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Preface

Welcome to the proceedings of the 22nd International Workshop on Worst-Case Execution
Time Analysis (WCET 2024). This year’s edition of the WCET workshop is held on July 9th
and is co-located with the Euromicro Conference on Real-Time systems (ECRTS 2024) in
Lille, France. The WCET workshop is the main venue for research on the topic of worst-case
execution time in the broad sense.

This year’s edition starts with a keynote by Prof. Isabelle Puaut from IRISA–Univ. of
Rennes, that presents the main issues she, her students and her colleagues encountered in
building machine learning solutions for WCET analysis. The rest of the program consists in
2 regular papers that were peer-reviewed by 3 members of the program committee each, and
4 invited papers of excellent quality.

Many people were involved in the process of putting together a high quality program,
organising the workshop and publishing the proceedings. First, I would like to thank all the
authors that submitted their work to the WCET 2024 workshop. I also want to thank all the
members of the program committee for their time and energy in reviewing the papers and
making constructive feedback to the authors. I want to thank as well the steering committee
for trusting me to organize the workshop this year, and for their support all along the way.
The team at Schloss Dagstuhl has been of tremendous help in putting up the proceedings, so
I want to thank them and in particular Michael Wagner and Michael Didas for their careful
work and for their support at each step of the publishing process.

Last but not least, I would like to warmfully thank Peter Wägemann, who organized the
workshop last year and has taken time to help and guide me for the organization of this
year’s edition.

I hope that you will find this year’s program as interesting as I do, and that we will
manage to create once again the friendly yet studious atmosphere that characterizes the
WCET workshop.

Toulouse, France
June 21, 2024
Thomas Carle

22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024).
Editor: Thomas Carle

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
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Abstract
Real-time and energy-constrained systems heavily rely on estimates of the worst-case execution
time (WCET) and worst-case energy consumption (WCEC) of code snippets to ensure trustworthy
operation. Designing architecture-specific analytical models for time and energy is often challenging
and time-consuming. In situations where analytical models are unavailable or incomplete, machine
learning (ML) techniques emerge as a promising solution to build WCEC/WCET models. This
paper introduces WORTEX, a toolkit for WCEC/WCET estimation of basic blocks based on ML
techniques. To ensure the real-world applicability of its models, WORTEX extracts large datasets of
basic blocks from real programs and precisely measures their energy consumption/execution time
on the physical target platform. The dataset is used to train various WCEC/WCET models using
different ML techniques. Experimental results on simple and time-predictable hardware show that
even the most basic ML techniques provide accurate results, that never underestimate actual values.
We also discuss the use of explainability techniques to gain trustworthiness for the models.
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1 Introduction

Worst-case execution time (WCET) and worst-case energy consumption (WCEC) estimation
techniques play a crucial role in the validation of real-time systems. They provide upper
bounds of WCEC/WCET and allow to guarantee correct operation of real-time embedded
devices. Estimations of WCEC/WCET are particularly useful in battery-less devices, that
harvest energy from their environment, store it in a capacitor, and execute short bursts of
computation using the stored energy. For such devices, WCEC/WCET estimations can be
used by static checkpointing strategies [6, 21, 31], that select checkpoint locations in the
code to ensure that there is enough energy to reach the next checkpoint.
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1:2 WORTEX: WCET and WCEC Estimation Using Explainable ML

The state-of-the-art methods for statically estimating the WCET/WCEC of a program
commonly use the Implicit Path Enumeration Technique (IPET) [18, 13]. IPET estimates
WCET/WCEC by finding the longest path in the program’s Control Flow Graph (CFG), using
Integer Linear Programming (ILP) to avoid enumerating all paths in the CFG. The IPET
approach requires time and energy consumption data for the basic blocks 1 of the program,
which are usually derived from detailed architectural documentation of the processor. Such
information is not always available due to intellectual property restrictions. In cases where
they are accessible, it would require a detailed analysis of the documentation and extensive
validation of the obtained model, which is time-consuming. Moreover, the documentation
often does not include energy consumption information. As an alternative to an analytical
model, it is possible to directly measure the basic block time/energy consumption and
provide it as an input to IPET. However, the applicability of this technique is limited in
practice, because the measurement campaign has to ensure that every basic block is executed
sufficiently often to identify its WCET/WCEC. Moreover, this process needs to be performed
for every modification of the program.

To overcome these shortcomings, a new class of approaches has been introduced, that
leverages machine learning (ML) to estimate the WCEC/WCET of individual basic blocks.
These approaches involve training an ML model using a large dataset of representative and
varied basic blocks. The WCEC/WCET of individual basic blocks can then be used as inputs
to IPET to calculate WCET/WCEC at the program level.

Previous works in this area feature some limitations. Some use small datasets or operate
at the source code or intermediate code level [5, 11, 12, 30], which affects the model’s accuracy.
All previous ML models, including the most elaborated ones [3, 2] act as black boxes and
lack interpretability of the results. To address these challenges, we propose WORTEX, for
WORst-case execution Time and Energy consumption estimation using eXplainable machine
learning, a toolkit for WCEC/WCET estimation, that aims at overcoming the limitations of
existing techniques. WORTEX uses large and diverse datasets from AnghaBench [7] to train
the models. Furthermore, we leverage a local model-agnostic explainable artificial intelligence
technique [20] and discuss how such a technique can be used to understand the predictions,
find bias in the training dataset, and therefore gain confidence in the model.

As a case study, we selected the MSP430FR5969 low-energy processor [27], which is
extensively used in the battery-less community. To evaluate our solution, we conducted
experiments at both the basic block and program levels. To do so, WORTEX generated
models were integrated into the Heptane static WCET estimation tool [10].

Overall, our contributions are the following:
We propose WORTEX, a toolkit for WCEC/WCET estimation of basic blocks using ML
techniques. The simple ML models integrated in WORTEX (linear regression, gradient
boosting, multi-layer perceptron neural network) were selected because of their very fast
prediction, and good accuracy for the simple MSP430 platform. The loss function used
when training the models is tailored to the prediction of worst-case values.
We open-source a dataset of 30 000 basic blocks for the training of ML models [22]. All of
them have been measured and have energy consumption and execution time information.
We discuss the use of the LIME explainable AI technique [23] to validate the ML models
and gain confidence in the trained models.

1 A basic block is a CFG node, and is defined as a sequence of consecutive instructions with a single entry
point and no branching inside
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The remainder of the paper is organized as follows. Section 2 first compares WORTEX
with related works. Section 3 then gives an overview of WORTEX in an architecture-
independent way. The components of WORTEX that are specific to targeted architecture
(MSP430) are described in Section 4. Section 5, presents experimental results. Finally,
Section 6 discusses the use of explainable AI to validate the ML models. Section 7 concludes
and outlines future works.

2 Related work

This section reports previous research leveraging machine techniques for WCET and WCEC
estimation.

ML-based WCET estimation. Several methods to estimate the WCET using Machine
Learning (ML) have been proposed [5, 1, 16, 17, 5, 3, 11, 2]. The studies reported in
[5, 1, 11, 12] utilize worst-case event counts (number of multiplications, number of memory
accesses...) extracted from the intermediate representation of the code to train different ML
models, which are then used to calculate the WCET of a program in early development phases.
Similarly, Kumar’s research, described in [16, 17] estimate WCET by examining features
taken from the program’s source code. All these methods ignore important information
about how the generated code and hide the effects of compilation by operating at the source
code or intermediate code level, which might affect timing predictions. In contrast, the
research presented in [3, 2], like WORTEX, extract features from the binary code and use ML
techniques to predict the WCET of individual basic blocks. All the approaches cited above
treat the ML techniques as a black boxes. WORTEX add to them the use of explanations [20]
to gain more confidence in the predictions.

ML-based WCEC estimation. While numerous studies have explored the use of ML for
estimating average-case energy/power consumption (as reviewed in [8]), the application of ML
to estimate WCEC was only introduced in [12] and [30]. The work by Huybrechts et al. [12]
specifically focuses on intermediate code representation. In contrast, WORTEX enhances the
accuracy of estimation by operating on binary code. Moreover, Huybrechts et al. ML-based
WCEC estimation technique typically relies on a limited number of benchmarks for training,
whereas WORTEX leverages a large collection of basic blocks, ensuring a superior quality of
training. In the study [30], simulation (cycle accurate model) or FPGA synthesis (Register
Transfer Level RTL) is employed to capture the performance counters (such as cache misses
and branch predictor misses) and the corresponding energy consumption on their target. By
creating a dataset through this process, the authors employ linear regression as an energy
model that can forecast energy consumption when provided with performance counters for
code snippets. Contrary to this kind of approach, WORTEX does not need the RTL nor the
cycle-accurate model to create an energy model that makes it usable for any target.

3 Overview of WORTEX

Basic Blocks
Extraction

Program
Database

Energy/Time
Measurement Model Training ML Model

Figure 1 WORTEX’s prediction workflow.

WCET 2024



1:4 WORTEX: WCET and WCEC Estimation Using Explainable ML

WORTEX comprises three components, depicted Figure 1. The first component Basic
Blocks Extraction is responsible for extracting a large and unique dataset of basic blocks from
different programs. The second component measures the energy consumption and execution
times of all basic blocks from this dataset. The third component Model Training trains an ML
model and deploys explainability [20] to understand the impact of each instruction on basic
block WCEC/WCET. The obtained ML model can predict the WCEC/WCET of previously
unseen basic blocks. Our tool offers flexibility in the choice of machine learning models,
that can be used in different tools with minimal integration efforts. We have integrated the
generated models into the Heptane static WCEC/WCET estimation tool [10]. This section
describes the different components of WORTEX.

3.1 Dataset generation
To accurately predict WCEC/WCET using ML techniques, it is crucial to train the model
with an appropriate dataset. This section outlines the requirements for generating such
a dataset. Their implementation for a specific architecture (MSP430FR5969, from Texas
Instruments) will be described in Section 4.2. The requirements that we consider important
for accurate training are the following:

RD1: representative and diverse dataset. This requirement aims at training the
ML models on a set of basic blocks that provide good coverage of the instruction set of
the target architecture but also of the code constructs of the programming language used.
This requirement is met in WORTEX by using the AnghaBench benchmark suite [7] to
train the models. AnghaBench contains 1 million compilable programs, mined from the
largest public C repositories on GitHub 2.
RD2: balanced dataset. Compilers tend to generate basic blocks (e.g. for function
entry, exit, array indexing) that are identical or almost identical to other basic blocks (e.g.
same instructions but different registers). Such duplicated basic blocks do not improve the
quality of training and should be removed from the dataset that is used during training.
RD3: ability to execute basic blocks in isolation. Basic blocks are executed in
isolation to measure their energy consumption and execution time. Executing basic
blocks out of their original context may lead to exceptions (e.g. divisions by zero, invalid
memory accesses). A pre-processing phase has to be applied to each basic block to ensure
that it executes without error. For example, the contents of the registers used for indirect
accesses to memory have to be controlled to avoid indirect memory accesses.

3.2 Energy and time measurement
WORTEX is designed to produce models for worst-case timing and energy consumption.
Hence, the measurement process must meet the following two requirements:

RM1: measurement in worst-case scenario: The execution context of basic blocks,
in particular in architectures with caches and pipelines, largely influences the execution
time and energy consumption of basic blocks. For instance, cache misses cause longer
execution times and higher energy consumption than cache hits. Enforcing RM1 highly
depends on the targeted architecture, it is addressed in Section 4.3.
RM2: precise measurements: The precision of measurements obviously has an
impact on the quality of the energy/timing estimations. Addressing RM2 is particularly
challenging because basic blocks usually comprise a small number of instructions, which
makes measurements tricky on individual basic blocks. This is detailed in Section 4.3, by
performing measurements on a series of basic blocks instead of individual basic blocks.

2 AnghaBench dataset: https://github.com/brenocfg/AnghaBench

https://github.com/brenocfg/AnghaBench
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3.3 Model creation
Using the collected dataset, WORTEX includes three ML models capable of conservatively
estimating basic block’s WCEC/WCET:

Quantile Linear Regression (QLR) [15]. It is a statistical technique that shows
how the input variables (basic block) affect linearly the output variable (WCEC/WCET).
They offer a more detailed view compared to classic linear regression by looking at the full
range of possibilities for the dependent variable (WCEC/WCET), not just its average.
Gradient Boosting (GB) [26]. Gradient boosting constructs a model based on a set
of decision trees. In contrast to linear regression GB can capture non-linear relationships.
Multi-Layer Perceptron (MLP) [25]. An MLP is a type of artificial neural network
featuring layers of interconnected nodes or neurons. It is particularly skilled at modeling
intricate, non-linear relationships in the data.

Deploying the ML models is performed in two classical phases: the training phase and the
estimation phase.

Training. During the training phase, WORTEX trains ML models on a large dataset to derive
a WCET/WCEC model at the basic block granularity. Training is performed once for each
specific micro-architecture (in our use case, the MSP430FR5969). The algorithms learn from
features extracted from the basic blocks. Due to the simplicity of the targeted architecture,
WORTEX currently uses static features. The features are mainly the proportions of different
types of machine instructions across their various operand addressing modes divided by the
total number of instructions in the basic block, for example [29]. The algorithms analyze
features extracted from basic blocks, utilizing all MSP430 machine instructions across their
various operand addressing modes. By representing instruction types as proportions, the
timing/energy model created by WORTEX becomes independent of the basic block’s length.

To mitigate the risk of underestimation, we leverage a quantile loss function, that
penalizes overestimations and underestimations asymmetrically. The quantile loss evaluates
the disparity between predicted and actual quantiles and for a given quantile q where
0 < q < 1 is defined as:

Lq(y, ŷ) =
n∑

i=1
(q − 1{yi − ŷi < 0}) · (yi − ŷi)

where:
yi and ŷi are respectively the true value and the predicted for the i-th observation in the
dataset
1{yi − ŷi < 0} is an indicator function that equals 1 if the condition yi − ŷi < 0 is true
and 0 otherwise.

Prediction. WORTEX estimates the WCEC/WCET at the basic block level. To estimate
WCEC/WCET at the program level, the program is split into basic blocks, the features of
basic blocks are extracted and the ML model is then applied. The estimated energy/timing
can then be given as input to a static WCEC/WCET analysis tool.

4 Specifics of WORTEX on MSP430

This Section describes the components of WORTEX that are specific to the low-power
microcontroller MSP430FR5969.

