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Abstract
This document presents an initiative aimed at advancing parsing and language processing through
the integration of Attribute Grammars (AG) into the Lark Compiler Generator, a flexible tool
frequently used for these tasks. In order to achieve a successful integration of AGs into Lark, a
study on the concept and example analysis of AG based specifications needed to be conducted. This
provided an insight on their advantages in order to extend Lark with the ability to use AG, that
will be presented in this article. With this project, named LarkAG, we aim at providing Lark with a
conventional and well studied formalism to specify rigorously the static and dynamic semantics of
programming languages, on top of its recognized syntactic analysis capabilities. Along the paper,
LarkAG architecture, development and usage are also discussed. The DSL designed to provide
a proper notation for attribute occurrences selection and for writing semantic rules and context
conditions is also presented. This addition of AG support to Lark will enable the construction of
compilers and language processors of greater reliability. It is not a major breakthrough since AGs
based tools already exist and are well studied, but rather an extension that can bring great value to
a modern framework such as Lark.
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1 Introduction

Before diving into the specific details of Attribute Grammars (AG) and the Lark Pro-
cessor Generator, it is important to establish the context in which these concepts exist.
Understanding this background will provide valuable insight into the world of language
processing.

Language and efficient communication are key facets of human interaction that shape
our daily lives. The use of grammatical rules to formalize a language serves an important
purpose, allowing us to transmit ideas precisely and without ambiguity. Furthermore, the
systematic specification of languages via grammatical constructions is critical in the field
of human-computer interaction, serving as the base structure for promoting unambiguous
communication between men and machines. From the point of view of its automatic
processing, for a grammar to be useful it should assure that a given symbol always has the
same value wherever it is used, i.e. it must be a Context-Free Grammar (CFG).
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Since their creation, CFG have played a pivotal role in compiler technology, speeding up
and simplifying the process of implementing parsers. With the further exploration of the
field of compiler generators, it becomes clear that a powerful parsing tool is indispensable
for languages defined by a CFG. A plethora of parsers generator tools have been developed
throughout the years to deal with the challenges of language processing and translation.
These tools, which range from traditional parser generators to current parsing libraries, have
been critical in facilitating programming language recognition and transformation.

From among them, Lark2 stood out as a notable parsing generator, highlighted not only
by its numerous capabilities but also for its user-friendly design. Lark’s primary strength lies
in its capability to parse any CFG, providing a versatile solution for any developer using
CFG.

However, while CFG excel at defining the syntax of a language, it often falls short in
capturing complex semantic relationships. This limitation motivated the birth of Attribute
Grammars, fifty years ago. AG, as a formal mechanism for declaring and evaluating
synthesized or inherited attributes associated with grammar symbols (NT or T), offer
a structured and powerful approach to define rigorously semantic rules and enforce context
conditions (which assures the semantic correctness of sentences). These facts prompt
exploration of the integration of AG into the Lark framework.

By incorporating AG support into Lark, we address a longstanding need within the
framework, enhancing its capabilities and extending its utility for more complex language
processing tasks. This integration not only makes Lark more robust, but also aligns it with
other advanced compiler tools that already leverage the power of Attribute Grammars.

This paper describes just that, LarkAG aims to improve Lark Compiler Generator’s
capabilities by overcoming the intrinsic restriction of CFG in capturing complex semantic
relationships in the field of language processing. To accomplish such an objective it was
necessary to design a DSL to be used by language engineers to write an entire AG with
attributes of both types, evaluation rules, context conditions, and translation rules. This
DSL and its processor (that translate the input AG into a Lark based Python compiler) will
also be discussed.

After this introductory section, the paper is organized in seven more sections. Section 2
provides the necessary background on AG, presenting its formal definition and highlighting
its theoretical and practical relevance.

To make the paper easily readable, Section 3 introduces Lark and summarizes its major
features. This information will provide the background to understand the LarkAG extension.
The fourth section will be dedicated to discuss and highlight the related works in the area of
attribute grammar implementation. Section 5 will describe the system architecture used to
address the stated problems and to develop LarkAG. In Section 6, LarkAG’s domain-specific
language is introduced, its grammar is presented, and an illustrative example of use is shown.
Then, in Section 7, the current implementation progress and decision-making related to the
development of LarkAG is discussed. Section 8 describes how a programmer can use this
extension in their language engineering projects. At last, Section 9 closes the paper with
some conclusions sorted out from the development of LarkAG language and processor, and
with directions for future work.

