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Abstract
Real-time systems need to prove that all deadlines will be met. To enable this proof, the full stack
of the system must be analyzable, and the right tools must be available. This includes the processor
(execution platform), the runtime system, the compiler, and the WCET analysis tool.

This paper presents a combination of the time-predictable processor Patmos, the coordination
language Lingua Franca, and the WCET analysis tool Platin. We show how carefully written
Lingua Franca programs enable static WCET analysis to build safety-critical applications.
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1 Introduction

In safety-critical applications, the reliability of a system is of utmost importance to ensure
no catastrophic failures happen. Real-time systems must guarantee that they respond to
events within a given deadline. Designing such a system includes analyzing all its tasks and
ensuring its worst-case execution time (WCET) and that the resulting schedule will meet its
deadlines. However, it is not enough that individual tasks meet their deadlines. We must also
ensure that all the tasks always meet their deadlines, regardless of the runtime conditions or
other tasks executing in parallel. As such, schedulability analysis must consider not only the
individual tasks but also their runtime environment and execution platform.
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4:2 WCET Analysis of LF Applications

A reliable real-time system must be built from a stack of analyzable components. It
starts with a platform based on a time-predictable processor. Then comes the execution
environment, which includes a real-time operating system or real-time runtime environment
that can allocate resources as needed. Next comes programming language and compiler that
must support the writing of analyzable code. Lastly comes the analysis tool, which should
be able to account for all the components to produce safe WCET bounds, i.e., bounds that
are guaranteed not to be lower than the actual WCET.

This paper presents a complete real-time system and toolchain for safety-critical ap-
plications. It is based on the time-predictable RISC processor Patmos [33]. Instead of a
complicated real-time operating system, we use the Lingua Franca (LF) reactor language as
our runtime environment [24]. LF allows us to write individual reactions in the C language,
which are automatically compiled with the LF runtime using the Patmos compiler. The LF
runtime handles the provisioning of resources to each reaction and schedules them when
needed. Using the Platin WCET analysis tool, we can analyze the WCET of individual
reactions and feed it to a quasi-static schedule generator that ensures reactions are scheduled
such that they will never miss a deadline. The quasi-static schedule generator and its under-
lying virtual machine, PretVM, have recently been introduced to LF to enable fine-grained
timing analysis of the LF runtime.

The individual components presented in this paper are not new; they have been presented
in other papers. However, this paper’s contribution is the presentation of the combination of
those components to provide a complete time-predictable execution environment. This is
intended as a step towards building correct-by-construction real-time systems.

Lingua Franca, Patmos, and Platin are open-source. The links to the GitHub repositories
are given on the title page. To reproduce the evaluation, consult the README file in the following
repository: https://github.com/lf-lang/lf-patmos-template/.

The rest of this paper is organized into the following sections. Section 2 provides the
background on Lingua Franca, the Patmos time-predictable processor, the compilation
pipeline, and the Platin WCET analysis tool. Section 3 discusses the most important
aspects of analyzable code in LF applications, as well as the benefits and issues of LF for
WCET analysis. Section 4 presents the experimental evaluation results of the proposed
approach. Section 5 discusses related work. Section 6 concludes the paper.

2 Background

This paper combines several technologies to build a complete real-time platform: the
coordination language Lingua Franca [22], the Patmos processor [33] and compiler, and the
WCET analysis tool Platin [25].

2.1 Lingua Franca

LF is a coordination language and framework based on concurrent actors called Reactors.
LF adds deterministic reactive concurrency to target languages. Currently, it supports C,
C++, Python, TypeScript, and Rust. The generated code can be deployed on almost every
computer system, including embedded systems [5, 22, 23].

Coordination languages and frameworks are designed based on coordination models of com-
putations. These models of computation provide a technology that supports the interaction
between software components. Moreover, they generally enhance modularity, reuse of existing
(sequential or even parallel) components, portability, and language interoperability [27, 34].

https://github.com/lf-lang/lf-patmos-template/
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In the coordination languages and frameworks, actors are usually used as the primary
programming model. This programming model was first introduced in 1973 by Hewitt for
concurrent systems. They are independent entities like objects that can communicate through
asynchronous message passing without any locking mechanism [11].

To make actors deterministic, a new model, named reactors, was introduced in 2019 as
the building block of the Lingua Franca language. In reactors, messages are guaranteed to
be delivered to a reactive component in order. For these purposes, logical timestamps are
used [24].