WCET 2024



1:6 WORTEX: WCET and WCEC Estimation Using Explainable ML

4.1 The MSP430FR5969 microcontroller
The MSP430FR5969 is an energy-efficient and low-cost microcontroller based on a 16-bit
CPU, popular for applications powered by ambient energy. The micro-architecture of the
MSP430X CPU series is simple. The architecture has no data cache, no branch predictor,
and features a very simple pipeline with only 3 stages. The MSP430FR5969 features two
main memories: Volatile Memory (VM), more precisely 2KB of SRAM, and non-volatile
memory (NVM), more precisely 64kB of non-volatile ferromagnetic RAM (FRAM)[28]. The
FRAM controller uses a small 2-way associative cache that has a 64-bit line size (4 16-bit
instructions) to store pre-fetched instructions. In our use case, the code is stored in NVM
and the VM contains the program data and stack.

4.2 Dataset generation
WORTEX first cross-compiles the numerous C sources from the AnghaBench benchmark
suite into assembly language. At this stage, the generated basic blocks do not yet meet
requirements RD2 and RD3 described in Section 3.1: many redundant basic blocks exist in
the data set (RD2), and some of them may cause errors when executed in isolation (RD3).

Regarding the elimination of redundant basic block (RD2), preliminary experiments on the
MSP430FR5969 have shown that the specific general-purpose register used in an instruction
has negligible impact on its WCEC/WCET. Therefore, basic blocks are pre-processed to
use a specific general-purpose register for all instructions. Duplicated basic blocks are then
removed from the dataset.

Further pre-processing is required to ensure that basic blocks can be executed in isolation
(requirement RD3) without addressing errors. This is achieved as follows:

For absolute addressing, each accessed symbol/address is replaced with a predetermined
location in NVM.
For indirect accesses, where the address to be accessed is stored in a register, we face an
additional challenge. In such cases, we need to have control over the value stored in the
register itself. To address this, we have selected one of the registers to be a controlled
base register used as a target for every indirect access. This register holds the address of a
chosen memory location in the VM. We further replace any written instruction targeting
this register with another one.

Simulation shipped with the MSP430 GNU Debugger (GDB) was used to check that no
run-time error occurs and that all memory accesses fall in the VM.

4.3 Energy and timing measurement
Measurement in worst-case scenario (RM1). Enforcing the worst-case execution scenario
on the MSP430FR5969 architecture is achieved through a control of its two main sources of
variability, its instruction cache and its pipeline.

The worst-case scenario regarding the instruction cache is enforced by controlling the
layout of basic blocks to maximize the number of cache misses. The end of the first instruction
of each basic block is aligned on a cache-line boundary, as depicted in Figure 2a. Fetching the
first instruction (line 9) will thus trigger a first cache miss. Then, the second instruction (line
10), belonging to another cache line, will also generate a cache miss, loading the subsequent
instructions.

Regarding pipeline effects, adding JMP (unconditional jump) and NOP instructions
before the basic block induces a pipeline flush (lines 5-7), as the NOP instruction, while
loaded in the pipeline, will not be executed.
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Duplicate
n times

CACHE MISS

CACHE HIT

1     START_MEASURE
2    JMP .BB
3 . balign 8
4
5     NOP
6     NOP
7     NOP
8 .BB:
9     PUSHM .W #2, R10
10
11     SUB.W #10 , R10
12     MOV.W R4 , 6( R15)
13     MOV.W R13 , 4( R15 )
14     JMP .END
15
16 .END:
17     END_MEASURE

CACHE MISS

CACHE HIT
CACHE HIT

------- Cache line frontier -------

------- Cache line frontier -------

------- Cache line frontier -------

(a) Ensuring the worst case scenario for the
MSP430FR5969 instruction cache and pipeline.

Measurement
Platform

Host
Computer

5. Send results1. Flash program

2. Platform ready

3. Start measureTarget
4. End measure

(b) Basic block measurement process.

Figure 2 Measuring a basic block energy consumption and execution time.

Precision of measurements (RM2). To measure the energy consumption and execution
time of the MSP430FR5969, we need to be able to handle the scale difference between
the measurement tool and the basic block execution time. This is achieved by duplicating
the basic block multiple times while making sure to keep the worst-case memory layout
as explained previously. Furthermore, to synchronize the basic block execution with the
measurement platform, we add instructions to signal the start and the end of the execution of
the basic block using General-Purpose Input/Output ports (GPIOs), (START_MEASURE
and END_MEASURE on Figure 2a).

The measurement process involves three actors, as depicted in Figure 2b: the target
(MSP430 under analysis), a measurement platform, and the host computer. The host
computer initiates the process by flashing the instrumented code on the target (1). Once
flashed, the target actively waits for the measurement platform Platform Ready signal (2).
As it receives it, it sends back a signal Start Measure and starts executing the code (3).
As soon as the Start Measure signal is received, the measurement platform measures the
energy consumption of the target, until it receives the signal End Measure (4), marking the
end of basic block execution. The measurement platform then computes the basic block
execution time (defined by the time between Start Measure and End Measure). Finally, the
measurement platform sends the measurements to the computer (5), which, in turn, will
flash a new program to the target (1).

5 Experimental evaluation

Section 5.1 first describes the experimental setup used. Then WORTEX is evaluated
according to different metrics: quality of predictions at the BB level (Section 5.2) and quality
of predictions at the program level (Section 5.3)

5.1 Experimental setup
The target platform for our experiments is the MSP430FR5969 microcontroller. All code
is stored in NVM and the VM is used to store program data and stack. The basic blocks,
extracted from the AnghaBench benchmark suite [7] are compiled using the GCC MSP430
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compiler version 9.3.1 with no optimization (-O0). Obtained basic blocks are pre-processed
and filtered as explained in Section 4. Basic blocks are duplicated 50 times. The measurement
platform, similar to the one used in [4], includes the following components:

A stable power supply (N6705A [14]) providing 3.3V to power the MSP430.
A shunt resistor with a resistance of 4.7Ω to measure the current consumed by the
MSP430. This resistor has been chosen to ensure a low voltage drop (around 4.7mV )
and is connected to an operational amplifier (INA214CIDCKR) to amplify the voltage
drop amplitude, allowing precise measurement. The amplified voltage is then measured
with an ADS8661 analog-to-digital converter.
A relay array to isolate the MSP430 from the computer when measuring energy. It
prevents any energy interference coming from the JTAG connection.
A bare metal Raspberry PI (RPI) 3B+ is used for synchronization with the MSP430, for
controlling the isolation of the MSP430, and for time/current consumption measurement.

Section A.1 in the Appendix explains how we deduce the energy consumption from the
measured current.

For each (duplicated) basic block, we perform 100 measurements and retain the highest
value. Subsequently, we divide this value by the duplication factor to get the basic block
energy consumption and execution time. A dataset of 30 000 unique basic blocks with their
energy consumption and execution time was used, where 80% of the basic blocks were used
for training and cross-validation and 20% were used for testing.

5.2 Analysis of WCET and WCEC predictions at BB level
Table 1 qualifies the results of the predictions at the BB level for the three models (QLR, GB,
and MLP), by employing quantile values of 0.99 and 0.999993. The quality of predictions is
evaluated using two metrics.

Mean Average Percentage Error (MAPE): MAPE = 1
n

∑n
i=1

∣∣∣ Ai−Pi

Ai

∣∣∣ × 100%, where Ai is
the actual value, Pi is the predicted value and n is the number of basic blocks. The lower
the MAPE, the more accurate the model, disregarding under/overapproximations.
Underestimations: percentage of basic blocks whose WCEC/WCET is underestimated:
Underestimation (%) = Nunderestimated

Ntotal
× 100

Table 1 Comparison of MAPE and Underestimation Percentages for WCET and WCEC Predic-
tions at Quantiles 0.99 and 0.99999 Across Models.

Model MAPE Underestimation (%)
Quantile 0.99 Quantile 0.99999 Quantile 0.99 Quantile 0.99999

WCET WCEC WCET WCEC WCET WCEC WCET WCEC
QLR 56.7 % 58.0 % 101.3 % 97.3 % 0.69 % 0.52 % 0 % 0 %
GB 42.1 % 39.8 % 93.0 % 97.3 % 0.56 % 0.65 % 0 % 0 %

MLP 8.2 % 16.2 % 41.1% 99.1 % 0.65 % 1.07 % 0 % 0 %

The results show that the MLP model outperforms QLR and GB in terms of accuracy,
with the lowest MAPE for both time and energy and both quantile values, except at WCEC
for 0.99999 quantile where the QLR and GB model are more accurate. As we shift from

3 A quantile of 0.99 (resp. 0.99999) means that we aim at predictions that are larger or equal to the
actual WCEC/WCET in 99% (resp. 99.999%) of the cases.
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quantile 0.99 to quantile 0.99999, accuracy degrades for all models, as shown by the increase
in the MAPE metric. However, this degradation comes with a sharp decrease in the ratio
of underestimations (no underestimation is actually observed), which is essential when
estimating WCEC/WCET. More complete results about the quality of predictions for the
different techniques are given in Section A.2 in the appendix.

5.3 Analysis of WCET and WCEC predictions at program level
This experiment aims at evaluating the error made by WORTEX when it is used by the
Heptane static WCET analysis tool to estimate WCEC/WCET of entire programs, from
the Mälardalen benchmark suite [9]. In this experiment, the WCET/WCEC predicted by
WORTEX (for 0.99999 quantile) is fed to Heptane that uses the standard Implicit Path
Enumeration Technique (IPET, [18]). We selected a small subset of benchmarks for which
we can generate input data that systematically execute the longest execution path found by
Heptane, ensuring that the pessimism comes from WORTEX and not from Heptane.

Table 2 Observed vs predicted execution time/energy consumption (time in µs, energy in nJ).

Program
Maximum
observed

QLR based
estimations

GB based
estimations

MLP based
estimations

Time Energy Time Energy Time Energy Time Energy
bs 293 358 507 516 445 459 334 376

fibcall 1 035 1 059 1 131 1 132 1 181 1 214 1 197 1 380
lcdnum 919 1 019 1 506 1 516 1 372 1 484 1 077 1 260

nsichneu 24 672 25 179 36 252 37 256 33 367 35 141 27 248 31 967

Overestimation mean 48.3% 36.9% 37.6% 32.0% 14.3% 21.5%
min 9.2% 6.9% 14.1% 14.6% 10.4% 5.0%

Table 2 shows the maximum observed execution time and energy consumption for each
program (executed its worst-case input) and the prediction from the different ML techniques.
Regardless of the benchmarks studied, we can make several observations. First, thanks to the
loss used during the training phase, the prediction always overestimates the observed execution
time and energy consumption. Second, MLP-based techniques significantly outperform QLR
and GB. Third, the overestimation for the best-performing technique MLP is reasonable
(14% on average for time, 21% for energy).

5.4 Inference time
One of the interests of using ML techniques for WCEC/WCET estimation if that the
predictions are fast enough to be used in WCET/WCEC analysis tools. Table 3, reports the
average inference time of one basic block for each technique.

Table 3 Average inference time per basic block, on an Intel i7-11850H CPU.

Method QLR GB MLP
Average time (µs) 1.95 48.95 35.88

Regardless of the chosen technique, the inference time is within the micro-second range.
As anticipated, the QLR model, due to its simplicity, exhibits the shortest inference time,
surpassing the other techniques by approximately a factor of 20. In contrast, GB and MLP
show higher inference time but offer better precision.
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6 Discussion on explainable AI

Most ML techniques, while making accurate predictions, are black-box techniques, meaning
their users cannot easily understand why they make their decisions. Explainability [20]
techniques help understand why a model makes certain predictions, by revealing the factors
that influence the estimations. Explainability helps detect misbehaviors of ML models, caused
for example by biased datasets or sub-optimal selection of features. Once the misbehaviors
are detected and corrected, confidence can be gained in the models.

Several techniques for explainability exist for black-box models. Among them, we focus
in this paper on LIME [23] (Local Interpretable Model-agnostic Explanations). LIME creates
interpretable models (e.g., linear regression) that approximate the predictions of the black-box
model around a specific data point of interest. It achieves this by generating a synthetic
dataset (i.e., neighborhood points) and training a simple, interpretable model on it (a linear
regression in our case). By analyzing the behavior of this new simple local model, we can
gain insights into the factors influencing the model’s decision at that particular data point.

Figure 3 LIME Explanations for MLP on a BB under different training settings (quantile value,
training dataset).

Figure 3 illustrates the explainability of the MLP model generated by LIME for a single
BB sample. This MLP is trained under different configurations of quantile loss and dataset
compositions to investigate the model’s decisions. The figure is divided into three generated
LIME explanations, where the x-axis represents the direction of influence that each feature
has on the model’s prediction (which we retrieve from a linear regression local model):
positive values are associated with an increase in the predicted outcome, while negative
values suggest a decrease. The y-axis lists the non-null features of the BB: instructions (type
and addressing mode), with a percentage indicating their occurrence rate within the BB.

In Part (1) of Figure 3, the MLP is trained with a quantile loss of 0.99999. The results show
a significant negative influence of certain features like MOV.W_X(Rn)_Rn and MOV.W_Rn_X(Rn),
which is counter-intuitive considering the known indirect access mode instruction latencies
for the MSP430 [29]. This suggests that the extreme quantile value, aiming to capture the
worst-case predictions, may be skewing the model’s focus towards only the nb_inst (number
of instructions) feature to make a conservative prediction independently of the actually
executed instructions.

Part (2) of Figure 3 presents the LIME explanations when the MLP is trained with a
quantile loss of 0.99. Here, the influence of features appears to align more closely with the
MSP430 instruction latencies [29], except for SUB.W_X(Rn)_Rn. Although it should have the
same influence factor as the MOV.W_X(Rn)_Rn instruction, it does not. Upon investigation,
we found that the subtraction instruction appears less frequently than the MOV instruction
within our training dataset.
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Finally, to investigate whether the hypothesis that the rarity of the SUB.W_X(Rn)_Rn
instruction influenced the explanation, we explore in part (3) of Figure 3 LIME explanations
with post-augmentation of the training dataset (used in the previous two experiments) with
the test set, under the same quantile loss of 0.99. This data enrichment leads to a further
refined interpretation of feature influences, correcting earlier misalignments between LIME
explanation and the MSP430 documentation [29], for instance SUB.W_X(Rn)_Rn has now a
positive influence.

These findings highlight the importance of selecting an appropriate quantile loss value
ensuring the comprehensiveness and the empirical safety of the ML models. They also show
that XAI [20] techniques can help us diagnose our model and dataset.