2 More details at https://lark-parser.readthedocs.io/en/stable/

https://lark-parser.readthedocs.io/en/stable/
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2 Attribute Grammars, an overview

In this second section, the main concepts and relevance of Attribute Grammars (AG) will be
presented. The main driving force of this project is the usefulness of Context-Free Grammars
(CFG) in the world of language engineering, and the advantages brought about by their
expansion using AGs. CFGs have been an important component of compiler technology since
their creation in the 1960s. It turned the arduous, ad hoc, process of parser implementation
into a much simpler and faster task [15].

AG formalism was first introduced as a means to express the semantics of computer
languages, something that a CFG is incapable of [21]. Actually, an AG extends the primitive
formalism CFG, providing a well-founded and formal mechanism for defining and handling
attributes associated with the symbols of a grammar to express the language meaning [39].

An AG is composed of a context-free grammar (CFG), a set of attributes (A), a set of
evaluation rules (ER), a set of context conditions (CC), and a set of translation rules (TR).
This definition can be represented using the tuple:

AG = < CFG, A, ER, CC, TR >

The context-free grammar serves as the underlying structure, detailing the language’s
syntactic rules. Attributes serve as a powerful mechanism for attaching additional information
to the symbols of a context-free grammar, allowing the specification of semantic properties,
serving as individual computation units. These computations are typically simple and
modular, allowing to implement sophisticated solutions for intricate programming challenges.
They can also be examined, debugged, and maintained independently, making it easier to
design and evolve programs [7]. There are two classes of attributes: inherited and synthesized.
Inherited attributes (IA) are used to pass information down the tree, from parent nodes
to children nodes. At a particular node in the syntax tree, synthesized attributes (SA) are
calculated based on the attributes of their children, bringing information up from the leaves
to the tree root [30].

Evaluation rules articulate the logic behind the computation of attributes. Attribute
evaluation is a process that computes values of attribute instances within a syntax tree
according to the evaluation rules. An attribute grammar is considered well-defined if the
semantic rules 3 are such that for each program’s syntax tree, the values of the attribute
instances can be unambiguously computed by the evaluation process [15].

While the CFG productions ensure syntactic accuracy, the AG context conditions establish
semantic validity. These predicates state, at the production level, the constraints that the
attributes must follow in order for the input phrase to be meaningful [14]. Context conditions
take the form of boolean-valued expressions over attribute occurrences [30].

After obtaining the meaning of the input text, translation rules are used to get the
intended result [14].

Listing 1 shows a fragment of an AG aimed at defining a language for describing the
students of a class and their grades. At the top of the listing, four declarations associate
synthesized and inherited attributes with the non-terminal symbols Start, Students and
Student. Then the AG fragment shown defines the attribute evaluation rules, only those
associated with productions p0 and p1, responsible for calculating the average grade of each
student in the classroom. Those rules involve attributes count (that is incremented for each
student recognized) and grades (a list collecting the name and average grade computed for

3 This includes evaluation rules, context conditions and translation rules
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each student). At the end of the listing, a context condition is associated with production p1
in order to guarantee that there are no repeated student names. To impose that semantic
constraint, the inherited attribute nameList associated with the symbol Students plays a
crucial role, as it gathers the name of all the students previously parsed (on the left of the
input sentence).

Listing 1 AG specification of Students Language.
SA(Start) = { count:int , grades :list(tuple(string ,float)) }
SA( Students ) = { count:int , grades :list(tuple(string ,float)) }
IA( Students ) = { nameList :list( string ) }
SA( Student ) = { avg:float , name: string }

p0: Start -> ’Class ’ id Students ’.’
ER(p0) = {

Start.count = Students .count;
Start. grades = Students . grades ;
Students . nameList = [];

}
p1: Students -> Students ’;’ Student
ER(p1) = {

Students_1 .count = Students_2 .count + 1;
Students_1 . grades = [( Student .name , Student .avg)] ++ Students_2 .

↪→ grades ;
Students_2 . nameList = Student .name ++ Students_1 . nameList ;

}
CC(p1) = {

!( Student .name in Students_1 . nameList );
}
...

