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—— Abstract

Model checkers can automatically verify a system’s behavior against temporal logic properties.
However, analyzing the counterexamples produced in case of failure is still a manual process that
requires both technical and domain knowledge. However, this step is crucial to understand the
flaws of the system being verified. This paper presents a language created to support the generation
of natural language explanations of counterexamples produced by a model checker. The language
supports querying the properties and counterexamples to generate the explanations. The paper
explains the language components and how they can be used to produce explanations.
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1 Introduction

It is often important to guarantee that a given system behaves correctly under all possible
operating conditions. One way to verify if operating requirements are met is through
Model Checking [6]. This requires a formal representation of the system (a specification)
and expressing requirements as temporal logic formulas (the properties). A model checker
can then automatically verify the specification’s behavior against the properties. Should
the verification fail, the model checker will attempt to produce counterexamples. That is,
behaviours of the specification that do not satisfy the properties being verified. Understanding
these counterexamples is fundamental to understanding the failures of the specification and,
by extension, of the system being specified.

However, the interpretation of counterexamples can be complex and time consuming,
representing a barrier to Model Checking adoption. With the aim of simplifying this inter-
pretation process, we are developing an approach to generate natural language explanations
for counterexamples. The approach makes use of property specification patterns [8, 10] to
identify templates of natural language explanations for the counterexamples produced. The
templates need to query both the property and the counterexample to determine relevant
information to include in the explanation. To that effect, a pattern-matching language was
defined. This paper describes this language and how it can be used to produce explanations.

The paper is structured as follows: Section 2 presents the state of the art, Section 3
discusses Model Checking, focusing on temporal logic and the counterexamples produced,
Section 4 introduces the explanation methodology, Section 5 explains the language that
was created to support it, Section 6 present an example of usage, and Section 7 presents

conclusions and possible future developments.
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2 State of the art

Several approaches have been proposed to support the process of understanding Model
Checking results. Kaleeswaran et al. [12] provide an overview of the start of the art on the
topic, identifying the need to support non-experts in understanding model checking results
and natural language explanations as a promising direction for research.

Several approaches aim to produce explanations in natural language, which can more
easily be understood even by non-experts in Model Checking. Van den Berg et al. [13], for
example, propose a tool to interpret a counter-example and produce a description of the
error that caused the safety violation. Their work is aimed a the railway domain.

ASSERT [7] is another tool that produces explanations. It uses ACL2s to analyze a
series of requirements stored in an ontology. Should there exist a conflict between the
requirements, the counterexample produced by ACL2s is used to produce a controlled natural
language explanation that points to the requirements in conflict, the variables involved in
said requirements, the type of error detected, and the state that led to the conflict.

Another example is AnaCon [1], which analyzes normative texts to determine conflicts
within said texts. This is done first by writing these texts in a controlled natural language
form, which is then converted into the formal language CL. This formal representation of the
normative texts is then analyzed using the CLAN tool, which will produce a counterexample
should a conflict exist. This counterexample is then converted into the same controlled
natural language in which the normative text was first written, thus producing an explanation
for the counterexample.

Yet another example of this is presented by Lu Feng et al. [9], which produces a series of
structured language sentences to explain violations detected in a robot mission plan. This is
done by first specifying the path taken by the robot as a Markov decision process (MDP) and
analyzing this MDP formally using the PRISM model checker. Should a violation occur, then
a counterexample is produced, which is itself an MDP. The counterexample is then explained
by using controlled natural language sentences, recreating step-by-step the movement of the
robot that leads to the violation.

3 Formal Methods and Model Checking

Formal Methods focus on the specification, verification, and implementation of computing
systems through rigorous mathematical methods [14]. These methods are typically used
within safety and mission-critical areas, such as railways, avionics, and finance [11].

Model Checking is a Formal Methods technique that focuses on the formal verification
of a system’s specification to determine if its behavior satisfies a series of properties [5].
These properties are defined in a given temporal logic (in this paper, CTL [4]), and then the
specification is verified using a model checker (in this paper, NuSMV [3]). If this verification
fails (i.e., the specification’s behavior does not satisfy the property), the model checker will
attempt to produce a counterexample. That is, a sequence of states (a path) in the system’s
specification that violates the property being verified.