7 Conclusion

This paper has introduced WORTEX, a toolkit for WCEC/WCET estimation of basic blocks
using ML techniques. WORTEX was shown to produce safe yet precise WCEC/WCET
estimates for low-power processors. As future work, we believe that integrating WORTEX
in a compiler toolchain would allow us to explore program optimizations with both time
and energy in mind would be interesting. In addition, further exploring other explainability
techniques like SHAP [19] or Anchors [24] will help the design of WCEC/WCET estimation
techniques on more complex machine learning techniques, for example, Transformers [2].
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A Appendix

A.1 Computing the energy consumption from the current consumption

The energy consumption of a basic block is computed from voltage and current consumption
using equation 1.

E =
∫

U × i(t)dt (1)

As we work with discrete samples, equation 1 becomes equation 2:

E =
n∑

k=0
U × i(k) × tsample = U × tsample ×

n∑
k=0

i(k) (2)

tsample defines the time needed to get a sample, is supposed to be the same for each
sample, and is computed as shown in Equation 3.

tsample = Tmeasure

nsample
(3)

A.2 Detailed results on BB prediction

Figure 4 Predictions using QLR for quantile values of 0.99 (left) and 0.99999 (right).
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Figure 5 Predictions using GB for quantile values of 0.99 (left) and 0.99999 (right).

Figure 6 Predictions using MLP for quantile values of 0.99 (left) and 0.99999 (right).
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modern processors. From small medical (implantable) devices over automotive and avionics
applications to large industrial-control scenarios, systems that require resource budget
guarantees for safe execution need tooling support to determine resource bounds analytically.
The basic principle of worst-case analysis is to combine a representation of the system’s
program paths with a cost model of the underlying hardware. With this knowledge, the
worst-case analysis generates a mathematically sound problem formulation, such as an integer
linear program (ILP). When given to a mathematical solving tool, the solution of this
formulation yields resource-consumption bounds, which are used for offline budgeting of
runtime resources.

Resource Other Than Time: Worst-Case Energy Consumption. This method of combining
a program-path model with a cost model was introduced in the 1990s [35, 39] and referred
to as the Implicit Path Enumeration Technique (IPET). The original purpose of the IPET
targeted the timeliness of real-time systems. However, Jayaseelan et al. later demonstrated
the applicability of this approach for determining worst-case energy consumption (WCEC)
bounds [28]. In the same way, WCET bounds are crucial for meeting deadlines in real-time
systems; WCEC estimates are helpful in energy-constrained settings to guarantee the safe
completion of tasks under energy budgets. This paper addresses the two resources: time and
energy within the Platin tool with WCET/WCEC analyses.

Necessity for Open Architectures & Open Tooling Infrastructures. The Platin tool was
originally introduced more than ten years ago [23, 40] as a portable LLVM annotation and
timing toolkit. Platin’s development started with the T-CREST project [44], targeting
time-predictable multi-core architectures. With the entire technology available as open
source, we argue that the research community requires both open processor architectures and
the respective worst-case tooling support to advance state-of-the-art without unnecessary
barriers (i.e., licensing, closed-source infrastructures). In line with this rationale, all our
improvements and extensions to the Platin tool have been published as open-source over
the last few years.

Contributions. The core contribution of this work is an overview of these novelties compared
to Platin’s initial release [23]. The novelties include both pillars of worst-case analysis:
(1) Regarding the hardware-dependent cost modeling, Platin now supports four new
architectures (ARMv6-M, ARMv7-M, RISC-V, AVR). (2) Given the hardware-agnostic
program-path analysis, we give insight into the introduced support for system-wide resource-
consumption analysis and Platin’s annotation infrastructure. Besides the overview of existing
work, we evaluate Platin for the Patmos and RISC-V (RV32IMC ISA) architectures.

Paper Organization. The paper is structured as follows: Section 2 gives a general overview
of the tooling infrastructure of and around Platin. The existing and newly introduced
architectures are part of Section 3. Section 4 describes extensions of Platin for whole system
time and energy analysis. Section 5 presents evaluation results. Section 6 discusses related
work. Section 7 concludes the paper.

2 Overview of the PLATIN Analysis Tool

The Platin ecosystem displayed in Figure 1 combines compilation and WCET analysis
to make use of high-level information that the compiler already has [40]. The source code,
potentially enriched with user-annotated control-flow information (so-called flow facts) such
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Û
#pragma loopbound min 1 max 42
while (*p < lim) {

// ...
}

Figure 1 Overview of Platin’s ecosystem for compiler-analysis integration providing analysis-
aware compilation to improve accuracy with automatically collected program meta-information.

as loop bounds, is compiled by an extended version of the clang compiler into the final
binary and a meta-information file (.pml). This meta-information contains the program
control flow and flow facts in the YAML1-based Program Metainfo Language (PML) format
specific to Platin. Specifically, it contains the program’s control-flow graph (CFG) in an
intermediate representation (IR) and on machine-code (MC) level. A control-flow–relation
graph (CFRG) [25] matches program paths between the two representations even across
different optimization-induced control-flow transformations. The CFRG is thus a useful tool
to lower IR-level flow facts (both annotated and compiler-inferred) to the machine-code
level, where the actual timing analysis is performed. Platin uses the CFGs and the lowered
flow facts to derive an IPET formulation and, finally, transforms this formulation together
with a target-specific cost model from Platin’s architecture models into an integer linear
program (ILP). An external ILP solver (e.g., lp_solve, gurobi) then yields the resource
bounds.

At the heart of Platin are the architecture models, which provide the translation from
control-flow information to platform-specific resource demands. The core component for
each of Platin’s architecture models is a cost model of the machine instructions, informing
Platin in how many processor cycles each instruction is executed in the worst case. Modeling
of the microarchitecture, such as processor pipelining or caches, refines the model, allowing
for more accurate bounds than pessimistic assumptions about cache misses and pipeline
stalls.

In the following, we give further insights into the analysis-aware compilation process (Sec-
tion 2.1) and other tools of Platin besides the analysis (Section 2.2).

2.1 Analysis-Aware Compilation with Clang
For Platin to perform its analyses, it needs the control-flow and flow-fact information
provided in the PML format. Platin uses this data-serialization format to store and retrieve
relevant program information for the worst-case analysis. Our fork of the LLVM compiler
framework [32] includes support to automatically create the accompanying PML files for
each compilation unit with a mixture of user-annotated and compiler-generated knowledge.
The LLVM/clang infrastructure’s code base is rapidly changing, which leads to the challenge
of keeping our analysis infrastructure up to date with new LLVM/clang releases. To make

1 YAML data-serialization language: https://yaml.org
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Table 1 Overview of Platin’s supported architectures with respective processor implementations.

Architecture Processor Implementation
Patmos Chisel-based implementation with FPGA synthesis (Altera DE2-115)

ARMv6-M NXP FRDM-KL46Z with ARM Cortex M0+ [2, 3, 20]
ARMv7-M XMC4500 with ARM Cortex M4 [4, 5, 27]

RISC-V ESP32-C3 supporting RV32IMC extensions [15, 43]
AVR ATmega1284p [6, 7]

forward compatibility and version updating as easy as possible, we strive not to change the
core LLVM code and only add code specific to our use cases. That way, we can benefit
from improvements in the LLVM infrastructure (e.g., novel analysis passes) with minor
changes (e.g., adapting the PML export logic).

The compiler first takes the C source code and compiles it into LLVM intermediate
representation (LLVM-IR). Any flow fact information, including loop bounds provided as
pragmas, is embedded in the LLVM-IR to maintain it through the compilation pipeline [25].
Besides the program code, required standard libraries for the target can be linked on the
LLVM-IR level with llvm-link. This enables a whole program view for the remaining steps,
including optimization and PML export.

For targets that cannot be linked with clang or where libraries are not available as
source code, the compiler produces object files, which can then be linked (without further
optimizations) with an external linker. Library functions are only available at link time;
however, they are challenging if they are part of any program path beginning from the
analysis entry point. A timing bound can be derived solely from the machine code or must
be known from external sources.

The backend exports the control flow and flow-fact information at the last stage of the
compilation, where the machine instructions and their final order have been determined. The
PML format and the compiler code managing its export are architecture-independent, giving
seamless support for all current and future architectures.

2.2 PLATIN’s Supporting Tools
Besides worst-case analyses, the Platin ecosystem provides several accompanying tools
that support the analysis. Visualization of the CFRG allows debugging in cases where
the one-on-one mapping is violated. Likewise, ILP visualization makes understanding the
analysis results possible, while an interactive version enables live analysis in large projects.

Integration with external analysis tools (e.g., aiT) and transformation tools from and
to the PML format allow Platin to profit from existing analyses. A configuration tool
inspired by pkg-config helps to invoke tools with the correct options (e.g., target-specific
flags, analysis entry) to guarantee interoperability with Platin.

3 PLATIN’s Support for Multiple Architectures

The original version of Platin had full support for the Patmos processor and initial support
for the ARM architecture, expressing the hope that using LLVM as a basis would allow
for quick development of further backends [23]. This hope proved warranted, as Platin
now supports multiple architectures. Table 1 gives an overview of the available architecture
backends and corresponding processor models, further described in the following.
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Patmos Architecture. Platin was initially developed for the Patmos architecture as part
of the T-CREST project [44]. It provides full support for the architecture, which is also
the default target [45]. As Patmos was developed explicitly for real-time systems, it has a
unique cache structure: It uses a method instead of an instruction cache [11], which loads
complete methods or subsets of them at predefined points in the program. It also has a
dedicated stack cache for caching stack-local data. Platin supports modeling both of these
caches [26, 29]. Patmos also has a traditional data cache. As Platin does not have native
data-cache modeling, it assumes all data-cache accesses miss. However, when integrating with
the AbsInt aiT analysis tool, AbsInt’s data-cache modeling can be leveraged for improved
WCET bounds.

ARM Architectures. Platin currently has support for the ARMv6-M and ARMv7-M
versions of the ARM architecture. For the ARMv6-M backend, namely for the NXP FRDM-
KL46Z with a Cortex M0+ processor, we demonstrated the feasibility of automatic derivation
of the cycle costs of the timing models [50, 51]. The Cortex M0+ has a comparatively
simple microarchitecture, which is not modeled explicitly but is part of the derived model.
The ARMv7-M backend, which is for the XMC4500 with a Cortex M4 processor, features
integrated modeling of the processor pipeline and the instruction cache [41] building upon
the concept of microarchitecture execution graphs [52].

RISC-V Architecture. Additionally, we introduced support for the open-source hardware
standard RISC-V [43] as an additional backend [12]. The supported ESP32-C3 [15] system-on-
chip, which uses the RV32IMC instruction set, features a 4-stage pipeline and zero-wait-state
memory for both instruction and data access. Due to the lack of documentation on the
timing behavior, the timing model is derived from measurements, including the effects of
pipelining.

AVR Architecture. We further extended Platin to support the AVR architecture, often
utilized for embedded systems and popular Arduino projects. AVR microcontrollers typically
have a relatively simple microarchitecture that allows straight-forward hardware models and
their integration into Platin, in our case for the ATmega1284p [6]. Almost all instructions
are executed with constant timing, documented in the AVR Instruction Set manual [7]. As the
ATmega1284p does not have integrated caches, Platin’s AVR backend allows for accurate
WCET-bound predictions. To underpin this statement based on the exemplary benchmark
count_negative from the TACLeBench suite [17]: This benchmark avoids overestimations
from the program-path analysis and, consequently, helps to reveal pessimism originating from
the architecture modeling. Platin’s AVR backend reports 24009 cycles while the (straight-
line code) measurement counts 22560 cycles: These results indicate minor analysis pessimism
with the overestimation by 6 % and highlight Platin’s applicability for the predictable AVR
architecture.

4 PLATIN’s Path-Analysis & Annotation Extensions

Besides Platin’s support for several architectures, several works extended the analysis toolkit
to support whole-system analyses (see Section 4.1 and 4.2) and express semantic annotations
across the system stack (see Section 4.3).

WCET 2024
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4.1 SysWCET: Whole-System Response-Time Analysis
With static real-time analysis, we calculate the response-time bounds of digital systems for
(external) events. Usually, we first calculate the WCET of each task in isolation before the
worst-case response-time (WCRT) analysis takes the surrounding execution context (i.e.,
other tasks, the operating system, IRQs) into account. While this two-step approach reduces
complexity, it accumulates pessimism as program-level flow constraints cannot interact with
system-level constraints. With SysWCET [14], Platin can express the WCRT analysis for a
task as a WCET analysis of the whole system while executing that task.

SysWCET formulates an ILP that encodes not only the intra- and inter-procedural
control flow graphs but also the system-state transition graph (SSTG) [13], thus allowing for
function- and system-level flow constraints. To calculate the SSTG, we perform an abstract
interpretation of the complete system, including the operating system, preempting interrupts,
and all tasks with their (fixed-priority) scheduling semantics. Hence, the SSTG includes all
synchronous and asynchronous control-flow transitions between tasks and interrupt handlers.

For SysWCET, we extended PML to store the different control-flow levels (function, task,
system) and generalized the IPET to encode those levels into a single ILP simultaneously.
Hence, ILP-encoded flow-fact constraints can include variables from all control-flow levels. For
example, SysWCET can express that two branches in different tasks are mutually exclusive,
further tightening the WCRT bounds. Furthermore, parametric annotation languages (see
Section 4.3) allow for more accurate, context-sensitive timing bounds.

4.2 SysWCEC: Whole-System Energy-Consumption Analysis
A further extension to the system-state graph provides Platin with knowledge about the
devices present in the system, their state (on/off), and how much power they draw in the
respective state. Combined with the timing analysis, this enables Platin to yield worst-case
bounds on the energy consumption of the analyzed systems [54]. Comparable to SysWCET,
the energy-related analysis can determine the code’s worst-case energy demand between two
arbitrary program points. Thereby, the analysis determines the worst-case response energy
consumption of tasks, that is, the demand from start to finish of an operation, including all
power-state changes and the scheduling semantics. This interplay between types of worst-case
analyses underlines the usability of analysis techniques originally introduced for timeliness to
also work for the energy resource.

Beyond the modeling of simple on/off states of devices, an additional enhancement keeps
track of internal device states and configurations, enabling fine-grained modeling of device
behavior across system states [42]. As a result, this enables Platin to derive more accurate
resource bounds, for example, for modeling the states of transceiver devices. The scope of
these energy-related extensions goes beyond the worst-case execution-time analysis of real-
time systems since these analyses are beneficial for highly energy-constrained systems, such as
intermittently-powered embedded systems. One example is systems with intermittent power
supply that, for example, harvest their energy through solar cells within the battery-free
Internet of Things [1].

