟨M1[φ1[x := N1]], M2[φ2[x := N2]]⟩ ∈ [[τ ]],

that is, ⟨M1[φ1][N1/x], M2[φ2][N2/x]⟩ ∈ [[τ ]]. Consequently, by Lemma 9,

⟨(λx : σ. M1[φ1]), (λx : σ. M2[φ2])⟩ ∈ [[σ → τ ]],
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that is,

⟨(λx : σ. M1)[φ1], (λx : σ. M2)[φ2]⟩ ∈ [[σ → τ ]],

since (λx : σ. M1[φ1]) = (λx : σ. M1)[φ1] and (λx : σ. M2[φ2]) = (λx : σ. M2)[φ2].

This concludes the proof in the case where M1
.= M2 : σ is provable in the proof system

of Definition 2 without using the axioms (β) or (η). We now show that the lemma holds
when the axioms (β) are also used.

We noted (just after Definition 2) that the equation M
.= M : σ is provable using the

(reflexivity) axioms and the rules (congruence) and (ξ), for every term M . Thus, by the
previous proof, we have that ⟨M [φ1], M [φ2]⟩ ∈ [[σ]] for every term M of type σ. In particular,
this holds for the term (λx : σ. M)N , and by (R2), we have

⟨((λx : σ. M)N)[φ1], M [N/x][φ2]⟩ ∈ [[τ ]].

But this shows that the lemma also holds for every axiom (β), concluding the proof. ◀

▶ Theorem 11. If R is a binary relation on λ-terms satisfying conditions (P0)-(P5) listed
below
(P0) Every relation Rσ is a per, i.e., Rσ is symmetric and transitive;
(P1) ⟨x, x⟩ ∈ Rσ, ⟨c, c⟩ ∈ Rσ, for every variable x and constant c of type σ;
(P2) If ⟨M1, M2⟩ ∈ Rσ and M1 −→β M ′

1, then ⟨M ′
1, M2⟩ ∈ Rσ;

(P3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ→τ , ⟨N1, N2⟩ ∈ Rσ, and either
⟨(λx : σ. M ′

1)N1, M2N2⟩ ∈ Rτ whenever M1
+−→β λx : σ. M ′

1 and M2 is stub-
born, or ⟨(λx : σ. M ′

1)N1, (λx : σ. M ′
2)N2⟩ ∈ Rτ whenever M1

+−→β λx : σ. M ′
1 and

M2
+−→β λx : σ. M ′

2, then ⟨M1N1, M2N2⟩ ∈ Rτ ;
(P4) If ⟨M1, M2⟩ ∈ Rτ , then ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ ;
(P5) If ⟨N1, N2⟩ ∈ Rσ and ⟨M1[N1/x], M2[N2/x]⟩ ∈ Rτ , then
⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rτ ;

then for every provable equation ⊢β M1
.= M2 : σ, we have ⟨M1, M2⟩ ∈ Rσ (in other words,

every equation provable in the equational β-theory of λ→ satisfies the binary predicate defined
by R).

Proof. Apply Lemma 10 to every β-provable equation M1
.= M2 : σ and to the pair of

identity substitutions, which is legitimate since ⟨x, x⟩ ∈ [[γ]] for every variable of type γ (by
Lemma 7). Thus, ⟨M1, M2⟩ ∈ [[σ]] for every β-provable equation M1

.= M2 : σ, and thus
⟨M1, M2⟩ ∈ Rσ. ◀

▶ Remark. The proof of Lemma 10 actually shows that each Rσ is reflexive.

As an application of Theorem 19, it is easy to prove strong normalization and the Church-
Rosser property for −→β . To do this consider the relation R defined as ⟨M1, M2⟩ ∈ R iff
M1

∗←→β M2, and both M1 and M2 reduce to the same unique normal form. Properties
(P0)-(P5) are easily verified, using the same techniques as in Gallier [6]. Of course, this is a
bit of an overkill for the simply-typed λ-calculus.

We now show how to extend the previous results to the βη-equational theory of λ→.
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3 Adding η-Reduction

The rule of η-reduction is an oriented version of axiom (η):

λx : σ. (Mx) −→η M,

where x /∈ FV (M). We will denote the reduction relation defined by β-reduction and
η-reduction as −→βη.

The definition of an I-term remains identical to that given in Definition 3, and similarly
for stubborn terms. Properties (P0)-(P3) also remain the same, but they are stated with
respect to the new reduction relation +−→βη .

▶ Definition 12. Properties (P0)-(P3) are defined as follows:
(P0) Every relation Rσ is a per, i.e., Rσ is symmetric and transitive.
(P1) ⟨x, x⟩ ∈ Rσ, ⟨c, c⟩ ∈ Rσ, for every variable x and constant c of type σ.
(P2) If ⟨M1, M2⟩ ∈ Rσ and M1 −→βη M ′

1, then ⟨M ′
1, M2⟩ ∈ Rσ.

(P3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ→τ , ⟨N1, N2⟩ ∈ Rσ, and either
⟨(λx : σ. M ′

1)N1, M2N2⟩ ∈ Rτ whenever M1
+−→βη λx : σ. M ′

1 and M2 is stub-
born, or ⟨(λx : σ. M ′

1)N1, (λx : σ. M ′
2)N2⟩ ∈ Rτ whenever M1

+−→βη λx : σ. M ′
1 and

M2
+−→βη λx : σ. M ′

2, then ⟨M1N1, M2N2⟩ ∈ Rτ .

From now on, we only consider families of relations R satisfying conditions (P0)-(P3) of
Definition 12. Definition 5 remains the same, except that it uses the new reduction relation
−→βη.

▶ Definition 13. For any type σ, a nonempty relation C ⊆ Λσ ×Λσ is a R-logical candidate
iff it satisfies the following conditions:
(R0) C is a per.
(R1) C ⊆ Rσ.
(R2) If ⟨M1, M2⟩ ∈ C and M1 −→βη M ′

1, then ⟨M ′
1, M2⟩ ∈ C.

(R3) If M1 and M2 are simple, ⟨M1, M2⟩ ∈ Rσ, and either ⟨λx : γ. M ′
1, M2⟩ ∈ C whenever

M1
+−→βη λx : γ. M ′

1 and M2 is stubborn, or ⟨λx : γ. M ′
1, λx : γ. M ′

2⟩ ∈ C whenever
M1

+−→βη λx : γ. M ′
1 and M2

+−→βη λx : γ. M ′
2, then ⟨M1, M2⟩ ∈ C.

Definition 6 remains unchanged, but we repeat it for convenience.

▶ Definition 14. The logical relations [[σ]] are defined as follows:

[[σ]] = Rσ, σ a base type,

[[σ → τ ]] = {⟨M1, M2⟩ | ⟨M1, M2⟩ ∈ Rσ→τ , and for all N1, N2,

if ⟨N1, N2⟩ ∈ [[σ]] then ⟨M1N1, M2N2⟩ ∈ [[τ ]]}.

Lemma 7 also holds.

▶ Lemma 15. If R is a family of relations satisfying conditions (P0)-(P3), then each [[σ]] is
a R-logical candidate that contains all pairs of stubborn terms in Rσ.

Proof. Careful inspection reveals that the proof of Lemma 7 remains unchanged. This is
because, for a simple term M :

If M ∈ Λσ→τ and there is a reduction MN
+−→βη Q where Q is an I-term, we must have

M
+−→βη λx : σ. M1, even w.r.t. the reduction relation +−→βη . ◀
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Properties (P4) and (P5) are unchanged, but we repeat them for convenience.

▶ Definition 16. Properties (P4) and (P5) are defined as follows:
(P4) If ⟨M1, M2⟩ ∈ Rτ , then ⟨λx : σ. M1, λx : σ. M2⟩ ∈ Rσ→τ .
(P5) If ⟨N1, N2⟩ ∈ Rσ and ⟨M1[N1/x], M2[N2/x]⟩ ∈ Rτ , then
⟨(λx : σ. M1)N1, (λx : σ. M2)N2⟩ ∈ Rτ .

Lemma 9 also extends to βη-reduction.

▶ Lemma 17. If R is a family of relations satisfying conditions (P0)-(P5) and for every
⟨N1, N2⟩, (⟨N1, N2⟩ ∈ [[σ]] implies ⟨M1[N1/x], M2[N2/x]⟩ ∈ [[τ ]]), then ⟨λx : σ.M1, λx : σ.M2⟩
∈ [[σ → τ ]].

Proof. This time, a few changes to the proof of Lemma 9 have to be made to take η-reduction
rules into account.

We need to reexamine the case where

(λx : σ. M1)N1
+−→βη Q1

and Q1 is an I-term (and similarly for (λx : σ.M2)N2
+−→βη Q2). The reduction is necessarily

of the form either

(λx : σ. M1)N1
∗−→βη (λx : σ. M ′

1)N ′
1 −→βη M ′

1[N ′
1/x] ∗−→βη Q1,

where M1
∗−→βη M ′

1 and N1
∗−→βη N ′

1, or

(λx : σ. M1)N1
∗−→βη (λx : σ. (M ′

1x))N ′
1 −→βη M ′

1N ′
1

∗−→βη Q1,

where M1
∗−→βη M ′

1x, with x /∈ FV (M ′
1), and N1

∗−→βη N ′
1.

The first case is as in Lemma 9, we have

M1[N1/x] ∗−→βη M ′
1[N ′

1/x] ∗−→βη Q1.

In the second case, as x /∈ FV (M ′
1), we have M ′

1N ′
1 = (M ′

1x)[N ′
1/x]. Since M1

∗−→βη M ′
1x

and N1
∗−→βη N ′

1, we have

M1[N1/x] ∗−→βη (M ′
1x)[N ′

1/x] = M ′
1N ′

1
∗−→βη Q1.

Thus, in all cases,

M1[N1/x] ∗−→βη Q1 and M2[N2/x] ∗−→βη Q2,

and since ⟨M1[N1/x], M2[N2/x]⟩ ∈ [[τ ]], by (R2) and (R0), we have ⟨Q1, Q2⟩ ∈ [[τ ]]. ◀

Since Lemma 15 and Lemma 17 hold, so does the extension of Lemma 10 to βη-provability.

▶ Lemma 18. Given a family of relations R satisfying conditions (P0)-(P5), for every pair
⟨M1, M2⟩ of type σ, for every pair of substitutions φ1 and φ2 such that ⟨φ1(y), φ2(y)⟩ ∈ [[γ]]
for every y : γ ∈ FV (M1) ∪ FV (M2), if ⊢βη M1

.= M2 : σ, then ⟨M1[φ1], M2[φ2]⟩ ∈ [[σ]].
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Proof. The proof is similar to that of Lemma 10, but we also need to treat the case of the
(η)-axioms. Recall that the proof shows that ⟨M [φ1], M [φ2]⟩ ∈ [[σ]] for every term M of type
σ. In particular, this holds for the term λx : σ. (Mx) where x /∈ FV (M). By (R2), we have

⟨((λx : σ. (Mx))[φ1], M [φ2]⟩ ∈ [[τ ]].

This concludes the proof. ◀

▶ Theorem 19. If R is a binary relation on λ-terms satisfying conditions (P0)-(P5), then for
every provable equation ⊢βη M1

.= M2 : σ, we have ⟨M1, M2⟩ ∈ Rσ (in other words, every
equation provable in the equational βη-theory of λ→ satisfies the binary predicate defined by
R).

Proof. Apply Lemma 18 to every βη-provable equation M1
.= M2 : σ and to the pair of

identity substitutions, which is legitimate since ⟨x, x⟩ ∈ [[γ]] for every variable of type γ (by
Lemma 15). Thus, ⟨M1, M2⟩ ∈ [[σ]] for every βη-provable equation M1

.= M2 : σ, and thus
⟨M1, M2⟩ ∈ Rσ, ◀

Several variations of Lemma 18 and Theorem 19 are possible. We can use βη-convertibility
instead of βη-reduction in Definition 12, Definition 13, and Definition 16. We can drop
symmetry from (R0) and (P0), or drop (R0) and (P0) altogether. In these last two cases, we
obtain a version of Lemma 18 by suitably restricting provability. Further investigations are
required.

As in the case of β-conversion, it is possible to prove strong normalization and the
Church-Rosser property for −→βη, using Theorem 19. To do this consider the relation R
defined as ⟨M1, M2⟩ ∈ R iff M1

∗←→βη M2, and both M1 and M2 reduce to the same unique
normal form. Properties (P0)-(P5) are easily verified.

Obviously, it would be interesting to find more general conditions than properties (P0)-(P5)
for which our theorems still hold. We leave this an an open problem.
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Abstract
Numerous algorithms have been proposed for detecting anomalies (outliers, novelties) in an unsu-
pervised manner. Unfortunately, it is not trivial, in general, to understand why a given sample
(record) is labelled as an anomaly and thus diagnose its root causes. We propose the following
reduced-dimensionality, surrogate model approach to explain detector decisions: approximate the
detection model with another one that employs only a small subset of features. Subsequently, samples
can be visualized in this low-dimensionality space for human understanding. To this end, we develop
PROTEUS, an AutoML pipeline to produce the surrogate model, specifically designed for feature
selection on imbalanced datasets. The PROTEUS surrogate model can not only explain the training
data, but also the out-of-sample (unseen) data. In other words, PROTEUS produces predictive
explanations by approximating the decision surface of an unsupervised detector. PROTEUS is
designed to return an accurate estimate of out-of-sample predictive performance to serve as a
metric of the quality of the approximation. Computational experiments confirm the efficacy of
PROTEUS to produce predictive explanations for different families of detectors and to reliably
estimate their predictive performance in unseen data. Unlike several ad-hoc feature importance
methods, PROTEUS is robust to high-dimensional data.
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1 Introduction

Detection of “anomalous” samples (records, instances), called anomaly detection, is an
important problem in machine learning. It is conceptually related to outlier and novelty de-
tection in several application settings. The anomalous samples may indicate mislabelled data,
catastrophic measurements or data entry errors, bugs in data wrangling and preprocessing
software, or other interesting phenomena.

Numerous unsupervised algorithms (e.g., IF [32], LOF [7], LODA [44]) to detect
anomalies (hereafter detectors) have been proposed. The most advanced ones detect
anomalies in a multi-dimensional fashion, simultaneously considering all feature values.
Unfortunately, detectors, in general, do not explain why a sample was considered as abnormal,
leaving human analysts with no guidance about their root causes, insight to take corrective
actions, or remedy their effect.

© Nikolaos Myrtakis, Ioannis Tsamardinos, and Vassilis Christophides;
licensed under Creative Commons License CC-BY 4.0

The Provenance of Elegance in Computation – Essays Dedicated to Val Tannen.
Editors: Antoine Amarilli and Alin Deutsch; Article No. 8; pp. 8:1–8:23

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:myrtakis@csd.uoc.gr
https://orcid.org/0000-0002-9575-087X
mailto:tsamard.it@gmail.com
https://orcid.org/0000-0002-2492-959X
mailto:vassilis.christophides@ensea.fr
https://orcid.org/0000-0002-2076-1881
https://doi.org/10.4230/OASIcs.Tannen.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


8:2 AutoML for Explainable Anomaly Detection (XAD)

Several methods for explaining anomalies have been proposed, hereafter explainers.
The explanations often take the form of a subset of features called a subspace in the literature.
The idea is that by examining only the explaining features suffices to determine whether the
sample is an anomaly or not according to the detector.

Existing methods can be categorized to those that provide local explanations (point-
based) that pertain to a single sample, or global explanations (a.k.a. set-based) to
simultaneously explain all training samples. The latter is important in order to reduce the
burden of human analysts to inspect possibly different explanations for each anomaly. We
should stress that global explanation is different from clustering as the former’s objective
is to provide a subspace segregating the anomalous from normal samples. Explainers may
be specific to a detection algorithm or detector-agnostic, hence applicable post-hoc to
any detection algorithm. As reported by several independent experimental studies, e.g. [17],
there is no detector outperforming all others on all possible datasets. Hence, researchers
cannot just design a specific explainer for the optimal detector; it may thus be preferable
to design optimal agnostic explainers. Explainers may also be categorized as descriptive
in the sense that they explain the samples used to train the detector. Explainers that
return explanations that generalize to unseen data are predictive ones. The importance
of predictive explanations has been recognised in Explainable AI to avoid recomputing
explanations on every new batch of data.

Figure 1 illustrates how predictive explanations can be used in data validation pipelines
monitoring the data fed to downstream ML models. Given that in real application settings
it is difficult or even impossible to label data as anomalous or normal [17], unsupervised
detectors are initially used to spot anomalies. Then, a predictive anomaly explainer could
be used by human analysts to reveal the root causes of the detected anomalies and decide
subsequent corrective actions. It is essentially a surrogate model 1, trained with a small
subset of the original features that serve as explaining feature subspace. Depending on the
quality of the approximation of the decision boundary of an unsupervised detector, the
surrogate model can be also used to detect anomalies in fresh data, i.e., new batches of data,
by completely bypassing the need to rerun the detector.

In this paper, we propose a novel method to produce global, predictive explana-
tions called PROTEUS2. PROTEUS is detector agnostic, and can be used to approximate
the decision boundary of any detector. We should stress that prior work on detector agnostic
explainers like CA-Lasso [38] and SHAP [34] but also detector specific explainers like LODA
[44] produce explanations that are only local and descriptive.

PROTEUS essentially constructs a reduced-dimensionality, surrogate model that approx-
imates the behavior of a detector with fewer features. Since the detector is labelling the
samples as anomalies or not, the problem of finding such a model reduces to a supervised
predictive modeling with feature selection problem. In order for the surrogate model to also
explain unseen samples, it has to approximate the detector’s decision boundary and not
simply interpolate the anomalies (overfit) in the training data. To this respect, the quality
of approximation should be estimated using out-of-sample performance estimation protocols
like K-fold cross validation (CV). To build the model, any combination of feature selection
algorithm with a classifier could be employed. However, ideally one should optimize the com-
bination of algorithms and their hyper-parameter values to achieve the best approximation
with the samples at hand.

1 A surrogate model is an interpretable model that is trained to approximate the predictions of a black
box model [39]

2 Proteus or Πρωτϵυs in Greek, means “first” and is a minor sea God and son of Poseidon.
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Figure 1 Predictive Anomaly Explanation Pipeline.

The above requirements for tuning and estimating generalization performance of predictive
models are nowadays addressed in the automated machine learning (AutoML) systems
[23]. In this respect, producing predictive anomaly explanations can be solved as
an AutoML problem. Unfortunately, the majority of existing tools such as auto-sklearn
do not perform feature selection. In addition, they do not exploit the fact that the data
can be augmented with new samples (pseudo-samples) that can be labelled by the detector,
to improve performance. Finally, their performance estimates are often overestimated [51],
particularly for imbalanced datasets. To address the above issues, PROTEUS makes the
following contributions:
(1) In Section 2, we introduce a novel AutoML engine specifically designed to support

feature selection and classification on imbalanced datasets. Unlike existing explainers,
PROTEUS outputs not only a small-sized feature subset serving as explanation but also
a surrogate model fitted on this subset to explain unseen samples, as well as a reliable
out-of-sample (predictive) performance estimation.

(2) To produce such output, PROTEUS AutoML relies on advanced design choices described
in Section 3, such as supervised oversampling, group-based stratification, and a special
variant of Cross-Validation with Bootstrap Bias Correction (BBC) [53].

(3) Thorough computational experiments presented in Section 4 we show the efficacy and
robustness of PROTEUS in synthetic and real datasets of increasing dimensionality.
Last but not least, our experiments show that PROTEUS approximates accurately the
performance of a specific explainer (LODA) in a detector-agnostic fashion.

This is a substantial extension of our short paper published at ICDE 2021 [41]. This paper’s
additional contributions are four-fold:
(4) We formally define in Section 2 descriptive and predictive explanations originally intro-

duced in our work.
(5) We assess in Section 5 the merit of the idea to use PROTEUS to correct the decisions

of the unsupervised anomaly detectors. Specifically, we study the disagreements of
classification to anomalies between the surrogate PROTEUS model and the detector. We
show that PROTEUS can often correct the false positives of false negatives as identified
by the detector.

(6) We propose a new visualization method for presenting the global explanations found by
PROTEUS as spider charts. The visualizations provide insight regarding the combination
of feature values that lead to calling a sample as anomalous or not.

Tannen’s Festschrift
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(7) We survey in Section 6 several categories of related work on explaining anomalies in
unsupervised and supervised settings, positioning the predictive explanation of PROTEUS
w.r.t. each category.

Finally, in Section 7 we conclude the paper and discuss directions of future research.

2 Problem Definition

In this section, we formalize the notion of descriptive explanations inspired by [19] and we
introduce the novel concept of predictive explanations.

Let D = {x1, . . . , xn} be a dataset of n samples, where each sample x ∈ Rd. An
Anomaly Detector A is essentially a function that scores the “anomalousness” of samples
in D according to an unsupervised Anomaly Model: ωA : Rd → R. Continuous scores are
then converted into dichotomous decisions using a threshold choice method [55]. Given a
threshold T and sample x ∈ D, a binary Anomaly detector is a function ωl

A : R→ {0, 1}
defined as follows: ωl

A(x) = 1[ωA(x) > T ]. The value ωl
A(x) = 1, semantically denotes the

identification of an anomaly.

▶ Definition 1. The descriptive explanation D of a set of anomalies O = {x | ωl
A(x) =

1, x ∈ D}, is a subset of features S, where |S| = b ≪ d, that maximizes the cumulative
score for a set of anomalies:

D = argmax
S

∑
x∈O

ωA(x[S])

s.t. |S| = b (1)

where [·] denotes the projection of x over the features in S composing its explanation.

A global descriptive explanation algorithm strives to reveal the subspace that maximizes the
cumulative anomaly score for a set of identified anomalies, given a specific anomalousness
criterion such as distance, isolation etc. Such explanations are called descriptive as they
are computed for every new batch of anomalous and normal samples. In order to make
explanations also discriminative for unseen data, we need to consider predictive explanations
i.e., a hyperplane of reduced dimensionality that separates the anomalies from the normal
samples when training a classifier over the output of an unsupervised anomaly detector. To
produce explaining hyperplanes we need to evaluate alternative surrogate models built using
different classification algorithms h ∈ H, where h is fitted in a lower dimensional space,
produced in turn by different feature selection algorithms g ∈ G that consider the labels
returned by different anomaly detectors.

In a nutshell, predictive explanations are produced by solving an AutoML problem [23].
We denote the combination of an algorithm g and h with their respective hyper-parameter
values a and b as a configuration θ, which is a function f = h(g(·, a), b). The function f

first applies the specified feature selection algorithm g with hyper-parameters a to some
input data and the result is then used to train a classifier h with hyper-parameters b. Let
Dl = {(x1, ŷ1), ..., (xn, ŷn)} be the augmented dataset D enriched with the anomaly labels
as indicated by the detector model: ŷi = ωl

A(xi).

▶ Definition 2. The predictive explanation P is the hyperplane that comprises of a minimal
subset of features S leading to an optimal surrogate model h w.r.t. a performance metric Q:

P = argmax
S

max
h

Q(h(Dl[S]))
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Figure 2 Proteus AutoML Pipeline for Anomaly Detection and Explanation.