The semantic rules related to a production cause local dependencies among the attributes
associated with the symbols of that production, which must be understood in order to
establish the right sequence of evaluation.

A convenient tool for describing a production and its semantic dependencies is a local
dependency graph (called a DAG), where the nodes represent the occurrences of the pro-
duction’s attributes. In this graph, there is a direct arc between two nodes if one of them
depends on the value of the other, i.e, the semantic rules which calculates one of them
depends on the value of the other. To describe semantic dependencies of an entire syntax
tree, rather than a single production, a (compound) dependency graph of the syntax tree
needs to be defined [4]. The DAG can be constructed either statically – by the Compiler
Generator, while it analyses the given AG – or dynamically – by the attribute evaluator –
but in both approaches it is a complex and heavy process [1].

3 Lark - Concepts overview

In software development, parsing is the key to effective data processing. Since it bridges the
gap between raw data and meaningful information that can be understood and used by com-
puter programs, making it an essential component of many software systems. The efficiency
and accuracy of parsing can have a direct impact on the functionality and performance of
the software where it is included. As a result, choosing the correct parsing tool or library is
critical for developers and can have a significant impact on project success.
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This section will provide an overview of Lark’s capabilities and significance in software
development, while also delving deeper into its various features and inner workings.

Lark is a modern parsing library for Python that can parse any CFG. Parsers are
inherently intricate and confusing and can be difficult to comprehend, write and use [37].
Its value in the field of parsing can be described as, but not only, a list of the following
capabilities4:

Offer multiple parsing algorithms, allowing the developer to choose the most suitable
parsing technique for their specific tasks;
Integrate lexical analysis and parsing into a single library, streamlining the process of
language processing;
Express grammars using an Extended Backus-Naur Form (EBNF) inspired notation,
making it intuitive for developers to define parsing rules;
Generate custom parse trees that can be adapted to match the structure of the grammar;
Provide detailed error reporting and flexible error handling, helping developers in dia-
gnosing and resolving parsing issues;
Provide parse tree visualization, that can help users while writing custom visitors.

Lark’s contribution to parsing is notable not only because of its capabilities, but also because
of its usability and user-friendly design.

Lark is built upon various fundamental concepts that are key to understanding its
functionality. These concepts include grammars, parse trees and parsing algorithms.

As mentioned earlier, grammars are the foundational element upon which the entire
parsing process is built. In the context of Lark, grammars act as blueprints for how data
in that language should be arranged and processed, establishing the language’s syntax and
structure.

This structure can be depicted in a hierarchical manner, using parse trees which serve
as an intermediate representation of the parsed language and are constructed based on the
input data and the defined grammar.

Lark builds these trees where each rule that is matched becomes a node in the tree, and
its children are its matches, in the order of matching. In order to build parse trees, Lark
employs parsing algorithms to analyse and understand the structure of the input data based
on the defined grammars.

Lark implements three parsing algorithms: Earley, LALR(1), CYK5, allowing developers
to choose the one that best suits their needs. Parsing algorithms are collections of rules and
procedures that govern how the library reads and interprets data.

Traditional parsing tools usually separate lexical analysis from syntactic analysis, but
Lark streamlines the entire process, offering a unified solution for developers. In Lark, a
single grammar is defined, one that includes both lexical and syntactic rules. This grammar
is written using EBNF, which allows for the specification of both tokens and the language’s
general syntax, simplifying language processor implementation.

As mentioned before, Lark uses a combination of lexical analysis and syntactic parsing to
transform input strings into parse trees and offers customization options for their automatic
construction using a collection of grammar features and classes for traversing the parse
trees [37]. With this flexibility of being able to choose the way the tree is visited, Lark allows
programmers to choose the most suitable approach for their parsing and tree manipulation
needs.

4 Extracted from the original website at: https://lark-parser.readthedocs.io/en/latest/index.
html

5 CYK is a legacy parser
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4 Related Work

As said in the Introduction, the general adoption by the compiler community, of Chomsky’s
formalism to define programming languages, the context free grammar, paved the way for
the development of a wide range of Parser Generators. The most well known and worldwide
used6, is YACC [16], the generator developed, in parallel with the Lexical Analyser Generator
Lex [26], to build the C programming language Compiler, being itself written in C. YACC
was inspirational in the education and research fields, and nowadays with the leading of
Python it was reimplemented as a Python library called PLY.