4.3 System-Wide Annotation Support
Within system-wide analyses, the operating system’s kernel represents an interesting target
for the static timing analysis, as the WCET of a system call is not static but heavily
depends on the system state. One solution proposed [37] to resolve this lack of application
information within kernel-level analyses is to move to a parametric analysis that can jointly
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void func(void *data , size_t len) {
for ( size_t i = 0; i < len; i++) {

# pragma platina lbound " max_len "
/* ... */

}
}

# pragma platina let " max_len =12"
func(input , 12);

# pragma platina let \

" max_len = NUM_TASKS "
func(tasks , numReadyTasks ());

Figure 2 Parametric loop annotation in function func assigning context-sensitive values to the
symbolic variable max_len at the call sites as manual loopbound (12) and system fact (NUM_TASKS).

Table 2 Reasoning for excluding some of the TACLeBench benchmarks from the evaluation.

Reason for exclusion Benchmarks

Recursion ammunition, anagram, bitcount, bitonic,
fac, huff_enc, quicksort, recursion

Not self-contained DEBIE, PapaBench, rosace
Infeasible loop bound rijndael_dec, rijndael_enc

consider both applications and the backing RTOS. SWAN [48] addresses this challenge
by introducing system facts, a unit of information gained from system-level analysis and
referenced in source-level, parametric annotations within the operating system code. By
evaluating the annotation expressions over the interaction’s system facts and lowering the
flow facts gained to the machine-code level with the aid of CFRGs [25], Platin can thus yield
system-context–specific timing bounds for individual system calls. PragMetis [49] extends
this parameterization from a per-system-interaction level to smaller structural contexts such
as call- and loop-contexts, as shown by the example in Figure 2. This allows Platin to
express parametricity within a single system call and eases the use of parametric annotations
within application-level libraries that often exhibit similar context sensitivity.

5 Evaluation

We evaluate the performance of Platin on the TACLeBench benchmark suite [17]. However,
we had to exclude some programs. As Table 2 shows, eight programs were excluded for using
recursion, as Platin cannot handle recursion. The three Parallel benchmarks (DEBIE,
PapaBench, rosace) were excluded for not being self-contained and needing OS support
for threading. Finally, two benchmarks (rijndael_dec, rijndael_enc) include invalid
loop bounds. We excluded the benchmarks as Platin requires correct bounds to produce
meaningful results. After these necessary exclusions, 47 benchmarks remain for the evaluation.

In Table 3, we give the Platin-provided bound for the remaining benchmarks of the
TACLeBench suite. We compare the measured execution time for each architecture against the
Platin bound. The measured times for the Patmos target are with the data cache disabled,
equivalent to Platin assuming all data-cache accesses miss. This can give us a slight sense of
the efficiency of Platin, though we must stress that our measured times are not guaranteed to
be the true WCETs since TACLe does not guarantee the input exercises the worst-case path.
For the RISC-V target, we work with an ESP32-C3 processor, which features an RV32IMC
instruction set and a single-cycle–accessible SRAM [15]. The SRAM has a storage capacity of
400 KB, which was large enough for our tests. We employed a measurement-based approach
to determine the WCET of each instruction available on the processor. The benchmarks
for the ESP32-C3 are executed on the ESP32-C3-DevKitM-1 v1.0 development board. We
use the CPU cycle counter available on the ESP32-C3 to determine the run time of each
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benchmark. For floating-point operations, a software-float implementation is used for the
ESP32-C3. We omitted a WCET for the floating-point library instructions in Platin, and,
therefore, the related benchmarks (marked with Ü) are skipped. For the Patmos target, five
additional benchmarks were excluded for incorrect compilation (marked with q). The y

mark is used when Platin failed to provide a valid bound.
The third column of each target is the pessimism, i.e., by how much the given bound

is higher than the measured execution time. For the Patmos target, we can see that the
pessimism ranges widely. For some of the simpler programs, Platin was able to identify
the measured execution time as the WCET. This is not surprising in simple cases like
countnegative, however, it is surprising in more complex cases like h264_dec.2 On the
other hand, some benchmarks have very high pessimism. For example, the pessimism of
fft is 25 820 %, which is likely down to this program having nested loops with big ranges
between minimum and maximum loop bounds.3 A similar picture emerges for the RISC-V
evaluations: most of the pessimism ranges from 80 % to 300 %. The pessimism of fft
again marks an outlier with 42 590 %, with the same reasoning as for the Patmos target.
Unlike the Patmos target, Platin does not produce any bound equal to the WCET for the
RISC-V target. This is mainly due to pessimism introduced by the “C” extension of RISC-V:
The compressed instruction-set extension offers shorter codes (2-byte instead of 4-byte) for
often-used instructions. Therefore, the control flow during branching instructions can enter
at addresses that are not 4-byte-aligned. As the bus only supports loading 4-byte-aligned
code, a 4-byte instruction may need two loads instead of one to fetch the entire instruction
from memory. This pessimism at branching instructions leads to more overestimates than
the Patmos target.

6 Related Work

Worst-Case Analysis Tools. To this point, numerous WCET analyzer tools have been
developed for different hardware platforms. Several analyzers stem from academia [8, 16, 19,
21, 22, 24, 30, 31, 34, 36, 40, 46] and, based on these results, commercially available products
are available [10, 19, 30]. This underlines the importance of WCET analysis in safety-critical
real-time systems.

Hybrid WCET Analysis. With the increasing complexity of modern high-performance multi-
core microarchitectures, the use of hybrid WCET tools is gaining in importance: Determining
accurate timing models of the target architecture can become practically infeasible with
the lack of documentation and unpredictable components. In this context, the TimeWeaver
tool [30] presents a hybrid approach: This approach combines timing information from
measurements with static analysis techniques. Such hybrid resource-consumption approaches
are also interesting in the context of Platin’s system-wide analysis techniques [14, 54].

LLVMTA. The infrastructure of LLVMTA [21] is related to the Platin infrastructure, with
both projects relying on the LLVM framework. LLVMTA focuses on microarchitectural
analysis and implements its analyses on the final assembler representation in the LLVM
backend. LLVMTA has no integration into the clang compiler, comparable to Platin’s
support of control-flow-relation graphs. That is, LLVMTA cannot exploit high-level source
code information within the resource-consumption analysis.

2 Remember, no data caches are used.
3 Remember, the suite does not guarantee the programs exhibit WCET.



E. J. Maroun et al. 2:9

Table 3 Comparison of measured execution times and WCET bounds provided by Platin.
Bounds with a ’*’ use the gurobi optimizer instead of the default lp_solve.

Patmos RISC-V
benchmark Measured Bound Pessimism Measured Bound Pessimism
lift 2 567 285 6 506 322 153 % 1 738 754 3 846 697 121 %
powerwindow 12 601 467 24 599 225 95 % 3 930 880 10 387 998 164 %
binarysearch 369 449 22 % 232 409 76 %
bsort 492 507 961 942 95 % 322 824 1 086 659 237 %
complex_updates 591 526 1 047 923 77 % Ü

cosf 12 755 728 37 280 642 192 % Ü

countnegative 13 000 13 000 0 % 21 463 37 353 74 %
cubic 89 339 041 256 701 960 187 % Ü

deg2rad 7 017 167 11 842 517 69 % Ü

fft 2 474 043 641 279 936 25 820 % 1 288 291 549 970 763* 42 590 %
filterbank 1 687 548 481 4 175 572 460 147 % Ü

fir2dim 1 874 513 3 742 975 100 % Ü

iir 90 327 301 992 234 % Ü

insertsort 10 080 16 160 60 % 2 804 7 205 157 %
isqrt q 1 821 949 3 322 333* 82 %
jfdctint 8 000 8 000 0 % 4 553 8 396 84 %
lms 76 108 993 144 454 450 90 % Ü

ludcmp q Ü

matrix1 98 586 98 586 0 % 37 517 66 523 77 %
md5 71 415 634 258 563 319 262 % 36 390 690 192 082 391 428 %
minver 351 107 1 568 068 347 % Ü

pm y Ü

prime q 1 580 4 879 209 %
rad2deg 7 065 136 11 809 717 67 % Ü

sha q 5 526 979 12 060 259 118 %
st 78 350 471 134 464 808 72 % Ü

adpcm_dec 13 315 13 786 4 % 5 594 11 852 112 %
adpcm_enc 17 724 19 454 10 % 11 615 20 526 77 %
audiobeam 137 166 947 241 512 652 76 % Ü

cjpeg_transupp 13 591 503 125 542 054 824 % 8 047 222 129 576 647 1 510 %
cjpeg_wrbmp 275 719 279 767 1 % 280 943 508 787 81 %
dijkstra 192 399 577 32 480 864 150* 16 782 % 121 641 591 16 510 486 058 13 473 %
epic 1 406 490 126 486 510 736 766* 34 490 % Ü

fmref 256 117 759 795 672 591 211 % Ü

g723_enc 2 488 842 3 756 308 51 % 1 402 196 4 911 683 250 %
gsm_dec 4 387 842 10 534 654 140 % 4 688 449 25 143 501 436 %
gsm_enc 14 680 073 20 184 547 37 % 9 834 175 31 178 349 217 %
h264_dec 49 621 49 621 0 % 144 429 445 724 209 %
huff_dec 820 259 2 293 420 180 % 529 762 2 104 049 297 %
mpeg2 1 040 665 400 56 804 616 615 5 358 % 535 872 047 41 835 888 109* 7 707 %
ndes 246 594 260 249 6 % 143 728 248 207 73 %
petrinet 8 960 36 728 310 % 2 517 7 648 204 %
statemate 67 364 117 113 74 % 81 270 290 443 257 %
susan q Ü

cover 2 098 2 758 31 % 58 740 199 374 239 %
duff 2 565 2 628 2 % y

test3 1 943 674 306 2 029 568 191 4 % 487 414 145 941 044 973 93 %
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Compiler & WCET-Analysis Integration. Bernat and Holsti presented a wish list of
compiler features that could aid WCET analysis [9]. The list included various features that
would aid analysis, such as providing program control flow structure, various properties of
the code, and controlling code generation. Many of the essential features are supported in
our compiler, with data export through the PML format to aid Platin. This, of course,
includes the control flow, flow facts, and user annotations. The compiler is missing most
feature sets for source code-to-object code mapping and other features, such as the logical
effects of code sub-sequences. Other compilers also implement dedicated support for WCET
analysis: Li et al. introduced a framework for maintaining flow information during compiler
optimizations [33]. Falk et al. introduced the WCET-aware C Compiler (WCC), which can
automatically call the aiT WCET analyzer and change the code generation to minimize the
WCET [18]. Schommer et al. extend the CompCert certified C compiler with support for
AIS annotations [47]. These annotations are then embedded in a dedicated section in the
ELF, which the WCET analyzer can consume.

Worst-Case Energy-Consumption Analysis. The original use of the IPET targeted the
time resource for real-time systems. Later, Jayaseelan et al. [28] introduced the usability of
WCET techniques for the energy resource to yield worst-case energy-consumption estimations,
leading to further research on WCEC analysis [28, 38, 42, 53, 54, 55, 56]. With the Platin
toolkit, we explored system-wide WCEC analysis [54] and the modeling of context-sensitive
device states [42]. We consider the Platin framework a fundamental basis for our further
work in this area for addressing energy-constrained systems.

7 Conclusion

Real-time systems need to prove the absence of deadline misses. To ensure this property, we
need schedulability analysis and static WCET analysis of the individual tasks. This paper
presented Platin, an open-source worst-case analysis tool targeting Patmos, RISC-V, ARM,
and AVR processors. The Platin toolkit, initially introduced for WCET analysis, has also
proven to be suitable for analyzing tasks’ worst-case energy consumption to address energy-
constrained systems. Extensions to Platin include system-wide analyses and expressive
annotation support. In our evaluations, we show the multi-target capabilities of Platin by
providing WCET bounds for two different processors (Patmos and a RISC-V variant) for the
TACLe benchmarks. We envision that Platin will be extended to other real-time processors,
e.g., the FlexPRET processor [58]. Platin is available as open-source software, simplifying
cooperation between research groups on developing static worst-case analysis tools.
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Abstract
The certification objectives for airborne electronic hardware defined in AMC20-152A [9] and in
AMC20-193 [8] capture some of the activities required for an applicant to embed a hardware platform
in a safety-critical avionic system. For COTS (Commercially available Off-The-Shelf) platforms
in particular, these objectives require applicants to identify functions, configuration settings, and
resources present on the platform, and assess their use by the system. AMC20-152A however
recognizes that documentation regarding the behavior of a COTS may be incomplete.

There is thus a strong push for applicants to the certification of a COTS to demonstrate their
mastery of the platform, to highlight relevant factors (functions, settings, resources, etc.), and their
use in their system. We outline in the following a standard approach to the exploration of unchecked
factors of a platform, considering existing approaches in the literature, to build such a mastery. Our
approach incrementally incorporates and validates knowledge of various factors by including them in
micro-simulations compared to experimental ground truth.
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1 Introduction

Recent advances in machine learning allow the development of complex embedded functions
which show a lot of potential for future algorithms in the avionic domain like ATTOL
(Autonomous Taxi, Take-Off, and Landing). These algorithms have increasingly large
computation requirements. This led to the emergence of a new generation of multi-core,
hybrid architectures to offer greater computing power through increased compute parallelism.
Nevertheless, hybrid platforms need to go through the same stringent certification process
as other platforms before they are embedded in an avionic system. The European Union
Aviation Safety Agency (EASA) defines Acceptable Means of Compliance (AMC) to guide
the certification process. Each AMC defines a number of certification objectives the applicant
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must satisfy, but it does not prescribe actual tools and methods to that end. Architecture
mastery, as an overarching certification requirement, needs to find an experimental method
to assess and understand architectural factors.

Prior work has highlighted specific, sometimes previously unknown, factors on COTS
platforms, and proposed methods to understand or capture their behaviour. Experimental
results, and observations collected from the platform, often provide a ground truth or
reference to assess factors. Mastering the complexity of COTS platforms may require dealing
with multiple, complex interactions between these factors. As an example, the objective of
computing the Worst-Case Execution Time (WCET) of a task on a COTS platform requires
a mastery of all factors of said platform. We instead focus on understanding individual
factors as a stepping stone towards more general models (WCET, simulator, etc.).