Given the dataset Dl, the objective is to build a reduced-dimensionality surrogate model
f trained with some data Dl

train to best approximate the detector’s decision boundary. To
assess the quality of the approximation, f has to generalize to unseen data Dl

test which were
not used during the training of f . Therefore, the objective is to find the configuration θ∗

that contains the tuple ⟨h∗, g∗, a∗, b∗⟩ maximizing a performance metric Q:

θ∗ = argmax
θ

Q(f(Dl
train , θ), Dl

test) (2)

The last step is to train the best configuration using all available data, to produce the final sur-
rogate model f(Dl, θ∗) i.e., a model h∗(Dl[S], b∗) that is used to predict the “anomaloussness”
of unseen samples using only a subset of features S = g∗(Dl, a∗).

As anomalies are rare, the quality of performance of a predictive explanation requires
evaluation metrics that are insensitive to the class distribution. In this respect, PROTEUS
relies on optimizing the area under the Receiver Operating Characteristic (ROC AUC)
curve (hereafter AUC). Given a minimal subset of features and a classifier, AUC equals the
probability that the classifier scored higher an anomalous than a normal sample. Discovering
such minimal subset is a challenging task as the search space is exponential and features
in the input dataset may be both irrelevant or redundant w.r.t. to the predictive outcome.
PROTEUS relies on effective and efficient feature selection algorithms [31, 52, 50] to extract
predictive explanations in a supervised setting.

3 Producing Global, Predictive Explanations with PROTEUS

Figure 2 illustrates the main steps of the pipelines automatically generated by PROTEUS.
We proceed with explaining each step as well as the underlying design choices.

Producing Predictive Explanations as a Supervised Task. First, the anomaly detector
runs in dataset D for producing the anomaly scores which are then transformed into binary
labels (anomaly or not) in dataset Dl. Producing a surrogate model of lower dimensionality
becomes a supervised, binary classification task with feature selection, where the outcome is
the label of the unsupervised detector. We note that data are standardized for subsequent
steps.

Oversampling. Dl is expected to be highly imbalanced (w.r.t. the outcome), as anomalies
are rare. Imbalanced datasets are statistically challenging for any ML classifier. One technique
to alleviate the problem is oversampling the minority class. We focus on synthetic minority
oversampling, i.e., the samples are perturbed by adding noise to the values of the features,
creating new samples called pseudo-samples. In common (unsupervised) oversampling
methods, for small enough perturbations the pseudo-samples are assumed to remain in the
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minority class. An assumption that strongly depends on the definition of what is considered
“small-enough”. However, one can take advantage of the detector model produced in the first
step is available to query regarding the label of a pseudo-sample. In other words, PROTEUS
oversampling is supervised as in case of explanation methods for black-box predictive models
[45]. Intuitively, oversampling probes the region around the anomalies and perturbs these
samples to examine if they cross the detector’s decision boundary or not. It thus effectively
increases the available sample size for the classification, potentially increasing the quality of
the approximation with the surrogate model. For each anomalous sample a it produces ps

pseudo-samples per anomaly by adding a perturbation vector p to a: a′ ← a + p. Each p

follows a multi-variate (d-dimensional) normal distribution with zero mean and an isotropic,
diagonal, covariance matrix σI; σ is a hyper-parameter of the algorithm which we set to 0.1
for all the computational experiments. If a′ is labelled as an anomaly it is appended to the
oversampled dataset Daug, otherwise, another pseudo-sample is produced.

Hyper-Parameter Optimization Space. To produce small-sized explanations, PROTEUS
relies on feature selection algorithms, while to produce the surrogate model, a classifier is
required. Most classification algorithms also accept a set of hyper-parameter values that also
need to be tuned. We will call a combination of feature selection and classification algorithms
and their hyper-parameters values as a configuration. Each configuration is a pipeline that
accepts a dataset and produces a classification model and corresponding selected features.
PROTEUS searches the configuration space for the one that leads to an optimal model by
performing a simple grid search. This is, the search space of configurations is formed by the
Cartesian product G ×H (see Figure 2) where G (H, respectively) is the set of all feature
selection (classification) algorithms with bounded hyper-parameter values. As our choices
for feature selection algorithms, we include the Statistical Equivalent Signatures (SES) [31],
Forward-Backward with Early Dropping (FBED) [52], and Lasso. All of them guarantee
to return the optimal feature subset (Markov Blanket in Bayesian Networks) under certain
broad (but different for each algorithm) conditions, removing not only irrelevant, but also
redundant features. In general, SES and FBED tend to return smaller feature subsets than
Lasso, with a small drop in predictive performance [52].

Moreover, as anomaly explanation targets human analysts, we limit the number of features
selected up to 10, ranking them based on their score given by the corresponding algorithm
(e.g. Lasso coefficients). We selected linear as well as non-linear classifiers considering two
facts (a) the extensive experimental results of [12], (b) the fact that deep neural network
architectures are almost certain to overfit in very low sample sizes, both in terms of total
sample size and the size of the rare class. The present selection of classifiers comprises of: (i)
Support Vector Machines, (ii) Random Forest and (iii) K-Nearest-Neighbors. Due to space
constraints, we report the hyper-parameters in our GitHub repository3. Finally, the number
of pseudo-samples to create per anomaly, called ps is also tuned as a hyper-parameter taking
values in {0, 3, 10}. Of course, additional classifiers and feature selection algorithms can be
easily integrated in PROTEUS. In total, PROTEUS tried 1800 configurations.

Estimating Performance for Tuning. What is considered as the optimal configuration, out
of all tried, is the one that leads to models with the highest expected out-of-sample (unseen
samples) predictive performance. It is important to estimate this quantity accurately, i.e.,
with small variance. A smaller variance of estimation increases the probability that the

3 https://github.com/myrtakis/PROTEUS

https://github.com/myrtakis/PROTEUS
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truly optimal configuration will be selected, and thus improves the quality of the final model.
Estimation is challenging when there are only few anomalies in the dataset. Indicatively, the
synthetic dataset used in our experiments (see Section 4.1) contains 10 anomalies out of 867
samples.

To estimate the expected out-of-sample performance, PROTEUS employs a Stratified,
R-Repeated K-fold Cross Validation with Grouping protocol. We now explain each part of the
protocol. We assume that the reader is familiar with the Standard K-fold Cross Validation
(CV, hereafter). The Stratified CV is a variant where the partitioning to folds is performed
under the constraint that the distribution of the classes in each fold is approximately the
same as the one in the full dataset [53]. Stratification reduces the variance of estimation for
imbalanced data and classes with very few samples (ibid). To further reduce the variance of
estimation we repeat the CV process multiple times R and take the average (R-Repeated
CV). Multiple repeats reduce the variance component due to the stochasticity of the specific
partitioning [53]. Finally, we come to Grouping. By CV with Grouping we indicate a variant of
CV that handles grouped samples (a.k.a. as clustered samples in statistics, not to be confused
with clustering of samples). These are samples that are not independently sampled and may
be correlated given the data distribution. Such samples are repeated measurements on the
same subject, as an example. In our context, an anomaly and its pseudo-samples are grouped:
information from a pseudo-sample in the training set leaks to predicting the corresponding
anomaly in the test fold. To avoid information leakage, CV with grouping partitions to folds
with the constraint that all samples of a group remain in the same fold. In our experiments,
we set the number of folds K = 10 and the repeats R = 5. Hence, each application of the
current version of PROTEUS trains (K ·R ·# Configurations + 1) · ps = 90, 003 models.

Producing the Final Surrogate Model and Feature Subset. The final model is trained
using all available samples (the full Daug) with the best configuration found, denoted with
⟨F ∗, C∗⟩ in Figure 2. This configuration also produces the final subset selection (anomaly
explanation). The reasoning is that most algorithms (and hence, configurations) are expected
to produce better quality models and improved feature selection with more available sample.
The models trained during the CV are only employed for selecting the optimal configuration
and providing estimates.

Estimating the Out-of-Sample Performance. We now consider how the performance
estimate of the final model is produced. Let us assume that 1000 configurations are tried
and the best found has a CV estimate of 0.90 AUC. Unfortunately, the CV estimate of the
best configuration is optimistic and should not be returned, i.e., the actual AUC is expected
to be lower. The reason is that our estimate is the best out of 1000 tries [52, 24]. The
phenomenon is conceptually similar to the multiple hypothesis testing problem in statistics.
In small sample sizes, the over-optimism is particularly striking. Recent work shows that
most AutoML tools do not correct for this optimism [51]. In this respect, we apply the
Bootstrap Bias Correction (BBC, hereafter) to our CV estimates [53] that corrects for this
optimism. This leads to returning conservative estimates of performance on average.

4 Experimental Evaluation

PROTEUS was implemented in Python 3.6 and evaluated on several synthetic and real-world
datasets described subsequently. The code and the datasets used in our experiments are
available in our GitHub repository. All experiments were performed in a Linux Desktop
computer with a 4-core Intel i5 processor and 32GB of memory.

Tannen’s Festschrift
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Table 1 Characteristics of datasets and AUC performance of detectors during training. We
denote the parent synthetic dataset as P. Synthetic, the number of features and samples as #F and
#S and the anomaly ratio as A.R.

Dat. Name #F #S A.R. IF LOF LODA
P. Synthetic 5 867 1% 0.96 1.0 0.92
W. Br. Cancer 30 377 5% 0.95 0.94 0.96
Ionosphere 33 358 36% 0.85 0.93 0.87
Arrhythmia 257 452 15% 0.80 0.74 0.75

4.1 Synthetic and Real Datasets
We focus on datasets where the samples are independent and identically distributed (i.i.d.)
and contain numerical features. We employ a synthetic dataset, where anomalies have been
simulated so that a minimal, global, predictive explanation (feature subset) is both achievable
and known. The presence of this gold-standard allows us to evaluate how well PROTEUS
identifies it. Specifically, we selected randomly one of the 100-dimensional datasets introduced
in [25]. Some anomalies have been generated in a way that makes them outliers according
to a subset of 2 of these features, call it S2d, and some according to a subset with 3 (other)
features, call it S3d. Thus, the subset of these 5 features S = S2d∪S3d forms the gold-standard
of global explanation for all anomalies. On this parent synthetic dataset, we added irrelevant
features with randomly selected values following a normal distribution with zero mean and
standard deviation of one. We ended up with 5 synthetic datasets having 20, 40, 60, 80 and
100 dimensions. All of them contain 867 samples with 10 anomalies i.e., the anomaly ratio
is ≈ 1%. Such datasets have been frequently used in the literature of anomaly explanation
[38, 10, 26, 43], because: (a) the features in an explaining subspace (e.g, S2d) are correlated
so they cannot be selected independently; (b) anomalies are recognized as such either in
S2d or S3d, but in no other strict subset. Thus, only multivariate detection algorithms and
corresponding models will achieve high performance. Hence, PROTEUS must approximate a
potentially more complex model.

We additionally consider real-world datasets that are widely-used in the evaluation of
anomaly detectors. Specifically, we selected the Wisconsin-Breast Cancer, Ionosphere and
Arrhythmia, originally from the UCI Machine Learning repository, as defined for anomaly
detection purposes in Outlier Detection DataSets (ODDS) repository4. They were chosen to
ensure that the detectors employed achieve reasonable performance, and thus explanation
makes sense. The dataset characteristics and detector performances are shown in Table 1.
Wisconsin-Breast Cancer and Ionosphere contain two classes. The minority classes in both
datasets are considered as anomalies. For Arrhythmia, eight sub-classes were merged to form
the anomaly class. Finally, we added irrelevant features following the procedure described in
synthetic datasets constructing three additional datasets per real-world dataset with 30%,
60% and 90% irrelevant feature ratio.

4.2 Experimental Setting
In our experiments, we selected three widely-used unsupervised anomaly detectors that employ
different anomalousness criteria, namely Local Outlier Factor (LOF) [7] as a representative of
density-based, Isolation Forest (IF) [32] as a representative of isolation-based and Lightweight
On-line Detector of Anomalies (LODA) [44] as a representative of projection-based detectors.

4 http://odds.cs.stonybrook.edu/

http://odds.cs.stonybrook.edu/
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Regarding the hyper-parameters, for IF we used 100 trees and 256 sub-sample size, for LOF
we used K = 15 and for LODA we used 100 projection vectors as proposed by the respective
authors. To assess the predictive power of a surrogate model produced by PROTEUS we
stratified and splitted each dataset into 70% for training and 30% was held out for testing. In
each dataset, the detectors run on training and test set before adding irrelevant features. The
anomaly threshold T is set as the anomaly ratio for each dataset. The detectors performances
are demonstrated in Table 1.

4.3 Feature Importance Alternatives
We compare the original PROTEUS system, employing feature selection methods (call
it PROTEUSfs), with the PROTEUS pipeline instantiated only with feature importance
methods from related explanation methods. We note that these alternatives have been
developed to provide descriptive explanations; within the PROTEUS pipeline, they are
coupled with a classification model, hyper-parameter values are optimized, and they are
turned into predictive explanations.

The research question to study is whether methods specifically developed for explanations
in the form of feature importance scores offer additional advantages over the feature selection
methods, everything else being equal (i.e,. the rest of the PROTEUS pipeline). All alternative
methods produce local explanations, i.e., for individual samples. Importance scores for a
given feature are calculated for each sample (local scores). We compute the local scores
only for the anomalous samples. To incorporate them into PROTEUS and select features
for global explanations, the local scores are averaged out for each feature to produce a final
feature importance score, as proposed in [33]. As a final feature selection, we select the
top-K features with the highest importance scores. In our experiments, K is set to 10,
which is the maximum number of features allowed to be selected by PROTEUSfs and the
feature importance methods. Regarding the hyper-parameters for the feature importance
alternatives, we used the ones proposed by the respective authors. We evaluate the following
alternatives:
(1) Lightweight On-line Detector of Anomalies or LODA, hereafter, [44] is an anomaly

detector that also returns local feature importance scores. LODA is included as it has
shown an excellent trade-off between computational efficiency and anomaly detection
performance as a detector [37]. As a feature importance method is selected as a
representative of a detector-specific explanation method. As such, the results of
its explanation method are shown only for the experiments where LODA is also used
as the detector. We should stress that when comparing with LODA, the objective is
to approximate its performance as the explanation is strongly coupled to the detection
process. The resulting PROTEUS variant is called PROTEUSLODA.

(2) Kernel SHAP (stands for SHapley Additive exPlanations) [34] is a model-agnostic
method for local explanation of predictive models producing local feature scores. It is
considered state-of-the-art, having outperformed LIME [45]. As Kernel SHAP does not
produce a predictive model itself we consider it as a descriptive method. We use the
proposed kernel as in the original publication of SHAP. Kernel SHAP is included as
a representative of a model-agnostic feature importance method, leading to the
variant PROTEUSSHAP .

(3) CA-Lasso [38], is a representative of a model-agnostic, local feature importance
specifically pertaining to anomaly explanation. It selects k-nearest neighbors
per outlier ai and k other random samples. To overcome the class imbalance, the
authors oversample ai adding pseudo-samples around it, labelling them as anomalies by
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assumption, until the two classes are balanced. The explanation problem is then turned
into binary classification per outlier solved with Lasso. The feature importance of each
feature for ai corresponds to the Lasso coefficients. Rather than learning the decision
boundary of individual anomalies PROTEUS builds a binary classifier to explain all the
anomalies spotted by an unsupervised detector. In that sense, feature selection in [38]
generates local explanations per anomaly that do not generalize to unseen anomalies.
Moreover, PROTEUS oversampling is supervised (by the detector) while numerous
feature selection and classification algorithms along with the optimization of their
hyper-parameter values. Finally, out-of-sample (predictive) performance is estimated by
PROTEUS using AUC for subset selection instead of accuracy as originally proposed in
[38]. The resulting PROTEUS variant is called PROTEUSCA−Lasso.

4.4 PROTEUS Performance Estimation
The objective of this experiment is to assess the effect of PROTEUS design choices, specifically
the BBC and Grouping, to provide an accurate performance estimation. Figure 3 depicts
the train estimates and test performance when PROTEUS is employed with the design
choices described in Section 3, i.e., BBC and CV with Grouping. The dashed black diagonal
line indicates the zero bias: points above the diagonal indicate underestimation (negative
bias) and below overestimation (optimistic bias). To show the accuracy of the estimation
of PROTEUS design choices, we fit a loess curve5 on train and test performances for every
combination (258 in total) of datasets (synthetic and real), detectors (IF, LOF and LODA)
and feature selection methods (general purpose and feature importance methods). Ideally,
we would want the loess curve to fit exactly the diagonal. Observe that with lower AUC
performances PROTEUS tends to overestimate while with higher performances PROTEUS
returns a more conservative estimation. In both cases, the points are close to the ideal
diagonal line.

To further show the efficacy of the proposed design choices to provide an accurate
performance estimation, in Figure 4 we compare the loess curves for train and test estimates
for (i) BBC and Grouping (our design choices), (ii) no BBC (i.e., CV estimate) and Grouping
(iii) BBC and no Grouping and (iv) no BBC and no Grouping. To quantify the bias for
each of the four alternatives, we use the Residual Sum of Squares (RSS) to measure the
discrepancy between the train and test performance. When PROTEUS is employed with
BBC and Grouping (i), it gives the most accurate estimation of out-of-sample performance
(with RSS(i) = 0.05) than when using any of the three alternative design choices (with RSS(ii)
= 0.88, RSS(iii) = 0.11 and RSS(iv) = 0.25).

4.5 Relevant Features Identification Accuracy
The goal of this experiment is to verify whether the features discovered during the training
phase by PROTEUSfs and the feature importance alternatives are part of the gold-standard
feature subset S. For this experiment we used the synthetic datasets. To assess the quality
of the global explanation E in terms of features, we compute precision(S, E) = |S ∩ E|

|E|

and recall(S, E) = |S ∩ E|
|S| . As we select the top-10 features to form the explanation and

S contains 5 features, the precision for the feature importance alternative methods will
be up to 0.5. The recall and precision curves are depicted in Figure 5. Feature selection

5 https://en.wikipedia.org/wiki/Local_regression

https://en.wikipedia.org/wiki/Local_regression
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Figure 3 Bias between train and test AUC performances of PROTEUS implemented with BBC
and CV with grouping.

methods employed by PROTEUSfs exhibit the highest precision never dropping below 0.5,
independently of the employed detector or dataset dimensionality. We observed that precision
is 0.5 when Lasso is selected and higher when FBED is selected. We should stress that SES
was never selected by PROTEUS for the synthetic datasets. FBED removed most of the
irrelevant features leading to a predictive model with less than 10 features to approximate
the decision boundary of the corresponding detector. PROTEUSfs achieves almost optimal
recall regardless of the dimensionality and the employed detector. A slight drop in recall
is observed when the precision higher than 0.8 (achieved only by FBED), while recall is
optimal when Lasso is selected. Moreover, PROTEUSfs feature selection methods are robust
to increasing data dimensionality and irrelevant feature ratio where CA-Lasso and SHAP
seem to be particularly sensitive.

4.6 PROTEUS Generalization Performance

The objective of this experiment is to assess the generalization performance of PROTEUS
without (PROTEUSfull) and with feature selection (PROTEUSfs) as well as with the various
feature importance alternatives, (PROTEUSCA−Lasso, PROTEUSSHAP , PROTEUSLODA).
Figure 6 depicts the AUC performance for each method in test set. Regarding the synthetic
datasets, PROTEUSfs achieves very high AUC across the increasing data dimensionality
with a minimum of 0.96. CA-Lasso and SHAP instead exhibit lower performances as they do
not retrieve, as showed in the previous experiment, many of the relevant features. Observe
that in the synthetic dataset PROTEUSfs generalizes better than PROTEUSfull , i.e., when
using all the available features.

Regarding the real datasets, similar trends are observed with PROTEUSfs achieving
consistently a very high generalization performance with a minimum of 0.8 in Arrhythmia
in the presence of 2,570 dimensions and 90% irrelevant feature ratio. PROTEUSfs seems
to approximate in a detector-agnostic manner, the optimal performance of LODA’s feature
importance method when LODA is used as the detection algorithm. This is due to the
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Figure 4 Bias between train and test AUC performance of PROTEUS implemented with 4
alternatives.

fact that LODA’s explanations are tailored to its detection algorithm; however, if LODA’s
detection performance was poor in a dataset, the provided explanation would be of less
value for the analysts. The feature selection methods employed by PROTEUSfs, are able
to discover the relevant features leading to predictive models with very high performance
regardless of the data dimensionality (and the increasing relevant feature ratio) and capture
accurately the decision boundary of every employed unsupervised detector.

4.7 PROTEUS RunTime Performance

In the subsequent experiment, we demonstrate the execution time of the feature selection
methods employed by PROTEUS. Figure 7 depicts the runtime comparison between the
ad-hoc feature importance methods and the feature selection algorithms. The employed
methods are specifically designed to search efficiently the exponential search space and thus
require less than two seconds on average in 100-dimensions to select features, exhibiting a
steady execution time. In contrast, SHAP is the most expensive method; as we had to explain
the outcome of any employed detector, we used Kernel SHAP which is model-agnostic. Given
the fact that SHAP is optimized only for particular families of algorithms, e.g. tree-based,
its execution time is particularly sensitive to data dimensionality because the Shapley values
must be calculated for all the input features. Recall that in PROTEUS we tried three
classifiers resulting 30 combinations according to their hyper-parameters and three feature
selection algorithms resulting 20 combinations according to their hyper-parameters including
the full selector, i.e., when the full feature space is considered. Thus, the total number of
configurations tried in PROTEUS is 600. Each configuration requires 2 seconds on average
to complete regardless of the dataset dimensionality.
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Figure 5 Precision and Recall performance of discovered features when explaining IF, LOF and
LODA on synthetic datasets w.r.t. increasing data dimensionality (% irrelevant feature ratio).

5 Contrasting PROTEUS Surrogate Models with Unsupervised
Anomaly Detectors

In this section, we are investigating possible disagreements between PROTEUS’s surrogate
models and unsupervised Anomaly Detectors, namely detected anomalies explained as normal
points or vice-versa.

To assist human analysts in spotting such suspicious samples, we introduce an original
visualization method based on spider charts. The proposed Spider Anomaly Explanation
(SAE) charts is essentially a 2D visualisation of multivariate data projected over the explaining
subspaces returned by PROTEUS. The chart has a “web-like” form with concentric circles
and several spokes where each one corresponds to a specific feature. Extreme values of the
features are depicted near the center or near the outermost circle. Then, a mutli-dimensional
sample is represented as an irregular polygon intersecting every spoke according to the
quantile its feature values falls in.

In this work, we propose a variation of spider charts tailored to anomaly explanation.
First, instead of plain feature values, we consider each concentric circle in the chart to
represent one of the four quantiles where the center corresponds to the 0 quantile and the
outermost circle corresponds to the 1 quantile. Then, every feature value is translated to a
quantile ranging from 0 to 1. Hence, the normal region in the chart is the interquartile range
(IQR) containing 50% of the values. Finally, we reverse the samples with extreme low values
belonging to quantiles 0 - 0.25 to the 0.75 - 1 quantiles so that both low and high extremes
can be identified near the outermost circle, far from the normal region. When a sample’s
value intersect with a spoke in the quantiles 0.75 - 1, it means that at least 75% of values for
the particular feature fall below the sample’s value.