3.1 CTL properties

Model checkers typically work with finite state representations of systems (e.g., Kripke
structures). These consist of a finite set of states and transitions between these states,
capturing the possible behaviors of the system. States are decorated with attributes that
help describe the system state at each moment. A path corresponds to a sequence of states
(with their attributes’ values) representing a possible behavior of the model.
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CTL (Computational Tree Logic) is a branching-time temporal logic that is used to
express and reason about the behavior of a system. Unlike linear time logic, which considers
a single timeline, CTL allows multiple potential futures (paths) to be considered at any given
state. For this purpose, the logic has both quantifiers over paths and temporal operators
combined into pairs. First, a path quantifier specifies the scope of the paths in which the
property must be verified. Then a temporal operator specifies in which states of any given
path the property must be verified.

The available path quantifiers are the operators A (all paths) and E (exists a path). If
operator A is used, the subsequent property must be verified in every future path in the
model that starts in the current state. If operator E is used, then at least one path must
exist, starting from the current state, that verifies the subsequent property.

Regarding temporal operators, CTL supports the following operators: G (globally), F
(finally), X (next), and U (until). If the G operator is used, then the property must hold in
every state of the path; if the F operator is used, then the property must eventually hold
at some point in the path; if the X operator is used, then the property must hold in the
next state in the path. The U operator expresses that one property must hold until another
property becomes true.

Pairing the path and temporal operators allows the expression of complex properties
over the system’s behavior. For example, the property AG ¢ means that ¢ must hold in
every state of every possible path in the future, while if EF 1 is used, then there must exist
at least one path that in a future state verifies ¢. Similarly, A[¢ U 1] checks that ¢ hold
until ¢ hold in every path, while E[¢ U ] requires the existence of at least one path that
verifies ¢ until v. The properties ¢ and ¢ above can themselves be CTL properties, or simple
propositional logic expressions over the attributes of the state.

Simple propositional logic expressions are atomic formulas expressed in propositional
logic with equality. Besides the usual propositional connectives (not — !, and — &, or — |,
implies — —, iff — +», zor and xnor), and equality and inequality operators (=, | =, >, <,
>=, <=), the language supports also testing for set membership (in connective), Using these
connectives, we can now write properties such as AG((power > 10) & (weight < 9)) that
expresses that in every state of every path the attribute power should have a value above 10
and the attribute weight a value below 9, or the property EG((power = 2) — (weight = 8))
that expresses that there exists a path where it is always true that the attribute power
having a value of 2 implies that the attribute weight has a value of 8.

3.1.1 Counterexamples

As stated above, when the specification exhibits a behavior that does not satisfy the CTL
property, the model checker attempts to produce a counterexample. Useful counterexamples
are typically generated for safety properties. That is, properties expressing that undesirable
states will not be reached or undesirable behaviors are not possible in the system. In those
cases, the counterexample consists of a path that shows a behavior of the system that violates

the property being verified (the undesirable state being reached or the behavior happening).

It is important to note that while the counterexample contains a finite number of states, it

does not necessarily have a finite length in that a counterexample can end in a looping suffix.

In the case of liveness properties, that is, properties that express that desirable states of
behaviors are possible, generating useful counterexamples is harder, as the problem is the
system’s lack of appropriate behavior.

Interpreting the produced counterexamples is a crucial aspect of performing model
checking. While the verification itself is automated, the counterexample analysis must be
done manually. The goal is to determine the cause of the problem. This entails, first,
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Figure 1 The state diagram that represents the ice cream machine’s formal model.

identifying, in the counterexample, what the problematic states or behaviors are, and second,
why (or whether) these states or behaviors are problematic. The conclusion might be that the
system’s specification needs to be corrected, or it might be that the temporal logic property
needs to be refined to better capture the intended requirement. Clearly, this analysis requires
an understanding of both the system’s specification and the system’s domain.