A similar path was followed in the attribute grammars field. After the seminal work of
Knuth, introducing the attribute grammar concept in the early seventies, many researchers
have developed AG-based Compiler (Language Processor) Generators (AGbCG, for short).
The surveyed tools have a very similar generic architecture: accept as input an AG, and
generate a lexical and syntactic analyser and a set of tree walkers to evaluate the attributes,
check the context conditions, and produce the desired output.

One of the main differences among the tools lies in the AG class7 supported – a lot of
them accept the LAG class, which is the simplest to implement because attributes can be
evaluated in just one visit top-down to the tree, from left to right; other tools cope with OAG
class, a more generic one that allows for the adoption of the same visiting order, independent
of the syntax tree, which can be determined statically; and a small number support the
Non-circular AG class, in which case the order is determined dynamically being necessary to
assure that the DAG is not circular.

Delta system [27], by Bernard Lorho, was one of the pioneer AGbCG, in the late seventies.
Following the declarative character of AG, Delta was implemented in a functional language.
It didn’t have a long life, but it was the root for FNC/SNC [17] also developed at INRIA-
Rocquencourt by Martin Jourdan, a recursive evaluator for Strongly Non-Circular Attribute
Grammars. With the collaboration of Didier Parigot et al. that system was further developed
and in 1990 they published the evolution, OLGA [18].

In parallel with Lorho’s work in France, a team at Helsinki University developed another
AGbCG, named HLP78 [34], which was improved in the following years by Koskimies et al.
giving birth to HLP84 [23]. Koskimies and Paaki evolved that system and proposed, two
years later, TOOLS [22, 24].

In the same decade, in Germany, Uwe Kastens developed the GAG system [20] that
supports a large class of attribute grammars, called Ordered-AG [19].

Also, the Dutch Computer Science community was also very active. Indeed, researchers
like Lex Augustein [3], van Deursen, Jan Heering, Paul Klint [12], Ralph Lammel, Eelco
Visser, Joost Visser, among others, developed and published many notable contributions
in the area of attribute based language specification and automatic generation of language
processing tools. However, the work of Svierstra and his team at Utrecht deserves a special
mention because they revisited the functional character of AG and the incremental evaluation
approach8. They contribute with the concept of High-order AG [38], and based on that the
group came out with LRC [25], an interesting system with function memorization to improve
the incremental attribute evaluator [36].

6 Both in the industrial and in the academic worlds.
7 The AG class is defined according to the type of dependencies among the attributes.
8 A very hot topic in the eighties.
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In parallel, also in the early nineties, at Lund University/Sweden, Görel Hedin started
working with AG and object-oriented programming languages building an AGbCG to support
DOOR AG [10]. Ten years later, after many improvements and contributions to the area,
she introduced JastAdd [11],a meta-compilation system that supports Reference Attribute
Grammars (RAG) and is still in use9.

Concerning the logic programming approach, two authors proposed systems to cope with
any class of AG taking advantage of DCG and producing Prolog attribute evaluators: Bijan
Arbab [2]; and Pedro Henriques [13].

A bit later than the pioneers mentioned so far, William Waite and his team, at Boulder-
/Colorado, developed a nice AGbCG called Eli [9], a powerful, flexible and user-friendly
compiler construction system. From the United States came one of the most notable AGbCG:
ANTLR [33, 32], developed by Terence Parr, which is an evolution of PCCTS [31]. ANTLR
is very flexible, robust and still in use nowadays; like YACC, it is a valuable tool in academy
for research, teaching and in the software industry.

In the late nineties Marjan Mernik develop in Maribor/Slovenia another powerful and
interesting tool for compiler generation and teaching called LISA [29].

Maybe one of the most recent AGbCG is Silver10, an extensible attribute grammar
specification language and system, developed in Minnesota/USA by Eric van Wyk11 and
colleagues [40] to investigate high modularity in language specification.

As stated above, in the late eighties there were so many publications on attribute
grammars classification, applications, and evaluation approaches, as well as so many AGbCG,
that Pierre Deransart et al. published three INRIA technical reports that became a LNCS
survey collecting all this information [6]. In 1990, the same team organized WAGA [5], an
international workshop to discuss Attribute Grammars and their Applications, which was
attended by Knuth itself and most of the authors referred in the bibliography here cited.