In Figure 8 we demonstrate two SAE charts when explaining the LOF detector in the
Ionosphere dataset. The explanation produced by PROTEUS comprises of 9 features. In
Figure 8a both PROTEUS’s surrogate model and LOF agreed on the labels of these two
samples. We can observe that the normal sample falls entirely into the normal (green) region
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Figure 6 AUC test performance averaged over the three detectors on synthetic and real datasets
w.r.t. increasing dimensionality (% irrelevant feature ratio).

while the anomalous sample deviates significantly in every feature. Figure 8b illustrates
two samples where PROTEUS’s surrogate model disagrees with LOF on their labels. LOF
identified the blue sample as anomaly while PROTEUS identified it as normal. We can
clearly observe that this sample was erroneously detected by LOF as it falls entirely into the
normal region. For the other conflict (the red sample) it is not as obvious as in the former
case because it deviates w.r.t. a subset of the features of the explanation. This sample is an
anomaly according to the gold standard that was not detected by LOF. However, PROTEUS
considered this sample an anomaly, extracting three features (Radar 10, 9 and 25) where it
takes extreme values. We should finally stress that since PROTEUS strives to explain all
the anomalies simultaneously, it is likely that an anomalous sample deviates w.r.t. a subset
of the explaining subspace.

To quantify the utility of a PROTEUS explanation to reveal errors made by an unsu-
pervised detector we introduce two metrics that rely on the gold standard available for
each dataset. We consider as conflicts the suspicious samples for which the PROTEUS’s
surrogate model predicts a different label than the detector. Subsequently, we define two sets
of conflicts following the notation of Section 2 where ωl

A is the detector model, f(·, θ∗) is the
PROTEUS’s surrogate model equipped with the best found hyper-parameters, “1” denotes
an anomaly and “0” denotes a normal sample.

▶ Definition 3. Anomaly Normal Conflicts (ANC): Each sample that the detector model
labels as anomaly while PROTEUS’s surrogate model labels as normal.

ANC = {s | ωl
A(s) = 1 ∧ f(s, θ∗) = 0},

▶ Definition 4. Normal Anomaly Conflicts (NAC): Each sample that the detector model
labels as normal while PROTEUS’s surrogate model labels as anomaly.

NAC = {s | ωl
A(s) = 0 ∧ f(s, θ∗) = 1}
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Figure 7 Average runtime of feature selection/importance methods on synthetic datasets of
increasing dimensionality.

Based on the two previous sets we define two metrics to quantify the utility of a PROTEUS
explanation.

▶ Definition 5. True Normal Discovery (TND): The ratio of conflicted samples that PRO-
TEUS’s surrogate model labelled correctly as normals according to the True Normals in the
gold standard.

TND = |ANC ∩ True Normals|
|ANC |

▶ Definition 6. True Anomaly Discovery (TAD): The ratio of conflicted samples that
PROTEUS’s surrogate model labelled correctly as anomalies according to the True Anomalies
in the gold standard.

TAD = |NAC ∩ True Anomalies|
|NAC |

When there are no conflicts, i.e., PROTEUS approximates perfectly the detector’s decision
boundary (AUC = 1 on test set), the two metrics are not defined (ANC and NAC are empty).
In case of conflicts, TND and TAD range between 0 and 1. Values close to 1 indicate that
PROTEUS’ surrogate model disagrees with the detector model and it labels suspicious
samples correctly w.r.t. the gold standard. In contrast, values close to 0 indicate that
PROTEUS disagrees incorrectly with the detector. Clearly, the number of conflicts is higher
when PROTEUS exhibits low AUC performance.

Figure 9a contrasts the AUC of PROTEUS against the AUC of the three detectors used to
analyze each real dataset. The former is computed on the test (holdout) set using the labels
produced by a detector and serves as the approximation quality of its decision boundary.
The latter is computed on the train set using the labels of the gold standard and reveals
the effectiveness of a detector to identify anomalies in a dataset. We can easily observe that
the quality of the approximation of a detector’s decision surface by PROTEUS decreases as
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Figure 8 Spider Anomaly Explanation Charts when explaining LOF in Ionosphere using PRO-
TEUS.

the detector’s effectiveness decreases. For instance, in Arrhythmia we observe the lowest
AUCs for the three detectors and also for the surrogate models of PROTEUS. This trend can
be attributed to the fact that some misdetected samples are very hard to classify correctly
without a very complex boundary. However, if the surrogate model needs to learn a more
complex decision surface to segregate the misdetected samples from their neighbors, it makes
the surrogate model prone to overfitting and thus reduces its generalization performance.
Overfitting is avoided thanks to the CV protocol; PROTEUS will strive to select models
that generalize well in unseen data optimizing the out-of-sample AUC performance.

Figure 9b sheds some light on the percentage of conflicting samples between PROTEUS
and unsupervised detectors per dataset. PROTEUS reveals more True Normals with an
average TND ∼ 50% than True Anomalies with an average TAD ∼ 18%. In other words,
PROTEUS seems to be more effective in discovering false alarms. To justify this claim we
consider a 2D reduced visualization using t-SNE [35] of the Arrhythmia dataset projected
over 10-dimensional PROTEUS explanation for LODA. Figures 10b and 10a depict the
agreements between PROTEUS and LODA as circles and their disagreements as rectangles
for ANC and triangles for NAC. Figure 10b illustrates the ANC samples contributing to
the identification of True Normals. As expected, these samples are located within dense
regions, surrounded by normal samples, requiring more complex boundaries to separate. In
contrast, Figure 10a illustrates the NAC samples contributing to the identification of True
Anomalies. These samples lie on sparse areas where less complex boundaries can be built to
separate them. This is because less complex boundaries enable better generalizing models
and thus PROTEUS can classify misdetected normals in sparse areas, not yielding many
True Anomalies.

To conclude, PROTEUS constructs a reduced-dimensionality surrogate model that not
only generalizes well to unseen samples but also provides valuable insights for identifying
False Negatives and False Positives of unsupervised anomaly detectors.
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(a) AUC of anomaly detectors followed by their
approximation quality (AUC) from PROTEUS for
real datasets.

(b) Fraction of samples identified as TND and TAD
according to PROTEUS explanations for different
combinations of detectors and datasets.

Figure 9

(a) (b)

Figure 10 A 2-D reduced t-SNE visualisation of Arrhythmia according to PROTEUS 10-D
explanation for LODA.

6 Related Work

In this section, we survey various categories of related work on explaining anomalies in
unsupervised and supervised settings, partially inspired by [36]. We should stress that
explanations of anomalies in temporal data is beyond the scope of this work [16, 5].

6.1 Explainable Anomaly Detectors
As unsupervised detectors assess the abnormality of multidimensional data on various feature
subspaces, they can also report the subspaces that contributed the most to the anomaly score
of a particular sample. A first example of such explainable anomaly detectors is LODA [44]
which scores samples based on the average log density over an ensemble of one-dimensional
histogram density estimators. Given that each histogram (with sparse projections) scores a
randomly generated subspace, LODA explanations are essentially a list of features ranked
according to their contribution to the anomalousness score of a sample.
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LODI [11] and LOGP [10] seek an optimal subspace in which an anomaly is maximally
separated from its neighbors. Both works exploit a dimensionality reduction technique to
measure the anomalousness of a sample in a low-dimensional subspace capable of preserving
the locality around its neighbors while at the same time maximizing its distance from this
neighborhood. Then, the explanation of a sample is the top-k features with the largest
absolute coefficient from the eigenvector with the largest eigenvalue.

In [47], an interactive explanation method is proposed that can be used for any density-
based anomaly detector. [29] introduced a method to detect anomalies in axis-parallel
subspaces, called SOD, that computes the anomaly score of a in a hyperplane w.r.t. to
nearest neighbors in the full space. SOD hyperplanes that contribute most in the anomaly
scores serve as explanations. CMI [6] and HiCS [25] rely on statistical methods to select
subspaces of high-dimensional datasets, where anomalies exhibit a high deviation from normal
samples. Both consider highly contrasting subspaces as explanations of all possible anomalies
in a dataset.

The previous works explain anomalies as a byproduct of an unsupervised detection method.
Given that independent experimental evaluations showed that no detector outperforms all
others for all possible datasets [17, 8, 13, 18], in our work we focus on learning the decision
boundary of any unsupervised anomaly detector that could be used for a particular dataset.
In contrast to the descriptive explanations provided by the aforementioned works, PROTEUS
targets predictive explanations that could be successfully used to detect and explain anomalies
also in unseen data.

6.2 Post-hoc Anomaly Explainers
The primary focus of these methods is to specify a subset of features such that a sample
may obtain a high anomaly score when projected onto these subspaces. Some authors have
referred to this explanation task as “outlying aspects mining” [14, 43].

We first consider works providing local explanations. The seminal work [27] first introduced
the problem of explaining individual outliers with “Intensional knowledge” under the form
of minimal feature subspaces in which they show the greatest deviation from inliers. To
find optimal subspaces, [30] formulates a constraint programming problem that maximizes
differences between neighborhood densities of known outliers and inliers. [26] employs a
search strategy aiming to find a subspace which maximizes differences in anomaly score
distributions of all samples across subspaces while [38] measures the separability per anomaly
using classification accuracy, and then apply Lasso to produce a local explaining subspace.
OAMiner [14] finds the most outlying subspace where a sample is ranked highest in terms
of a probability density measure and OARank [43] ranks features based on their potential
contribution toward the anomalousness of a sample. Rather than learning the decision
boundary of individual anomalies, PROTEUS builds a classifier to explain simultaneously
all the anomalies spotted by an unsupervised detector. Moreover, PROTEUS’s oversampling
is supervised, optimizing the hyper-parameters of various feature selection and classification
algorithms.

Extending earlier work [2] on explaining individual anomalies, [3, 1] focus on explaining
groups of anomalies for categorical data using contextual rule based explanations. Authors
search for <context, feature> pairs, where the (single) feature can differentiate as many
outliers as possible from inliers while sharing the same context. The anomalousness score
of a sample in a subspace is calculated based on the frequency of the value that the outlier
takes in the subspace. It tries to find subspaces E and S such that the outlier is frequent
in one and much less frequent than expected in the other. To avoid searching exhaustively
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all such rules, the method takes two parameters, and, to constrain the frequencies of the
given sample in subspaces E and S, respectively. Similarly, [56] describes anomalies grouped
in time. They construct explanatory Conjunctive Normal Form rules using features with
low segmentation entropy, which quantifies how intermixed normal and anomalous samples
are. They heuristically discard highly correlated features from the rules to get minimal
explanations. The aforementioned works assume that anomalies are scattered and strive
to explain them individually rather than to summarize the explanation of a collection of
anomalies.

The following works perform explanation summarization aiming to explain a set of anom-
alies collectively rather than individually. LookOut [19] exploits a submodular optimization
function to ensure concise summarization. xPACS [36] groups anomalies by generating
sequential feature-based explanations providing a ranked list of feature-value pairs that are
incrementally revealed until the human expert reaches a satisfactory level of confidence. In
contrast to the interactive explanations provided by xPACS, PROTEUS provides a global
feature subspace that could potentially explain even unseen anomalies.

6.3 Explaining Black-box Predictors
Several methods have been recently proposed to explain why a supervised model predicted
a particular label for a particular sample [15, 28, 40, 45]. LIME [45] constructs a linear
interpretable model that is locally faithful to the predictor. In this respect, it draws uniformly
at random (where the number of such draws is also uniformly sampled) pseudo-samples per
every sample to be explained. Note that LIME let the black-box classifier label the generated
pseudo-samples. To the best of our knowledge, LIME has not been successfully used for
imbalanced neighborhoods [54]. Other works [15, 28] explain the model by perturbing the
features to quantify their influence on predictions. However, these works do not aim to
explain multiple examples collectively, as the global explanation problem studied in our work.

Other works aim to produce explanations in the form of feature relevance scores, which
indicate the relative importance of each feature to the classification decision. Such scores have
been computed by comparing the difference between a classifier’s prediction score and the
score when a feature is assumed to be unobserved [46], or by considering the local gradient
of the classifier’s prediction score with respect to the features for a particular example [4].
[48, 49] considered how to score features in a way that takes into account the joint influence
of feature subsets on the classification score, which usually requires approximations due to
the exponential number of such subsets.

The aforementioned works require as input a supervised model rather than an unsupervised
anomaly detector. However, in real application settings it is difficult or even impossible
to label data as anomalous or normal examples [17]. Moreover, PROTEUS provides global
explanations returned by standard feature selection algorithms after learning the decision
boundary of the unsupervised detector.

6.4 Evaluation of Explainers
Existing approaches for evaluating explanation methods in both supervised and unsuper-
vised settings are typically quite limited in their scope. Often evaluations are limited to
visualizations or illustrations of several example explanations [4, 10] or to test whether
a computed explanation collectively conforms to some known concept in the dataset [4],
often for synthetically generated data. [47] proposes a larger scale quantitative evaluation
methodology for anomaly explanations regarding sequential feature explanation methods.
Compared to this study, in our work we assess the predictive performance of a classifier given
an explanation along with the correctness of the learned features of the explanation.

Tannen’s Festschrift



8:20 AutoML for Explainable Anomaly Detection (XAD)

6.5 Imbalanced Learning

One of the main challenges in supervised anomaly detection, is class imbalance: anomalies
are largely underrepresented compared to normal examples. In the following we position
PROTEUS w.r.t. the main imbalanced learning methods [22]. The imbalanced learning
problem is concerned with the performance of learning algorithms in the presence of under-
represented data and severe class distribution skews. We follow the same categorization of
imbalanced learning methods as in [22].

Random oversampling augments the original dataset by replicating examples from the
minority class, while random undersampling removes a random set of majority class examples.
PROTEUS pipelines do not perform random under/over-sampling. The synthetic minority
oversampling technique (SMOTE) [9] generates new minority class examples from the line
segments that join the k minority-class nearest neighbors. Our pipeline generates synthetic
examples close to the original minority examples by adding gaussian noise. SVM SMOTE
[42] is a SMOTE variant that generates the synthetic examples concentrated in the most
critical area, i.e., the boundary discovered by fitting an SVM classifier. Borderline-SMOTE
[20] seeks to oversample the minority class instances in the borderline areas, by defining a
set of “Danger” examples. Adaptive Synthetic Sampling (ADASYN) [21] algorithm uses a
density distribution as a criterion to automatically decide the number of synthetic examples
that need to be generated for each minority example. In comparison to the aforementioned
works, PROTEUS performs a supervised synthetic minority oversampling ensuring that new
samples are anomalies according to the decision boundary of an unsupervised detector that is
currently explained. In addition, we proposed a method to avoid information leakage in the
CV protocol when synthetic oversampling is applied.

7 Conclusion and Future Work

We propose the first methodology for producing predictive, global anomaly explanations
in a detector-agnostic fashion. In particular, we show how with adequate design choices
regarding rare class oversampling and unbiased performance estimation of ML pipelines,
generating predictive, global anomaly explanations boils down to an AutoML problem. As
derived from our experiments, PROTEUS is not only able to discover explaining subspaces of
features relevant to anomalies, but it can also construct predictive models that approximate
effectively and robustly the decision boundary of popular unsupervised detectors (e.g., IF,
LOF, LODA). As future work, it would be interesting to approximate the decision boundary
of a detector directly from the provided anomaly scores rather than converting them to
binary labels. Hence, one could transform the explanation problem into regression with
feature selection.
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1 Introduction

The important issue of keeping track of data throughout a complex process gave rise to the
study of the provenance [4] of data, also sometimes called lineage [5]: extra information
attached to query results which relates them to input data items. In a seminal work in
2007 [9], Todd J. Green, Grigoris Karvounarakis, and Val Tannen put forward provenance
semirings as an algebraic framework to express a range of different forms of provenance
over relational database systems, including the data lineage from [5], the why-provenance
from [4], the Boolean provenance implicit in the early model of incomplete information of
c-tables [12] (and made explicit in [10]), and many more. This work has had a considerable
impact on the understanding of what data provenance is and how it can be computed, and
was largely celebrated by the research community [11]. Val Tannen, in collaboration with a
number of his colleagues, then further developed the theory of provenance semirings in other
works, covering topics such as compact representation of provenance for recursive queries [7],
provenance of non-monotone queries [2, 6], provenance of aggregate queries [3]. This line
of work was also extended to other settings than the relational one and resulted in many
different applications [18].

In 2016, inspired by this beautiful theoretical framework, motivated by applications of
provenance to probabilistic databases [21, 10], and frustrated by the lack of maintained
software that would implement provenance semirings, we embarked on the development of
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ProvSQL [19], a PostgreSQL extension that supports computation of semiring provenance
and their extensions for SQL queries over relational databases. ProvSQL has first been
demonstrated in 2018 [20] and has been updated and improved ever since.

In this paper, in honor of Val Tannen and the groundbreaking theory of provenance
semirings, we want to reflect on the impact that theoretical research on provenance semirings
has had on the design of ProvSQL: where ProvSQL directly implements the theory, where
practical concerns require deviating from it, and when development is still lagging behind
the theoretical framework.

We introduce semiring provenance and the way it is implemented in ProvSQL in Section 2,
while in in Section 3 we discuss extensions that go beyond semiring provenance.

2 Semiring Provenance for Positive Relational Algebra Queries

We now discuss the semiring provenance framework from [9] for the positive relational algebra
and how it is implemented in ProvSQL, in terms of data model, query evaluation, as well
as representations of provenance expressions. We assume basic knowledge of the relational
model and the relational algebra, see [1] for a primer.

2.1 Data Model
Theory

A semiring is an algebraic structure (K, ⊕, ⊗, 0, 1) where (K, ⊕, 0) and (K, ⊗, 1) are monoids
(a set equipped with an associative binary operation and a neutral element), ⊕ is commutative,
⊗ distributes over ⊕, and 0 is an absorbing element for ⊗ (i.e., ∀a ∈ K, a ⊗ 0 = 0 ⊗ a = 0).
The semiring is commutative if ⊗ is commutative. The semiring is often referred to by K

when the binary operations and neutral elements are clear. Given two semirings K and K′, a
semiring homomorphism from K to K′ is a function from K to K′ that maps neutral elements
of K to the corresponding neutral elements of K′ and that preserves the binary operations of
the semirings.

▶ Example 1. The following are classical examples of semirings, with applications to
provenance:

(B = {⊥, ⊤}, ∨, ∧, ⊥, ⊤) is the semiring of Booleans;
(N, +, ×, 0, 1) is the counting semiring;
(S = {unclassified < restricted < confidential < secret < top_secret <

unavailable}, min, max, unavailable, unclassified} is the security semiring of security clear-
ance levels;
For any finite set X of variables, (N[X], +, ×, 0, 1) is the integer polynomial semiring that
is sometimes also called how-semiring.

See [17] for many more examples and their application to provenance.

Given a commutative semiring (K, ⊕, ⊗, 0, 1), [9] introduces a K-relation (or relation
annotated by K) over a finite set of attributes A as a function R that maps tuples over A

to an element of K such that {t | R(t) ̸= 0} is finite. Homomorphisms are extended to K-
relations: for a homomorphism h : K → K′ and a K-relation R, h ◦ R is a K′-relation. Finally,
K-databases are databases formed of (labeled) K-relations, and semiring homomorphisms
extend to K-databases in the natural way.

▶ Example 2. B-relations over a set of attributes A are simply relations in the usual sense:
finite set of tuples over A.
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Table 1 Relation personnel for the personnel of an intelligence agency, used as a running example,
from [17].

id name position city classification

1 John Director New York unclassified t1

2 Paul Janitor New York restricted t2

3 Dave Analyst Paris confidential t3

4 Ellen Field agent Berlin secret t4

5 Magdalen Double agent Paris top_secret t5

6 Nancy HR Paris restricted t6

7 Susan Analyst Berlin secret t7

Consider the example personnel relation in Table 1. If t1, . . . , t7 are elements of a semiring
K distinct from 0, then this depicts a K-relation where every tuple of the relation is associated
with a non-0 element of K. For example, assume that for every 1 ≤ i ≤ 7, ti is set to the
value of the classification attribute of the corresponding tuple; then this is a S-relation.

The integer polynomial semiring plays an important role in the theory of provenance
semirings as it is universal in the following sense [9, Proposition 4.2]: for any commutative
semiring K, any set X of variables, and any valuation v : X → K of these variables to
element of K, there exists a unique homomorphism of semirings h from N[X] to K such that
h(x) = v(x).

▶ Example 3. For example, take X = {t1, t2, t3, t4, t5, t6, t7} and the valuation v that maps
each of these tuple ids to the corresponding security level from the classification attribute in
Table 1. Then the unique homomorphism h : N[X] → S preserving this valuation is the one
that maps t1t2 + t2

4t5 to

min(max(v(t1), v(t2)), max(v(t4), v(t4), v(t5))) = min(max(v(t1), v(t2)), max(v(t4), v(t5)))
= min(restricted, top_secret)
= restricted.

Implementation in ProvSQL

ProvSQL relies on the universality of the integer polynomial semiring by representing every
relation as an N[U ]-relation where U is a set of unique identifiers of base tuples. One major
difference with the theoretical framework is that relations in SQL are not sets of tuples
but multisets: the definition of a K-relation thus needs to be modified to allow multiple
annotations for the same tuple, resulting in multiple occurrences of this tuple.

To create an N[U ]-relation, ProvSQL provides an add_provenance function, that takes as
input a regular PostgreSQL relation and modifies it to add to this relation an additional
provsql attribute initialized with universally unique identifiers (UUIDs), generated at random.

When one wants to interpret such an annotated relation as a K-relation for a semiring K,
it suffices to provide the valuation v : U → K (called in ProvSQL a provenance mapping) as
a PostgreSQL relation, as well as a description of the homomorphism from N[U ] to K, which
amounts to explaining how to interpret in the semiring K the 0, 1 elements of N[U ], as well
as the binary operations + and × of N[U ]. ProvSQL provides a provenance_evaluate function
for this purpose; operations of the semirings are typically coded as PL/pgSQL functions,
PostgreSQL’s user-defined function language.

Tannen’s Festschrift
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2.2 Positive Relational Algebra Query Evaluation

Theory

The same paper [9] shows how the different operators of the positive relational algebra
(selection, projection, union, projection, cross product or join, and renaming) can be defined
on K-relations: selection and renaming have no effect on the annotations; tuples merged
as a result of a projection or a union are combined with the ⊕ operation of the semiring;
tuples jointly participating in producing a new tuple in a product or join are combined with
the ⊗ operation of the semiring. Given a query q of the positive relational algebra and a
K-relation R, q(R) is the K-relation obtained by inductively applying these operations.

▶ Example 4. Consider the Boolean query

Π∅(σid<id2(personnel ▷◁city Πid2,city(ρid→id2(personnel))))

over the running example schema which returns whether there exists a city with two distinct
individuals. The result of evaluating this query over the N[X]-relation from Table 1 is the
annotated relation with a single nullary tuple annotated with the polynomial t1t2+t3t5+t3t6+
t3t6 + t4t7. If instead this is a S-relation with the annotation from the classification attribute,
the resulting annotation is min(restricted, secret, top_secret, top_secret, secret) = restricted.