3.2 An example

A simple example of a system is now presented to allow for greater clarity on the various
concepts being discussed. The example used is a washing machine that can wash, rinse, and
spin laundry, with various programs that determine how long each washing phase takes. To
support this, the machine’s specification defines a number of state attributes, including the
current phase and its duration, the current state of the machine (starting a phase, ..., etc.),
and an error code in case of malfunctioning.

We also define as one of its design requirements that The machine must always either
hawve its internal error code set to 0 or the machine’s current state must be the error state.
Figure 1 presents the machine’s control logic, focusing on the phase attribute.

To use a model checker (in this case, NuSMV) to verify this requirement, the first step is
to specify the system formally. This was achieved using the IVY workbench tool [2], but
discussing the model is outside this paper’s scope. Herein, we are specifically interested in
the counterexamples produced. It is enough to say that it represents the state machine in
Figure 1.

With the model created, the requirement was converted into the CTL property:

AG(error =0 | state = errorState). (1)

Attempting to prove this property fails, and the counterexample presented in Listing 1 is
produced. The challenge now is to generate an explanation of the trace in natural language.

4 Explanation Methodology

The methodology aims to produce explanations for counterexamples generated by a model
checker to simplify their interpretation. To achieve this, it uses three different sources of
information (inputs) to generate the explanations: the counterexamples produced by the
model checker (and corresponding properties), an explanation templates library, and domain
information.

The process of producing counterexamples starts with identifying a suitable explanation
template consisting of partially filled-in sentences that will be completed with information
from the various inputs to generate an explanation. In this section, we explain each of the
inputs to the process and how they are used. A tool that implements the proposal is being
developed and mentioned where deemed relevant.
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Listing 1 An example of a CTL property and resulting counterexample (in the required format
to generate an explanation). Note that if an attribute has the same value between sequential states
then that value is not shown, for size and readability reasons.

AG (error = 0 | state = errorState) -—-
--> State: 31.1 <-

duration = none

phase = standby

door = open

load = empy

bleach = empy

state = startingPhase

program = 0

error = 0

water = empy

action = nil
-> State: 31.2 <-

load = overloaded

state = errorState

error = 4

action = excessiveLoadDetected
-> State: 31.3 <-

load = loaded

state = beginDoorCheck

action = sufficientLoadRemoved

4.1 \Verification results input

The verification results input is used to provide the data related to the counterexample that
needs to be explained.

Each item within this input consists of a pair (property,counterexample), where
the property is the CTL property whose verification was attempted and failed, and the
counterexample is the counterexample produced by the model checker for that property.
An example of such an item can be found in Listing 1.

4.2 Explanation templates library

The explanation templates library provides the templates to produce the explanations for
each property/counterexample pair. Listing 2 presents three examples of entries in this
library.

The library contains a series of entries that consist of tuples (pattern, condition-
alTemplatel, ..., conditionalTemplateN), where the pattern is used to dictate the
types of property that can be explained using the entry, and each conditionalTemplate
corresponds to a pair (condition, template). The condition is a logical expression over
the counterexample that must hold for the corresponding template to be used for the
explanation. It consists of a conjunction of sub-conditions expressed over the states of the
counterexample.

A template will be used to explain the counterexample for a property if the property
matches the pattern and the condition holds over the counterexample. As seen in Listing 2,
a template consists of a mix of natural language and expressions that will query the property
and counterexample for information. The language used to write these expressions (also used
in the conditions above) will be discussed in the next section.
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Listing 2 An example of three dicionary entries, with patterns that the property in Listing 1
matches
AG({E}1,eq,x,y} | {E}{2,eq,x,y}) Soos
Is should always be the case that either {DSE}{-,{E}{1}},
or {DSE}{-,{E}{2}}.
However, in state {S}{1,invert,sv} the two conditions do not hold,
with the verified values of {E}{1,-,x} and {E}{2,-,x} being
{S}{1,invert ,t,{E}{1,-,x}} and
{S}{1,invert ,t,{E}{2,-,x}}, respectively. ;;;;
AG({EX{1} | {EX{2DH) -—--
It was expected that in every state of the machine
either {DSE}{-,{E}{1}} or {DSE}{-,{E}{2}}.\n
However on state {S}{1,invert,sv} neither
{DSE}{-,{E}{1}} nor {DSE}{-,{E}{2}}. ;;;;
AG({0}{1,0r}) -===
It was expected that in every state of the machine
{DSE}{-,{0}{1}} was always verified.\n
However at the end of the path {C}{2,3},
{DSE}{negateLeftSide ,{0}{13}} ;;;;