Procedures inside reactors are called reactions invoked in response to a trigger event. The
reactions are atomic to one another, meaning they are mutually exclusive. The reactions can
be written in the LF’s target programming languages, and they can read input and produce
outputs. Timers, ports, actions, and built-in triggers (such as startup or shutdown) can
trigger reactions.

Ports are the types inside the reactors responsible for communicating with other reactors.
We have two kinds of ports, input, and output, for receiving and sending messages. LF uses
a timestamp tag on a logical timeline for messages to make them ordered. Unlike physical
time, logical time does not elapse during reaction execution. In LF, timers use logical time
to invoke reactions periodically.

2.2 Patmos
Patmos [33] is a RISC-style processor developed as part of the T-CREST project [32]. Patmos
is designed for real-time systems with ease of analysis in mind. It has features that make
it easy to analyze, such as an in-order pipeline and special caches. Instead of a traditional
instruction cache, Patmos includes a method cache that stores complete function bodies or
explicit parts of functions (sub-functions) [6]. At function calls/returns or at explicit points
in the function, the method cache is triggered to load the next executed (sub-)function. This
means instruction fetching can only miss in the method cache at this point, making it easy for
an analyzer to reason about. Patmos also includes a stack cache that stores stack-local data
exclusively and is explicitly controlled by the compiler [15]. Accessing stack data, therefore,
never misses except at the start or end of a function. The remaining data accesses go through
the conventional data cache or can circumvent all caching to access main memory directly.

2.3 The Compiler and the WCET Analyzer
In this paper, we use C as the target language and describe the compilation pipeline of

LF for that target. LF, as shown in Listings 1 and 2, contains target code in C, wrapped
with the markers {= and =}. The code around those C fragments is written in LF, which the
LF compiler compiles into C functions. The generated functions include those C fragments.
Additionally, LF provides the runtime (e.g., the reactor scheduler, functions to set outputs,
and other utility functions) as C source files. The LF library code also contains platform-
specific low-level functions. LF can execute on various platforms, from systems with full-blown
operating systems (e.g., Linux or MacOS) down to the bare metal. In the latter case, LF
is the operating system, and since no complex operations are used, the timing of the full
application can be analyzed.

The generated C code is then compiled with a C compiler into an executable. This paper
uses Patmos as the execution platform, which has had LF ported to it [16]. The Patmos
compiler is based on the LLVM framework, which compiles C language code to Patmos
machine code. It supports adding flow fact information to the code using annotations, the
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4:4 WCET Analysis of LF Applications

Listing 1 The Source reactor of
SimpleConnection.

1 reactor Source {
2 output out: int
3 timer t(0, 1 sec)
4 state s: int = 0
5

6 reaction (t) -> out {=
7 lf_set (out , self ->s);
8 self ->s++;
9 =}

10

11 reaction (t) -> out {=
12 int v = -1 * self ->s;
13 lf_set (out , v);
14 =}
15 }

Listing 2 The Sink reactor (incomplete) and reactor
connections of SimpleConnection.

1 reactor Sink {
2 input in: int
3 state last_received : int = 0
4

5 reaction (in) {=
6 self -> last_received = in ->value;
7 =}
8 ...
9 }

10

11 main reactor {
12 source = new Source ()
13 sink = new Sink ()
14 source .out -> sink.in after 2 sec
15 }

simplest of which are loop-bound annotations. The flow facts are maintained through the
compilation pipeline and can be exported as part of the compilation to be used by the Platin
WCET analyzer. The compiler automatically inserts code to manage the Patmos method
and stack caches so that programs experience misses only at the predefined points.

We use the open-source analysis tool Platin to derive WCET bounds for code executing
on Patmos [10, 25]. Through the tight integration with Patmos’ compiler, Platin gets
details about the program control flow and flow facts, which it uses to estimate the WCET
bound. Platin includes a detailed model of the Patmos processor architecture, its method
cache, and its stack cache [13, 15]. It does not have a dedicated data-cache analysis, meaning
all data-cache accesses are assumed to be cache misses.

A requirement for using Platin is that the code is analyzable and the compiler can
provide it with a .pml file containing control flow and flow fact information. As such, the
LF runtime and scheduling code must be analyzable and include sufficient information and
annotations for Platin to estimate the WCET of the LF runtime functions.