5 LarkAG - Architecture

The success of any system depends not only on its functionalities, but also on the efficiency
and coherence of its underlying architecture. This section presents the architecture of our
developed system in order to provide insight on the key components and relationships that
compose it. Throughout this section, while exploring the system’s architecture, two layers will
be analysed: the Generator Layer and the Processor Layer. The first contains components
dedicated to the compilation and generation of other components, based on the attribute
grammar, while the last focus on the processing of input phrases with the support of the
previously generated components, in order to obtain the desired output. Figure 1 depicts
these two layers and the main components of the developed system and their collaboration
within said system, as well as the data exchanged from one component to the other.

9 See more at https://jastadd.cs.lth.se/web/
10 For all the details and many more references see https://melt.cs.umn.edu/silver/
11 One of the authors still very active in the area, as can be seen in one of his most recent publications of

2023 [35].
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Figure 1 System Architecture.

The system accepts two inputs: the Attribute Grammar (AG) describing semantic rules
and the input phrase to be processed. The output is generated with the semantics obtained
from the AG, through a structured process that involves: AG parsing, translation, and
dynamic module generation.

5.1 Generator Layer

At the heart of the proposed system lies the Generator Layer, designed to convert abstract
attribute grammar specifications into concrete modules capable of semantic comprehension.

The first of these components to interact with the attribute grammar (which is an input
from the user) is the Attribute Grammar Parser. This component extracts the essential
information related to attributes and their semantic rules, as well the underlying Context-Free
Grammar (CFG), by parsing the input AG, created using the DSL mentioned in 6.

The Lark Parser Generator is crucial in designing the syntactic interpretation of the user-
defined language within this system, taking the CFG extracted from the AG and producing
a parsing engine, tailored to the grammar’s syntax.

The last component of this layer is the one responsible for separating the whole system
from an ordinary Lark Parser Generator, the Interpreter Class Generator. This generator
delves into the intricacies of semantics, generating a custom interpreter class built to operate
over the parse trees, providing meaning to them. Taking the attributes and semantic
rules extracted by the AG Parser, this component will dynamically generate an Interpreter
Class [37] and its methods, enabling the calculation of attributes, evaluation of context
conditions and the application of translation rules.
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5.2 Processor Layer
The Processor Layer encapsulates the dynamic execution of language interpretation within
our architecture. This layer, which consists of the Lark Parser and the custom Interpreter
Class (built by the Interpreter Class Generator) converts parsed input phrases into the
desired output.

The Lark Parser’s primary task is to parse the input phrases based on the CFG extracted
by the generator layer, and by doing so, it constructs a parse tree that reflects the hierarchical
relationships among the various language elements.

The Custom Lark Interpreter, generated by the Interpreter Class Generator, assumes a
crucial role, serving to close the gap that separates syntax and semantics. As the executor of
semantic analysis, its task is to digest the parse tree (built by the Lark Parser) navigating
the hierarchical structure to introduce meaning into the syntactic relationships between the
language elements.

6 LarkAG - Domain-Specific Language

Many computer languages are domain specific rather than general purpose. Domain-Specific
Languages (DSLs) sacrifice generality in favour of heightened expressiveness within a specific
domain. Through the provision of notations and constructs specifically designed for a
particular application domain, DSLs deliver significant improvements in expressiveness and
user-friendliness compared to General-Purpose Languages (GPLs) in the given domain. This
leads to increased productivity and decreased maintenance costs [28].

In this section, the DSL that provides the user with a means of expressing semantic rules
and attributes in their language specifications is presented. The scope of this DSL is limited
to the specification of the attributes, evaluation rules, context conditions, and translation
rules – the quintessential elements of an attribute grammar. The definition of the syntax of
the grammar will be done using the EBNF, just like in Lark - Concepts overview The DSL
uses a combination of keywords, operators, and special symbols to express relationships and
behaviours within the language semantics that have been described. The section below will
provide an overview of the key elements of the DSL.

Non-terminal symbols in the DSL are represented using identifiers, adhering to the
pattern:[A-Za-z][A-Za-z0-9]*, while terminal symbols are represented by encasing them
with quotation marks.