A special case occurs when there is only one template to be used if the pattern matches
the property. For this specific case, the item becomes a simple pair (pattern,template)
within the library. The three examples in Listing 2 fall in this category.

Should the data item not be matched by any pattern, or fail to meet all of the conditions,
then the explanation can not be created, and the message given to the user will be No
matching pattern found for the specified property.

4.3 Domain information input

This input is used to provide additional domain context that can be utilized during the ex-
planation process. Examples of domain information entries are shown in Listing 3. They take
the form of tuples (domain pattern, contextExplanationl, ..., contextExplanationN).
The domain pattern identifies which expression in the specification can be explained using
the particular entry. Each contextExplanation consists of a pair (context,explanation),
where context is used to identify the context that the domain pattern is used in, and
explanation is the explanation to be used in that context.

The notion of context enables control over how an expression captured by the domain
pattern may be explained. Different contexts represent different ways to explain the same
expression, depending on where they appear in the template. This enriches the explanations
that can be produced, as it allows expressions to be described differently in different parts
of the explanation. For example, differentiating between positive and negative contexts, or
using long and short versions of the description to avoid repetition.

A special case for these items occurs when there is only one context with the value
default. In this case, the item becomes a pair (domain pattern,explanation) within the
domain input.
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Listing 3 An example of four domain items

error = 0 ---- the current error code is O, meaning no error
is currently occurring ;;;;
error = {V}{x} ---- the current error code is {V}{x} ;;;;
state = errorState ---- the current state is the error state;;;;
error = 0 | state = errorState
\\\\ default ---- either the state is the error
state, or the current error code is O.

\\\\ negatelLeftSide ---- the current error code is mnot O,

and despite this the current state is the error state
\\\\ negateRightSide ---- the current state is the errorState,

and despite this current error code is O

39 9 s

5 The language

As is clear from the discussion above, to instantiate the explanation templates, we need a
means to query the CTL properties and the resulting counterexamples. To achieve this,
we have defined a language that allows us, through pattern matching, to identify relevant
elements in the verification results.
Several requirements for this language can be identified from the discussion. Regarding
the writing of CTL patterns in the explanation templates library:
1. The language to be defined must support writing patterns to match properties written
in the CTL language, as described in Section 3.1.

2. The tokens in the language, however, must only match propositional logic expressions.
Temporal and path operators must be included explicitly in the patterns, not matched.

This is because knowing the structure of the temporal operators in the property is relevant
to deciding which type of explanation to provide. Allowing tokens in the language to
match temporal sub-expressions would imply adding recursion to the natural language
templates. While this would add expressive power, we feel the added complexity (both in
terms of the writing of the explanations templates library and of its processing and use)
is not justified.

Regarding the natural language templates:

3. The tokens in the language must allow for the explanation template to reference
information in the property/counterexample pair whose property was matched by its
associated pattern.

a. The tokens must allow reference to the property, specifically to any part of it that
has been matched using another token.

b. The tokens must allow reference to any part of the counterexample, specifically any
sequence of states, singular state, or specific attributes of any given state.

4. The language must allow for the condition in the explanation templates library to be
expressed using the information in the counterexample. The goal here is to support
tailoring the explanation to the counterexample produced when a property can fail in
several ways.

5. The language must support the usage of domain information to replace information
captured from the property or counterexample in an explanation template. This will
allow the natural language explanation to be less technical and expressed in terms closer
to the domain.

6. Similarly to Requirement 3, the language must allow the explanation template to
reference the information matched by tokens in a domain item’s pattern.