The reason why this is the right definition is given by two results from [9]. First, some
standard identities of the relational algebra are preserved [9, Proposition 3.4]. Second,
query evaluation commutes with semiring homomorphism [9, Proposition 3.5]: if h is a
homomorphism from K to K′, q a positive relational algebra query and R a K-relation, then
h ◦ q = q ◦ h.

Implementation in ProvSQL

Again, the theory needs to be adapted to reflect the fact that SQL uses a multiset semantics
and not a set semantics. This has an impact for projections (which does not imply duplicate
eliminations in SQL) and for UNION ALL unions: they do not change the provenance anno-
tations. On the other hand, DISTINCT and GROUP BY operators in SQL result in duplicate
elimination and thus in the application of the ⊕ operator of the semiring.

All operations are done in the N[U ] semiring. Because of the commutativity of semiring
homomorphisms and query evaluation, it is possible to evaluate the result of a query in a
different semiring by first evaluating it in the N[U ] semiring and then apply the semiring
homomorphism.

In ProvSQL, the ⊕ and ⊗ operations of the semiring are respectively implemented by a
provenance_plus and provenance_times user-defined function. At planning time, the query
sent to PostgreSQL is rewritten so that the resulting relation includes a provsql column
whose content is computed using these two functions, following the operations specified in
the query.

▶ Example 5. Consider the following SQL query, which uses the usual SELECT DISTINCT 1
trick to mimic the behavior of the Boolean query from Example 4:
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SELECT DISTINCT 1 FROM (
SELECT p1.city
FROM personnel p1
JOIN personnel p2 ON p1.city=p2.city
WHERE p1.id<p2.id
GROUP BY p1.city

) inner_query;

In ProvSQL, this query gets rewritten to the following one so as to produce in a new provsql
attribute the correct provenance annotation: provenance_times gets called to reflect the join,
while provenance_plus gets called to reflect both the GROUP BY and DISTINCT operators (the
latter being converted to a GROUP BY).

SELECT 1, provenance_plus(ARRAY_AGG(provsql)) AS provsql FROM (
SELECT p1.city, provenance_plus(

ARRAY_AGG(provenance_times(p1.provsql,p2.provsql))) AS provsql
FROM personnel p1 JOIN personnel p2 ON p1.city=p2.city
WHERE p1.id<p2.id
GROUP BY p1.city

) inner_query
GROUP BY 1;

Another challenge of the practical implementation is that PostgreSQL’s internal data
structures do not fully match the abstract view of the relational algebra; instead, every
operator that exists in the SQL language gets reflected in a special way, which requires
handling many subcases (and which means SQL support in ProvSQL is still not complete to
this date).

2.3 Provenance Representations
Theory

Though [9] does not explictly give complexity results, it is clear that provenance tracking
can be done in polynomial-time. The exact complexity, however, depends on how costly the
⊕ and ⊗ operations of the semiring are. If they can be reasonably counted to be in O(1)
for certain application semirings (e.g., the security semiring or even the counting semiring
if integers involved are bounded), one needs to be more careful about the complexity of
operations in more complex semirings such as the integer polynomial semiring. Indeed, if one
were to require expanding every polynomial to a sum of monomial, it is easy to construct
examples where this results in exponentially-sized expressions.

The question of compact representation of provenance led Daniel Deutch, Tova Milo,
Sudeepa Roy, and Val Tannen to propose in [7] arithmetic circuits to represent provenance
annotations in a way that allows sharing and does not require copying entire subexpressions
or expanding them. This was done in the context of recursive queries (see 3.1) but is also
useful for non-recursive ones.

Implementation in ProvSQL

Since all provenance in ProvSQL is N[U ] provenance, compact representation is paramount
for efficiency of query evaluation as well as reduced use of storage. ProvSQL thus stores
provenance as an arithmetic circuit, whose internal gates are the semiring operators and
leaves are base UUIDs. This way, the provsql column of provenance-aware relations can
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simply be pointers to the corresponding gates in the circuit (in practice, we also use UUIDs
as identifiers of internal gates, and these UUIDs are stored in the provsql columns). The
provenance_plus and provenance_times functions add new gates to the circuit. This raises
the question of where to store the circuit. We have successively experimented with three
different storage mechanisms:
1. Initially, the provenance circuit was stored as a table within the same database, managed

by the database engine. Unfortunately, this is extremely inefficient, as this means that
every query results in many different updates (each time a gate is created in the circuit)
on the provenance circuit table; this was also a nightmare in terms of concurrency control
as every query turned into a batch of updates.

2. We then moved to storing the circuit in main memory, using the shared memory buffers
of PostgreSQL. This was much more efficient and made it easier to address concurrency
issues, but this was not a viable solution either, as the amount of shared memory buffers
is limited, and this solution does not provide any way to ensure persistence of storage of
the circuit.

3. In our latest implementation, the circuit is stored on disk, in memory-mapped files that
are accessed through a single process. This solution resolves the issues of persistence
and concurrency control, while memory mapping helps with keeping access to the circuit
efficient in practice.

3 Beyond Positive Relational Algebra Queries and Semirings

We now briefly discuss theoretical ways that have been proposed to go beyond the positive
relational algebra and the semiring frameworks, and their influence in the design of ProvSQL.

3.1 Recursive Queries
Theory

The original paper on the semiring framework [9] also dealt with recursive queries in the form
of Datalog programs. Green, Karvounarakis, and Tannen showed that their provenance could
be captured by semirings, as long as those satisfied some technical conditions (in particular,
being ω-continuous). In this setting, most of the results for the positive relational algebra
can be recovered: commutativity of Datalog queries and semiring homomorphisms, as well as
the existence of a universal semiring, i.e., the semiring of formal power series. Algorithms for
computing the provenance of recursive queries were then refined in [7] with the introduction
of provenance circuits. Recent work by other authors [14] study in more detail conditions for
convergence of Datalog queries involving provenance.

Implementation in ProvSQL

Unfortunately, support for recursive queries cannot be added to ProvSQL in a straightforward
way. This is due to the fact that the computation of the provenance annotation in the special
provsql columns requires aggregation to combine annotations of different tuples, and that
SQL forbids aggregation within WITH RECURSIVE recursive queries. There does not seem to
be any easy way around this without reimplementing a query evaluation engine, which is out
of the scope of the ProvSQL project. Note, however, that together with Yann Ramusat and
Silviu Maniu, we have proposed and experimented various algorithms for evaluation of the
provenance of recursive queries [15, 16], inspired by [9, 7], but in a simpler setting outside of
a database engine.
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3.2 Non-Monotone Queries

Theory

A natural direction beyond the positive relational algebra is to add negation, by adding the
difference operator of the full relational algebra. One way to add them to the framework of
provenance semirings is to extend semirings with a monus ⊖ operator (which results in what
is called m-semirings), as proposed by Floris Geerts and Antonella Poggi [8]; for example,
in the Boolean semiring it is as expected defined as a ⊖ b = a ∧ ¬b and in the counting
semiring as a ⊖ b = max(0, a − b). However, Yael Amsterdamer, Daniel Deutch, Tova Milo,
and Val Tannen have showed in [2] that this definition results in some counter-intuitive
results (some common axioms, such as distributivity over ⊗ over ⊖, fail); in addition, N[X]
is not a universal semiring with monus [8].

As an alternative to semirings with monus, Katrin M. Dannert, Erich Grädel, Matthias
Naaf, and Val Tannen have proposed [6] a very general logical framework for computing the
provenance of recursive queries (in the form of fixpoint logics) with negation. This is based
on a trick of associating with every positive provenance token a corresponding negative one
and considering the semiring of integer polynomials (or formal series in the recursive case)
with variables both positive and negative tokens.

A final alternative for provenance with difference is given by the work on provenance
aggregate [3] that we discuss in the next section.

Implementation in ProvSQL

ProvSQL follows the m-semiring approach, despite its limitations identified in [2]. Since N[U ]
is not universal any longer, we need to work with the actual universal m-semiring, which is
simply the free m-semiring [8], i.e., the m-semiring of free terms constructed using ⊕, ⊗, ⊖,
quotiented by the equivalence relations imposed by the m-semiring structure. In practice,
this means adding a provenance_monus function, used when the EXCEPT SQL keyword is
used, that adds a ⊖ gate in the provenance circuit.

3.3 Aggregate Queries

Theory

Another very commonly used query feature that goes beyond the relational algebra is
aggregates. Yael Amsterdamer, Daniel Deutch, and Val Tannen have proposed a solution [3]
in the form of provenance semimodules for the case of aggregate functions that are associative
and commutative, such as min, max, sum, or count. The scalar aggregate values form a
monoid, which is combined with the provenance semiring to form a semimodule. Note that
the resulting semimodule values are now annotating attribute values instead of annotating
tuples. In addition to these semimodule attribute values, [3] introduces an additional δ

operator to the provenance semiring that is used to determine the tuple annotation of tuples
that include an aggregate computation (see [3]). Finally, when selection can be done on the
result on an aggregation, additional comparison operators are introduced to build provenance
annotations (these operators can then be used to define a semantics for difference).
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▶ Example 6. Consider the query that counts the number of distinct cities in the running
example schema. When evaluating this query over the N[X]-relation from Table 1 we obtain
a unary tuple with semimodule value

(t1 ⊕ t2) ⋆ 1 + (t3 ⊕ t5 ⊕ t6) ⋆ 1 + (t4 ⊕ t7) ⋆ 1

where ⋆ is a tensor product allowing combining elements of the aggregation monoid with
elements of the provenance semiring and + is the aggregation monoid operation (here,
addition). The provenance annotation of this tuple is 1 (the 1-element of the semiring) as it
is always present. In the security semiring, this is:

unclassified ⋆ 1 + confidential ⋆ 1 + secret ⋆ 1

with provenance annotation “unclassified”.

Implementation in ProvSQL

ProvSQL carefully follows the theoretical framework of [3] to support provenance computation
of aggregate queries. At the moment, aggregates are only supported when they are the final
operation performed, though we have plans of adding support of nested aggregates in the
future. In order to keep a compact representation of the aggregate values, these are also
added to the provenance circuit, using extra gate types for the tensor product and monoid
aggregate operators.

4 Conclusion

In this paper, we have presented the tremendous impact that the work of Val Tannen and
his collaborators on provenance semirings has had on the design of a practical system for
computing the provenance of query results. It is remarkable that so many of these theoretical
works lead themselves to practical implementations that can be made efficient.

Though ProvSQL is already usable as is (and, in addition to provenance, provides features
for computations of probabilities [17] and Shapley(-like) values [13]), there remains a number
of features to implement and optimizations to perform. The most direct given the previous
discussion is the support for nested aggregates; recursive queries are unfortunately unlikely to
be supported in a near future. Performing all computations in the universal semiring (or the
universal m-semiring) has the advantage of being a generic approach, but means that many
optimizations that are possible in a given semiring cannot be applied – some engineering is
required to allow a user to request ProvSQL to capture only specific forms of provenance
and ensure all possible optimizations for this particular algebraic structure are performed.
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Abstract
Relational algebra operates over relations under either set semantics or bag semantics. In 2007 Val
Tannen extended the semantics of relational algebra to K-relations, where each tuple is annotated
with a value from a semiring. However, only the positive fragment of the relational algebra can be
interpreted over K-relations. The reason is that a semiring contains only the operations addition
and multiplication, and does not have a difference operation. This paper explores three ways of
adding a difference operator to a semiring: as a freely generated algebra, by using the natural order,
or by an explicit construction using products and quotients. The paper consists of both a survey of
results from the literature, and of some novel results.
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1 Introduction

Val Tannen’s seminal paper [13] extended the positive relational algebra to K-relations, where
each tuple of the relation is associated with an element of the semiring. Yet this elegant
generalization excluded one operator: set difference. The reason is that a semiring defines
only the ⊕ and ⊗ operators and there is no canonical way to add a minus operation, although
some semirings appear to admit a natural difference operator, see examples in Sec. 2. This
lead several researchers to propose ways to define minus on K-relations. Tannen considered
using the ring Z instead of a semiring in [12], and proved that relational algebra expressions
admit a canonical form, as sum-of-product expressions. In recent work [8,11] Tannen used
dual-indeterminate polynomials, N[X, X̄], where a positive and negative variable interact via
the identity x · x̄ = 0.

In this paper we explore three alternative ways to define a difference operator in a semiring;
the paper consists both of a survey of related work, and some novel contributions. The first
and most obvious approach to define difference algebraically. For any set of desired identities
there is a unique way to extend freely a semiring with a difference operation that satisfies
those identities. This is a standard technique in universal algebras and we review it in Sec. 3.
The question is, what set of identities we should choose. For example if we ask for difference
to convert the semiring into a ring, then the freely generate ring may collapse to a trivial
ring. For example, the ring freely generated by the natural numbers N is Z, but the ring
freely generated by the Booleans B is the trivial ring {0}.

Therefore, in Section 4, we explore an alternative way to define difference: assuming that
the semiring is naturally ordered, one can define the difference b ⊖ a as the smallest element
z such that a ⊕ z ⪰ b. Bosbach [5] and Amer [3] considered naturally ordered semigroups,
and monoids respectively, where such a difference operation exists, and proved that they
form an equational class that can be described by a small set of axioms. This result is quite
surprising, because the natural order does not appear to have a clear algebraic definition: we
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review this result and present a short, self-contained proof in Sec. 4.2. Geerts and Poggi [9]
introduced m-semirings, which are naturally ordered semirings where the difference operation
exists. Tannen [4] proved that m-semirings fail to satisfy an important axiom (called (A5) in
this paper) that is needed in query optimization: we review this in Sec. 4.3. Reference [4]
ends by suggesting the addition of the axiom (A5) to those of an m-semiring, in order to
ensure that current optimizations performed by a query optimizer continue to hold over
K-relations. However, adding (A5) turns out to be insufficient. We show that, in order to
preserve all identities valid under bag semantics, one must ensure that the semiring satisfies
all identities that hold in (N, +, ·, 0, 1, ·−), where ·− is monus, an operation defined below in
Eq. (3): we prove in Appendix A that this set is co-r.e. complete, and, thus, it is not finitely
axiomatizable.

The definition of monus in Section 4 requires the semiring to be naturally ordered. An
interesting question is whether the naturally ordered semirings form an equational class,
i.e. whether they can be described by a set of identities. We answer this in Sec. 4.4: while
natural order is not definable by a set of equations, it becomes definable if one allows one
additional auxiliary operator.

Finally, in Sec. 5 we discuss a third, constructive method for adding difference, by following
the same methodology as in the construction of integers Z from natural numbers N. The
traditional construction consists of equivalence classes of pairs (x, y) of natural numbers,
where the equivalence relation is given by (x, y) ≡ (u, v) when x + v = y + u. This set is
isomorphic to Z, and is often taken as the definition of Z. We study whether this definition
can be generalized from N to semirings. If we use the congruence ≡ above, then the quotient
semiring is often a trivial semiring, so we look for weaker notions of ≡. We review the concept
of an ideal I in a semiring in Sec. 5.2. In a ring, any ideal I defines a congruence relation
x ≡I y, as x − y ∈ I. We describe two alternative ways to define ≡I in a semiring, and use
them to generalize the N-to-Z construction. When applied to Booleans B, or to a Boolean
algebra, or to the tropical semiring Trop, this produces an extended semiring with a difference
operation, which contains positive elements x, negative elements x̄, and over determined
elements of the form x + x̄. These semirings resemble somewhat the dual-indeterminate
polynomials N[X, X̄] introduced in [8, 11], yet they are quite different, for example they do
not satisfy the identity xx̄ = 0.

Finally, we conclude with a short discussion in Sec. 6.

2 Problem Definition and Examples

A semiring is a tuple S = (S, ⊕, ⊗, 0, 1), where (S, ⊕, 0) is a commutative monoid, (S, ⊗, 1)
is a monoid, ⊗ distributes over ⊕, and x ⊗ 0 = 0 ⊗ x = 0. When ⊗ is also commutative then
we say that the semiring is commutative. We only consider commutative semirings in this
paper. When no confusion arises we will denote the operators with +, ·, and the identities
with 0, 1, without boldface. The semiring is trivial when 0 = 1: in that case S = {0}, because
x = x · 1 = x · 0 = 0 for all x.

We denote by Σm and Σs the signature1 of monoids and semirings, and by Σmm, Σsm

their extension with a minus operator, thus:

Monoids: Σm
def={+, 0} Σmm

def=Σm ∪ {−} (1)

Semirings: Σs
def={+, ·, 0, 1} Σsm

def=Σs ∪ {−} (2)

1 A signature is also called a vocabulary, or a type.
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where +, ·, − have arity 2, and 0, 1 have arity 0. Thus, every monoid is an Σm-algebra, and
every semiring is a Σs-algebra. The problem discussed in this paper is to extend an arbitrary
semiring from an Σs-algebra to an Σsm-algebra; some of the discussion will be focused on
how to extend the additive monoid to an Σmm-algebra.

Many semirings already admit a natural difference operator. We illustrate with some
examples.

Every ring is a semiring where, for each element x, there exists some −x, called the
inverse, such that x + (−x) = 0. The inverse is unique, and a · (−x) = −(a · x). Any ring
can be naturally extended to an Σsm-algebra by defining minus as y − x

def= y + (−x).
The semiring of natural numbers (N, +, ·, 0, 1) can be also extended to an Σsm-algebra,
by defining the monus operation as:

y ·− x
def=

{
y − x when y ≥ x

0 otherwise
(3)

The semiring of Booleans B = ({0, 1}, ∨, ∧, 0, 1) can be extended with the minus operator
y − x

def= y ∧ (¬x). This extends to any Boolean algebra (2Ω, ∪, ∩, ∅, Ω) by defining
difference as the standard set difference y \ x.
An interesting example is the tropical semiring, Trop = ([0, ∞], min, +, ∞, 0), where
difference can be defined as:

b ⊖ a
def=

{
∞ when b ≥ a

b otherwise
(4)

This operator is used for semi-naive evaluation of datalog programs over the tropical
semiring [1]. For example, consider the APSP (All Pairs Shortest Path) problem. If the
current shortest distance between two nodes is d[x, y] = a, and the algorithm discovers
a new path of length b, then it updates d[x, y] := min(a, b). The semi-naive algorithm
optimizes this step by first computing the difference δ

def= b ⊖ a (using (4)), then updating
d[x, y] := min(a, δ), which the reader can verify is equal to min(a, b). The advantage is
that, when b ≥ a then δ = ∞ and no update is necessary: the algorithm simply ignores
all edges where δ = ∞, resulting in a smaller join between the edge relation and the δ

relation.

These simple examples don’t seem to have a unifying theme. Given an arbitrary semiring
S, what is the natural way to define difference? We discuss in this paper three approaches
to define difference.

3 Difference by Equations

The first approach is to choose a set of identities E that we want the difference operator to
satisfy, then consider the Σsm, E-algebra freely generated by S. To explain this, we need a
quick review universal algebras; there are many good textbooks, for example [6] is available
online.

Given a signature Σ, a Σ-algebra is a pair A = (A, F ) where F is a set of functions
fA : An → A, one for each symbol f ∈ Σ of arity n. Homomorphisms between Σ-algebras,
h : A → B, are defined in a straightforward way. The free algebra generated by a set X,
denoted TΣ(X), is the set of all terms that can be formed from variables in X and function
symbols in Σ, see e.g. [6].

Tannen’s Festschrift
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An identity is a pair (e1, e2) ∈ TΣ(X). If E is a set of identities, then an Σ, E-algebra
is an algebra that satisfies2 all identities in E. The class of all Σ, E-algebras is called an
equational class, or a variety.

A powerful tool for defining difference is the following theorem:

▶ Theorem 1. Let Σ0 ⊆ Σ, and let E be a set of Σ-identities. Then for any Σ0-algebra
A, there exists a pair (TΣ,E(A), η), where TΣ,E(A) is a Σ-algebra, η : A → TΣ,E(A) is a
Σ0-homomorphism, and the following property holds. For every Σ, E-algebra B, and any
Σ0-homomorphism h : A → B, there exists a unique Σ-homomorphism h̄ such that the
following diagram commutes:

A
η✲ TΣ,E(A)

B

h̄

❄

........h ✲ (5)

TΣ,E(A) is unique up to homomorphism, is called the Σ, E-algebra freely generated by A,
and the diagram above is called the universality property of TΣ,E(A).

This is a very powerful theorem. It says that we can always add new operators to Σ0, and
enforce new identities, in a canonical way. While the proof of the theorem is constructive3, it
is not practical. TΣ,E(A) may be a superset of A, or may be a homomorphic image, or may
simply collapse to a trivial algebra with a single element. The theorem only tells us that
TΣ,E(A) exists and is unique. We can use the theorem to add a difference operation to any
semiring: all we need is to choose what identities we want difference to satisfy. For example,
assume we choose the ring identities:4

x − x =0 (6)
x + (y − z) =(x + y) − z (7)

Then TΣs,E(S) is the ring freely generated by the semiring S. For example, if we apply this
construction to the natural numbers (N, +, ·, 0, 1), then TΣsm,E(N) is isomorphic to Z. But
the freely generated ring can sometimes be trivial, as can seen from this lemma.

▶ Lemma 2. Let S be a semiring where addition is idempotent, x + x = x. Then, if R is
any ring such that there exists a homomorphism h : S → R, then R is the trivial ring. In
particular, the ring freely generated by S is trivial.

Proof. In S it holds that 1 + 1 = 1, therefore 1 + 1 = h(1) + h(1) = h(1) = 1 holds in R. By
adding −1 to both sides we obtain 0 = 1 in R, hence R is trivial. ◀

The take-away is that, in order to define a difference operation “freely”, we need to choose
carefully what identities we want it to satisfy. If we insist on the ring identities, then we
may end up with the trivial ring. Yet, Sec. 2 showed useful examples of difference operations
that were not rings. We consider next an alternative way to defined difference, by using the
natural order.

2 For a formal definition of what it means for an algebra A to satisfy (e1, e2) we refer to [6].
3 TΣ,E(A) is defined as TΣ∪A/ ≡E∪EA

, where Σ ∪ A extends Σ with one nulary operator a for every
constant a ∈ A, the set EA consists of all grounded identities of the form (f(a1, . . . , am), b) where
b = fA(a1, . . . , am), and ≡E∪EA

is the smallest congruence relation that contains EA and all groundings
of E

4 Equations (6) and (7) imply that the operation −x
def= 0 − x is the additive inverse, because x + (−x) =

x + (0 − x) = (x + 0) − x = x − x = 0.
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4 Difference by Natural Order

Given a commutative monoid M = (M, +, 0) the natural preorder, ⪯, is defined as follows:

a ⪯b if ∃z : a + z = b (8)

Then, ⪯ is transitive and reflexive, thus a preorder. When it is antisymmetric then it is
called the natural order of M , and M is called a naturally ordered monoid. In a naturally
ordered monoid 0 is the smallest element: 0 ⪯ x for all x ∈ M . For example, (N, +, 0) is
naturally ordered, while (Z, +, 0) is not. Similarly, a naturally ordered semiring is a semiring
(S, +, ·, 0, 1) where the additive monoid (S, +, 0) is naturally ordered. Many semirings are
naturally ordered, so it makes sense to try to use the natural order to define difference.