Expressing attributes, inside a semantic operation, involves using an object-oriented
notation using a syntax akin to: <non-terminal>.<attribute>. This notation means that
attributes are associated with specific non-terminals, adopting a structure reminiscent of
object-oriented programming where the non-terminal serves as an object and the attribute
as a property of said object, this will be the notation used inside the definition blocks.
When there’s multiple non-terminals with the same name, inside a production, in order to
disambiguate which non-terminal attributes are being accessed, an index of the non-terminal
being accessed should be provided, counting from left to right using one-based indexing. This
will follow the syntax: <non-terminal>[index].<attribute>.

Each of the composing element’s definition follows a structured format, encased within
a block. This organized approach is critical for preserving clarity and coherence when
expressing various aspects of the attribute grammar. Each component is enclosed within a
block that takes the following form:

<Type>(<production|non-terminal>)?{
<Definition>;
<Definition>; ... }

SLATE 2024
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When defining the attributes related to a certain non-terminal symbol, the type of attributes12,
and which non-terminal symbol it refers to need to be specified. The syntax of an attribute
declaration block is as follows:

IA(<non-terminal symbol>){...} //Inherited Attributes
SA(<non-terminal symbol>){...} //Synthesized Attributes

Within an attribute definition block, the DSL allows for the explicit specification of attributes
associated with a certain non-terminal symbol, requiring the explicit declaration of its name
and type, where the type must be one of the Python programming language’s built-in types [8].
The syntax for defining an attribute is as follows: <attribute_name>:<attribute_type>

To define the semantic rules13, the type of the semantics being defined needs to be
specified. For each expansion inside each production, the semantic operations need to be
declared right after defining that expansion. The syntax of a semantic rule declaration block
is:

ER{...} //Evaluation Rules
CC{...} //Context Condition
TR{...} //Translation Rules

The evaluation rule block requires that all statements express assignments, as indicated by
the necessary use of the equals sign (=). This means that each statement, according to the
syntax, must include an assignment operation, emphasizing the assignment-based nature
inherent in the creation of evaluation rules. The syntax of an evaluation rule statement is:
<attribute> = <expression>.

In order to define a context condition, inside a context condition definition block, it’s
necessary for the condition to function as a logic statement, so that they can be verified to
be true, in order for the program to function.

When defining a translation rule definition block, each statement needs to encapsulate a
function call, either being a default Python function or explicitly defined by the user. This
function takes attributes as parameters and constructs the desired output. The syntax is as
follows: <pre_defined_function>(<attribute1>,<attribute2>,...)

The following example showcases the portion of the attribute grammar presented earlier in
AG specification of Students Language, using the newly introduced DSL. This example shows
the application of the DSL within the context of the previously shown attribute grammar,
elucidating its practical implementation and functionality. The DSL, resembles a more
mathematical notation, retaining its expressiveness and formal accuracy while incorporating
a “Pythonic” syntax to provide more familiarity and ease of use. This mix of mathematical
principles and “Pythonic” expressions allow users to express attribute grammars in a simple
and natural way, increasing efficiency and clarity during the writing process.

Listing 2 DSL Example.
SA(start) { count:int , grades :list[tuple] }
SA( students ) { count:int , grades :list[tuple] }
IA( students ) { name_list :list[str] }
SA( student ) { avg:float , name:str }

start: "Class" ID students "."

12 SA for synthesized attributes, IA for inherited attributes
13 evaluation rules, context conditions and translation rules
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ER {
start.count = students .count;
start. grades = students . grades ;
students . name_list = [];

}

students : students ";" student
ER {

students [1]. count = students [2]. count + 1;
students [1]. grades = students [2]. grades + [( student .name , student

↪→ .avg)];
students [2]. name_list = students [1]. name_list + [ student .name ];

}
CC {

student .name not in students [1]. name_list ;
}
...

7 LarkAG, Development

The development process of the Lark extension involved a systematic approach to building
and enhancing the capabilities of the Lark parser generator.

The project began with the design of the system architecture, specified in LarkAG -
Architecture. Key design decisions were made to ensure the effectiveness and flexibility of
the LarkAG extension. These decisions included the adoption of a modular architecture to
facilitate extensibility and maintainability, the use of “Pythonic” design patterns to enhance
readability and usability, the usage of expressive and meaningful intermediary data structures,
to allow the various modules to communicate flawlessly.