Contributions
This paper presents an experimental approach to reinforce knowledge and mastery of a COTS
platform, more specifically to understand platform factors relevant to certification, i.e. used
functions, configuration settings, shared resources, etc. We follow a widespread approach
in practice: comparing expected behaviours (from the documentation or literature) to ones
observed on the platform, for each factor or for increasingly large combinations thereof. The
rationale is to provide supporting evidence for certification objectives related to these factors.

Where micro-benchmarks aim to support the characterisation of a platform by exercising
specific factors, we propose the use of micro-simulators as reference models to compare
against. The goal is to catalogue factors and related models, as micro-simulators and micro-
benchmarks, to bootstrap the mastery of a new COTS platform for applicants. We focus the
following on discovering the factors related to the cache hierarchy of an embedded GPU.

Organisation
The contribution is organised as follows. We first outline in Section 2 the certification
objectives for COTS as per AMC20-152A and AMC20-193. Section 3 presents the overall
approach to build a mastery of a complex COTS platform. The Jetson AGX Xavier is
introduced in Section 4, as a supporting example of embedded COTS platform, alongside
some of its factors up for validation as support for our evaluation (Section 6). The means of
evidence for said factors are described in Section 5. We finally conclude by discussing related
and future work (respectively in Sections 7 and 8).

2 Certification

As discussed in the introduction, certification is a key issue for safety-critical avionic systems.
Processors involving several general-purpose cores and accelerators must undergo a stringent
certification process before they are deployed. The European Union Aviation Safety Agency
(EASA) and Federal Aviation Administration (FAA) respectively define Acceptable Means of
Compliance (AMC) and Advisory Circulars (AC), setting down objectives that applicants
to the certification process must satisfy. The joint A(M)C AMC20-193 and AMC20-152A
in particular define objectives for the respective certification of hardware platforms and
multi-core processors.

Overview of the AMC20-193. The AMC20-193 addresses the issue of multi-core platforms.
It defines a Multi-Core Processor as a device with two or more activated processing cores,
with a core being a device that executes software. It mainly focuses on both temporal
and functional interference, that is, situations when two or more cores compete for shared
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resources. Interference may cause additional delays due to the arbitration of accesses to
the resource or control flow variations due to external modifications of a shared variable.
It may thus cause a loss of deterministic behaviour for the application. The impact of
interference channels on applications in the system should be assessed. To address this issue,
the AMC20-193 defines three main requirements: 1) the identification of the hardware and
software resources of the processor, 2) the identification of their configuration settings (e.g.,
the L1 and L2 cache sizes, their replacement policy, if they are partitioned or not, etc.), and
3) the worse-case impact of interference in these resources.

Overview of the AMC20-152A. The AMC20-152A is complementary to the AMC20-
193. It discusses the certification of complex COTS platforms. The clarifications proposed
by AMC20-152A are important, as devices, especially COTS, become more complex and
integrate in a single chip more functions and resources (such as GPUs) than older ones.
The key objectives to certify COTS items according to AMC20-152A are 1) identifying the
used function, 2) assessing the correct use of the COTS item, and 3) assessing the correct
behaviour of the COTS item if used outside vendor specifications. AMC20-152A focuses on
the risks inherent to the use of COTS, and that of incomplete or incorrect documentation.
The issue when embedding COTS is the use of undefined or undocumented configurations,
that may lead to unexpected behaviours.

From AMC20-193 and AMC20-152A we identified 4 activities for GPU platforms. Activ-
ity 1: It is necessary to master complex core architectures, that is, to identify all the
configurations settings (e.g., resource capacities, arbitration policies, etc.) that are not clearly
established and to assess them with certification evidence. To that end, we believe that
stressing benchmarks would be needed in addition to documentation reviews. Activity 2:
An assessment should be performed for each device of the platform. In particular, one should
consider how the device is configured and accessed through hardware and software means,
how it interacts with the rest of the system, and whether or not existing analysis techniques
and tools apply. Activity 3: The utilisation of a COTS must be within the limit of the
device manufacturer specification. This means that we need a specification of the COTS
and its limits to check the compliance of usage. Activity 4: It is mandatory to qualify the
COTS behaviour and all micro-code (e.g., the scheduling policies).

In this article, we focus on activity 1: architecture mastery for GPU platforms.

3 Mastering COTS platforms

Certification requirements, as discussed in Section 2, define a number of certification objectives
for embedding a platform. Those revolve around the mastery of the platform, especially
complex core architecture for COTS platforms. Industry practice and related work tend
to rely on a similar approach, outlined in Figure 1, of iterating over identified factors to
compare observed and expected behaviours. Discrepancies lead to refinements of the platform
description and may guide further exploration. We consider the following activities:

Identify relevant platform factors to capture functions, resources, and configuration
settings available on the platform. The list may not be exhaustive and initially stems
from vendor-provided documentation. Additional knowledge from the literature or the
applicant’s experience may also identify common factors to be assessed.
Identify unchecked factors amongst the ones captured by the platform description.
Each factor which has not been covered, or for which evidence is insufficient should be
included. Even if documentation is available on the expected behaviour of a factor, it
may be insufficient and benefit from further investigation.
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Figure 1 Overview of the process for mastering a complex COTS platform.

Define means of evidence for each factor to provide evidence for certification, i.e.
observe its behaviour, and capture expectations. This relies on the ability first to exercise
the factor and capture relevant metrics, and second to model said factor under various
configurations contending as capturing its behaviour. Models could take as an example
the form of analytical models, simulations, etc.
Comparing against observations should help discriminate the behaviour of the factor
between possible candidates. It also provides evidence for certification that the factor
is well understood. Discrepancies, however minor, may highlight unknown factors, or
configurations which have yet to be described in the platform.

Our instantiation of the process relies in particular on the use of dedicated micro-simulators
as a mean of collecting evidence of platform knowledge. Where possible, independent
simulators and benchmarks should be defined to keep the complexity of the platform
description manageable and to ease the argumentation for certification. The method will
need a catalogue of benchmarks to validate and discover factors on a platform. Where
dependencies exist, each simulator is built to include the impact of dependent factors as they
are mastered by the applicant.

We illustrate the process in the remainder of the paper, focusing on the capturing
parameters of the L1 cache of the Jetson AGX Xavier GPU, from platform description
(Section 4), through evidence means (Section 5), to validation through comparison (Section 6).

4 Jetson AGX Xavier Platform

The Jetson AGX Xavier features the Xavier System-on-Chip (SoC). The Xavier SoC
embeds a Volta GPU, an 8-core Carmel CPU complex, and dedicated accelerators for video
and audio processing applications. Figure 2 presents a block diagram of the SoC as described
in the platform Technical Reference Manual (TRM). This section presents the execution model
of the Volta GPU to identify notable resources. The TRM provides little information on the
Volta GPU architecture and related factors. We rely on supplemental vendor documentation
and literature [10, 17, 3, 20, 16, 15, 7, 12], regarding the Volta architecture and its execution
model in general. To highlight our approach we consider factors related to the GPU private
L1 Data caches.
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Figure 2 Overview of the Xavier SoC as described in vendor documentation [13].

4.1 Volta Execution Model

A user defines computation kernels for execution on the GPU, and other GPU operations
through the CUDA Runtime or related high-level libraries, on top of the Runtime, such as
cuDNN. We focus in the following on the definition and execution of computation kernels. A
kernel call is shaped by the computation grid definition, i.e. the number of thread blocks and
their shape. All thread blocks in a call are equally shaped [14]. The size of the kernel, the
total number of threads invoked on a call, is thus the product of the number of threads per
block and the number of blocks. Each thread is given a unique identifier to address different
data segments. It is composed of its block index in the grid, and its thread index in the
block. Both are accessible during kernel definition.

The block scheduler hierarchically dispatches each kernel block to a Graphics Processing
Cluster (GPC), then picks a Thread Processing Cluster (TPC) on the GPC, and a Streaming
Multiprocessor (SM) on the TPC. Dispatch depends on the block’s resource requirements
and the SM occupancy. The block will remain on its allocated SM until its threads are
complete (unless a rescheduling occurs on preemption). The block’s threads are further
dispatched onto the SIMT Units (SU) which compose the SM. Each SU holds a register file
and functional units to execute threads.

The Jetson AGX Xavier Volta GPU is composed of 8 Streaming Multiprocessors (SM),
depicted in Figure 3, each with its own private L1 instruction and data caches (respectively
ICache and DCache). SMs on the Jetson Volta GPU are partitioned into 4 TPC, each
composed of 2 SMs. The GPU features a single GPC. All SMs share a unified L2 cache
and 2 levels of TLB. Each SM is further divided into 4 SU. The register file on a SU, or L0
data cache, holds the context of multiple threads. Each SM is composed of 64 CUDA cores
and 8 Tensor cores, split evenly across the SU. Tensor cores are a class of Deep Learning
Accelerators supporting multiply-add operations on matrices, as instructed by the user (or a
library). Restrictions on the number of registers in each SM imply that not all threads in a
kernel call can execute concurrently. Blocks can hold a maximum of 1024 threads, at most
64 warps can reside at once on a single SM.
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Figure 3 Overview of the Volta GPU architecture on the Jetson AGX Xavier.

SU follow the Single Instruction Multiple Thread (SIMT) execution model: the same
instruction is executed across multiple threads at the same time, possibly addressing different
data1. Threads are scheduled and executed in groups of 32, called a warp, such that each
thread belongs to a single warp across its lifetime. Warp size and the allocation of threads in
warps are not user-controlled parameters but platform-specifics. The warp scheduler on each
SU can schedule up to 1 warp every cycle. Instructions from two distinct warps may coexist
on the same core provided they rely on different functional units, e.g. a long-running load
due to a cache miss and an integer addition. The combined register files on each SM can
accommodate up to 64 warps to ensure the warp schedulers can maximise core occupancy.

4.2 DCache factors

The GPU embedded in the Jetson AGX Xavier relies on the Volta GPU architecture,
and it is referenced as the GV10B model. While the GPU factors may be well documented
at the architecture- or model-level, it is important to validate the documented factors as
discussed in Section 2. There are furthermore factors in the GPU that are not documented
and that an applicant needs to master to certify the platform, such as scheduling policies for
the kernel components or the cache policy. We focus on the following factors related to the
DCache private to each SM. Caches act as small buffers between a core and the comparatively
slower SoC memory. They hold a copy of the most recently used data (and thus most likely
to be reused) by a core. Table 1 presents a collection of cache-relevant factors, and their
configuration as documented for the Volta GPU on the Jetson AGX Xavier. Bold factors
are the ones considered in the subsequent evaluation.

5 Evidence means

To assess factors related to the DCache on the Volta GPU, we measure the behaviour of
purpose-built characterisation benchmarks on the platform. We rely on a micro-simulator for
the cache as our reference model. The micro-simulator allows us to explore different factors
and their candidate configurations to find the best match for the observed behaviour.

1 Note that the Volta GPU architecture introduces thread divergence, where threads may have different
program counters. The scope and impact of thread divergence on the SIMT model are unclear.
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Table 1 Selection of platform factors related to the private L1 DCache on the Volta GPU.

Factor Description Configuration

Line size Number of (aligned) Bytes loaded upon a cache miss,
i.e. when the accessed data is absent from the cache.
Subsequent access to the same cache line may thus be
served by the cache (hit).

32B [10]

Size Number of cache lines held by the cache. Accesses
to cache lines beyond the cache size will cause the
evictions of older lines to make room for more recent
ones.

128KB [11, 10]

Associativity Number of candidates positions for a line in the cache.
A cache line can only be stored in a limited number
of places, based on its address. Simplifies the history
required to maintain the ordering of cache lines.

1024 [10]

Replacement policy Policy for selecting a position amongst the candidates
based on the cache history upon inserting a line in the
cache (miss). The policy also defines how the cache
history is updated upon subsequent accesses (hit).

Not LRU [10]

Scratchpad allocation Cache space allocated as a software-managed scratch-
pad for data shared between threads in a block. The
accessible cache space is reduced as a result of scratch-
pad allocation.

8KB slices [12]

Prefetch policy Policy allowing cache lines to be loaded in anticipation
of future memory accesses. Which cache lines are
prefetched depends on prior cache miss patterns.

N.A.

Coalescing policy Policy for batching cache accesses caused by simultan-
eous thread execution into one or more cache accesses.
Reduces the number of cache accesses required to serve
a single warp.

N.A.

Write policies Policies for dealing with data writes in the cache.
Includes whether writes are blocking, cause insertion
in the cache, and propagate all the way to the main
memory.

N.A.

Inclusion policy Captures how accesses, insertions, and evictions to
(and from) the lower cache levels, e.g. the L2, affect
the DCache.

N.A.

Coherency protocol Policy capturing how concurrent accesses to the same
data affect copies held in different private and shared,
e.g. evictions, updates, etc.

N.A.

5.1 Experimental setup

We need to isolate the contribution of specific DCache factors on the GPU from other factors.
To that end, we measure the L1 Cache Hit Rate during the execution of a single kernel
running in isolation. The Cache Hit Rate captures the portion of accesses served by the cache
over the total number of accesses performed by an application. It is thus mostly independent
of the effects of the L2 factors. Focusing on a single-block, single-warp benchmark isolates
observations from the highest level dispatch and scheduling policies (kernel, block and warp).
It is still dependent on the scheduling of memory accesses by the SU, that is how threads
within a warp are dispatched to the functional units.

WCET 2024



3:8 Assessing Unchecked Factors for Certification

On the Jetson AGX Xavier we use the Jetpack 5.10 to set a Linux environment of
the platform. Concerning the Cuda version, we use Cuda 11.4 to develop our benchmark.
Measurements are collected using Nvidia Nsight Compute (ncu).

5.2 Benchmark
It is necessary to exercise the DCache in a controlled fashion to understand its factors.
CPU-based approaches [2] rely on configurable micro-benchmarks to generate a stream of
memory access in which cache locality is known or behaviour is easy to predict. GPUs
introduce additional instruction-level parallelism over CPU. We thus propose the following
benchmark.

In a GPU several threads may execute concurrently and cause memory accesses. To
discover the memory hierarchy of the GPU we introduce two notions: Step and Stride. Stride
defines the distance in bytes between concurrent accesses of two consecutive threads; Step
establishes the distance between two consecutive accesses from the same thread. All threads
read from the same array. This allows us to define a simple read benchmark, per Algorithm 2,
taking into account the instruction-level parallelism for GPU. By varying Step and Stride, we
can control the way the threads of a kernel access the memory and the cache, and thus assess
various parameters of the cache hierarchy. The implementation relies on an index-chasing
pattern [2], with the pattern initialized as per Algorithm 1.

Algorithm 1 Array Initialization with Index Chasing.