4.1 Monus in Naturally Ordered Monoids
▶ Definition 3. Let (M, +, 0) be a naturally ordered monoid. Given two elements a, b ∈ M ,
consider the set of all elements z ∈ M s.t. a + z ⪰ b. If this set has a minimal element c,
then we define:

b ·− a
def= min{z | a + z ⪰ b} (9)

Amer [3] called (M, +, 0) a Commutative Monoid with Monus, or CMM, if it is naturally
ordered and b ·− a exists for all a, b ∈ M . The monoid of natural numbers (N, +, 0) is a CMM,
and its monus operation given by (9) is the same as monus in equation (3). We give two
examples of classes of CMMs.

▶ Definition 4. Call a naturally ordered monoid (M, +, 0) complete and distributive if
⪯ forms a complete, distributive lattice, and + distributes over with

∧
, in other words,

x +
∧

{z | z ∈ A} =
∧

{x + z | z ∈ A}, for any set A ⊆ M .

Every complete, distributive monoid is a CMM, and its monus operation is:

b ·− a
def=

∧
{z | a + z ⪰ b} (10)

We check that (10) satisfies Definition 3, and for that we need to show that
∧

{z | a + z ⪰ b}
is the minimum element of the set {z | a + z ⪰ b}, in other words we need to show that
a +

∧
{z | a + z ⪰ b} ⪰ b. This follows from the fact that + distributes over

∧
: a +

∧
{z |

a + z ⪰ b} =
∧

{a + z | a + z ⪰ b} and the latter is obviously ⪰ b.
One example of a complete, distributive monoid is (N, +, 0), where monus (10) is the

same as Eq. (3). Another example is a Boolean algebra (2Ω, ∪, ∅), where (10) is set difference
b \ a.

Let (M, ⪯) be a complete total order, meaning that x ⪯ y or y ⪯ x for all x, y ∈ M , and∧
A exists for all A ⊆ M . Then (M, ⪯) is a distributive lattice5, and (M, ∨, ⊥) is a CMM,

where x ∨ y
def=

∧
{z | x ⪯ z, y ⪯ z}, ⊥ def=

∧
M is the smallest element of M . The monus

operation in (10) further simplifies to:

b ·− a =
{

0 when b ⪯ a

b when b ≻ a
(11)

5 We prove the identity x ∨
∧

{z | z ∈ A} =
∧

{x ∨ z | z ∈ A} by considering two cases. If there
exists y ∈ A, x ⪰ y, then both sides are equal to x. Assuming x ⪯ z for all z ∈ A we have∧

{x ∨ z | z ∈ A} =
∧

{z | z ∈ A}, and the identity follows immediately.
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An example of such a CMM is ([0, ∞], min, ∞), where monus (11) is the same as Eq. (4). 6

We caution that not every naturally ordered monoid a CMM. For a counterexample,
consider the non-distributive lattice M3 with elements 0 < a, b, c < 1, where a ∨ b = a ∨ c =
b ∨ c = 1 and a ∧ b = a ∧ c = b ∧ c = 0. Then (M3, ∨, 0) is naturally ordered, but it is not a
CMM because the set of z’s for which a ∨ z ≥ 1 is {b, c, 1} and it has no smallest element.

4.2 Monus as an Equational Class
In 1965 [5] Bosbach proved a remarkable result, which implies that CMMs form an equational
class.7 Amer [3] presented a simplified statement of Bosbach’ result, and claimed (without
proof) that CMMs are precisely the equational class defined by the axioms (A1 − A4) below.
We will show here Amer’s identities, and give a simplified proof of Bosbach’s result.

Amer’s identities are the following:

(A1) a + (b ·− a) =b + (a ·− b)
(A2) (a ·− b) ·− c =a ·− (b + c)
(A3) a ·− a =0
(A4) 0 ·− a =0

▶ Theorem 5. [3, 5] A commutative monoid M = (M, +, 0) is a CMM iff there exists an
operation ·− that satisfies (A1) − (A4). In particular, the class of CMMs is the restriction to
the signature Σm of an equational class of Σm ∪ { ·−} algebras.

Proof. Assume first that M is a CMM, and let b ·− a be given as in Definition 3. We prove
that M satisfies (A1) and (A2), and leave it up to the reader to check (A3 − A4). By
assumption M is naturally ordered, with partial order ⪯. Identity (A1) follows from these
implications:

a + (b ·− a) ⪰b Definition of b ·− a

∃z, a + (b ·− a) =b + z Definition of ⪰ (12)
a ⪯b + z From a ⪯ a + (b ·− a)

a ·− b ⪯z Definition of a ·− b (13)
a + (b ·− a) ⪰b + (a ·− b) From (12) and (13)

The opposite inequality a + (b ·− a) ⪯ b + (a ·− b) is proven similarly, and this implies (A1).
For (A2), we start by proving (a ·− b) ·− c ⪰ a ·− (b + c). By definition a ·− (b + c) is the
smallest z satisfying the condition z + (b + c) ⪰ a, hence it suffices to prove that (a ·− b) ·− c

also satisfies this condition. This follows from:

((a ·− b) ·− c) + b + c = (((a ·− b) ·− c) + c) + b ⪰ (a ·− b) + b ⪰ a

6 A small variation is the monoid (R ∪ {∞}, min, ∞). This is also a CMM, with monus defined by the
same Eq. (4). In both these CMM’s the natural order ⪯ is the reverse of the standard order, i.e.
x ⪯ y if x ≥ y. This probably confused the authors of [9], who claimed incorrectly in Example 4 that
(R ∪ {∞}, min, ∞) is not a CMM.

7 Bosbach considered naturally ordered semigroups (M, +) (i.e. monoids without 0, and not necessarily
commutative), which he called holoids, and defined a complemented holoid (komplementäres Holoid) to
be a holoid where b ·− a given as in Definition 3 exists for all a, b ∈ M . Then he proved that the set of
complemented holoids is an equational class, defined by just four identities over the signature {+, ·−}.
He further proved that every complemented holoid (M, +, ·−) is also a commutative monoid, meaning
that + is commutative and has an identity, namely 0 def= x ·− x, which, he showed, is independent on the
choice of x.
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Similarly, for the opposite inequality a ·− (b + c) ⪰ (a ·− b) ·− c, it suffices to prove that
(a ·− (b + c)) + c ⪰ a ·− b, and, for that, it suffices to prove that ((a ·− (b + c)) + c) + b ⪰ a.
This follows immediately by writing the inequality as (a ·− (b + c)) + (b + c) ⪰ a.

We now prove the interesting part: if (M, +, 0) is a commutative monoid and admits
a difference operation ·− that satisfies (A1 − A4), then M is a CMM. Recall that a ⪯ b is
defined as: ∃x, a + x = b. We first establish a simple property:

(P1) : a ⪯ b iff a ·− b =0

In one direction, if a ⪯ b then a ·− b = a ·− (a + x) = (a ·− a) ·− x (by (A2)) = 0 ·− x = 0 (by
(A3), (A4)). In the other direction, we have b = b + 0 = b + (a ·− b) = a + (b ·− a) (by (A1))
which implies b ⪰ a by definition.

(P1) implies that (M, +, 0) is naturally ordered. Indeed, if both a ·− b = 0 and b ·− a = 0
hold, then, by (A1): a = a + 0 = a + (b ·− a) = b + (a ·− b) = b + 0 = b.

It remains to prove that (M, +, 0) is a CMM. For this purpose we prove a second property:

(P2) : b ⪯ a + z iff b ·− a ⪯z

In one direction, we use (P 1) and b ⪯ a + z to derive 0 = b ·− (a + z) = (b ·− a) ·− z (by (A2))
and we use again (P1) to conclude b ·− a ⪯ z. In the other direction, we add a to both sides
of z ⪰ b ·− a and derive a + z ⪰ a + (b ·− a) = b + (a ·− b) (by (A1)) ⪰ b (by definition of ⪰).
We prove now that, for any two elements a, b ∈ M , the operation b ·− a satisfies the condition
in Definition 3. On one hand a + (b ·− a) = b + (a ·− b) ⪰ b. On the other hand, if z also
satisfies a + z ⪰ b, then by (P2) we have b ·− a ⪯ z. Thus, b ·− a is the smallest element z

with this property, as required. ◀

4.3 Monus in Naturally Ordered Semirings
Geerts and Poggi [9] extended CMMs from monoids to semirings. They defined an m-semiring
to be a semiring S = (S, +, ·, 0, 1) where the monoid (S, +, 0) is a CMM; i.e. S is naturally
ordered and b ·− a

def= min{z | a + z ⪰ b} exists for elements a, b ∈ S. In particular, monus
satisfies identities (A1 − A4). One drawback of m-semirings is that monus is defined using
only the additive monoid (S, +, 0), ignoring the multiplicative operator: this creates problems,
as we see next.

Tannen [4] considered the use of m-semirings as annotations of relations, and asked
whether the identities (A1 − A4) are sufficient to capture identities of the relational algebra.
In particular, they considered the following relational algebra identity:

(R − S) ⋊⋉ T =R ⋊⋉ T − S ⋊⋉ T (14)

In order for (14) to hold when the relations R, S, T are annotated with values from an
m-semiring, the semiring must satisfy the following identity:

(A5) (b ·− a) · c =b · c ·− a · c

However, (A5) does not hold in general.8 For example, it holds in (N, +, ·, 0, 1, ·−), and, by
extension, in the m-semiring of polynomials9 (N[X], +, ·, 0, 1, ·−), but it fails in the following
semiring (adapted from [4]): S = ({0, 1

2 , 1}, ∨, ∧, 0, 1), where monus is given by equation (11).
Here (1 ·− 1

2 ) ∧ 0 = 1 ∧ 0 = 0 while (1 ∧ 1
2 ) ·− ( 1

2 ∧ 1
2 ) = 1

2
·− 1

2 = 0, thus (A5) fails.

8 Inequality does hold in one direction, namely (b ·− a) · c ⪰ b · c ·− a · c, because a + (b ·− a) ⪰ b implies
a · c + (b ·− a) · c ⪰ b · c, and, by property (P 2), we obtain b ·− a ⪰ b · c ·− a · c.

9 Monus on polynomials is defined by applying it to each monomial. For example 5x ·− 2x = 3x, and
2x ·− 5x = 0, and x ·− y = x.
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An intriguing observation by Geerts and Poggi [9] is that, although (N[X], +, ·, 0, 1, ·−)
is an m-semiring, it is not the freely generated m-semiring.10 The reason is that monus in
(N[X], +, ·, 0, 1, ·−) is not defined “freely”. For example, consider B = ({0, 1}, ∨, ∧, 0, 1, ·−),
which is an m-semiring where x ·− y = x ∧ ¬y. Given two variables, X = {x, y}, and
the function h : {x, y} → B, h(x) = h(y) = 1, its unique extension h̄ : N[X] → B to a
semiring homomorphism fails to be a homomorphism of m-semirings, because, on one hand,
h̄(y ·− x) = h̄(y) = 1, while h̄(y) ·− h̄(x) = 1 ·− 1 = 0.

In summary, there are two pieces of bad news for defining difference using the natural
order. On one hand, m-semirings do not satisfy (A5) in general, which implies that some
optimizations performed by a traditional query optimizer may fail when the relations are
interpreted over m-semirings. On the other hand, if we restrict only to m-semirings that
satisfy (A5), then we no longer have a familiar freely generated semiring. Tannen [4] suggested
a deeper investigation of the freely generated m-semiring satisfying (A5). However, it turns
out that this is only a partial solution: such semirings will ensure that the optimization (14) is
sound, but may fail other optimization rules. In fact, the only way to ensure that all relational
algebra identities that are valid over bag semantics remain valid over m-semirings is to require
the latter to satisfy all identities satisfied by (N, +, ·, 0, 1, ·−). This set of identities is co-r.e.
complete, and, therefore not finitely axiomatizable. We defer the proof to Appendix A.

4.4 Natural Order and Equational Classes
Bosbach’s result [5] that Commutative Monoid with Monus (CMMs) form an equational class
is surprising, because it is not obvious how to define a natural order using only algebraic
operations and identities. Here we investigate whether such a definition is possible. More
precisely, we ask: do the naturally ordered monoids form an equational class? Similarly, do
the naturally ordered semirings form an equational class? Bosbach’s result does not answer
this question, because it only concerns a subclass of naturally ordered monoids (semirings),
namely those where monus exists. We answer the general question both negatively and
positively!

First, the negative answer:

▶ Lemma 6. The naturally ordered monoids are not an equational class.
The naturally ordered semirings are not an equational class.

Proof. We will use the following known fact, which is also easy to check directly: for any
signature Σ and surjective homomorphism h : A → B, if A satisfies a set of identities E,
then so does B. We will fix Σ to be either Σm = {+, 0} (the signature of monoids (1)) or
Σs = {+, ·, 0, 1} (the signature of semirings (2)). Assume that the set of ordered monoids
(or semirings) are the equational class defined by a set of Σm-identities E. Consider the
monoid A

def= N × N where + is defined component-wise, (a, b) + (c, d) def= (a + c, b + d). A

is naturally ordered (this is easily verified), thus, by our assumption satisfies the identities
E. Consider the homomorphism h : A → Z, h(a, b) def= a − b. Since h is surjective, we
conclude that Z also satisfies E, thus, by our assumption, it is naturally ordered, which is a
contradiction, proving the lemma for monoids. To prove the lemma for semirings it suffices
to define the multiplication operator on N × N as (a, b) · (c, d) def= (ac + bd, ad + bc); then h is
also a homomorphism of semirings. ◀

10 This follows immediately from the fact that N[X] satisfies (A5), while some m-semirings don’t.
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However, naturally ordered monoids and semirings are an equational class, if we are
allowed to use an additional operator, denote it ∨. More precisely, we extend the signature
of monoids to Σm ∪ {∨} = {+, 0, ∨} (Σm was defined in Equations (1)), and extend similarly
the signature of semirings to Σs ∪ {∨}. Let Em be the following set of (Σm ∪ {∨})-identities:

The monoid identities.
Semi-lattice identities for ∨: associativity, commutativity, and idempotence. Recall that
these identities define a partial order ≤ by x ≤ y if x ∨ y = y.
The identity: x ∨ (x + y) = x + y.

We define similarly the set of (Σs ∪ {∨})-identities Es by extending the semiring identities
with those for ∨ shown above. We prove the following result, which appears to be new:

▶ Theorem 7. The class of ordered monoids is equal to the class of (Σm ∪ {∨}), Em-algebras
restricted to the monoid operators Σm.

The class of ordered semirings is equal to the class of (Σs ∪ {∨}), Es-algebras restricted
to the semiring operators Σs.

We prove only the first statement; the second is similar. In one direction, if (M, +, 0, ∨)
is a (Σm ∪ {∨}), Em-algebra, then we show that (M, +, 0) is naturally ordered. Let ≤ be the
partial ordered defined by ∨ (thus a ≤ b if a ∨ b = b) and let ⪯ be the natural preorder in
Eq. (8). We notice that ⪯ implies ≤, because a + z = b implies a ∨ b = a ∨ (a + z) = a + z = b.
Therefore ⪯ is antisymmetric (because ≤ is a partial order), proving the claim.

For the opposite direction, consider a naturally ordered monoid (M, +, 0), and let ⪯ be
its natural order. By Szpilrajn’s extension theorem [17], there exists a total order ≤ that
is an extension of ⪯, i.e. a ⪯ b implies a ≤ b, and ≤ is a total order (a.k.a. linear order).
Define x ∨ y

def= max(x, y). We check that (M, +, 0, ∨) is a (Σm ∪ {∨}), Em-algebra. The only
non-trivial identity is x ∨ (x + y) = x + y. This follows from the fact that x ⪯ x + y (by the
definition of the natural order ⪯), which implies x ≤ x + y, proving that x ∨ (x + y) = x + y.

5 Difference by Construction

A third approach to defining a difference operator in a semiring S is to construct from S

some semiring Ŝ which has a difference operator. The intuition comes from the standard
method of defining Z from N: first define a semiring on the product N × N by setting
(x, x′) + (y, y′) def= (x + x′, y + y′) and (x, x′) · (y, y′) def= (xy + x′y′, x′y + xy′), then consider
the equivalence classes (N × N)/ ≡, where (x, x′) ≡ (y, y′) if x + y′ = x′ + y. We explore in
this section what happens if we apply a similar construction to some arbitrary semiring.

5.1 A Product Construction
▶ Definition 8. Fix a semiring S. We define the Σsm-algebra Ŝ

def= (S×S, +, ·, (0, 0), (1, 0), −),
where the operations are:

(x, x′) + (y, y′) def= (x + y, x′ + y′) (x, x′) · (y, y′) def= (xy + x′y′, xy′ + x′y)

(x, x′) − (y, y′) def= (x + y′, x′ + y) 0 def= (0, 0) 1 def= (1, 0)

(where xy stands for x · y, etc.)

We prove:

▶ Lemma 9. Ŝ is a semiring that also satisfies identity (7), and (A2), (A5).

Tannen’s Festschrift
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⊤ def= (1, 1)

1 def= (1, 0) 1̄ def= (0, 1)

0̄ def= (0, 0)

× 0 1 1̄ ⊤
0 0 0 0 0
1 0 1 1̄ ⊤
1̄ 0 1̄ 1 ⊤
⊤ 0 ⊤ ⊤ ⊤

− 0 1 1̄ ⊤
0 0 1̄ 1 ⊤
1 1 ⊤ 1 ⊤
1̄ 1̄ 1̄ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤

Figure 1 The semiring B̂, as per Definition 8. It is naturally ordered, with a Hasse diagram
shown on the left. Addition + is the LUB of the order relation, while multiplication and minus are
shown in the table.

Proof. The proof that Ŝ is a semiring is immediate, and omitted. We check identity (7) and
axioms (A2), (A5) directly:

Eq (7) : x̂ + (ŷ − ẑ) =(x, x′) + ((y, y′) − (z, z′)) = (x + y + z′, x′ + y′ + z)
(x̂ + ŷ) − ẑ =((x, x′) + (y, y′)) − (z, z′) = (x + y + z′, x′ + y + z)

(A2) : (x̂ − ŷ) − ẑ =(((x, x′) − (y, y′)) − (z, z′))
=(x + y′ + z′, x′ + y + z)
=((x, x′) − ((y, y′) + (z, z′))) = x̂ − (ŷ + ẑ)

(A5) : (ŷ − x̂) · ẑ = (((y, y′) − (x, x′)) · (z, z′))
=((y + x′)z + (y′ + x)z′, (y + x′)z′ + (y′ + x)z)
=((yz + y′z′) + (x′z + xz′), (yz′ + y′z) + (x′z′ + xz))
=(yz + y′z′, yz′ + y′z) − (x′z′ + xz, x′z + xz′)
=(y, y′) · (z, z′) − (x, x′) · (z, z′) = ŷ · ẑ − x̂ · ẑ ◀

In general Ŝ does not satisfy (A1) and (A4), but this is not a problem, for example, they
don’t hold in any ring either.

▶ Example 10. If B is the Boolean semiring, then B̂ consists of four elements, which we
denote as 0, 1, 1̄, ⊤, and are shown in Figure 1. The elements can be interpreted as follows:
0 = false, 1 = positive, 1̄ =negative, and ⊤ = over specified (both positive and negative).

More generally, let’s apply this construction to a Boolean algebra S = (2Ω, ∪, ∩, ∅, Ω).
The elements of Ŝ are pairs of sets (A, B), and can be best viewed as functions ν : Ω → B̂
mapping the elements in the four sets Ω \ (A ∪ B), A \ B, B \ A, A ∩ B to 0, 1, 1̄, and ⊤
respectively. For example the pair ({a, b, d, e, f}, {c, d, f}) in Ŝ can be denote more friendly
as {a, b, c̄, dd̄, e, f f̄}, meaning that the elements a, b, e are positive (inserted), c is negative
(removed), while d and f were over specified (both inserted and removed).

However, so far we only used the first step from the standard construction of the integers
from the natural numbers: taking the cross product. In many cases we need the second
step as well: taking the quotient w.r.t. some congruence relation. Generalizing the N-to-Z
construction, our first attempt is to define ≡ as the smallest a congruence relation on S̄

satisfying:

x + y′ =x′ + y =⇒ (x, x′) ≡ (y, y′) (15)



D. Suciu 10:11

The problem with this definition is that the quotient semiring may become trivial: for
example, both B̂/ ≡ and T̂rop/ ≡ are trivial. To see this, notice that both semirings have
an absorptive element ⊤ satisfying ⊤ + x = ⊤, and therefore (x, x′) ≡ (⊤, ⊤) for all (x, x′).
Thus, we will not consider definition (15), and instead will define a congruence on Ŝ by using
a semiring ideal.

5.2 Ideals in Semirings
Recall that an ideal in a ring R is a subset I ⊆ R s.t. x, y ∈ I implies x + y ∈ I, and
x ∈ I, u ∈ R implies u · x ∈ I. The equivalence relation x ≡I y defined by x − y ∈ I is a
congruence, and the set R/ ≡I is called the quotient ring. We generalize these concepts from
rings to semirings.

▶ Definition 11. An ideal in a semiring S is a set I ⊆ S satisfying u, v ∈ I ⇒ u + v ∈ I,
and u ∈ I, x ∈ S ⇒ u · x ∈ I. Given an ideal I, we define two congruence relations:

x ≡Iy if ∃u, v ∈ I, x + u = y + v (16)
x ∼=Iy if {(a, b) | a, b ∈ S, ax + b ∈ I} = {(a, b) | a, b ∈ S, ay + b ∈ I} (17)

It can be checked immediately that both ≡I and ∼=I are congruence relations.11 Therefore
both quotients S/ ≡I and S/ ∼=I are semirings, and the canonical mappings S → S/ ≡I

and S → S/ ∼=I are semiring homomorphisms. Both the definition of an ideal, and of the
congruence relation ≡I appear in the literature [14–16], and are extensively covered in [10].
The definition of the congruence relation ∼=I appears to be novel.

In a ring, both ≡I , ∼=I are equal, and are the same as the standard congruence relation
defined by the ideal I; moreover, the congruence class 0/ ∼=I is precisely the ideal I. For
a semiring S and any set A s.t. 0 ∈ A ⊆ S, we define the closure as cl(A) def= {x |
∃a ∈ A, a + x ∈ A}. We prove:

▶ Lemma 12. In any semiring S, (1) I ⊆ cl(I) = 0/ ≡I and (2) any congruence class
x/ ∼=I is either a subset of I, or disjoint from I. In particular, 0/ ∼=I⊆ I.