As a part of designing the system architecture, the five main components of our system
were identified: the AG Parser, the Lark Parser Generator, the Interpreter Class Generator,
the Lark Parser, and the Custom Interpreter Class. Out of these components, the AG Parser
and the Interpreter Class Generator were designed and developed from scratch to meet the
specific requirements of the project.

The AG Parser employs the Lark Parser Generator, which is configured with a grammar
tailored to the Domain-Specific Language (DSL) defined in LarkAG - Domain-Specific
Language. This grammar enables the creation of a specialized parser capable of parsing the
AG input provided by the user.

Upon parsing, the Lark Parser generates a Parse Tree representing the syntactic structure
of the input. This tree is then fed into a Transformer that traverses it, extracting essential
information such as the Context-Free Grammar (CFG) and the semantic information com-
prising attributes and semantic rules. The CFG is obtained in string format, representing
the structural elements of the grammar. Simultaneously, the Transformer constructs a dic-
tionary encapsulating the semantic information extracted from the Parse Tree, that follows a
hierarchical structure akin to the Parse Tree, albeit in a simplified form.

This streamlined representation facilitates efficient storage and manipulation of semantic
information, laying the groundwork for the subsequent stage of generating the Interpreter
Class inside the Interpreter Class Generator.

The Interpreter Class Generator takes the previously mentioned data structure in order
to dynamically generate a Custom Interpreter Class, which encapsulates and executes the
semantic rules defined within the Attribute Grammar.
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For each expansion within every production of the Attribute Grammar, the Interpreter
Class Generator creates dedicated methods responsible for executing the semantic operations
specified by the user. This method generation process follows a systematic procedure,
encompassing the following key steps:

Visitation of Children Nodes: The generator determines which child nodes of the current
node need to be visited. For each of these child nodes, an operation responsible for its
visitation is added to the list of operations.
Topological Ordering: A topological order for all semantic operations associated with the
expansion is established. This order ensures that semantic operations are executed in a
logical sequence.
Variable Replacement: Replace all occurrences of attributes and reserved words for the
corresponding variables.

By following these steps, the Interpreter Class Generator enables developers to translate
abstract semantic rules into executable code, enabling robust and efficient semantic analysis
within the context of the Lark extension.

During the development of the LarkAG extension, various challenges arose. One such
challenge was managing the dependencies between semantic operations in the AG. Ensuring
that these operations are executed in the correct order is crucial to semantic analysis. To
address this challenge, we implemented a depth-first search (DFS)-based algorithm for
topological ordering. The topological ordering function calculates the order of semantic
operations by traversing the dependency graph of a given expansion. This way, we ensure
that each semantic operation is executed only after all its dependencies have been resolved.
LarkAG may face challenges in handling exceptionally complex grammars with numerous
interdependencies. Another inherent limitation of the topological sorting algorithm is its
inability to handle circular dependencies within attribute grammars. If the attribute grammar
contains circular dependencies, the algorithm will fail to determine a correct topological
ordering, leading to potential runtime errors or infinite loops. Detecting and resolving such
circularities is a non-trivial problem and remains an area for further development.

Another challenge was efficiently and correctly translating the attribute calls present
in the semantic expressions into variables that Lark can use for attribute evaluation. We
developed a helper function to dynamically translate attribute calls into tree references. This
function processes a node iteratively and organizes its child nodes into a dictionary. Each
entry in the dictionary matches a given non-terminal and index to its corresponding child
node reference. This organized structure and its dynamic nature enable efficient access to
child nodes during attribute evaluation, and the generated code to be used in rules with
highly variable number of child nodes. This solution comes with performance trade-offs, due
to its dynamic nature. The call to the helper function will add an overhead to each method
that evaluates the semantic expression. This overhead can prove significant in the case of
complex grammars with lots of rules.

8 LarkAG - Usage

The LarkAG extension offers developers a powerful tool for seamlessly integrating attribute
grammars (AG) into their projects. This section provides a concise overview of LarkAG’s
core features and functionalities which enable such.

In order to use the LarkAG extension in their projects, developers can simply install it
using pip, a popular Python package manager. Once installed, they can import it into their
Python scripts and start leveraging its capabilities for enhanced semantic analysis.
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When developing a project in which LarkAG is employed, developers have the choice
between using it as a complete and self-contained system or using only the generator layer.