11:7
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To fulfill these requirements, the language includes a series of tokens. All of the tokens
consist of two parts, each encapsulated within {}: the type of the token, which dictates its
main purpose, and the parameters, which modify the token’s behavior. The types defined
are E (Expression), O (Operation), S (State), C (Counterexample path), DSE (Domain
Specific Explanation) and V (Value). The first two can be used in both the patterns and
templates of the explanation patterns library. The following three are used in the templates
only. The final one is used in domain items (both domain patterns and explanations).

Different token types have different required and optional parameters, but the parameters
attached to each token type are the same independently of where the token is used. However,
how the parameters modify the behavior of the token can change depending on where the
token is being used. Parameters’ values can be provided by naming the parameters explicitly
(e.g., {O}Hidentifier : 1}), if names are not provided, the order of the values becomes relevant.
For the sake of brevity, we will employ the unnamed variant (in this case {O}{1}).

5.1 Tokens in patterns

Tokens of type E and O can be used in the explanation templates library patterns to help
define the type of property that will use a particular explanation template.

5.1.1 E tokens in patterns

The E token matches simple expressions only, with the option of further restricting what
type of expression can be matched. This type of token has one required parameter, the
identifier, as well as three optional parameters: operation, nameV1, and nameV2.

The identifier is a positive integer used to uniquely identify a token of this type, such
that two E tokens with the same identifier must refer to the same simple expression. Thus, if
the same identifier is used in two E tokens in a pattern, then the property being matched
must have the same expression in both places, or else it will not match the pattern.

The operation parameter defines the type of simple expression the token will match.
The values for this parameter are related to the available operators as follows: eq relates to
=, diff relates to !=, gt relates to >, It relates to <, gte relates to >=, lte relates to <=,
in relates to in and - relates to any operation, serving as a wildcard for this parameter.

nameV1 and nameV2 are both identifiers used to internally reference the values to the
left and right of the operator, respectively, storing the values so that they may be explicitly
used later in the explanation template. This allows for the explicit reference to each side of
the expression and is necessary to fulfill Requirement 5.

Some examples of these tokens’ use can be seen in Listing 2, such as with the second
example’s {E}{1} or the first example’s { E}{2, eq,z,y}. In the first case, the token is used
to match any simple expression and will then be identified using the identifier 1. When the
same token is used in the template, its value will be whatever was matched by the token in
the CTL property. In the second case, the token will only match an equality expression, will
use the identifier 2, and will store the left and right sides of the expression in the variables x
and y respectively, such that their values can be accessed in the template explicitly.

With these options, the token can be used in the dictionary item’s pattern to specify
any type of simple expression that can be matched, partially fulfilling Requirement 1.

5.1.2 O tokens in patterns

The O token matches expression with propositional connectives only, again with the option
of further restricting which connective can be matched. This token type has one required
parameter, the identifier, and one optional parameter, the operation.
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The identifier works as for the E token, being a positive integer that uniquely identifies
the token. In the same manner, a pattern with two O tokens with the same identifier will
only match properties that have the same exact expression in both places.

The meaning of operation differs, as it refers to the propositional connectives that the
token can match. The values for this parameter are related to the connectives as follows: not
relates to !, and relates to &, or relates to |, imp relates to ->, equi relates to <->, xor
relates to xor, xnor relates to xnor and - relates to any operation, serving as a wildcard for
the parameter.

An example of this token’s use can be seen in Listing 2, in the CTL property of the third
example: {O}{1,or}. This token is used to match expressions with the connective |.

As illustrated, the token supports matching any propositional connective in the patterns
of the explanation templates library’s entries. This, in combination with the previous E
token, allows for the fulfillment of Requirement 1. Since neither O type tokens nor E type
tokens match temporal or path operators, Requirement 2 is also fulfilled.

5.2 Tokens in templates

The tokens that can be used in an explanation templates library entry’s template are E, O,
S, C, and DSE. Each of them represents a different part of the information captured in the
verification results’ pair to be added to the explanation.