Proof. The first statement is immediate, and is well known in the literature. For the second
statement, we prove that if x/ ∼=I contains some element u ∈ I, then it is a subset of I.
Assume x ∼=I u and u ∈ I. Then x ∈ I follows by setting a = 1, b = 0 in (17): then
au + b = u ∈ I, and therefore ax + b = x ∈ I. ◀

Henriksen [14] called an ideal I a k-ideal if I = cl(I); see also [2, 15, 16]. For example,
in the semiring of natural numbers (N, +, ·, 0, 1), the set I = {6k + 8ℓ | k, ℓ ∈ N} is an ideal
I = {0, 6, 8, 12, 14, 16, . . .} which is not a k-ideal: cl(I) is the set of all even numbers, and
cl(I) − I = {2, 4, 10}. We prove:

▶ Lemma 13. The following statements are equivalent: (1) I is a k-ideal, (2) 0/ ≡I= I, (3)
0/ ∼=I= I.

Proof. The equivalence of (1) and (2) is immediate, and was well known in the literature. To
prove (1) ⇒ (3) we show that for all u ∈ I, u ∼=I 0. Let a, b ∈ S be such that au + b ∈ I; then
au ∈ I and, since I = cl(I), we have b ∈ I, implying a0 + b ∈ I. Conversely, if a0 + b ∈ I,
then b ∈ I and we have au + b ∈ I because au ∈ I. To prove (3) ⇒ (1), assume u ∈ I and
u + b = 1 · u + b ∈ I. Since u ∼=I 0 we also have 1 · 0 + b ∈ I, proving b ∈ I. ◀

11 The rationale behind having the parameter a in (17), as opposed to fixing a = 1, is to ensure that ∼=I is
a congruence w.r.t. multiplication.
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We return now to our product semiring Ŝ in Definition 8, and define the following ideal
in Ŝ.

∆ def={(x, x) | x ∈ S} (18)

It can be checked immediately that ∆ is an ideal in Ŝ, which we call the diagonal ideal. In
general, ∆ is not a k-ideal, and, therefore, the congruences ≡∆ and ∼=∆ are distinct. One can
check that each of them is also a congruence w.r.t. to the difference operator. We examine
now the quotients S/ ≡∆ and S/ ∼=∆, starting with ≡∆.

▶ Lemma 14. For any semiring S, the Σsm-algebra Ŝ/ ≡∆ is the ring freely generated by S.

Proof. By Lemma 9 Ŝ satisfies the semiring identities and identity (7), and therefore so
does Ŝ/ ∼=∆. It remains to prove it satisfies identity (6): x̂ − x̂ = (x, x′) − (x, x′) =
(x + x′, x + x′) ∈ ∆, which implies (x̂ − x̂)/ ≡∆= 0̂/ ≡∆, as required. To prove that it is
the freely generated ring, we check the diagram (5) from Theorem 1: given a ring R and
a semiring homomorphism h : S → R, first extend it to a Σsm-homomorphism ĥ : Ŝ → R

by ĥ(x, x′) def= h(x) − h(x′), then observe that (x, x′) ≡∆ (y, y′) implies that there exists
(u, u) ∈ ∆ such that (x + u, x′ + u) = (y + u, y′ + u), which implies ĥ(x + u, x′ + u) =
h(x + u) − h(x′ + u) = h(x) − h(x′) = ĥ(y + u, y′ + u) = h(y) − h(y′), in other words
ĥ(x, x′) = ĥ(y, y′). Therefore, we can uniquely extend ĥ : Ŝ → R to Ŝ/ ≡∆→ R. This
completes the proof of the lemma. ◀

The lemma gives us a constructive way to obtain the ring freely generated by the semiring
S, but, as we saw in Lemma 2, the freely generated ring can sometimes be trivial. This
justifies exploring the second alternative for our construction: Ŝ/ ∼=∆. We prove:

▶ Lemma 15. For any semiring S, Ŝ/ ∼=∆ is a semiring that satisfies the identities (7), and
(A2), (A5). Moreover: (1) the mapping η : S → Ŝ/ ∼=∆, η(x) def= (x, 0)/ ∼=∆ is an injective
homomorphism, and (2) the mapping x 7→ (0, x)/ ∼=∆ is injective (but not a homomorphism).

Proof. By Lemma 9 Ŝ satisfies the identities (7), and (A2), (A5), therefore so does Ŝ/ ∼=∆.
We prove (1). It is straightforward to check that η is a homomorphism, we prove that
it is injective. Assume (x, 0) ∼=∆ (y, 0) and set â = (1, 0), b̂ = (0, x) in (17). Then
â · (x, 0) + b̂ = (x, x) ∈ ∆, and therefore we must have â · (y, 0) + b̂ = (y, x) ∈ ∆, which
implies x = y as required. The proof of (2) is similar and omitted. ◀

The lemma proves that Ŝ/ ∼=∆ contains two copies of S:
a copy {(x, 0)/ ∼=I | x ∈ S} of elements that we call positive elements, and
a copy {(0, x)/ ∼=I | x ∈ S} of elements that we call negative elements.

Our last result proves that, in the case of the semirings B and Trop, then quotients B̂/ ∼=∆ and
T̂rop/ ∼=∆ consists precisely of the positive elements, negative elements, and over determined
elements {(x, x)/ ∼=I | x ∈ S}. We prove this separately for Boolean algebras and for Trop.

▶ Lemma 16. B̂/ ∼=I is isomorphic to B̂ (shown in Fig. 1). As a consequence, if S is a
Boolean algebra, as in Example 10, then Ŝ/ ∼=∆ is isomorphic to Ŝ.

Proof. It suffices to check that no two elements in B̂ are congruent, by checking six inequalities
of the form x̂ ∼=∆ ŷ. In each case we will show that there exists b̂ such that x̂ + b̂ ∈ ∆ and
ŷ + b̂ ̸∈ ∆ (in other words, â = 1 in all cases):

0 ̸∼=∆ 1 and ⊤ ̸∼=∆ 1: choose b̂ = 1̄.
0 ̸∼=∆ 1̄ and ⊤ ̸∼=∆ 1̄: choose b̂ = 1.
1 ̸∼=∆ 1̄: choose b̂ = 1̄.
⊤ ̸∼=∆ 0: choose b̂ = 1. ◀
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We prove next the same result for Trop, which we state in a slightly more general form.
Recall that a diod is a semiring S where addition is idempotent. It can be shown that a
diod is naturally ordered, and addition is the LUB, in other words S = (S, ∨, ·, 0, 1). Call
a diod strict if its natural order ⪯ is total, and multiplication is cancelative, meaning that
a · x = a · y implies x = y when a ̸= 0; the semiring Trop is strict. We prove:

▶ Lemma 17. Let S be a strict diod. Then Ŝ/ ∼=∆ consists of the following congruence
classes:

Zero, (0, 0)/ ∼=∆= {(0, 0)}.
The positive elements (x, 0)/ ∼=∆= {(x, z) | x ≻ z}, for x ∈ S, x ̸= 0.
The negative elements (0, x)/ ∼=∆= {(z, x) | z ≺ x}, for x ∈ S, x ̸= 0
The over determined elements (x, x)/ ∼=∆= {(x, x)}, for x ∈ S, x ̸= 0.

Proof. Let ∼ be the following equivalence relation on Ŝ:

(x, y) ∼(u, v) if ((y ≺ x = u ≻ v) or (x ≺ y = v ≻ u) or (x = y = u = v))

To prove the lemma we have to show that ∼=∆=∼.
We start by showing ∼=∆⊆∼, and for that we show that (x, y) ̸∼ (u, v) implies (x, y) ̸∼=∆

(u, v). Assume (x, y) ̸∼ (u, v). There are three cases. Case 1: x ≻ y and u = v. Setting
â

def= (1, 0) and b̂
def= (0, 0) we have

â · (x, y)
∨

b̂ =(x, y) ̸∈ ∆

â · (u, u)
∨

b̂ =(u, u) ∈ ∆

proving (x, y) ∼=∆ (u, u). Case 2: x ≻ y and u ≺ v. Then we set â
def= (1, 0), b̂

def= (v, 0) and
we have:

â · (x, y)
∨

b̂ =(x, y)
∨

(v, 0) = (x ∨ v, y) ̸∈ ∆ because x ∨ v ⪰ x ≻ y

â · (u, v)
∨

b̂ =(u, v)
∨

(v, 0) = (u ∨ v, v) = (v, v) ∈ ∆

Case 3: x ≺ y and u = v is similar to case 1 and omitted.
Next, we prove that (x, y) ∼ (u, v) implies (x, y) ∼=∆ (u, v). For that it suffices to assume

that y ≺ x = u ≻ v: the second case x ≺ y = v ≻ u is symmetric, and the third case
x = y = u = v is trivial. Thus, it suffices to prove:

If y ≺ x ≻v then (x, y) ∼=∆ (x, v) (19)

We apply the definition of ∼=∆ in Eq. (17) to (x, y) and (x, v). It suffices to prove that
â · (x, y)

∨
b̂ ∈ ∆, implies â · (x, v)

∨
b̂ ∈ ∆, for any two elements â = (a, a′) and b̂ = (b, b′) in

Ŝ; the other direction of the implication is proven similarly and we will omit it. The semiring
operations in Ŝ were defined in Def. 8, and the condition â · (x, y)

∨
b̂ ∈ ∆ is equivalent to:

ax ∨ a′y ∨ b =ay ∨ a′x ∨ b′ (20)

which can be further rewritten two:

(ax ∨ b) ∨ a′y =(a′x ∨ b′) ∨ ay

A ∨ a′y =A′ ∨ ay (21)

where A
def= ax ∨ b ⪰ ay and A′ def= a′x ∨ b′ ⪰ a′y.

Tannen’s Festschrift
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We claim that condition (21) and the fact that the semiring S is strict implies:

A =A′ (22)

The claim completes the proof because, equality (21) continues to hold if we replace y with v,
because A ⪰ av, A′ = A ⪰ a′v and therefore A ∨ a′v = A and A′ ∨ ay = A ∨ ay = A. Thus,
it remains to prove that (21) and the fact that S is strict implies (22).

From (21) we derive:

A ∨ a′y =A′ ∨ ay = (A ∨ a′y) ∨ (A′ ∨ ay) = A ∨ A′ (23)

If a = a′ = 0 then we immediately obtain A = A′.
Assume w.l.o.g. that a ̸= 0. Since S is strict and x ≻ y, we derive ax ≻ ay and therefore

A ≻ ay. It means that the four equal quantities in (23) are ≻ ay. Since ⪯ is a total order,
the least upper bound A′ ∨ ay is either A′ or A′ ∨ ay = ay: the latter impossible (because
we proved that A′ ∨ ay ≻ ay), therefore all four quantities in (23) are equal to A′.

In particular it holds that A ∨ a′y = A′. We now consider two cases. When a′ = 0, then
we immediately derive A = A′. When a′ ≠ 0 then A′ ≻ a′y: since the least upper bound
A ∨ a′y is either A or a′y, and it cannot be a′y, it that it is equal to A. Since all terms
in (23) are equal to A′, we conclude A = A′, as required. ◀

6 Discussion

We have examined three alternative ways to add difference to a semiring: by specifying
the desired identities, by using the natural order, or by construction. The construction-
based approach appears to be novel: we have only investigated a couple of options for the
construction and proved only a few properties, leaving many open questions. For example,
one open question is whether the class of Σsm-algebras of the form Ŝ/ ∼=∆ is an equational
class.

However, our investigation is far from complete. We mention here only one example that
deserves further exploration. Grädel and Tannen [11] and later Dannert, Grädel, Naaf and
Tannen [8] gave an interpretation to negative information by considering dual-indeterminate
polynomials, N[X, X̄]. Such a polynomial has two kinds of variables (also called provenance
tokens): positive variables x and negative variables x̄. For example 3x + 4yz̄2 + x̄z̄. They
further assumed xx̄ = 0 for every variable x, which is equivalent to taking the quotient
w.r.t. the ideal I generated by the monomials of the form xx̄. One can naturally define a
difference operator in this semiring as f − g

def= f + ḡ, where ḡ is obtained by converting
each variable from positive to negative and vice versa. Thus, N[X, X̄] (or, more precisely,
N[X, X̄]/ ≡I) becomes an Σsm-algebra. What are the identities (in addition to the semiring
identities) satisfied by this algebra? Is there any connection to the Ŝ/ ∼=∆ construction that
we explored in Sec. 5? We leave these questions for future work.
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for a minimal sound set of identities E. We describe here this minimal set, by considering
two flavors of soundness, depending on what semantics we adopt for RA expressions: set, or
bag semantics. For example, if we use set semantics, then an optimizer could replace R ∪ R

with R, and we need to add idempotence (x + x = x) to E to ensure soundness, but for bag
semantics we don’t need idempotence. In this section we prove the following. The minimal
sound set of identities for bag semantics is EΣsm(N), i.e. the set of all identities satisfied
by (N, +, ·, 0, 1, ·−): this set is co-r.e.-complete, and, thus, undecidable, and not finitely
axiomatizable. Thus, adding just (A5), or any finite set of identities to the m-semirings
identities is insufficient to ensure soundness. We also prove that the minimal sound set
of identities for set semantics is EΣsm

(B), the set of identities satisfied by (B, ∨, ∧, 0, 1, ·−),
which are the identities of Boolean algebras: there are well known finite axiomatizations for
this set.

To state and prove this result formally we need a brief review of relational algebra and
its interpretation over K-relations, based on [13].

Relational algebra12, RA, consists of the six operators ⋊⋉, σ, Π, ∪, −, ρ. (ρ is “renaming”.)
If we drop −, then it is called the positive relational algebra, and denoted RA+. Recall the
signatures Σs and Σsm from Eq. (2). Let S be any Σs-algebra (not necessarily a semiring),
and define an S-relation of arity k to be a function R : Domk → S of finite support (i.e.
{t | R(t) ̸= 0} is finite). When R(t) = u ∈ S, then we say that a tuple t is annotated with the
element u. Tannen [13] associated to each operator in RA+ an operation on S-relations, in a
natural way. For example union R1 ∪R2 returns the S-relation (R1 ∪R2)(t) def= R1(t)+R2(t),
natural join returns (R1 ⋊⋉ R2)(t) def= R1(Πattrs(R1)(t1)) · R2(Πattrs(R2)(t2)), etc;13 we refer
the reader to Definition 3.2. in [13]. If S is an Σsm algebra, then we extend this definition
from RA+ to RA, by defining (R1 − R2)(t) def= R1(t) − R2(t).

Let Q1, Q2 be two RA-expressions. We write Q1 ≡S Q2 if these two expressions return
the same output for any input S-relations. For example, if + is commutative in S and
Q1 = R ∪ R′, Q2 = R′ ∪ R, then Q1 ≡S Q2. Since N-relations are bags, the equivalence
Q1 ≡N Q2 holds iff Q1, Q2 are equivalent RA-expressions under bag semantics. Similarly,
Q1 ≡B Q2 iff Q1, Q2 are equivalent under set semantics, for example R ∪ R ≡B R.

12 The term algebra in RA is used with some abuse, since it is not a Σ-algebra, in the sense of Sec. 3. This
is because the operators can only be applied to arguments with the right schemas, for example R ∪ S is
defined only if the relations R, S have the same arity.

13 Notice that the result of an operation may be an S-relation with infinite support; this was apparently
overlooked in [13]. However, this does not affect either the results in [13], nor those in this section,
because, when S is a semiring, then all operations return S-relations with finite support, assuming the
inputs also have finite support.
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▶ Definition 18. A set of Σsm-identities E is sound for RA under bag semantics if, for any
Σsm, E-algebra S and any two RA queries Q1, Q2, if Q1 ≡N Q2 then Q1 ≡S Q2. Similarly,
E is sound for RA under set semantics if, for any Σsm, E-algebra S and any two RA queries
Q1, Q2, if Q1 ≡B Q2 then Q1 ≡S Q2.

Similarly, a set of Σs-identities is sound for RA+ under bag (set) semantics if the
condition above holds when Q1, Q2 are restricted to RA+.

Our goal is to find a minimal set E that is sound for bag (set) semantics.
If S is any Σsm algebra then we denote by ERA(S) the set of identities Q1 ≡S Q2,

where Q1, Q2 are RA queries, and denote by ERA(C) def=
⋂

S∈C ERA(S) where C is a class
of Σs-algebras. We define similarly ERA+(S), ERA+(C) by restricting to Σs algebras and
RA+ queries. Tannen answered the soundness question for RA+ under bag semantics in
Proposition 3.4 of [13]:

▶ Theorem 19 (Implicit in [13]). (a) ERA+(N) ⊆ ERA+(S) iff S is a semiring. (b) If C is
an equational class of Σs-algebras, then ERA+(C) = ERA+(N) iff C is the class of semirings.

Part (a) proves that if E are the identities of semirings, then E is sound for RA+ and
bag semantics. Part (b) proves that E is the smallest sound set of identities. We will prove
below a more general result that extends Theorem 19 from RA+ to RA; the same proof can
be used to prove Theorem 19.

Before we can extend the theorem, we need a brief review of Galois connections. Given
two sets U, V , a Galois connection is a pair of functions F : 2U → 2V , G : 2V → 2U such that
(a) F, G are anti-monotone, and (b) the following condition holds:

Y ⊆F (X) iff X ⊆ G(Y ) (24)

In any Galois connection the following hold: F (G(F (X))) = F (X) and G(F (G(Y ))) = G(Y ).
Consider now a signature Σ, and an infinite set of variables X, and recall that a Σ-identity

is a pair e = (e1, e2) where e1, e2 ∈ TΣ(X). For any Σ-algebra A, denote by EΣ(A) the set
of identities that hold on A. For example, EΣsm

(N) contains all identities satisfied by N,
which includes the semiring identities, the CMM identities (A1) − (A4), the identity (A5),
and many more. Furthermore, for an identity e denote by CΣ(e) the class of Σ-algebras that
satisfy e. Then the following two mappings form a Galois connection:

EΣ(C) def=
⋂

A∈C

EΣ(A) CΣ(E) def=
⋂

e∈E

CΣ(e) (25)

The generalization of Theorem 19 to RA is the following:

▶ Theorem 20. (a) ERA(N) ⊆ ERA(S) iff S is a EΣsm
(N)-algebra. (b) If C is any equational

class of Σsm-algebras, then ERA(C) = ERA(N) iff C is the class defined by the identities
EΣsm

(N).

Thus, in order to ensure soundness, the semiring S must satisfy all identities satisfied by
the m-semiring (N, +, ·, 0, 1, ·−), which we denoted EΣsm

(N). Before we prove the theorem,
we show that this set is co-r.e. complete.

▶ Theorem 21. EΣsm
(N) is co-r.e. complete.

Proof. Membership in co-r.e. is immediate: to check that an identity e1 = e2 is false in N,
it suffices to iterate over all possible assignments to the variables of e1, e2 and stop when one
such assignment makes e1 ̸= e2. To prove completeness, it suffices to prove that membership is
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undecidable, and for that we will use Matiyasevich theorem on the undecidability of Hilbert’s
tenth problem. It implies that the following problem is undecidable: given a multivariate
polynomial F ∈ Z[X] with variables x1, x2, . . . decide if there exists values x1, x2, . . . ∈ N s.t.
F (x1, x2, . . .) = 0. It follows immediately that the following problem is undecidable: given
two polynomials F, G ∈ N[X], decide if the following holds:

∃x1, x2, . . . ∈ N : F (x1, x2, . . .) =G(x1, x2, . . .)

Its negation (which is also undecidable) is the statement:

∀x1, x2, . . . ∈ N : F (x1, x2, . . .) ̸=G(x1, x2, . . .) (26)

which we abbreviate by F ̸= G. We use the following equivalences in (N, +, ·, 0, 1, ·−):

F ̸=G iff (F ·− G) + (G ·− F ) > 0 iff 1 ·− ((F ·− G) + (G ·− F )) = 0

Since (26) is undecidable, checking identities of the form 1 ·− ((F ·− G) + (G ·− F )) = 0 in
the m-semiring (N, +, ·, 0, 1, ·−) is also undecidable. Thus, EΣsm(N) is undecidable, therefore
co-r.e. complete. ◀

To summarize, the minimal set of identities that ensures that an m-semiring is sound for
all RA-identities is the set EΣsm

(N), which is infinite, co-r.e.-complete, and, thus, it is not
finitely generated. Obviously, the set EΣsm

(N) is not practical. A possible workaround could
be to find a non-minimal sound set, which is still useful for practical purposes: we leave this
for future work.

We briefly discuss what happens when we interpret RA using set semantics instead of bag
semantics, or consider both semantics. Theorem 20 continues to hold if we replace ERA(N)
and EΣsm(N) with ERA(B) and EΣsm(B), thus the necessary and sufficient identities in this
case are EΣsm

(B). These are precisely the identities of Boolean algebras, which are generated
by a finite set, and membership is decidable. This does not imply that ERA(B) is decidable:
in fact ERA(B) consists of all pairs of RA-expressions that are equivalent under set semantics,
and is undecidable by Trakhtenbrot’s theorem.

Theorems 20 also specializes to RA+, and we derive the following version of Theorem 19:
the minimal set of Σs-identities E that is sound for RA+ under bag semantics is EΣs

(N),
which is equivalent to the semiring axioms,14, hence we recover Theorem 19. Similarly, we
obtain that the minimal set of Σs-identities that are sound for RA+ under set semantics is
EΣs(B), which is equivalent to the set of identities of bounded, distributive lattices.15 Finally,
we briefly discuss what happens if we extend RA to support mixed set/bag semantics, by
adding an operator δ to RA which eliminates duplicates. This requires us to add a new
operation to the semiring S, lets call it also δ, which satisfies δ(0) = 0 and δ(x) = 1 for
all x ̸= 0. Unfortunately, the δ-semirings do not form an equational class, because the
product of two δ-semirings, S1 × S2, is not a δ-semiring: for (x, 0) ∈ S1 × S2, we have
δ(x, 0) = (δ1(x), δ2(0)) = (1, 0), which is neither (0, 0), nor (1, 1). An operation of this kind
was considered in [7] under the name squash, and defined using a conditional axiom.

14 To see this, consider any two expressions e1, e2 ∈ TΣs
(X) that are equivalent in (N, +, ·, 0, 1). Using the

semiring identities only we can write e1, e2 in a canonical form, as a sum of monomials, i.e. e1, e2 ∈ N[X].
Since they are equivalent in (N, +, ·, 0, 1), they must be identical polynomials. Thus, the equivalence
e1 = e2 follows using only semiring axioms.

15 The proof is similar to the above. Any two expressions e1, e2 equivalent in B can be transformed into
DNF expressions using only the identities of distributive lattices, and their DNF expressions must be
isomorphic.
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In the rest of this section we prove Theorem 20. The proof follows from three lemmas. If
f : S1 → S2 is any function, then, for any k-ary S1-relation R we will denote by f ◦ R the
S2-relation defined by (f ◦ R)(t) def= f(R(t)), for all t ∈ Domk. If R̄ = (R1, R2, . . .) is a tuple
of relations, then we write f ◦ R̄ for (f ◦ R1, f ◦ R2, . . .).

▶ Lemma 22. Let f : S1 → S2 be a homomorphism between Σsm-algebra, and Q be an RA
query. Let R̄ be a tuple of S1-relations. Then Q(f ◦ R̄) = f ◦ Q(R̄).