3 Analysis-Friendly Applications with Lingua Franca

The execution time of general programs is usually not statically analyzable. We need
restrictions in the algorithms, e.g., maximum bounds on loop iterations, and a runtime
system amenable to timing analysis, e.g., Lingua Franca, thanks to its determinism.

3.1 Analyzable Code
Code for real-time systems must be carefully written to enable static analysis tools, like
Platin, to determine upper bounds on execution times, the WCET bounds [28]. The most
apparent restriction on real-time code is the prohibition of indeterminate loop iteration. As
such, annotations must be added to the code to provide such a bound when the tools or
compilers cannot infer an upper bound on the number of iterations a loop may execute.
Likewise, recursion is often prohibited in real-time code, as it also introduces the possibility
of indeterminable execution time through infinite recursion. Recursion depth bounds can
also be used to limit recursion. However, Platin does not support analysis of recursion,
meaning we also prohibit recursion.
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Dynamism must also be strictly regulated in real-time code. Dynamically sized arrays or
data structures must have an upper bound on their size, such that iteration over those arrays
is also bounded. Dynamic function pointers are also often prohibited, as knowing which
functions they call is difficult. Platin does not allow any function calls through function
pointers.

Furthermore, the C standard library contains several functions that are not analyzable.
One prominent one is printf. Besides being a complex function with probably unbounded
loops, printf may block. In the case of Patmos, the standard output stream is mapped to a
serial port. When the send buffer of the serial port is full, printf will block until characters
are sent out.

Another functionality to avoid in analyzable code is dynamic memory management.
Standard implementations of malloc do not have execution time bounds. A better solution
for some dynamic memory management is using pools with a bounded size [26].

3.2 Benefits of LF for WCET Analysis
In Lingua Franca, applications are developed modularly as networks of communicating
reactors, where each reactor defines reactions to individual events. The reaction bodies tend
to be small pieces of code, making them more manageable by static analysis tools. Moreover,
the program specifies real-time requirements by attaching deadlines to the reactions. Most
importantly, the program explicitly specifies the dependencies between reactions, so the
analysis tool knows every piece of code that can affect the ability to meet the deadlines.
The LF syntax encourages breaking apart complex application code into a set of simple
reactions, which helps generate WCET values from timing analysis tools. In addition, LF’s
deterministic semantics enable the generation of predictable quasi-static schedules, which
help analyze timing behavior at the system level, given individual WCETs of reactions.

It is also known how it affects the ability to meet a deadline. A piece of code may need to
be executed before the deadline expires, or it may only need to be completed before the next
event arrives. Ignoring that code in certain circumstances may be reasonable in the latter
case. It may, for example, be performing logging functions that utilize the difficult-to-analyze
printf function.

For example, suppose that an arriving event triggers several reactions, that some reactions
have deadlines or are dependent on reactions that have deadlines, and some do not. Then,
if we assume that reactions with deadlines will be prioritized in some specified manner, we
can focus the WCET analysis on the bodies of those reactions. In principle, the reactions
without deadlines can be deferred indefinitely, although doing so could create performance
or memory problems. Those can be guarded against by, for example, dropping or modifying
log entries when problems arise. Hence, our technique’s ability to include some code that is
more difficult to analyze in a program makes it much more practical than techniques that
require full modeling of every part of the application.

3.3 Challenges with Dynamic Scheduling
The timing behavior of some functions in the standard LF runtime is not yet analyzable
using Platin [16]. These functions typically include print statements or allocate memory
with malloc or similar memory management functions.

By default, LF programs are scheduled by a dynamic scheduler, which maintains an event
queue at runtime and ensures that events are processed in timestamp order. However, the
dynamic scheduler presents challenges in timing analysis. The first challenge is the use of
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4:6 WCET Analysis of LF Applications

dynamic memory allocation. For example, a common user-facing library function is lf_set,
which sets the value of an output port of a reactor and calls calloc when no events allocated
on the heap can be recycled. A standard solution in real-time systems is to use only statically
allocated objects. A program-managed pool of preallocated objects can be used if dynamic
buffer management is needed. To enable WCET analysis of standard LF programs, we
propose changing the runtime to use explicit memory management.

We need to analyze individual reactions and their scheduling, which affects the overall
timing behavior. Since the dynamic scheduler makes all decisions at runtime, predicting
its behavior at compile time requires building an accurate model that captures its intended
behavior, which is challenging.

The above challenges motivate an alternative technique for scheduling LF programs
amenable to timing analysis at compile time and suitable for hard real-time systems, which
we will discuss next.