5.2.1 E tokens in templates

Tokens of type E in a template serve to identify a simple expression that was matched in
the pattern in order to use the captured information. The identifier parameter is used to
determine which of the matched expressions the token refers to, such that an E token in the
template will always refer to an E token in the pattern that has the same identifier.

Both the nameV1 and nameV2 parameters may be used in the template to refer to a
specific side of the expression, provided that those same options exist in the corresponding E
token that was used in the pattern. However, only a single one of these can be used per E
token in the template, and if neither is specified, then the E token will refer to the complete
simple expression. This occurs because the only context where it makes sense to use both
sides is when talking about the whole expression.

The operation parameter is not relevant when the token is used in a template. The
matching is done on the CTL property. Here, the goal is to refer to and use what has been
matched. Hence, if used, the value of the operaton parameter will be ignored.

Some examples of these tokens can be seen in Listing 2, such as in the first example’s
template: {E}{1,—,z} and {E}{1,—,y}. For both of these cases, the expression that is
being referenced is the token {E}{1, eq,z,y} in the pattern. In the first case, the expression
will be replaced with the value stored in the x variable. In contrast, in the second case, it
will be replaced with the value stored in the y variable, corresponding to the left and right
sides of the matched expression, respectively.

With these options, the token can partially use any matched simple expression in the
template, allowing it to partially fulfill Requirement 3a.

5.2.2 O tokens in templates

Tokens of type O in a template serve to identify a logical operation that was matched
in the pattern. As before, the identifier parameter is used to determine which of the
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matched logical operations the token refers to, the same way as with the E token. Similarly,
the operation parameter does nothing when used in the template, and its value will be
ignored.

An example of these token’s use can be seen in Listing 2, in the third example’s template:
{O}{1}. This token is used to refer to the pattern token {O}{1,0r}, and will be replaced
in the template with the value of the matched operation.

With these parameters, the token can use any logical operation in the template, as long
as they can be matched in the CTL property. Combined with the previous E token, this
allows for the complete fulfillment of Requirement 3a.

5.2.3 S tokens

Tokens of type S serve to query the counterexample for information regarding a specific
state. This type of token has three required parameters, index, order, and type, as well as
two optional parameters, token and condition.

The type parameter is used to distinguish what type of information the token will be
replaced with in the template. If its value is t, then the replacement will use the state’s
attributes, while if the value is sv, then only the state’s identifier will be utilized.

The token parameter can have any attribute name as its value and, when defined, will
restrict the replacement made to only the value of the given attribute in the state. For this
reason, this parameter only takes effect when the type parameter has value t.

The remaining parameters are used to identify which state the token refers to. In its
simplest form, we can use the index and order parameters. index is a positive integer that
acts as an index over the trace. order can be either default or invert and defines which
end of the trace we want to count from. If the order parameter has value default, then the
state the token is referencing will be the index'™ one of the counterexample. If the order
parameter has value invert, then the state the token is referencing will be the index'" last
one of the counterexample.

Always counting states from the start or the end of the counterexample is too restrictive,
so it is also possible to do it from a state that satisfies a given condition. To do this, we
must use the condition parameter. This condition is defined as a conjunction of simple
expressions and E tokens. When it is defined, then the first state of the counterexample where
the expression becomes true is used as a reference, and the state the token is referencing be
the index™™ one before or after it, depending on whether the order parameter is default or
invert, respectively.

Several examples of these tokens can be seen in Listing 2. Two examples are the
{SH1,invert, sv} and {S}H1,invert, t,{ E}{2, —, x}} expressions in the first item’s template.
In the first case, the token will be replaced using the state identifier for the first state that
occurs counting from the end, i.e., with the identifier of the last state of the counterexample.
In the second case, the token will be replaced with the value of the attribute represented by
{E}{2,—, x} (the left side of the expression {E}{2, eq, z, y} that is captured in the pattern)
on the last state on the counterexample.