Proof. The proof follows immediately by induction on the structure of Q. We illustrate here
only for the case when Q is the union of two sub-queries; all other cases are similar. Assume
Q = Q1 ∪ Q2 and let t be a tuple in the output. Then:

(Q(f ◦ R̄))(t) =
(
Q1(f ◦ R̄) ∪ Q2(f ◦ R̄)

)
(t) =

(
Q1(f ◦ R̄)

)
(t) +

(
Q2(f ◦ R̄)

)
(t)

=
(
f ◦ Q1(R̄)

)
(t) +

(
f ◦ Q2(R̄)

)
(t) =f

(
Q1(R̄)(t)

)
+ f

(
Q2(R̄)(t)

)
=f

(
Q1(R̄)(t) + Q2(R̄)(t)

)
=f

((
Q1(R̄) ∪ Q2(R̄)

)
(t)

)
=

(
f ◦ Q(R̄)

)
(t)

◀

▶ Lemma 23. Let S1, S2 be two Σsm-algebras. Then ERA(S1) ⊆ ERA(S2) iff EΣsm
(S1) ⊆

EΣsm
(S2). The same statement holds for Σs-algebras and RA+.

In other words, in order to compare the RA-identities (RA+-identities) satisfied by S1-
relations with those satisfied by S2-relations, it suffices to compare the algebraic identities
satisfied by S1 with those satisfied by S2.

Proof. We start with the ⇐ direction, and assume EΣsm(S1) ⊆ EΣsm(S2). Let (Q1, Q2) ∈
ERA(S1), in other words Q1(R̄) = Q2(R̄) for any input S1-relation instance R̄. Consider
some input S2-instance R̄′: we need to prove that Q1(R̄′) = Q2(R̄′). Let X be a set of
variables, s.t. |X| = |S2|, let η : X → TΣsm

(X) be the canonical injection, h : X → S2 be a
bijection, h̄ : TΣsm(X) → S2 its extension to a homomorphism, and R̄′′ def= h−1 ◦ R̄′. Thus, if
a tuple in R̄′′ is annotated with variable x ∈ X, then the same tuple is annotated in R̄′ with
h(x) ∈ S2: formally, h ◦ R̄′′ = h̄ ◦ η ◦ R̄′′ = R̄′. Then Qi(R̄′) = Qi(h̄ ◦ η ◦ R̄′′) = h̄ ◦ Qi(η ◦ R̄′′)
(by Lemma 22) for i = 1, 2. (We cannot apply Qi to R̄′′ because its annotations are variables
in X; instead we apply Qi to η ◦ R̄′′, whose annotations are the same variables, but viewed
in TΣsm(X), where the Σsm-operations are defined.) Let t be some output tuple, and define:

ei
def=(Qi(η ◦ R̄′′))(t), i = 1, 2

Thus, e1, e2 are expressions in TΣsm
(X) that annotate the tuple t in the outputs of Q1, Q2 on

R̄′′ respectively. We claim that (e1, e2) ∈ EΣsm
(S1) (i.e. they form an identity that holds in

S1). For that, we need to show that for any function g : X → S1, the equality ḡ(e1) = ḡ(e2)
holds. To prove that we use the fact that Q1, Q2 return the same output on the S1 relation
ḡ ◦ η ◦ R̄′′:(

Q1(ḡ ◦ η ◦ R̄′′)
)

(t) =
(
Q2(ḡ ◦ η ◦ R̄′′)

)
(t)

ḡ
(
Q1(η ◦ R̄′′)(t)

)
=ḡ

(
Q2(η ◦ R̄′′)(t)

)
ḡ(e1) =ḡ(e2)

Since g was arbitrary, we conclude that (e1, e2) ∈ EΣsm
(S1), and therefore (e1, e2) ∈

EΣsm(S2), which implies h̄(e1) = h̄(e2), proving that Q1(R̄′)(t) = Q2(R̄′′)(t).

Tannen’s Festschrift
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We briefly sketch the ⇒ direction of the proof, for Σsm and RA. Given (e1, e2) ∈ EΣsm(S1),
we convert both e1 and e2 into RA-expressions over unary relations. For example, if e1 is
(x2

1 ·x2 ·−x3)+x1 then Q1 is (R1 ⋊⋉ R1 ⋊⋉ R2 −R3)∪R1, where R1, R2, R3 are unary relations
with the same attribute name. It follows immediately that (Q1, Q2) ∈ ERA(S1), hence it is
also in ERA(S2), and this implies that the identity e1 = e2 also holds in S2. ◀

The last lemma is:

▶ Lemma 24. Fix a signature Σ. (a) For any two Σ-algebras A, B, the following holds:
EΣ(A) ⊆ EΣ(B) iff B ∈ CΣ(EΣ(A)). (b) If C is an equational class of Σ-algebras, then
EΣ(C) = EΣ(A) iff C = CΣ(EΣ(A)).

Proof. Part (a) is by the definition of the Galois connection (24). We prove now part (b).
For one direction of (b), assume C = CΣ(EΣ(A)). Then EΣ(C) = EΣ(CΣ(EΣ(A))) = EΣ(A).
For the other direction, assume C is an equational class and EΣ(C) = EΣ(A). Then
CΣ(EΣ(C)) = CΣ(EΣ(A)), and the claim follows from the fact that CΣ(EΣ(C)) = C because
C is an equational class, i.e. C = CΣ(E) for some E. ◀

Lemmas 23 and 24 immediately imply Theorem 20.
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11:2 An Intensional Expressiveness Gap of Comprehension Syntax

Therefore, there is a potential intensional expressiveness gap between algorithms that can
be realised by comprehension syntax and those used in database systems, such as algorithms
for low-selectivity joins. Consequently, despite the syntactic naturalness of comprehension
syntax, one might say it fails as a genuine naturally embedded query language. Nonetheless,
this gap has not been formally proven.

The main objective of this paper is to prove that this intensional expressiveness gap
indeed exists. The proof goes via a “limited-mixing” lemma on N RC1(≤). On ordered data
types, N RC1(≤) is equivalent to the flat relational algebra or first-order logic [22]. More
pertinently, there is a simple translation between comprehension syntax and N RC1(≤), and
this translation preserves time complexity. This makes N RC1(≤) a suitable ambient query
language for investigating the potential intensional expressiveness gap between comprehension
syntax and typical database systems.

The limited-mixing lemma states that all N RC1(≤) queries of subquadratic time com-
plexity are only able to mix atoms in their input relations in very limited ways. So, these
subquadratic-complexity queries cannot be low-selectivity joins. This limited-mixing lemma
is non-query specific and is applicable even when ordered data types are present. It thus
considerably enriches the available theoretical tools for studying intensional expressive power,
as these tools are often query specific and are inapplicable in the presence of ordered data
types. It is also a useful intensional counterpart to Gaifman’s locality property [8]. Gaifman’s
locality is very useful for analyzing extensional expressiveness of first-order query languages
on unordered data types, but is inapplicable to ordered data types.

This chapter is organized as follows. Section 2 presents N RC1, its operational semantics,
rewrite rules and the induced normal forms. Section 3 states and proves the limited-mixing
lemma. Section 4 leverages the limited-mixing lemma to prove the main result that all
implementations of zip, which is a prototypical linear-time low-selectivity join, in N RC1
have at least quadratic time complexity. This confirms the intensional expressive power gap
between comprehension syntax and relational database systems. Finally, Section 5 provides
discussion on the intensional expressiveness gap and how the gap could be addressed.

2 Nested Relational Calculus

The restriction of the nested relational calculus N RC from Buneman et al. [4] and Wong [22]
to flat relations is used as the ambient language here. N RC is equivalent to the usual nested
relational algebra [4, 22]. Its restriction to flat relations, denoted here as N RC1, is equivalent
to flat relational algebra and first-order logic [22]. This ambient language, and its operational
semantics and rewrite rules, are described below.

2.1 Types and expressions
The types and expressions of N RC are given in Figure 1. The type superscripts in the figure
are omitted when there is no confusion. For simplicity, all variable names are assumed to be
distinct. For convenience, all data types are endowed with an order; this query language is
denoted as N RC(≤).

The semantics of a type is just a set of objects built up by nesting sets and records of
base-type objects. Base types are denoted by b (representing atomic values in a database).
An object of type s1 × · · · × sn is a tuple (i.e., a record) whose ith component is an object
of type si, for 1 ≤ i ≤ n. An object of type {s} is a finite set whose elements are objects
of type s; an object of type {s} is called a set or a “relation.” Moreover, if s = b × · · · × b,
then an object of type {s} (or s) is called a “flat relation.” However, if s contains some set
brackets, then an object of type {s} is called a “nested relation.”
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Types in N RC

s ::= b | s1 × · · · × sn | {s}
where b is a base type.

Expressions in N RC

Cs : s xs : s

e1 : s1 . . . en : sn

(e1, . . . , en) : s1 × · · · × sn

e : s1 × · · · × sn

e.πi : si
1 ≤ i ≤ n

{}s : {s}
e : s

{e} : {s}
e1 : {s} e2 : {s}

e1 ∪ e2 : {s}
e1 : {s} e2 : {t}⋃
{e1 | xt ∈ e2} : {s}

true : B false : B
e1 : B e2 : s e3 : s

if e1 then e2 else e3 : s

e1 : s e2 : s

e1 < e2 : B
e1 : s e2 : s

e1 = e2 : B
e : {s}

e isempty : B

Figure 1 N RC.

The expression constructs are defined as follows. The expression C denotes objects,
including constants of base types b; the syntax for C will be given in the next subsection.
The expression (e1, . . . , en) forms a tuple whose ith component is the object denoted by ei,
for 1 ≤ i ≤ n. The expression e.πi extracts the ith component of the tuple e. The expressions
{}, {e}, and e1 ∪ e2 have their conventional meaning as set operations. The expression⋃

{e1 | x ∈ e2} forms the set obtained by first applying the function f(x) = e1 to each object
in the set e2 and then taking their union; that is,

⋃
{e1 | x ∈ e2} = f(C1) ∪ . . . ∪ f(Cn),

where f(x) = e1 and {C1, . . . , Cn} is the set denoted by e2.
Besides the object types and their expression constructs above, N RC also has the Boolean

type B as a base type, and the expression constructs true, false, and if e1 then e2 else e3,
which have their conventional meaning as Boolean values and conditional expression. Lastly,
the expression e1 < e2 provides a linear ordering on objects of the same type; the expression
e1 = e2 checks whether the objects denoted by e1 and e2 are the same; and the expression
e isempty checks whether the set denoted by e is empty.

The emptiness test e isempty, the equality test e1 = e2, and the ordering test e1 < e2
are provided for every type s solely for convenience. They are actually defined in terms of
the tests on base types b. In particular, the linear ordering on any arbitrarily deeply nested
combinations of record and set types can be lifted – in a manner definable by N RC – from
the linear ordering on each base type b as follows [13]: for tuple types s1 × · · · × sn, it is
defined pointwise lexicographically; and for set types {s}, it is defined a la Wechler [21]
based on the Hoare ordering (viz. X ≤ Y iff for all x ∈ X − Y , there is y ∈ Y − X, such
that x ≤ y).

The notation x ∈ e2 in the
⋃

{e1 | x ∈ e2} construct is an abstraction that introduces
the variable x whose scope is the expression e1. That is, it is part of the syntax and is not a
membership test. This construct is the sole means in N RC for iterating over a set.

Tannen’s Festschrift
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If a variable appearing in an expression e is not introduced by a subexpression of the form⋃
{e1 | x ∈ e2} in e, it is called a free variable of e. When it is necessary to explicitly indicate

the free variables of an expression, we write e(x1, ..., x2) or e(x⃗). An expression e(x⃗), with
free variables x⃗ can be regarded as a function f(x⃗) = e(x⃗). When it is desirable to distinguish
the free variables local to a subexpression e(x⃗, X⃗) of an expression e′(X⃗), uppercase is used
for the free variables of the entire expression while lowercase is used for other free variables of
the subexpression. Also, an expression e having no free variable is called a closed expression.

When objects C⃗ have the same types as the free variables x⃗ of an expression e(x⃗), the
expression obtained by replacing each variable xi in x⃗ in e(x⃗) by the corresponding Ci in C⃗

is denoted as e[C⃗/x⃗]. The result of applying e(x⃗) as a function to C⃗ is denoted by e(C⃗). To
make notations lighter, e(C⃗) is sometimes also used to denote the expression e[C⃗/x⃗]; however,
this usage is generally eschewed in proofs.

A “pattern-matching” construct
⋃

{e1 | (x1, . . . , xn) ∈ e2} is used for convenience. It is a
syntactic sugar for

⋃
{e1[x.π1/x1, . . . , x.πn/xn] | x ∈ e2}. There is also an easy mechanical

translation [3, 22] between the syntax of N RC and comprehension syntax of the form
{e | δ1, . . . , δn} where each δi either has the form x⃗i ∈ ei or the form ei. The translation is
as follows:

{e | x⃗1 ∈ e1, ∆} =df

⋃
{{e | ∆} | x⃗1 ∈ e1};

{e | e1, ∆} =df if e1 then {e | ∆} else {}; and
{e | } =df {e}.

Comprehension syntax is used here to write examples, but the reader should understand
these examples as syntactic sugars of the actual N RC expressions.

▶ Example 1. All relational queries [5] are expressible in N RC.
Πi X =df {x.πi | x ∈ X} is the relational projection;
σd X =df {x | x ∈ X, d(x)} is the relational selection;
X ▷◁ Y =df {(x, y) | (u, x) ∈ X, (v, y) ∈ Y , u = v} is the relational join;
X ∩ Y =df {x | x ∈ X, not {y | y ∈ Y , y = x} isempty} is the relational intersection.
X − Y =df {x | x ∈ X, {y | y ∈ Y , y = x} isempty} is the relational difference; and
X ÷ Y =df {x | (x, y) ∈ X, Y ⊆ {y′|(x′, y′) ∈ X, x′ = x}}, where Y ⊆ Y ′ =df

Y − Y ′ isempty , is the relational division.

▶ Example 2. N RC can also express nested relational operations [20].
unnest R =df {(x, y)| (X, y) ∈ R, x ∈ X} unnests the nested relation R; and
nest R =df {({x | (x, y) ∈ R, y = v}, v) | (u, v) ∈ R} creates a nested version of a relation
R, which groups values in the first column of R by values in the second column of R.

Let N RC1 denote the fragment of N RC where expressions are restricted to flat relation
types. That is, in N RC1, every (sub)expression e(x1, ..., xn) : s where xi : si for 1 ≤ i ≤ n,
the types s, s1, ..., sn are all flat relations. It is known that N RC enjoys the conservative
extension property [22]; thus, N RC(≤) and N RC1(≤) express the same functions on flat
relations, and are equivalent to flat relational algebra or first-order logic with ordering
FO(≤).

▶ Proposition 3. N RC(≤), N RC1(≤), and FO(≤) have the same extensional expressive
power on flat relations.

An expression e(x⃗) in N RC can always be turned into an expression e′(y⃗, x⃗) such that
no constants or objects appear in it. This can be obtained by introducing fresh free variables
y⃗ and replacing each object Ci in e(x⃗) by the variable yi; then e′[C⃗/y⃗](x⃗) = e(x⃗). So, for
simplicity, and without loss of generality, only constant-free expressions are considered when
results are stated and proved in this paper.
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C ⇓ C

e1 ⇓ C1 . . . en ⇓ Cn

(e1, . . . , en) ⇓ (C1, . . . , Cn)
e ⇓ (C1, . . . , Cn)

e.πi ⇓ Ci
1 ≤ i ≤ n

{} ⇓ {}
e ⇓ C

{e} ⇓ {C}
e1 ⇓ C1 e2 ⇓ C2

e1 ∪ e2 ⇓ C1 ⊕ C2

e2 ⇓ {C1, . . . , Cn}
e1[C1/x] ⇓ C′

1 · · · e1[Cn/x] ⇓ C′
n⋃

{e1 | x ∈ e2} ⇓ C′
1 ⊕ · · · ⊕ C′

n

true ⇓ true false ⇓ false

e1 ⇓ true e2 ⇓ C

if e1 then e2 else e3 ⇓ C

e1 ⇓ false e3 ⇓ C

if e1 then e2 else e3 ⇓ C

e1 ⇓ C1 e2 ⇓ C2

e1 < e2 ⇓ true C1 < C2
e1 ⇓ C1 e2 ⇓ C2

e1 < e2 ⇓ false C1 ̸< C2

e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ true C1 = C2
e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ false C1 ̸= C2

e ⇓ C

e isempty ⇓ true C = {} e ⇓ C

e isempty ⇓ false C ̸= {}

Figure 2 A call-by-value operational semantics of N RC.

2.2 Operational semantics
In order to discuss intensional expressive power, i.e. what algorithms are expressible, it is
necessary to know how an expression of N RC is executed. This is specified in Figure 2 as a
call-by-value operational semantics. A call-by-value operational semantics is widely adopted
in programming languages and has also been used for several variations of N RC in earlier
works [18, 19, 24] on intensional expressive power.

In Figure 2, the notation e ⇓ C means the closed expression e is evaluated to produce
the object C. The unique evaluation tree of e is denoted using the notation e ⇓. The “step”
complexity step(e ⇓) of an evaluation is defined as the time complexity of the largest node
in the evaluation tree – viz., step(e ⇓) = max{time(e′ ⇓ C ′) | the node e′ ⇓ C ′ occurs in
the evaluation tree of e ⇓. The time complexity time(e′ ⇓ C ′) of a node is the number of
branches that the node has. E.g., in Figure 2, time(

⋃
{e1 | x ∈ e2} ⇓ C ′

1 ⊕ · · · ⊕ C ′
n) = n + 1.

On the other hand, the time complexity time(e ⇓) of an evaluation is the sum of the time
complexity of all the nodes in the tree.

The syntax for objects C is as follows. A constant c of a base type b is an object of type
b. A tuple (C1, ..., Cn) is an object of type s1 × · · · × sn if each Ci is an object of type si.
An “enumeration list”, elist for short, {C1, ..., Cn} is an object of type {s} if each Ci is an

Tannen’s Festschrift
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object of type s. An elist {C1, .., Cn} can be thought of as a particular way of enumerating
the elements of the set that it represents, viz. C1 followed by C2, followed by C3, and so
on. There are as many distinct elists that represent the same set as there are distinct ways
to enumerate elements of that set, corresponding to different ordering and multiplicity of
appearances of its elements in the enumeration.

The notations C = C ′ and C == C ′ are used to refer to two notions of equality involving
elists. The notation C = C ′ means C are C ′ are the same objects when all the elists contained
in them (and objects therein) are interpreted as sets: thus, c = c′ iff c and c′ are the same
constant of a base type; (C1, ..., Cn) = (C ′

1, ..., C ′
n) iff Ci = C ′

i for 1 ≤ i ≤ n; and {C1, ...,
Cn} = {C ′

1, ..., C ′
m} iff for each 1 ≤ i ≤ n, there is 1 ≤ j ≤ m such that Ci = C ′

j , and for
each 1 ≤ j ≤ m, there is 1 ≤ i ≤ n such that Ci = C ′

j . The notation C == C ′ means C

and C ′ are the same objects when all the elists contained in them (and objects therein) are
interpreted as lists: thus, c == c′ iff c and c′ are the same constant of a base type; (C1, ...,
Cn) == (C ′

1, ..., C ′
n) iff Ci == Ci′ for 1 ≤ i ≤ n; and {C1, ..., Cn} == {C ′

1, ..., C ′
m} iff

n = m, and Ci == C ′
i for 1 ≤ i ≤ n.

In Figure 2, a constructor C ⊕ C ′ is used to produce the concatenation of two elists in
constant time; i.e. given C == {C1, ..., Cn} and C ′ == {C ′

1, ..., C ′
m}, C ⊕ C ′ == {C1, ...,

Cn, C ′
1, ..., C ′

m}. Also, ⊕ is always used in a right-associative manner; e.g., C ⊕ C ′ ⊕ C ′′

means C ⊕ (C ′ ⊕ C ′′). Note that while it is not a common practice to use a constant-time
concatenation constructor to represent lists, it has been used in e.g. the influential Kleisli
Query System [23] which is based on N RC.

Linear orderings < are available on all base types and are lifted to all types, as defined
earlier. With this, the subset of objects in “canonical form” can be defined as follows. A
constant c of any base type b is canonical. A tuple (C1, ..., Cn) is canonical if each Ci is
canonical. An elist {C1, ..., Cn} is canonical if for every 1 ≤ i, j ≤ n, it is the case that Ci is
canonical, Cj is canonical, and Ci < Cj iff i < j; a canonical elist is thus duplicate-free and
is sorted according to <. The notation canonize(C) denotes the unique canonical form of
the object C. Clearly, for C == {C1, ..., Cn} representing a flat relation, canonize(C) can
be produced in O(n log(n)) time.

The call-by-value operational semantics in Figure 2 does not perform canonization. This is
because canonization is not needed to guarantee the soundness of an evaluation in N RC(≤).

▶ Proposition 4 (Soundness). Suppose e(x⃗) : s is an expression in N RC, C⃗ are objects
having the same types as x⃗, and e[C⃗/x⃗] ⇓ C ′. Then e[C⃗/x⃗] = C ′.

The size of an object C can be defined in any reasonable way. One way is defining
size(C) as the number of symbols used to write C out. Another way, when C is an elist, is
defining size(C) as |C|, the length of the elist. Both notions of size can be generalized to
size(C⃗) =

∑
i size(Ci). The latter notion of input size is used by default. Then the time

complexity of an expression e(x⃗) can be defined in the usual way based on input size; i.e.
the time complexity of e(x⃗) is a function g : N → N where g(n) equals the maximum of
time(e[C⃗/x⃗] ⇓ C ′) over all inputs C⃗ of size at most n. Then, the time complexity is said to
be constant if g is Θ(1), linear if g is Θ(n), quadratic if g is Θ(n2), and polynomial if g is
Θ(nk) for some natural number k. The following is easily shown in a manner similar to [4,
Theorem 4.4].

▶ Proposition 5 (Polynomiality). Let e(x⃗) : s be an expression in N RC(≤). Then there is
a number k such that the time complexity of e(x⃗) is Θ(nk) where n denotes input size. In
particular, if the time complexity of e(x⃗) is sub-quadratic, then it must be either linear or
constant time; and if it is sub-linear, then it must be constant time. Furthermore, these
properties are retained when N RC is augmented by any additional functions that have
polynomial time complexity.
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⋃
{e | x ∈ {}} 7→ {}⋃

{e1 | x ∈ {e2}} 7→ e1[e2/x]⋃
{e | x ∈ (e1 ∪ e2)} 7→

⋃
{e | x ∈ e1} ∪

⋃
{e | x ∈ e2}⋃

{e1 | x ∈
⋃

{e2 | y ∈ e3}} 7→
⋃

{
⋃

{e1 | x ∈ e2} | y ∈ e3}⋃
{e | x ∈ (if e1 then e2 else e3)} 7→ if e1 then

⋃
{e | x ∈ e2} else

⋃
{e | x ∈ e3}

(e1, . . . , e2).πi 7→ ei

(if e1 then e2 else e3).πi 7→ if e1 then e2.πi else e3.πi

if true then e2 else e3 7→ e2

if false then e2 else e3 7→ e3

Figure 3 A system of rewrite rules for N RC.