3.4 Quasi-Static Scheduling of LF Applications

It is common practice for safety-critical systems to use a static schedule, usually called a
cyclic executive. The pros and cons of cyclic executives have been discussed [21]. The main
disadvantage of a cyclic executive is that long-running tasks often need to be split into
smaller tasks to construct a feasible, static schedule. This restriction can be overcome by
using multiple processor cores and scheduling long-running tasks on a dedicated processor
core [29].

Recently, Lin et al. [18] developed a technique for generating quasi-static schedules
from LF programs. Quasi-static schedules are encoded into bytecode programs, composed
of an instruction set developed for PretVM, a virtual machine executing the schedules
within the LF runtime. The schedules are “quasi-static” instead of “static” because parts
of them can be enabled or bypassed depending on the execution context. Compared to
the user-written LF reactions, which represent the application logic, a quasi-static schedule
represents the coordination logic of an LF program, encoding scheduling decisions satisfying
task dependencies and timing constraints. LF’s quasi-static scheduling is experimental and
limited to timer-driven programs. Yet, as we will show next, it offers promising analyzability.
LF’s quasi-static scheduler supports multiple cores. However, this initial work focuses on
a single-core system. In future work, we plan to use multiple cores to execute reactors in
parallel and a network-on-chip to exchange messages between reactors [14].

Unlike the default dynamic scheduler, which collects events and determines which to
process next at runtime, LF under quasi-static scheduling makes all the scheduling decisions
at compile-time. The user first annotates the LF program with a WCET estimate for
each reaction using the @wcet attribute. Then, based on LF’s deterministic semantics,
the compiler computes the LF program’s state space, identifying various execution phases
and finding a hyperperiod of reaction invocations. Once the state space is determined, a
set of (unpartitioned) directed acyclic graphs (DAGs) is generated. These DAGs encode
dependencies among reaction invocations and between reaction invocations in real-time. A
quasi-static scheduler is invoked by the LF compiler to schedule the unpartitioned DAG and
generate partitions of the DAG based on the number of workers specified by the program.
From that DAG partition we produce a bytecode program using the virtual instruction set.
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Figure 1 The graphical representation of the reactors and their connection generated by the
Lingua Franca framework for the LF application shown in Listings 1 and 2.

3.5 Analyzing the Runtime System
Compiling an LF program results in a standard .elf file containing the LF runtime and the
individual reactions. We need the WCET of the individual reactions to make the quasi-static
schedule, which can be obtained using Platin. We run Platin on the .elf, prompting it for
the WCET bound of each reaction. This is then fed to the quasi-static scheduler to try and
create a schedule. For a full WCET bound of a reaction, we must also account for the time
the scheduler executes. For this work, the PretVM issues specific instructions to schedule
each reaction. These instructions take time to execute and add to the WCET of a reaction.
Each instruction is executed by a dedicated function in the LF runtime. This allows us to
use Platin again to analyze these functions to associate each instruction with its WCET
bound. To calculate a reaction’s WCET bound, we take the Platin bound and add the
bounds of each instruction used to schedule the reaction, giving us a total bound for the
WCET of a reaction, which also accounts for the scheduling time.

4 Evaluation

The proposed approach is demonstrated and evaluated by targeting the Patmos processor
and by using the Platin tool for WCET analysis. Our evaluation focuses on demonstrating
the feasibility and effectiveness of using LF to produce a predictable real-time application.
We start by presenting a simple example application to illustrate the basic analyzability of LF
reactors. Subsequently, we scale up to a medium-sized application to showcase the proposed
approach’s ability to handle more complex and realistic examples. For the medium-sized
application, we aim to comprehensively assess the end-to-end workflow from source code to
schedulability analysis, including the overhead introduced by the LF runtime.

4.1 A Simple Example Application
As an initial example for WCET analysis of a complete LF program, we use the
SimpleConnection program, shown in Figure 1. This program has four reactions, divided
into two reactors. The Source reactor (Listing 1) has a timer that every second triggers
its two reactions. The first reaction outputs the reactor shared state variable, s, and then
increments it. The second reaction negates the value of s before outputting it. The result of
these reactions is that each trigger outputs the negated count that the reactor has reached.
I.e., 0, −1, −2, −3 etc. After a delay of two seconds – which is managed by the LF runtime –
the Sink reactor’s first reaction is triggered with the previous output value, which it stores
in a reactor variable (Listing 2). We ignore the second Sink reaction as its only meant to
run when the program times out.