With these options, the token can be used to reference states in the counterexample
and obtain all its relevant data, fulfilling the part of Requirement 3b related to single states
and specific attributes in any given state.
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5.2.4 C tokens

Tokens of type C match sequences of states, i.e., paths, in the counterexample. This type
of token has one required parameter, start, and two optional parameters, end and token.

The start start parameter defines the state where the path starts. It can have multiple
different types of values, which affect the behavior of the token. If this parameter is a
positive integer, then the start of the path will be that state in the counterexample. If this
parameter is an E token, then the path will start at the first state of the counterexample
where the simple expression the token represents first becomes true. If this parameter is the

word loop, then the path will start at the first state of the loop within the counterexample.

If this parameter is the word full, then the path will be the entire counterexample.

The end parameter defines the end of the path the token represents. It is always a
positive integer, and if the start parameter is not full, then the path will end at the state
indicated by this option. If the start parameter has value full, then the end parameter has
no meaning.

The token parameter takes as value an attribute. If set, the parameter will change the
replacement process for this token in the template so that only the value of the identified
attribute will be present in each state of the path.

An example of this token’s use can be seen in Listing 2, in the third example’s template:
{C}{2,3}. In this example, the token will be replaced by the path starting on the second
state of the counterexample and ending on the third, with every state showing the values of
all state attributes.

With these options, the token can be used to reference any sequence of states in the
counterexample and obtain the relevant data, and in combination with the S token fulfilling
Requirement 3b.

5.2.5 DSE tokens

Tokens of type DSE serve to replace parts of information in the template using their
counterpart domain information. This type of token has two required parameters, value and
context.

The value parameter can take as value an attribute, the value of an attribute, a simple
expression, a propositional connective, an E token, or an O token. Its value will then be
matched against a domain item’s domain pattern, which will then be used to replace the
token within the template.

The context parameter specifies the context that should be used when replacing the
token in the template with a value from a context item of the domain information input. Its

value is either an attribute or -. In the latter case, the value of the context becomes default.

Some examples of these tokens can be seen in the templates of Listing 2, such as with

the first item’s {DSE}{—,{E}{1}} and the third item’s { DSE}{negateLe ftSide, {O}{1}}.

For the first case, the token will be replaced by the domain item’s information regarding the
simple expression that is in the token {E}{1} (i.e., the left side of the or expression in the
CTL property). For the second case, the same will occur, using the or expression captured
by {O}{1}, but instead of using the information in the default context, the explanation
attached to the negateLeftSide context will be used instead.

With these options, the token can use domain information to replace any token being
used in a template within the explanations templates library, thus fulfilling Requirement 5.
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5.3 Tokens in the domain information

Only one type of token exists within the domain information, the V token. This token allows
capturing values in a domain pattern and then using those values in the corresponding
explanations. This type of token has one required parameter, value, and an optional
parameter, joinOperation.

The value parameter is an identifier that is used to distinguish the data that was matched
in the domain pattern, such that a V token with a different identifier must have matched
a different value and vice-versa. This also means that if two V tokens have the same value
in the domain pattern, then they must have matched the same value in multiple parts of
said domain pattern.

The joinOperation parameter can either take the value and or the value or and is
used to replace a list of values matched in the domain pattern with the enumeration of
the values expressed as conjunction or disjunction, respectively. To be more precise, if the
join operation is and and the list is [m1,m2,....mn-1,mn], then the value will be replaced by
“ml,m2,...,mn-1 and mn”, with something similar occurring when using the or option.

An example of this token can be seen in Listing 3, in the second example: {V}{z}. In
this example, the pattern will capture any simple expression whose left side has the value
error, and the token will store the corresponding right side with the identifier z, allowing
for the usage of this value in the corresponding explanation by using the same token.

The token is able to use information captured within the domain pattern in the paired
explanation. This explanation will then be used to replace a DSE token in a template,
thus fulfilling Requirement 6.

6 Using the language

With the language presented, we can finally showcase its use with the example presented in
Section 3.2. A tool is being developed to support the process briefly described in Section 1.
The tool is already able to read the verification results, an explanation templates library,
and a domain information file and produce explanations for the counterexamples using the
templates in the library.