1: Input: n ▷ Size of the array
2: Input: Step ▷ Value of the Step
3: Output: A ▷ Initialized array of size n

4: A← new array of size n

5: for i← 0 to n− 1 do
6: A[i]← (i + Step) mod n

7: end for

Algorithm 2 Pseudo-Code of the Kernel of the read benchmark.

1: i← threadIndex× STRIDES
2: for op← 0 to NB_OP− 1 do
3: i← ptr[i]
4: end for

5.3 Simulation
As a reference model for the platform, we use a micro-simulator for the cache. The simulator
focuses on implementing a single cache layer. It supports several policies and configuration
points to explore possible factor configurations. We also build a surrogate model of our
benchmark to mimic the sequence of memory accesses it generates on the platform under
specific strides and step values. The generated sequence is fed into the simulator to estimate
the L1 Cache Hit Rate.

This allows us to compare the output of the simulator and the benchmark. We compare
our model of the platform under varied factor configurations with the measurements made on
the real platform. The comparison allows to identify which configurations better represent
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the platform, and master undocumented factors as identified in Section 4. Where variations
occur, we can refine the simulation configuration, or identify policies which better match the
observed behaviours.

6 Evaluation

6.1 Assessing the DCache size
Configuration

We first aim to assess the DCache size. First, we need to isolate our experiment from the
cache replacement policy effects. The Stride and Step parameters are set to prevent threads
from reusing cache lines loaded by concurrent threads, within and between iterations. We
thus set the Stride to the DCache Line Size (32B), with a 32B Line Size Step for each of the
32 threads in a warp, Step = 1024B. The accessed array is kept within the L2 cache size to
limit the impact of inclusion and coherency policies. We use a read benchmark to remove
the impact of write policies. As discussed in Section 5 focusing on a single-block single-warp
kernel, we can mostly assume the memory accesses are issued in the order defined in the
benchmark, from a single SU, so we will not have interference from an other SU. Moreover
having a single-block single-warp kernel allows the focus on only one L1 Cache because the
block will only run on one SM. We repeat the experiment with the kernel each time iterating
over an increasingly bigger array. The DCache hit rate should suddenly drop whenever the
array exceeds the cache capacity.

Figure 4 L1 Cache Hit Rate of a Read Benchmark with Chasing Index.

Observations

Figure 4 presents the observed DCache hit rates (y-axis) over an increasing array size (x-axis).
We observe that the drop-off point does not correspond to the documented L1 size of 128KB,
instead stalling when the array reaches a size of 116KB.

To validate our measurements, we considered a different collection tool (Nvidia nsys).
nsys does not support collecting Cache Hit Rates, but it did capture a drop-off point in
execution time around 120KB. We think the Nvidia instrumentation tools alocate space in
DCache to collect measurements effectively reducing its capacity. However the 12 KB loss
in cache size does not correspond to a valid scratchpad allocation, which operates in 8KB
increment per the documentation.
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6.2 Assessing of the DCache Associativity
Configuration

We repeat the same configuration as in the previous section. Beyond the drop-off point,
the rate and shape of the hit rate decrease should provide information on the replacement
policy and the associativity. To assess the DCache associativity, we consider different
simulation configurations, namely varying the replacement policy and associativity to match
configurations from the literature. Our simulator is configured using a 116KB DCache size
as previously observed.

Observations

Figure 5 proposes a comparison of the observed hit rates (solid blue line) and simulated ones
(dashed lines) while increasing the array size (x-axis). For simulations, we consider different
configurations of associativity using the LRU or Random replacement policies. Under the
current memory access pattern, the LRU, PLRU and FIFO replacement policies exhibit the
same behaviour and we omit redundant results.

The random replacement policy results in an asymptotic behaviour with the hit rate
gradually decreasing as the array size increases. This does not correspond to the relatively
sharper observed drop. The 4-way LRU cache perfectly matches the observed drop initially,
until the two diverge around 25% hit rate. The tail of the observed behaviour matches the
slope of the 2-way LRU cache. This possibly hints at the use of adaptive replacement policies
[18], a complex mechanism which may fit high-performance caches.

Figure 5 L1 Cache Hit Rate Simulation for several configurations.

7 Related work

With the increasing need and integration of GPUs in embedded systems, recent works have
focused on understanding GPUs. There is a need to master said GPU to deploy Machine
Learning in certified critical systems. Nvidia represents today one of the leading GPU
vendors in the market, including GPU for embedded systems. Hence there is consequent
effort on mastering GPUs from Nvidia such as the Jetson AGX Xavier. However,
one major problem persists: the GPU mainly works as a black box. Of course, some
documented configurations are provided by the vendor but it is insufficient to fulfil certification
objectives for critical systems. But thanks to prior works, configurations emerged from
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reverse-engineering or stressing benchmarks. Thanks to micro-benchmarking, [10, 6, 17, 3, 20,
16, 19, 4] discovered a number of factors of GPU platforms, especially regarding scheduling
policies at different levels and related latencies. All of those works represent factors that
applicants need to master for certification, as well as related means of evidence.

AMC20-193 recognises resource partitioning, as a suitable tool to alleviate specific
objectives. In 2023, work by [6] pointed out the possibility of partitioning hardware resources
of the most recent Nvidia GPUs. The authors discovered the capability through public
patent information as the feature is not documented by the vendor, its use poses additional
challenges for certification with regards to AMC20-152A.

Other approaches aim to provide a model of the GPU as a whole, especially to predict its
timing behaviour. This is crucial to WCET computation and related certification objectives.
To the best of our knowledge, PasTiS [1] is one of the few efforts to build a GPU model
suitable for WCET computation. While our approach does not aim to provide a model
suitable for timing analysis, the platform description and knowledge derived from means of
evidence do feed into the definition of such a model. Similarly, micro-simulators do not aim
to replace full-fledged solutions such as GPGPUSim [5]. But they provide a quick reference.

8 Conclusion and future work

This paper presents an experimental approach to address the requirement for certification
of the COTS platform according to AMC20-152A and AMC20-193. The approach, based
on existing practices, aims to incrementally builds an accurate description of a platform.
We suggest the use of micro-benchmarks to isolate each factor, and purpose-built micro-
simulators to assess the behaviour of said factors. The approach thus benefits from existing
work to capture factors to consider in a GPU, and the related means of generating evidence
for certification. We illustrated the approach by considering the private cache level in an
embedded COTS GPU. Our evaluation highlighted the applicability of existing work, for
CPU-related factors, to the GPU characterisation.

As part of future work, we aim to catalogue factors identified in the literature, and
reference the related micro-benchmarks and reference models, with the goal of easing the
certification of existing or new COTS platforms. The work will include understanding how
to collect observations from micro-benchmarks without impacting the platform behaviour or
its configuration, or at the very least mastering the impact of the tools on the observations.
We will continue the work on qualifying cache-related factors for embedded GPU, as well as
factors related to instruction- and kernel-level parallelism.
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Abstract
Real-time systems need to prove that all deadlines will be met. To enable this proof, the full stack
of the system must be analyzable, and the right tools must be available. This includes the processor
(execution platform), the runtime system, the compiler, and the WCET analysis tool.

This paper presents a combination of the time-predictable processor Patmos, the coordination
language Lingua Franca, and the WCET analysis tool Platin. We show how carefully written
Lingua Franca programs enable static WCET analysis to build safety-critical applications.
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1 Introduction

In safety-critical applications, the reliability of a system is of utmost importance to ensure
no catastrophic failures happen. Real-time systems must guarantee that they respond to
events within a given deadline. Designing such a system includes analyzing all its tasks and
ensuring its worst-case execution time (WCET) and that the resulting schedule will meet its
deadlines. However, it is not enough that individual tasks meet their deadlines. We must also
ensure that all the tasks always meet their deadlines, regardless of the runtime conditions or
other tasks executing in parallel. As such, schedulability analysis must consider not only the
individual tasks but also their runtime environment and execution platform.
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4:2 WCET Analysis of LF Applications

A reliable real-time system must be built from a stack of analyzable components. It
starts with a platform based on a time-predictable processor. Then comes the execution
environment, which includes a real-time operating system or real-time runtime environment
that can allocate resources as needed. Next comes programming language and compiler that
must support the writing of analyzable code. Lastly comes the analysis tool, which should
be able to account for all the components to produce safe WCET bounds, i.e., bounds that
are guaranteed not to be lower than the actual WCET.

This paper presents a complete real-time system and toolchain for safety-critical ap-
plications. It is based on the time-predictable RISC processor Patmos [33]. Instead of a
complicated real-time operating system, we use the Lingua Franca (LF) reactor language as
our runtime environment [24]. LF allows us to write individual reactions in the C language,
which are automatically compiled with the LF runtime using the Patmos compiler. The LF
runtime handles the provisioning of resources to each reaction and schedules them when
needed. Using the Platin WCET analysis tool, we can analyze the WCET of individual
reactions and feed it to a quasi-static schedule generator that ensures reactions are scheduled
such that they will never miss a deadline. The quasi-static schedule generator and its under-
lying virtual machine, PretVM, have recently been introduced to LF to enable fine-grained
timing analysis of the LF runtime.

The individual components presented in this paper are not new; they have been presented
in other papers. However, this paper’s contribution is the presentation of the combination of
those components to provide a complete time-predictable execution environment. This is
intended as a step towards building correct-by-construction real-time systems.

Lingua Franca, Patmos, and Platin are open-source. The links to the GitHub repositories
are given on the title page. To reproduce the evaluation, consult the README file in the following
repository: https://github.com/lf-lang/lf-patmos-template/.

The rest of this paper is organized into the following sections. Section 2 provides the
background on Lingua Franca, the Patmos time-predictable processor, the compilation
pipeline, and the Platin WCET analysis tool. Section 3 discusses the most important
aspects of analyzable code in LF applications, as well as the benefits and issues of LF for
WCET analysis. Section 4 presents the experimental evaluation results of the proposed
approach. Section 5 discusses related work. Section 6 concludes the paper.

2 Background

This paper combines several technologies to build a complete real-time platform: the
coordination language Lingua Franca [22], the Patmos processor [33] and compiler, and the
WCET analysis tool Platin [25].

2.1 Lingua Franca

LF is a coordination language and framework based on concurrent actors called Reactors.
LF adds deterministic reactive concurrency to target languages. Currently, it supports C,
C++, Python, TypeScript, and Rust. The generated code can be deployed on almost every
computer system, including embedded systems [5, 22, 23].

Coordination languages and frameworks are designed based on coordination models of com-
putations. These models of computation provide a technology that supports the interaction
between software components. Moreover, they generally enhance modularity, reuse of existing
(sequential or even parallel) components, portability, and language interoperability [27, 34].

https://github.com/lf-lang/lf-patmos-template/
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In the coordination languages and frameworks, actors are usually used as the primary
programming model. This programming model was first introduced in 1973 by Hewitt for
concurrent systems. They are independent entities like objects that can communicate through
asynchronous message passing without any locking mechanism [11].

To make actors deterministic, a new model, named reactors, was introduced in 2019 as
the building block of the Lingua Franca language. In reactors, messages are guaranteed to
be delivered to a reactive component in order. For these purposes, logical timestamps are
used [24].

Procedures inside reactors are called reactions invoked in response to a trigger event. The
reactions are atomic to one another, meaning they are mutually exclusive. The reactions can
be written in the LF’s target programming languages, and they can read input and produce
outputs. Timers, ports, actions, and built-in triggers (such as startup or shutdown) can
trigger reactions.

Ports are the types inside the reactors responsible for communicating with other reactors.
We have two kinds of ports, input, and output, for receiving and sending messages. LF uses
a timestamp tag on a logical timeline for messages to make them ordered. Unlike physical
time, logical time does not elapse during reaction execution. In LF, timers use logical time
to invoke reactions periodically.

2.2 Patmos
Patmos [33] is a RISC-style processor developed as part of the T-CREST project [32]. Patmos
is designed for real-time systems with ease of analysis in mind. It has features that make
it easy to analyze, such as an in-order pipeline and special caches. Instead of a traditional
instruction cache, Patmos includes a method cache that stores complete function bodies or
explicit parts of functions (sub-functions) [6]. At function calls/returns or at explicit points
in the function, the method cache is triggered to load the next executed (sub-)function. This
means instruction fetching can only miss in the method cache at this point, making it easy for
an analyzer to reason about. Patmos also includes a stack cache that stores stack-local data
exclusively and is explicitly controlled by the compiler [15]. Accessing stack data, therefore,
never misses except at the start or end of a function. The remaining data accesses go through
the conventional data cache or can circumvent all caching to access main memory directly.

2.3 The Compiler and the WCET Analyzer
In this paper, we use C as the target language and describe the compilation pipeline of

LF for that target. LF, as shown in Listings 1 and 2, contains target code in C, wrapped
with the markers {= and =}. The code around those C fragments is written in LF, which the
LF compiler compiles into C functions. The generated functions include those C fragments.
Additionally, LF provides the runtime (e.g., the reactor scheduler, functions to set outputs,
and other utility functions) as C source files. The LF library code also contains platform-
specific low-level functions. LF can execute on various platforms, from systems with full-blown
operating systems (e.g., Linux or MacOS) down to the bare metal. In the latter case, LF
is the operating system, and since no complex operations are used, the timing of the full
application can be analyzed.

The generated C code is then compiled with a C compiler into an executable. This paper
uses Patmos as the execution platform, which has had LF ported to it [16]. The Patmos
compiler is based on the LLVM framework, which compiles C language code to Patmos
machine code. It supports adding flow fact information to the code using annotations, the
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Listing 1 The Source reactor of
SimpleConnection.

1 reactor Source {
2 output out: int
3 timer t(0, 1 sec)
4 state s: int = 0
5

6 reaction (t) -> out {=
7 lf_set (out , self ->s);
8 self ->s++;
9 =}

10

11 reaction (t) -> out {=
12 int v = -1 * self ->s;
13 lf_set (out , v);
14 =}
15 }

Listing 2 The Sink reactor (incomplete) and reactor
connections of SimpleConnection.

1 reactor Sink {
2 input in: int
3 state last_received : int = 0
4

5 reaction (in) {=
6 self -> last_received = in ->value;
7 =}
8 ...
9 }

10

11 main reactor {
12 source = new Source ()
13 sink = new Sink ()
14 source .out -> sink.in after 2 sec
15 }

simplest of which are loop-bound annotations. The flow facts are maintained through the
compilation pipeline and can be exported as part of the compilation to be used by the Platin
WCET analyzer. The compiler automatically inserts code to manage the Patmos method
and stack caches so that programs experience misses only at the predefined points.