2.3 Rewrite rules
Figure 3 shows a system of rewrite rules for simplifying N RC expressions. These rules have
been used in many previous works on N RC [22, 14, 15, 24]. These rules are easily shown to
be sound, and do not increase step complexity, and are strongly normalizing [22].

Although this system of rewrite rules does not increase step complexity, it can increase
time complexity. E.g., rewriting

⋃
{
⋃

{{(x, z)} | z ∈ Z} | x ∈ {
⋃

{{y.π1} | y ∈ Y }}} to⋃
{{(

⋃
{{y.π1} | y ∈ Y }, z)} |z ∈ Z} by the second rule in Figure 3, changes the time

complexity from O(|Y | + |Z|) to O(|Z| · |Y |).
Fortunately, the second rule in Figure 3 is the only rule that misbehaves this way. For

convenience of reference, the system of rewrite rules in Figure 3 is called the unrestricted
system. And when the second rule is excluded, it is called the restricted system.

▶ Proposition 6 (Normal form). Let e(X⃗) : s be an expression in N RC(≤), and C⃗ be objects
having the same types as X⃗.
1. e[C⃗/X⃗] == e′[C⃗/X⃗] if e 7→ e′.
2. step(e[C⃗/X⃗] ⇓) ≥ step(e′[C⃗/X⃗] ⇓) if e 7→ e′.
3. time(e[C⃗/X⃗] ⇓) ≥ time(e′[C⃗/X⃗] ⇓) if e 7→ e′ under the restricted system of rewrite rules.
4. The (un)restricted system of rewrite rules is strongly normalizing.
5. The unrestricted system of rewrite rules induces a normal form, wherein every subexpres-

sion of the form
⋃

{e1(y, x⃗, X⃗) | y ∈ e2(x⃗, X⃗)}, e2(x⃗, X⃗) must be one of the variables in
X⃗.

6. The restricted system of rewrite rules induces a normal form, wherein every subexpression
of the form

⋃
{e1(y, x⃗, X⃗) | y ∈ e2(x⃗, X⃗)}, e2(x⃗, X⃗) must be one of the variables in X⃗ or

e2(x⃗, X⃗) has the form {e3(x⃗, X⃗)}.

3 A limited-mixing lemma

An analysis of the normal form induced by the restricted system of rewrite rules yields a
useful limited-mixing lemma on N RC1(≤). The lemma is proved below, after some relevant
definitions are given.

A level-0 atom of an object C is a constant c which has at least one occurrence in C

that is not inside any elist in C. A level-1 atom of an object C is a constant c which
has at least one occurrence in C that is inside an elist which is not nested inside another
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elist in C. All other constants appearing in an object C are higher level atoms. The
notations atom0(C), atom1(C), and atom≤1(C) respectively denote the set of level-0 atoms
of C, the set of level-1 atoms of C, and their union. The level-0 molecules of an object
C are the elists in C that are not nested inside other elists. The notation molecule0(C)
denotes the set of level-0 molecules of C. E.g., suppose C = (c1, c2, {(c3, c4, {(c5, c6)})});
then atom0(C) = {c1, c2}, atom1(C) = {c3, c4}, atom≤1(C) = {c1, c2, c3, c4}, {c5, c6} are
higher-level atoms, and molecule0(C) = {{(c3, c4, {(c5, c6)})}}.

The level-0 Gaifman graph of an object C is defined as an undirected graph gaifman0(C)
whose nodes are the level-0 atoms of C, and edges are all the pairs of level-0 atoms of C.
The level-1 Gaifman graph of an object C is defined as an undirected graph gaifman1(C)
whose nodes are the level-1 atoms of C, and the edges are defined as follow: If C == {C1,
..., Cn}, the edges are pairs (x, y) such that x and y are in the same atom0(Ci) for some
1 ≤ i ≤ n; if C == (C1, ..., Cn), the edges are pairs (x, y) ∈ gaifman1(Ci) for some
1 ≤ i ≤ n; and there are no other edges. The Gaifman graph [8] of an object C is defined as
gaifman(C) = gaifman0(C) ∪ gaifman1(C).

It is shown below, by induction on the structure of N RC1(≤) expressions, that they
manipulate their inputs in highly restricted local manners. In particular, expressions which
have contant time complexity are unable to mix level-0 and level-1 atoms. And expressions
which have linear time complexity are able to mix level-0 atoms with level-0 and level-1
atoms, but are unable to mix level-1 atoms with themselves or with higher-level atoms.

▶ Lemma 7 (Limited mixing). Let e(X⃗) : s be an expression in N RC1(≤). Suppose objects
C⃗ have the same types as X⃗, and e[C⃗/X⃗] ⇓ C ′.
1. If e(X⃗) has constant time complexity, then

(i) atom0(C ′) ⊆ atom0(C⃗),
(ii) atom1(C ′) ⊆ atom≤1(C⃗),
(iii) gaifman(C ′) ⊆ gaifman(C⃗),
(iv) for each U ∈ molecule0(C ′), there are V0, V1, ..., Vm such that atom1(V0) ⊆
atom0(C⃗), Vj ∈ molecule0(C⃗) for each 1 ≤ j ≤ m, and U = V0 ∪ V1 ∪ · · · ∪ Vm.

2. If e(X⃗) has linear time complexity, then
(i) atom0(C ′) ⊆ atom0(C⃗),
(ii) atom1(C ′) ⊆ atom≤1(C⃗), and
(iii) for each (u, v) ∈ gaifman(C ′), either (u, v) ∈ gaifman(C⃗), or u ∈ atom0(C⃗) and
v ∈ atom1(C⃗), or u ∈ atom1(C⃗) and v ∈ atom0(C⃗).

Proof. The proof proceeds by structural induction on e(X⃗). For Part 1, the only interesting
case is when e(X⃗) has constant time complexity and has the form

⋃
{e1(x, X⃗) | x ∈ e2(X⃗)}.

This implies both e1(x, X⃗) and e2(X⃗) have constant time complexity. Let C⃗ have the
types of X⃗, e[C⃗/X⃗] ⇓ C ′, and e2[C⃗/X⃗] ⇓ C ′′. Then by induction hypothesis on e2(X⃗),
atom0(C ′′) ⊆ atom0(C⃗), atom1(C ′′) ⊆ atom≤1(C⃗), and gaifman(C ′′) ⊆ gaifman(C⃗). Note
that molecule0(C ′′) = {C ′′}. The induction hypothesis implies C ′′ = V0 ∪ V1 ∪ · · · ∪ Vm

where atom1(V0) ⊆ atom0(C⃗) and Vj ∈ molecule0(C⃗) for each j > 0. This means each
Vj , j > 0, is one of the input relations in C⃗. However, this leads to a contradiction be-
cause

⋃
{e1(x, X⃗) | x ∈ e2(X⃗)} would then have at least linear time complexity. So, there

can be no Vj , j > 0. Hence, C ′′ = V0 and atom1(C ′′) = atom1(V0) ⊆ atom0(C⃗). Let
C ′′ = {C1, . . . , Cn}. Then, atom0(Ci) ⊆ atom0(C⃗). Let e1[Ci/x, C⃗/X⃗] ⇓ C ′

i. Then, by in-
duction hypothesis on e1(x, X⃗), atom0(C ′

i) = {} ⊆ atom0(Ci, C⃗) = atom0(C⃗), atom1(C ′
i) ⊆

atom≤1(C⃗), gaifman(C ′
i) ⊆ gaifman(Ci, C⃗) = gaifman(C⃗). The induction hypothesis also im-

plies C ′
i = Vi,0 ∪ Vi,1 ∪ · · · ∪ Vi,m for some m where atom0(Vi,0) ⊆ atom0(Ci, C⃗) = atom0(C⃗),
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and Vi,j = molecule0(Ci, C⃗) = molecule0(C⃗) for j > 0. Thus, each C ′
i satisfies Part 1(i) to

Part 1(iv). Consequently, C ′ = C ′
1 ∪ · · · ∪ C ′

n satisfies Part 1(i) to Part 1(iv). The other
cases for Part 1 are straightforward, and are thus omitted.

For Part 2, by Proposition 6, e(X⃗) is assumed to be in the normal form induced by the
restricted system of rewrite rules. This first interesting case is when e(X⃗) has the form⋃

{e1(x, X⃗) | x ∈ X0}, where X0 is one of the free variables in X⃗, and has linear time complex-
ity. Then e1(x, X⃗) must have constant time complexity; otherwise, the whole expression has
quadratic time complexity. Let C⃗ have the types of X⃗ and let C0 in C⃗ correspond to X0. Sup-
pose Cx ∈ C0 and e1[Cx/x, C⃗/X⃗] ⇓ C ′

x. As C ′
x has set type, atom0(C ′

x) = {} ⊆ atom0(C⃗).
This proves Part 2(i). Since Cx ∈ C0 and C0 is in C⃗, atom0(Cx) ∈ atom1(C⃗). Also, as this
lemma concerns N RC1, Cx must have type b×· · ·×b; thus, atom1(Cx) = {}. By the induction
hypothesis on e1(x, X⃗), atom1(C ′

x) ⊆ atom≤1(Cx, C⃗) = atom≤1(C⃗). This proves Part 2(ii).
As e1(x, X⃗) has constant time complexity, and Cx has type b×· · ·×b, the induction hypothesis
also implies gaifman(C ′

x) ⊆ gaifman(Cx, C⃗) = gaifman0(Cx, C⃗) ∪ gaifman1(C⃗). Suppose
(u, v) ∈ gaifman(C ′

x). If u ∈ atom0(Cx) and v ∈ atom0(Cx), then (u, v) ∈ gaifman1(C⃗) ⊆
gaifman(C⃗). If u ∈ atom0(Cx) and v ̸∈ atom0(Cx), then u ∈ atom1(C0) ⊆ atom1(C⃗) and
v ∈ atom0(C⃗). If u ̸∈ atom0(Cx) and v ∈ atom0(Cx), then v ∈ atom1(C0) ⊆ atom1(C⃗) and
u ∈ atom0(C⃗). If u ̸∈ atom0(Cx) and v ̸∈ atom0(Cx), then both u and v are in atom0(C⃗),
and thus (u, v) ∈ gaifman0(C⃗) ⊆ gaifman(C⃗). This proves Part 2(iii). This finishes the case
when e(X⃗) has the form

⋃
{e1(x, X⃗) | x ∈ X0},

The second interesting case is when e(X⃗)has linear time complexity and has the form⋃
{e1(x, X⃗) | x ∈ {e2(X⃗)}}. Let C⃗ have the types of X⃗ and let e2[C⃗/X⃗] ⇓ C ′′. By the

induction hypothesis of either Part 1 or 2 (it does not matter which), we get atom0(C ′′) ⊆
atom0(C⃗); thus, atom0(C ′′, C⃗) = atom0(C⃗). Since {e2(X⃗)} has flat relation type, e2(X⃗)
must have a type of the form b × · · · × b. This means atom1(C ′′) = {} ⊆ atom1(C⃗); thus,
atom1(C ′′, C⃗) = atom1(C⃗). Crucially, atom0(C ′′) ⊆ atom0(C⃗) and atom1(C ′′) = {} implies
gaifman(C ′′, C⃗) = gaifman(C⃗). As C ′′ has no elist, molecule0(C ′′, C⃗) = molecule0(C⃗). Then
both Part 1 and 2 of the lemma follows immediately for this case.

The other cases are straightfoward and are omitted. ◀

4 Intensional expressiveness gap

As mentioned earlier, an intensional expressiveness gap of comprehension syntax relative to
relational database systems appears to manifest in joins of low selectivity. And judging by
Example 1, it also potentially manifests in relational intersection and relational difference, as
these two operations have O(n log n) time complexity in a relational database system whereas
their comprehension-syntax equivalent in Example 1 is quadratic. The other relational query
operations (project, select, and union), as well as joins of high selectivity are succinctly
expressible in N RC1(≤) with comparable time complexity when there are no indices available
on the input relations; cf. Example 1. The relational division is ignored here because it is
not directly supported by typical relational database systems; i.e., when it is needed in a
relational database system, it is expressed using the other operators, usually at quadratic
space and time complexity [11].

This intensional expressiveness gap is illustrated and confirmed here using two example
queries on objects in canonical form. The first query, head(x, X), produces the first element
in an input canonical elist X, assuming this first element has the form (x, x′) and x does not
appear in subsequent elements of X. The second query, zip(X, Y ), produces an elist that
pairs the ith elements in two input canonical elists X and Y of equal length, assuming the
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ith element of X has the form (oi, x′
i) and that in Y has the form (oi, y′

i) and that each oi

occurs only once in X and once in Y . These two queries are chosen because head can be
straightforwardly implemented in constant time in any programming language, while zip is a
very low-selectivity join which can be answered efficiently – i.e. with linear or near-linear
time complexity – in relational database systems.

The expression head′(x, X) =df {(y, y′) | (y, y′) ∈ X, y = x} in N RC1(≤) defines the
same function as head on any input (x, X) meeting the requirement of head. However,
head′(x, X) has time complexity Θ(|X|); i.e., it has linear time complexity.

The expression zip′(X, Y ) =df {(x, y) | (u, x) ∈ X, (v, y) ∈ Y, u = v} in N RC1(≤) defines
the same function as zip on any input (X, Y ) meeting the requirement of zip. However,
zip′(X, Y ) has time complexity Θ(|X| · |Y |); i.e., it has quadratic time complexity.

In fact, as shown below, every expression in N RC1(≤) that implements head has at least
linear time complexity; and every expression in N RC1(≤) that implements zip has at least
quadratic time complexity. In other words, the intensional expressiveness gap of N RC1(≤),
and thus of comprehension syntax, is real.

▶ Proposition 8. Let head(x, X) : {b1 ×b2} be an expression in N RC1(≤). Suppose for every
object c of type b1 and non-empty canonical object C of type {b1 × b2} whose first element is
(c, c0), and c does not appear in subsequent elements of C, head[c/x, C/X ] ⇓ {(c, c0)}. Then
time(head[c/x, C/X ] ⇓) is at least |C|. That is, the time complexity of head(x, X) is Ω(|X|).

Proof. For a contradiction, suppose head(x, X) has sublinear time complexity. Then Pro-
position 5 implies head(x, X) has constant time complexity. Let head[c/x, C/X] ⇓ C ′ where
C ′ = {(c, c0)}. As C ′ has type {b1 ×b2}, molecule0(C ′) = {C ′}. Similarly, molecule0(c, C) =
{C}. By Part 1(iv) of Lemma 7, either C ⊆ C ′ or atom1(C ′) ⊆ atom0(c, C). However,
C ̸⊆ C ′ = {(c, c0)} in general and atom1(C ′) = {c, c0} ̸⊆ atom0(c, C) = {c}. This contradic-
tion implies that head(x, X) has at least linear time complexity. ◀

▶ Proposition 9. Let zip(X, Y ) : {b1 × b2} be an expression in N RC1(≤) where X is a
variable of type {b3 ×b1}, Y is a variable of type {b3 ×b2}, and b1, b2, and b3 are distinct base
types. Suppose for every canonical objects U == {(o1, u1), ..., (on, un)} of type {b3 × b1} and
V == {(o1, v1), ..., (on, vn)} of type {b3 × b2}, zip[U/X, V/Y ] ⇓ C ′ where C ′ == {(u1, v1),
..., (un, vn)}. Then time(zip[U/X, V/Y ] ⇓) is at least |U | · |V |. Thus, the time complexity
of zip(X, Y ) is Ω(|U | ∗ |Y |).

Proof. Suppose for a contradiction that zip(X, Y ) has subquadratic time complexity. Then
Proposition 5 implies zip(X, Y ) has either constant or linear time complexity.

Assume zip(X, Y ) has constant time complexity and zip[U/X, V/Y ] ⇓ C ′ where C ′ ==
{(u1, v1), ..., (un, vn)}. Clearly, molecule0(C ′) = {C ′} and molecule0(U, V ) = {U, V }. Then,
by Part 1(iv) of Lemma 7, either U ⊆ C ′, V ⊆ C ′, or atom1(C ′) ⊆ atom0(U, V ) = {}. Clearly,
all three options are impossible. Thus zip(X, Y ) cannot have constant time complexity.

Suppose instead zip(X, Y ) has linear time complexity. Then gaifman(C ′) = C ′ = {(u1, v1),
..., (un, vn)}. However, for 1 ≤ i ≤ n, (ui, vi) ∈ gaifman(C ′) ̸∈ gaifman(U, V ) = U ∪ V .
Then, by Part 2(iii) of Lemma 7, either ui ∈ atom0(U, V ) or vi ∈ atom0(U, V ). However, as
U and V are both elists, atom0(U, V ) = {} and thus contains neither ui nor vi. So, zip(X, Y )
cannot have linear time complexity. Therefore, it has at least quadratic time complexity. ◀

Incidentally, it was Peter Buneman who first conjectured that zip, characterized by its
low-selectivity nature, could only be defined using comprehension syntax with quadratic time
complexity. This insight, shared with me by Stijn Vansummeren over three decades ago, has
apparently remained open until being resolved here in Proposition 9.
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5 Closing remarks

The impedance mismatch problem between databases and programming languages has been
highlighted three decades ago [7]. It refers to the difficulties of integrating database query-
like feature and capability into a programming language. Some has regarded the use of
comprehension syntax [3] as a breakthrough for this problem [6]. Indeed, comprehension
syntax provides an iteration construct that is simple enough for programming with collection
data types that data objects of a database have been mapped to, and explicit enough to
admit a direct translation to the query language of the database, thereby permitting queries
to the database to be embedded simply and naturally into a programming language.

However, comprehension syntax is also widely adopted in modern programming languages
– e.g., Python [9] and Scala [16] – as an easy-to-use means for manipulating collection types
in general. For this purpose, the collection objects are created within a program or do not
come from a database system, and queries written in comprehension syntax for manipulating
these objects are not translated to the query language of an underlying database system for
execution. In such a setting, programs written in comprehension syntax typically correspond
to nested loops.

This gives rise to an intriguing disparity. Many queries when translated to their database
equivalent can be executed by the underlying database system very efficiently. Yet when they
are executed directly as comprehension syntax, they are not efficient at all. Consider this
query as an example, {(x.dept, x.stf ) | x ∈ DeptStaff , y ∈ Staff , x.stf = y.stf , y.age > 65}
which retrieves departments and their staff who are above 65 years old. Suppose a staff
typically belongs to only one department. This query would then be a low-selectivity join.
It typically would be executed by a database system, via e.g. a merge join [2], with time
complexity Θ(n+m) assuming the inputs DeptStaff and Staff have size n and m and are both
sorted by their stf field; or with time complexity Θ(n log(n)+m log(m)) if sorting is required.
In contrast, the same query would typically has time complexity Θ(nm) natively in the
programming language. Even if a filter promotion is applied (and ignoring the change in the
appearance of the output) to optimize the query to {(x.dept, x.stf ) | y ∈ Staff , y.age > 65,
x ∈ DeptStaff , x.stf = y.stf }, this optimized query still has quadratic time complexity
Θ(gnm), for some 0 ≤ g ≤ 1, natively in the programming language.

This linear-vs-quadratic time complexity difference of low-selectivity joins can be called
an intensional expressiveness gap between comprehension syntax and database systems. That
is, it is a gap between the algorithms that can be expressed using comprehension syntax and
database systems. As far as relational database system is concerned, the low-selectivity join,
the relational intersection, and the relational difference appear to be the only intensional
expressiveness gap as all other relational query operators, as well as high-selectivity joins, in
the absence of database indices on the input relations, have similar time complexity whether
executed by a relational database system or in the programming language directly as queries
in comprehension syntax.

It has been open whether this intensional expressiveness gap is a real gap; i.e., there
might exist some clever way to implement low-selectivity joins efficiently using comprehension
syntax. As the main result of this paper, this intensional expressiveness gap is proved
by showing that all subquadratic algorithms expressible using pure comprehension syntax
cannot compute low-selectivity joins. In fact, I have claimed elsewhere [17] that even allowing
some functions – viz. takewhile and dropwhile, fold, or zip – commonly available in the
collection-type function libraries of programming languages, to be used with comprehension
syntax, all expressible subquadratic algorithms still cannot compute low-selectivity joins in
general.
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It is a natural follow-up question on what exactly is missing from comprehension syntax
that prevents efficient algorithms for low-selectivity joins to be expressed. This intensional
expressiveness gap can be charaterized in a precise way by identifying a new programming
construct that enables more algorithms to be expressed but doing so without enabling more
functions to be expressed. This is the Synchrony iterator construct, which I have proposed
and investigated with Val Tannen and Stefano Perna [17], for expressing synchronized
iterations on multiple collection objects. A construct for generalized iteration on multiple
collection objects in synchrony appears to be a conceptually novel choice, because practically
all functions commonly provided in the function libraries of programming languages involve
iteration on a single collection object. Adding this construct does not change the functions
that are expressible using pure comprehension syntax, and yet enables the realization of
efficient low-selectivity joins, including non-equijoins. Moreover, the Synchrony iterator
construct dovetails rather appealingly with comprehension syntax, so that efficient queries
written with the help of Synchrony iterators often do not look too different from their
inefficient pure comprehension-syntax equivalents. See [17] for more information.

The proof of the intensional expressiveness gap uses a novel limited-mixing lemma. The
lemma shows that all subquadratic-time queries in comprehension syntax are only able to
mix atomic objects in their input in very limited ways. This limited-mixing lemma is of
independent interest. Many past works on intensional expressive power are query specific.
Just to cite a couple of examples, Abiteboul and Vianu [1] showed that there is no “generic
machine” for computing the parity query in PTIME; and Suciu and Paredaens [18] showed
that the transitive closure of a long chain can only be computed in the complex object algebra
of Abiteboul and Beeri using exponential space. A notable non-query-specific intensional
expressiveness result is that of Wong [24], who showed that all queries on a general class
of structures, which includes deep trees and long chains, in a nested relational calculus
augmented with a powerset operator are either already expressible in the calculus without
using the powerset operator, or must use an exponential amount of space. Furthermore,
most previous results on intensional expressive power, such as those mentioned above, are
for query languages without ordered data types. The limited-mixing lemma in this paper
stands out in comparison to these results in two aspects. Firstly, the limited-mixing lemma
is non-query specific; it applies to all queries of subquaratic time complexity in the respective
query languages. Secondly, the limited-mixing lemma is valid in the presence of ordered data
types. The limited-mixing lemma thus enriches the repertoire of techniques for studying
intensional expressive power. The limited-mixing lemma is also useful intensional counterpart
to Gaifman’s locality property [8]. Gaifman’s locality property is useful for analyzing the
extensional and intensional expressive power [10, 12, 24] of query languages on unordered
data types. However, it is effectively useless on ordered data types and on query languages
with a fold-like function. Limited-mixing lemmas do not have these limitations.

Lastly, here is a small advertisement: Synchrony iterator has been implemented in
Python and Scala. These implementations are available at https://www.comp.nus.edu.sg/
~wongls/projects/synchrony.
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