The first approach involves using a single class which encapsulates both the generator
and processor layers of LarkAG. This class serves as a unified interface for semantic analysis,
taking as input the attribute grammar and the source code to be analysed. Internally, the
class utilizes the generator layer to parse the attribute grammar and generate the processor
layer which will be responsible for processing the input source code, facilitating semantic
analysis and producing the desired output within the project environment.

The second method involves leveraging LarkAG’s generator layer exclusively. In this
context, developers can use LarkAG with the sole objective of producing source code based on
the provided attribute grammar. After generating the source code, developers can manually
integrate it into their projects, incorporating it as a component of their comprehensive
solution for semantic analysis. This approach allows integrating semantic analysis into their
projects in a way that best suits their specific requirements and workflows.

The following code exemplifies the product yielded by the Generator Layer when provided
with the attribute grammar presented in DSL Example. This output encompasses the
Context-Free Grammar (CFG), annotated with aliases aimed at helping the generated
Interpreter distinguish between each production’s expansions. Additionally, the output
contains the Custom Interpreter Class, which is designed to incorporate and execute the
semantic operations expressed within the attribute grammar given as input.

Listing 3 Generated Code.
start : "Class" ID students "." -> start_0
students : students ";" student -> students_0 | student -> students_1
student : name "(" grades ")" -> student_0
grades : grades "," NUM -> grades_0 | NUM -> grades_1
...
% import common .WS
% ignore WS

class MyInterpreter ( Interpreter ):
...
def start_0 (self , node):

pointers = self. __helper__ (node)
pointers [’students ’][0]. name_list = []
self.visit( pointers [’students ’][0])
node.count = pointers [’students ’][0]. count
node. grades = pointers [’students ’][0]. grades

def students_0 (self , node):
pointers = self. __helper__ (node)
self.visit( pointers [’student ’][0])
pointers [’students ’][1]. name_list = node. name_list + [

↪→ pointers [’student ’][0]. name]
self.visit( pointers [’students ’][1])
node.count = pointers [’students ’][1]. count + 1
node. grades = pointers [’students ’][1]. grades + [( pointers [’

↪→ student ’][0]. name , pointers [’student ’][0]. avg)]
if(not( pointers [’student ’][0]. name not in node. name_list )):

raise Exception (’ Semantic Error ’)
...

"""
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9 Conclusion

In this section, we summarize the outcomes reached so far.
The concept of CFG and more importantly AG was presented and explained, by looking

into formal definitions and writing examples. After introducing Lark framework and surveying
the related work on Attribute Grammar based Compiler Generators (AGbCG), it was possible
to motivate our project, LarkAG, which aims to be a modern and improved solution carrying
on the approach for language semantics formalization into the Python world.

Another key concept worked and discussed was the DSL, which intends to be simple,
clear to write/read, and at the same time maintain the specification expressiveness that
characterizes AG.

Also, it is important to highlight the contributions of the architecture that lays at the
foundations of AG in Lark, the division in two separate layers. The first one is dedicated
to generation, and is responsible for recognizing and extracting the information from the
AG written in the LarkAG DSL to then produce the Lark Parser and the Custom Lark
Interpreter. This clear division permitted to have a structured and well-thought-out approach
going into the development phase, which allowed LarkAG to be efficient, easier to understand
and extend (maintain). The second one is the product of the first, and converts input phrases
into the desired output, using both the Lark Parser (to construct the parse tree) and the
Custom Lark Interpreter (to traverse the parse tree).

As it stands, LarkAG allows building an end-to-end parser based on CFG enriched with
attributes, allowing users to generate a Lark Interpreter that does exactly what is intended
according to the specified context conditions and translation rules defined in the AG. It
gives more formality and assurance to the process of building a compiler. Furthermore, it
saves the process of creating the Interpreter class by hand, and avoids the possible code
errors/misbehaviour usually introduced during that process. It also shortens the development
process by avoiding code clean-ups and bug corrections.

The next planned step is to test LarkAG using actual users and real projects. In order
to achieve this, it will be created a web interface incorporating: an editor to write the
specification in the LarkAG DSL; a compiler which allows users to generate the desired
language processor; and a run functionality to test the processor. This web platform will
allow collecting information about how the users actually interact with the new tool and
might also help to find bugs/inconsistencies in LarkAG.
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