We use the open-source analysis tool Platin to derive WCET bounds for code executing
on Patmos [10, 25]. Through the tight integration with Patmos’ compiler, Platin gets
details about the program control flow and flow facts, which it uses to estimate the WCET
bound. Platin includes a detailed model of the Patmos processor architecture, its method
cache, and its stack cache [13, 15]. It does not have a dedicated data-cache analysis, meaning
all data-cache accesses are assumed to be cache misses.

A requirement for using Platin is that the code is analyzable and the compiler can
provide it with a .pml file containing control flow and flow fact information. As such, the
LF runtime and scheduling code must be analyzable and include sufficient information and
annotations for Platin to estimate the WCET of the LF runtime functions.

3 Analysis-Friendly Applications with Lingua Franca

The execution time of general programs is usually not statically analyzable. We need
restrictions in the algorithms, e.g., maximum bounds on loop iterations, and a runtime
system amenable to timing analysis, e.g., Lingua Franca, thanks to its determinism.

3.1 Analyzable Code
Code for real-time systems must be carefully written to enable static analysis tools, like
Platin, to determine upper bounds on execution times, the WCET bounds [28]. The most
apparent restriction on real-time code is the prohibition of indeterminate loop iteration. As
such, annotations must be added to the code to provide such a bound when the tools or
compilers cannot infer an upper bound on the number of iterations a loop may execute.
Likewise, recursion is often prohibited in real-time code, as it also introduces the possibility
of indeterminable execution time through infinite recursion. Recursion depth bounds can
also be used to limit recursion. However, Platin does not support analysis of recursion,
meaning we also prohibit recursion.
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Dynamism must also be strictly regulated in real-time code. Dynamically sized arrays or
data structures must have an upper bound on their size, such that iteration over those arrays
is also bounded. Dynamic function pointers are also often prohibited, as knowing which
functions they call is difficult. Platin does not allow any function calls through function
pointers.

Furthermore, the C standard library contains several functions that are not analyzable.
One prominent one is printf. Besides being a complex function with probably unbounded
loops, printf may block. In the case of Patmos, the standard output stream is mapped to a
serial port. When the send buffer of the serial port is full, printf will block until characters
are sent out.

Another functionality to avoid in analyzable code is dynamic memory management.
Standard implementations of malloc do not have execution time bounds. A better solution
for some dynamic memory management is using pools with a bounded size [26].

3.2 Benefits of LF for WCET Analysis
In Lingua Franca, applications are developed modularly as networks of communicating
reactors, where each reactor defines reactions to individual events. The reaction bodies tend
to be small pieces of code, making them more manageable by static analysis tools. Moreover,
the program specifies real-time requirements by attaching deadlines to the reactions. Most
importantly, the program explicitly specifies the dependencies between reactions, so the
analysis tool knows every piece of code that can affect the ability to meet the deadlines.
The LF syntax encourages breaking apart complex application code into a set of simple
reactions, which helps generate WCET values from timing analysis tools. In addition, LF’s
deterministic semantics enable the generation of predictable quasi-static schedules, which
help analyze timing behavior at the system level, given individual WCETs of reactions.

It is also known how it affects the ability to meet a deadline. A piece of code may need to
be executed before the deadline expires, or it may only need to be completed before the next
event arrives. Ignoring that code in certain circumstances may be reasonable in the latter
case. It may, for example, be performing logging functions that utilize the difficult-to-analyze
printf function.

For example, suppose that an arriving event triggers several reactions, that some reactions
have deadlines or are dependent on reactions that have deadlines, and some do not. Then,
if we assume that reactions with deadlines will be prioritized in some specified manner, we
can focus the WCET analysis on the bodies of those reactions. In principle, the reactions
without deadlines can be deferred indefinitely, although doing so could create performance
or memory problems. Those can be guarded against by, for example, dropping or modifying
log entries when problems arise. Hence, our technique’s ability to include some code that is
more difficult to analyze in a program makes it much more practical than techniques that
require full modeling of every part of the application.

3.3 Challenges with Dynamic Scheduling
The timing behavior of some functions in the standard LF runtime is not yet analyzable
using Platin [16]. These functions typically include print statements or allocate memory
with malloc or similar memory management functions.

By default, LF programs are scheduled by a dynamic scheduler, which maintains an event
queue at runtime and ensures that events are processed in timestamp order. However, the
dynamic scheduler presents challenges in timing analysis. The first challenge is the use of
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dynamic memory allocation. For example, a common user-facing library function is lf_set,
which sets the value of an output port of a reactor and calls calloc when no events allocated
on the heap can be recycled. A standard solution in real-time systems is to use only statically
allocated objects. A program-managed pool of preallocated objects can be used if dynamic
buffer management is needed. To enable WCET analysis of standard LF programs, we
propose changing the runtime to use explicit memory management.

We need to analyze individual reactions and their scheduling, which affects the overall
timing behavior. Since the dynamic scheduler makes all decisions at runtime, predicting
its behavior at compile time requires building an accurate model that captures its intended
behavior, which is challenging.

The above challenges motivate an alternative technique for scheduling LF programs
amenable to timing analysis at compile time and suitable for hard real-time systems, which
we will discuss next.

3.4 Quasi-Static Scheduling of LF Applications

It is common practice for safety-critical systems to use a static schedule, usually called a
cyclic executive. The pros and cons of cyclic executives have been discussed [21]. The main
disadvantage of a cyclic executive is that long-running tasks often need to be split into
smaller tasks to construct a feasible, static schedule. This restriction can be overcome by
using multiple processor cores and scheduling long-running tasks on a dedicated processor
core [29].

Recently, Lin et al. [18] developed a technique for generating quasi-static schedules
from LF programs. Quasi-static schedules are encoded into bytecode programs, composed
of an instruction set developed for PretVM, a virtual machine executing the schedules
within the LF runtime. The schedules are “quasi-static” instead of “static” because parts
of them can be enabled or bypassed depending on the execution context. Compared to
the user-written LF reactions, which represent the application logic, a quasi-static schedule
represents the coordination logic of an LF program, encoding scheduling decisions satisfying
task dependencies and timing constraints. LF’s quasi-static scheduling is experimental and
limited to timer-driven programs. Yet, as we will show next, it offers promising analyzability.
LF’s quasi-static scheduler supports multiple cores. However, this initial work focuses on
a single-core system. In future work, we plan to use multiple cores to execute reactors in
parallel and a network-on-chip to exchange messages between reactors [14].

Unlike the default dynamic scheduler, which collects events and determines which to
process next at runtime, LF under quasi-static scheduling makes all the scheduling decisions
at compile-time. The user first annotates the LF program with a WCET estimate for
each reaction using the @wcet attribute. Then, based on LF’s deterministic semantics,
the compiler computes the LF program’s state space, identifying various execution phases
and finding a hyperperiod of reaction invocations. Once the state space is determined, a
set of (unpartitioned) directed acyclic graphs (DAGs) is generated. These DAGs encode
dependencies among reaction invocations and between reaction invocations in real-time. A
quasi-static scheduler is invoked by the LF compiler to schedule the unpartitioned DAG and
generate partitions of the DAG based on the number of workers specified by the program.
From that DAG partition we produce a bytecode program using the virtual instruction set.
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Figure 1 The graphical representation of the reactors and their connection generated by the
Lingua Franca framework for the LF application shown in Listings 1 and 2.

3.5 Analyzing the Runtime System
Compiling an LF program results in a standard .elf file containing the LF runtime and the
individual reactions. We need the WCET of the individual reactions to make the quasi-static
schedule, which can be obtained using Platin. We run Platin on the .elf, prompting it for
the WCET bound of each reaction. This is then fed to the quasi-static scheduler to try and
create a schedule. For a full WCET bound of a reaction, we must also account for the time
the scheduler executes. For this work, the PretVM issues specific instructions to schedule
each reaction. These instructions take time to execute and add to the WCET of a reaction.
Each instruction is executed by a dedicated function in the LF runtime. This allows us to
use Platin again to analyze these functions to associate each instruction with its WCET
bound. To calculate a reaction’s WCET bound, we take the Platin bound and add the
bounds of each instruction used to schedule the reaction, giving us a total bound for the
WCET of a reaction, which also accounts for the scheduling time.

4 Evaluation

The proposed approach is demonstrated and evaluated by targeting the Patmos processor
and by using the Platin tool for WCET analysis. Our evaluation focuses on demonstrating
the feasibility and effectiveness of using LF to produce a predictable real-time application.
We start by presenting a simple example application to illustrate the basic analyzability of LF
reactors. Subsequently, we scale up to a medium-sized application to showcase the proposed
approach’s ability to handle more complex and realistic examples. For the medium-sized
application, we aim to comprehensively assess the end-to-end workflow from source code to
schedulability analysis, including the overhead introduced by the LF runtime.

4.1 A Simple Example Application
As an initial example for WCET analysis of a complete LF program, we use the
SimpleConnection program, shown in Figure 1. This program has four reactions, divided
into two reactors. The Source reactor (Listing 1) has a timer that every second triggers
its two reactions. The first reaction outputs the reactor shared state variable, s, and then
increments it. The second reaction negates the value of s before outputting it. The result of
these reactions is that each trigger outputs the negated count that the reactor has reached.
I.e., 0, −1, −2, −3 etc. After a delay of two seconds – which is managed by the LF runtime –
the Sink reactor’s first reaction is triggered with the previous output value, which it stores
in a reactor variable (Listing 2). We ignore the second Sink reaction as its only meant to
run when the program times out.
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Table 1 Individual WCET bounds in clock cycles of the reactions of Lingua Franca applications.

Application Function WCET Bound

Source reaction 1 969
SimpleConnection Source reaction 2 925

Sink reaction 1 540

Brakes reaction 497
Lidar reaction 946
Camera reaction 946

ADASModel Dashboard reaction 497
Processor reaction 1 1786
Processor reaction 2 2130

Analyzing the WCET bounds of these reactions is done as previously described. In
Table 1, we see the WCET bounds produced by Platin for each function (called “Sink
reaction X” or “Source reaction X”). These numbers are given to the quasi-static scheduler,
which attempts to construct a feasible schedule for them. To account for its overhead, i.e., the
execution of PretVM instructions, we also analyze the functions executing those instructions
and provide the numbers to the scheduler. The scheduler then uses the WCET number
of its instructions and those of the reactions and attempts to construct a feasible schedule
for the target, in this case, a single Patmos core. For example, the schedule would use the
scheduler instructions {EXE; ADDI} when triggering the Sink 1 reaction. The EXE instruction
requires 112 cycles to run (excluding the execution time of the called function), while the
ADDI instruction requires 403 cycles. So, the cumulative execution time of Sink 1 when
accounting for the scheduler is 1055 cycles.

The scheduler’s output is a quasi-static schedule that, within some hyperperiod, will
schedule all tasks on the available hardware. Reactions can be given deadlines that are bound
by their release times. If there exists no schedule that satisfiws all deadlines, the scheduler
throws an error. For example, if a reaction depended on Sink 1 with a deadline of 1000
cycles, the scheduler would trivially fail because it simply could not schedule Sink 1 early
enough to meet the deadline regardless of the rest of the schedule.

4.2 Medium-sized Application

As a medium-sized application, we experimented with and modeled the “Advanced Driver
Assistance System (ADAS)”, a ubiquitous system in the automotive industry [19]. In this
model, we have a processor that receives events from a Light Detection and Ranging (LiDAR)
device and a camera and sends commands to the brakes and the dashboard. In this system,
the dashboard shows a message when an object approaches the vehicle. It also triggers
brakes automatically when the object is too close. In Figure 2, we model each system part
as reactors connected by ports.

We again give the Platin-produced WCET bounds of each reaction in Table 1. Notice
how the bounds for the brake and dashboard reactions are the same. This is because these
reactions are only stubs, as we do not have a physical system to interact. This is also the
case for the LiDAR and Camera reactions. Therefore, only the processor reactions have
actual code. We use this application only to show the feasibility of implementing a real-work
application, which would differ from this one only by implementing the physical end-point
reactions and proper sensor fusion.
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Figure 2 The graphical representation of the reactors and their connection generated by the
Lingua Franca framework for the ADASModel LF application.

After we get the schedule devised by the quasi-static scheduler, we can evaluate whether
it satisfies our requirements. For example, we might want to be able to detect 100 times
per second whether breaking is needed using our default T-CREST test platform (Altera
Cyclone IV FPGA mounted on DE2-115 evaluation board). Our FPGA runs at 80 MHz,
therefore the deadline of 10 ms translates to 800 000 clock cycles. As part of the schedule
construction, the overhead of each reaction is accounted for, as well as the execution time of
other reactions that might run between the reaction’s arrival and its beginning execution. In
Figure 2, we have added the 10 ms as a deadline for releasing the brake reaction. In LF, all
other tasks preceding the braking must execute within the 10 ms, cumulatively.

To check whether the schedule can meet the deadline, we look at the execution chains of
the schedule. Any chain ending in the brake reaction must have a cumulative WCET bound
below the 800 000 cycles. The first chain in the scheduled hyperperiod executes the following
reactions: LiDAR, Camera, Processor 1, Processor 2, Brake, and Dashboard. The chain
until the braking uses the following PretVM instruction counts: 3xBEQ, 7xEXE, 2xJAL, and
4xADDI. Based on the Platin bounds on executing these instructions, they cumulatively add
4 086 cycles to the WCET. Coupled with the WCET of the reaction until and excluding the
brake, we get a total WCET bound of 9 894 for the reactions before the braking. This is
well below our limit, and so the schedule is valid. If the schedule had not been valid, the
scheduler would have thrown an error, saying it could not meet the deadline. For example,
we could trigger this error by reducing the deadline to 9 000 clock cycles.

In practice, the analysis must be done for all the execution chains in the scheduled
hyperperiod. However, for brevity, we will omit this for the other chains in the ADASModel
schedule.