To apply it to the example in Section 3.2, the property, as well as the counterexample
that resulted from its verification attempt, were used as input to the tool (see Listing 1). To
generate the explanations, an explanations templates library (see Listings 2 for an excerpt)
and the domain input file in Listing 3 were used. With all the inputs available, the tool
selected the first item of the dictionary that matched the property. In this case, the first
item shown was selected.

The explanation was generated using this item by filling in the tokens within the template,
according to the previously presented language. As such, the token {DSE}H—, {E}{1}}
was replaced by the domain information in the default context relating to the expression
captured by the pattern’s token {E}{1,eq,x,y}, which corresponds to error = 0. In the
domain input, the expression error = 0 only has a single context. Its value is the current
error code is 0, meaning no error is currently occurring, and thus this phrase replaced the
token {DSE}{—,{E}{1}} in the final explanation. A similar process occurred for each of
the DSFE tokens, each being replaced with domain information relevant to each of the E
tokens in the pattern.

Meanwhile, the E tokens are filled in with the information of the captured expression
corresponding to the token’s identifier parameter. In the case of { E}{1, —, z} its value will be
replaced with the value associated with the x variable in the pattern’s token {E}{1,eq,x,y},
which is the left side of the capture expression that has the value of error. A similar process
occurs for the other E token, but referring to the pattern’s token {E}{2, eq, z, y} instead.
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The last type of tokens present in this example are the S tokens. For the first token, using
the sv value for the type parameter leads to the token being replaced using the identifier of
the corresponding state. This state is identified by the other two parameters and is the first
to last state of the counterexample. Thus, the value that replaces this token is the identifier
of the last state of the counterexample: 31.3.

For the other S tokens, the replacement uses the type ¢, meaning the replacement will
be done with the values of attributes in the specified state (the last state). Additionally,
the token parameter has an E token specified, corresponding to the left side of one of the
captured expressions, an attribute. Thus, the value used in the replacement is the value of
the attribute specified by the E token: error in the first case (with value 4) and state in the
second (with value beginDoorCheck).

The explanation created for the example given using the shown inputs was finally:

It should always be the case that either the current error code is 0, meaning no error
is currently occurring, or the current state is the error state.

However, in state 31.3 the two conditions do not hold, with the verified values of error
and state being 4 and beginDoorCheck, respectively.

7 Conclusion and future work

A model checker can automatically verify a system’s behavior against temporal logic properties.

However, in case of failure, analyzing the results is still a manual process that requires both
technical and domain knowledge. To aid this process, we have been exploring the generation
of natural language explanations for model-checking counterexamples.

The approach we are developing makes extensive use of CTL property patterns and natural
language templates to generate explanations for counterexamples. This paper describes
the language used to query properties and counterexamples to instantiate the explanation
templates. In particular, we have explained the tokens that allow for complex templates to
be created and the reasoning behind their definition.

The paper reports on ongoing work and several venues for future work can be identified
and are being pursued. One obvious area of future work is the continued improvement
of the language. This should be guided by requirements arising from the need to create
quality explanation templates. We plan to develop a series of case studies to analyze the
expressiveness of the approach and, as part of this, to carry out user studies to assess the
quality of the produced explanations.

In any case, several improvements have already been identified that will improve the
expressive power of the language. We plan to expand the functionality of the S token when
there is a condition so that it can search beyond only the first state where the condition is
verified or allow for verification of conditions that occur in a state before/after the search
point. Additionally, we want to expand the S token’s condition so that it can also search
for logical operations referenced by a O token.

Other enhancements include adding the ability to reference states obtained in a previous
token to the current one, such that it is possible to check a condition only once and then
refer to the state that matches that condition in other future tokens of the template; the
ability for the token parameter in both the S and C tokens to contain more than a single
attribute; the ability for the C token to be able to have an S token for both the start and
end options; or the possibility to automatically change a DSE token’s context in a template
based on a given condition.
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Finally, we plan to explore how generative AI might be integrated into the approach and

whether that can improve the quality of the generated explanations.
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