WCET 2024



4:8 WCET Analysis of LF Applications

Table 1 Individual WCET bounds in clock cycles of the reactions of Lingua Franca applications.

Application Function WCET Bound

Source reaction 1 969
SimpleConnection Source reaction 2 925

Sink reaction 1 540

Brakes reaction 497
Lidar reaction 946
Camera reaction 946

ADASModel Dashboard reaction 497
Processor reaction 1 1786
Processor reaction 2 2130

Analyzing the WCET bounds of these reactions is done as previously described. In
Table 1, we see the WCET bounds produced by Platin for each function (called “Sink
reaction X” or “Source reaction X”). These numbers are given to the quasi-static scheduler,
which attempts to construct a feasible schedule for them. To account for its overhead, i.e., the
execution of PretVM instructions, we also analyze the functions executing those instructions
and provide the numbers to the scheduler. The scheduler then uses the WCET number
of its instructions and those of the reactions and attempts to construct a feasible schedule
for the target, in this case, a single Patmos core. For example, the schedule would use the
scheduler instructions {EXE; ADDI} when triggering the Sink 1 reaction. The EXE instruction
requires 112 cycles to run (excluding the execution time of the called function), while the
ADDI instruction requires 403 cycles. So, the cumulative execution time of Sink 1 when
accounting for the scheduler is 1055 cycles.

The scheduler’s output is a quasi-static schedule that, within some hyperperiod, will
schedule all tasks on the available hardware. Reactions can be given deadlines that are bound
by their release times. If there exists no schedule that satisfiws all deadlines, the scheduler
throws an error. For example, if a reaction depended on Sink 1 with a deadline of 1000
cycles, the scheduler would trivially fail because it simply could not schedule Sink 1 early
enough to meet the deadline regardless of the rest of the schedule.

4.2 Medium-sized Application

As a medium-sized application, we experimented with and modeled the “Advanced Driver
Assistance System (ADAS)”, a ubiquitous system in the automotive industry [19]. In this
model, we have a processor that receives events from a Light Detection and Ranging (LiDAR)
device and a camera and sends commands to the brakes and the dashboard. In this system,
the dashboard shows a message when an object approaches the vehicle. It also triggers
brakes automatically when the object is too close. In Figure 2, we model each system part
as reactors connected by ports.

We again give the Platin-produced WCET bounds of each reaction in Table 1. Notice
how the bounds for the brake and dashboard reactions are the same. This is because these
reactions are only stubs, as we do not have a physical system to interact. This is also the
case for the LiDAR and Camera reactions. Therefore, only the processor reactions have
actual code. We use this application only to show the feasibility of implementing a real-work
application, which would differ from this one only by implementing the physical end-point
reactions and proper sensor fusion.
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Figure 2 The graphical representation of the reactors and their connection generated by the
Lingua Franca framework for the ADASModel LF application.

After we get the schedule devised by the quasi-static scheduler, we can evaluate whether
it satisfies our requirements. For example, we might want to be able to detect 100 times
per second whether breaking is needed using our default T-CREST test platform (Altera
Cyclone IV FPGA mounted on DE2-115 evaluation board). Our FPGA runs at 80 MHz,
therefore the deadline of 10 ms translates to 800 000 clock cycles. As part of the schedule
construction, the overhead of each reaction is accounted for, as well as the execution time of
other reactions that might run between the reaction’s arrival and its beginning execution. In
Figure 2, we have added the 10 ms as a deadline for releasing the brake reaction. In LF, all
other tasks preceding the braking must execute within the 10 ms, cumulatively.

To check whether the schedule can meet the deadline, we look at the execution chains of
the schedule. Any chain ending in the brake reaction must have a cumulative WCET bound
below the 800 000 cycles. The first chain in the scheduled hyperperiod executes the following
reactions: LiDAR, Camera, Processor 1, Processor 2, Brake, and Dashboard. The chain
until the braking uses the following PretVM instruction counts: 3xBEQ, 7xEXE, 2xJAL, and
4xADDI. Based on the Platin bounds on executing these instructions, they cumulatively add
4 086 cycles to the WCET. Coupled with the WCET of the reaction until and excluding the
brake, we get a total WCET bound of 9 894 for the reactions before the braking. This is
well below our limit, and so the schedule is valid. If the schedule had not been valid, the
scheduler would have thrown an error, saying it could not meet the deadline. For example,
we could trigger this error by reducing the deadline to 9 000 clock cycles.

In practice, the analysis must be done for all the execution chains in the scheduled
hyperperiod. However, for brevity, we will omit this for the other chains in the ADASModel
schedule.

4.3 Automated Solution
In the long term, we aim to streamline the development process for real-time systems by
implementing a one-click automated solution that integrates compilation, WCET analysis,
schedulability analysis, and scheduling. The automated solution will start by compiling the
reaction code and the LF runtime functions (which include the functions executing scheduling
instructions.) This code is analyzed using Platin to get the WCET bound of the reactions
and LF runtime functions. Next, the LF quasi-static scheduler organizes reaction execution
(classically called tasks) based on the provided WCET bounds and the deadlines and periods
according to the use case’s constraints. Finally, the scheduler performs schedulability analysis
automatically to ensure a feasible schedule exists before creating one. Thus, it produces
a schedule as an object file linked with the previously produced code to become the final
application executable (ELF file). All these steps have been carried out manually for this
paper. We aim to automate that process to ensure that only a correct-by-construction solution
is output, meaning the resulting executable will adhere to all specified time constraints.
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4:10 WCET Analysis of LF Applications

5 Related Work

Several projects aim to build time-predictable processors. One example is FlexPRET [36],
the latest version of the so-called precision timed machines [7]. FlexPRET also aims to be
a platform that supports LF applications. FlexPRET includes timing instructions for the
precise timing of reactions. Furthermore, FlexPRET implements fine-grain multithreading.
FlexPRET is not yet supported by any WCET analysis tool. However, as Platin now also
supports the RISC-V architecture [25], we will be able to adapt Platin for FlexPRET. Like
the multicore version of Patmos, the InterPRET [14] projects aim for a multicore version of
FlexPRET supporting parallel execution of LF actors on multiple cores.

ForSyDe (Formal System Design) [30, 31] is a methodology enabling high-level abstraction
modeling and design of heterogeneous systems-on-chip and cyber-physical systems. The
idea is to integrate formal methods from the specification phase and use formal refinement
techniques to bridge the gap between specification and implementation. Thus, creating a
correct-by-design system. The most interesting aspect related to our solution is the ability
to employ formally analyzable models of predictable platforms and applications to provide
service guarantees, which are essential in time-predictable applications.

MIRSA C [3] is a set of software development guidelines for the C programming language to
ensure that C code is safe, reliable, and maintainable. Even if these guidelines do not directly
address time-predictable systems, enforcing a strict coding standard helps avoid undefined
behaviors that can lead to unpredictable execution times. One very concrete guideline is the
prohibition of the use of dynamic memory allocation functions such as malloc(), calloc(),
and free(). These are restricted to avoid memory leaks, fragmentation, and unpredictable
behavior. The latter is particularly relevant for real-time systems since the time taken to
allocate or deallocate memory can vary significantly and can be difficult to predict.

The review presented in [35] discusses the current challenges in WCET analysis and
surveys several WCET tools, highlighting their methods, functionalities, and limitations.
Here, two main categories of WCET tools are identified: static analysis and measurement-
based or hybrid tools. Static analysis tools determine WCET by analyzing the code without
executing it. These tools construct a detailed model of the program and the processor to
estimate execution time bounds. They mainly focus on control-flow and data-flow analysis
to provide guaranteed upper bounds on execution times. Measurement-based or hybrid tools
(using measurements and static analysis) estimate the WCET by executing the program or
its parts on actual hardware or simulators. They measure execution times of code segments
and use these measurements to infer timing bounds. This approach often results in more
accurate estimates for complex systems but may lack formal guarantees. Commercial tools
examples include aiT [1, 9] from AbsInt, Bound-T from Tidorum [2, 12], and RapiTime
from Rapita Systems [4]. Examples from academia include Heptane [8], Chronos [17], and
SWEET [20].

6 Conclusion

This paper presented the integration of the time-predictable processor Patmos with the
Lingua Franca (LF) coordination language and the Platin WCET analysis tool. More
specifically, we used the WCET analysis tool Platin to analyze individual reactions of LF
reactors and the runtime of the quasi-static schedule. Using a simple and a medium-sized
application, our evaluation confirmed that carefully written LF programs can be analyzed for
WCET, creating a quasi-static schedule that fulfills all timing requirements for safety-critical
applications.
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