4.3 Automated Solution
In the long term, we aim to streamline the development process for real-time systems by
implementing a one-click automated solution that integrates compilation, WCET analysis,
schedulability analysis, and scheduling. The automated solution will start by compiling the
reaction code and the LF runtime functions (which include the functions executing scheduling
instructions.) This code is analyzed using Platin to get the WCET bound of the reactions
and LF runtime functions. Next, the LF quasi-static scheduler organizes reaction execution
(classically called tasks) based on the provided WCET bounds and the deadlines and periods
according to the use case’s constraints. Finally, the scheduler performs schedulability analysis
automatically to ensure a feasible schedule exists before creating one. Thus, it produces
a schedule as an object file linked with the previously produced code to become the final
application executable (ELF file). All these steps have been carried out manually for this
paper. We aim to automate that process to ensure that only a correct-by-construction solution
is output, meaning the resulting executable will adhere to all specified time constraints.
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5 Related Work

Several projects aim to build time-predictable processors. One example is FlexPRET [36],
the latest version of the so-called precision timed machines [7]. FlexPRET also aims to be
a platform that supports LF applications. FlexPRET includes timing instructions for the
precise timing of reactions. Furthermore, FlexPRET implements fine-grain multithreading.
FlexPRET is not yet supported by any WCET analysis tool. However, as Platin now also
supports the RISC-V architecture [25], we will be able to adapt Platin for FlexPRET. Like
the multicore version of Patmos, the InterPRET [14] projects aim for a multicore version of
FlexPRET supporting parallel execution of LF actors on multiple cores.

ForSyDe (Formal System Design) [30, 31] is a methodology enabling high-level abstraction
modeling and design of heterogeneous systems-on-chip and cyber-physical systems. The
idea is to integrate formal methods from the specification phase and use formal refinement
techniques to bridge the gap between specification and implementation. Thus, creating a
correct-by-design system. The most interesting aspect related to our solution is the ability
to employ formally analyzable models of predictable platforms and applications to provide
service guarantees, which are essential in time-predictable applications.

MIRSA C [3] is a set of software development guidelines for the C programming language to
ensure that C code is safe, reliable, and maintainable. Even if these guidelines do not directly
address time-predictable systems, enforcing a strict coding standard helps avoid undefined
behaviors that can lead to unpredictable execution times. One very concrete guideline is the
prohibition of the use of dynamic memory allocation functions such as malloc(), calloc(),
and free(). These are restricted to avoid memory leaks, fragmentation, and unpredictable
behavior. The latter is particularly relevant for real-time systems since the time taken to
allocate or deallocate memory can vary significantly and can be difficult to predict.

The review presented in [35] discusses the current challenges in WCET analysis and
surveys several WCET tools, highlighting their methods, functionalities, and limitations.
Here, two main categories of WCET tools are identified: static analysis and measurement-
based or hybrid tools. Static analysis tools determine WCET by analyzing the code without
executing it. These tools construct a detailed model of the program and the processor to
estimate execution time bounds. They mainly focus on control-flow and data-flow analysis
to provide guaranteed upper bounds on execution times. Measurement-based or hybrid tools
(using measurements and static analysis) estimate the WCET by executing the program or
its parts on actual hardware or simulators. They measure execution times of code segments
and use these measurements to infer timing bounds. This approach often results in more
accurate estimates for complex systems but may lack formal guarantees. Commercial tools
examples include aiT [1, 9] from AbsInt, Bound-T from Tidorum [2, 12], and RapiTime
from Rapita Systems [4]. Examples from academia include Heptane [8], Chronos [17], and
SWEET [20].

6 Conclusion

This paper presented the integration of the time-predictable processor Patmos with the
Lingua Franca (LF) coordination language and the Platin WCET analysis tool. More
specifically, we used the WCET analysis tool Platin to analyze individual reactions of LF
reactors and the runtime of the quasi-static schedule. Using a simple and a medium-sized
application, our evaluation confirmed that carefully written LF programs can be analyzed for
WCET, creating a quasi-static schedule that fulfills all timing requirements for safety-critical
applications.
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Abstract
Main memory sharing in commercial, FPGA-based Heterogeneous System on Chips (HeSoCs) can
cause significant interference, and ultimately severe slowdown of the executing workload, which
bars the adoption of such systems in the context of time-critical applications. Bandwidth regulation
approaches based on monitoring and throttling are widely adopted also in commercial hardware
to improve the system quality of service (QoS), and previous work has shown that the finer the
granularity of the mechanism, the more effective the QoS control. Different mechanisms, however,
might exploit more or less effectively the available residual memory bandwidth, provided that the
QoS requirement is satisfied. In this paper we present an exhaustive experimental evaluation of how
three bandwidth regulation mechanisms with coarse, fine and ultra-fine granularity compare in terms
of exploitation of the system memory bandwidth. Our results show that a very fine-grained regulation
mechanism might experience worse system-level memory bandwidth exploitation compared to a
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1 Introduction

Heterogeneous Systems-on-Chip (HeSoCs) coupling general purpose multi-cores and acceler-
ators of various types are widely adopted across several application domains. Commercial
off-the-shelf HeSoCs constitute a convenient and cheap solution to providing the necessary
computing power to run modern software applications, but also pose novel challenges. Main
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interconnect and memory sharing, which is a key architectural trait of such products, causes
a significant slowdown of the application tasks [6], ultimately barring their adoption in
time-critical domains. Main memory bandwidth regulation strategies are being increas-
ingly adopted in commercial products, to provide some degree of QoS control. Several
research approaches have also been proposed in this area to improve the effectiveness of such
techniques [8, 15,20].

Focusing on FPGA-based based HeSoCs, previous work has shown that the combination of
bandwidth monitoring and throttling mechanisms is key not only to providing QoS guarantees
to the CPU workloads – in terms of maximum slowdown experienced – but also to allowing
FPGA accelerators to effectively use the residual bandwidth (without slowing down the
CPU beyond the tolerated QoS thresholds) [3]. The degree of coupling between monitoring
and throttling is pivotal to achieving fine-grained QoS control, suggesting that the finer the
granularity, the better the results. We observed that while this is certainly true in terms of
control capability (how fast the mechanism can adapt to varying workload characteristics due
to memory interference), a very fine-grained bandwidth regulation mechanism might adversely
impact the behavior of the memory controller, ultimately resulting in worse system-level
memory bandwidth exploitation.

In this paper we study and compare three state-of-the-art mechanisms for joint band-
width monitoring and throttling: (i) a coarse-grained, software-based approach that can
be implemented on top of widely available HW performance counters; (ii) a fine-grained,
FPGA-based, integrated runtime bandwidth regulator (RBR [3]); (iii) an ultra fine-grained,
interconnect-level hardware approach, available in a number of commercial HeSoCs (ARM
QoS-400 [1]). We conduct an extensive experimental evaluation on a representative FPGA-
based HeSoCs, the AMD/Xilinx Zynq Ultrascale+, using real benchmarks: the Polybench
benchmark suite [18]. Our setup measures the amount of residual bandwidth that various
bandwidth regulation mechanisms allow the FPGA accelerators to exploit, while maintaining
the slowdown of CPU programs within the tolerated QoS requirements. Experimental results
show that the best results are achieved for the medium-granularity approach, while the ultra
fine-grained one is often surpassed even by the coarse-grained one in terms of exploitation of
the system bandwidth. We thus present a more in-depth investigation of the problem, that
highlights how idleness insertion at a very fine-grained level1 triggers worse DRAM controller
behavior than a slower regulation mechanism.

2 Related Work

Memory interference significantly impacts the performance of modern HeSoCs. This has
driven extensive research in recent years, examining its effects on various components such
as the main CPU [7], GPGPU accelerators [5, 19], and FPGA accelerators [4, 12].

Memory bandwidth regulation is a practical and effective technique typically adopted
on Commercial Off-the-shelf (COTS) HeSoCs. This method is essential for providing
guarantees on application Quality of Service (QoS) and formitigating issues related to memory
contention. Providing an accurate memory bandwidth regulation reduces contention and
enforces execution time predictability, particularly in scenarios where multiple applications
with diverse and competing bandwidth demands are executed simultaneously [17,20,22].

1 QoS-400 operates at the granularity of a small number of back-to-back transactions (or beats), 16 on
the target hardware, equivalent to 256 bytes only.



G. Brilli, G. Valente, A. Capotondi, T. Di Mascio, and A. Marongiu 5:3

Figure 1 Architectural template of the target HeSoC.

Several bandwidth regulation techniques exist both from hardware and software per-
spectives. Considering software-based memory bandwidth regulators, Yun et al. proposed
MemGuard [20] a memory bandwidth throttler that is based on a joint action between band-
width monitoring (using core performance counters) and a software throttling mechanism
based on interrupts. Controlled Memory Request Injection (CMRI) has been originally
proposed as a software-based bandwidth regulation technique, to regulate CPU-based work-
loads [7] and in a more complex setup where also FPGA-based accelerators are involved [4].
All these software-based bandwidth regulators suffer of non-negligible overheads due to
software interactions between loosely-coupled monitoring and throttling components.

Finer bandwidth regulation mechanisms could be designed by leveraging tighter hardware
components to implement bandwidth regulation. For example, Zuepke et al. proposed
MemPol [22] a hardware memory bandwidth regulator that can regulate application cores with
6.25µs granularity, where the throttling phase is implemented using a hardware debugging
interface. Similarly, Farshchi et al. proposed a hardware-based fine-grained regulator
for application cores evaluated on the FireSim simulator [8]. A complementary hardware
approach has been proposed to regulate FPGA-based accelerators with a similar granularity [3].
Several other works try to understand and effectively exploit the available hardware knobs
for controlling QoS and regulating memory bandwidth at different interconnect levels and
memory hierarchy. As it was shown in recent works, using these knobs is typically not
straightforward, due to the varying degrees of support on different products and to the many
different (and in some cases obscure) configurations available [9, 16, 21]. Furthermore, these
mechanisms lack generality, as they are typically closed solutions specific to a given vendor
or hardware platform (e.g., ARM MPAM [14], ARM QoS-400 [1]).

Although it is known that a fine-grained mechanism adapts better to bandwidth variations,
our work proposes a preliminary investigation that highlights that, in some conditions, using
a coarser-grained bandwidth regulator (i.e. even software-based), could better utilize the
bandwidth from the FPGA, given a QoS requirement on a task running on CPU cores.
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3 Target Architecture and Bandwidth Regulation Schemes

We consider the architectural template of an FPGA-based HeSoC shown in Figure 1, which
is composed of a host multi-core CPU coupled to an FPGA subsystem. The two subsystems
communicate via the main DRAM. This template captures the main traits of several existing
commercial products. Within the FPGA, one or more accelerators are deployed. A generic
template for an accelerator includes a datapath, namely the core logic that performs the
computation, and an efficient DMA engine, used to facilitate the staging of data from the
DRAM into a fast, local memory. To simplify the development of FPGA applications it
is common to also enrich the accelerator template with a soft core for local control of the
datapath and DMA operation, without the need for the costly intervention of the main
CPU [2,10,11,13].

In modern HeSoCs, the DMAs inside FPGA accelerators generate much higher DRAM
bandwidth request than what happens on the CPU cores, and more than a single master
port is typically available to individually attach accelerators to the main interconnect fabric
(for example, the AMD/Xilinx Ultrascale+ device that we use for our experimental setup
features three independent ports). If CPU cores and FPGA accelerators run in parallel
without DRAM access control, the execution time of the CPU tasks can slow down by over
10× [12]. On the other hand, enforcing mutually exclusive CPU/FPGA DRAM accesses
causes severe under-utilization of the available memory bandwidth. Since the main interface
of an accelerator to the DRAM is the DMA, previous work has shown that bandwidth
monitoring and throttling can efficiently happen at this level [3].

3.1 Bandwidth Regulation Schemes
In this section we describe three bandwidth regulation mechanisms that rely on integrated
monitoring and throttling cycles, ranging from coarse-grained, full-SW solutions to ultra-
fine-grained, full-HW solutions.

3.1.1 SW-DMA
Previous research has investigated the throttling of FPGA accelerators by utilizing soft
cores to program the DMA in a duty-cycled loop [4]. Each DMA transfer request is divided
into multiple smaller transfers, which can be interspersed with a programmable amount of
idlecycles, computed as shown in Eq. (1):

idlecycles = 100− THR%
THR%

∗ copycycles (1)

Here, THR% ∈ [1, 100] denotes the throttling factor2 applied to the transfer, and copycycles

is the number of clock cycles required to complete the smaller transfer. A disadvantage
of throttling accelerators via software (even when executed on the local soft core) is the
substantial programming overhead, which prevents very fine-grained operation.

3.1.2 Runtime Bandwidth Regulator
The Runtime Bandwidth Regulator (RBR) [3] has been proposed as a non-intrusive component
introduced in the the accelerator template, as shown in Figure 1. It contains two main blocks:
(i) a monitor that probes the outgoing channel to the DRAM to unobtrusively measure

2 THR=100 corresponds to 100% bandwidth, while THR=1 corresponds to 1% bandwidth.
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Figure 2 Waveforms of a memory transaction generated from an accelerator, composed of 256
beats and regulated using QoS-400 with ri = 0x60. The red and green waveforms represent the case
with and without memory interference.

the time (copy cycles from Eq. (1)) to transfer a given amount of bytes. The size of this
transfer defines the granularity of the technique; (ii) a throttler that computes the idle cycles
from Eq. (1) and stops DMA operation for that amount of time. The granularity and the
throttling factor (THR) can be dynamically (re)configured at any time by the software.

The tight coupling between the monitor and the throttler in the RBR guarantees very fast
QoS regulation, which is convenient in presence of dynamically varying QoS requirements.

3.2 ARM QoS-400 regulator
The ARM CoreLink QoS-400 regulator [1] is a hardware component designed to manage bus
traffic generated from various actors sharing main memory on the HeSoC. The official ARM
documentation does not provide detailed descriptions of the QoS-400 regulator behavior,
nor does it specify the granularity of the regulation. By means of a thorough experimental
characterization of the QoS-400 behavior, it is possible to observe that the regulation operates
with a fixed, very fine granularity.

Fig. 2 shows an example of how the QoS-400 manages long outstanding transactions
from a DMA in absence of interference (top plot) and in presence of interference (bottom
plot). The example DMA transfer is a burst of 4096 bytes. The burst is split in 256 beats, as
the physical size of the channel is 16 bytes. In absence of interference, the QoS-400 steadily
fragments the 256-beat transfer into blocks of 16 beats each, followed by a idle period whose
length is determined according to Eq. (1). In presence of interference, it is evident that
the QoS-400 is capable of adapting, employing bandwidth monitoring and adjusting the
throttling. From the plot on the bottom we can see that the QoS-400 detects the bandwidth
drop due to interference and maintains the desired QoS level by adjusting the throttling .
By allowing twice the number of beats to be transmitted in the third sub-transaction, the
bandwidth is maintained at the target value.

4 Experimental Results

This experimental section aims to analytically study the behavior of the different bandwidth
controllers under investigation. Previous work has highlighted already that finer-grained
approaches are more effective at guaranteeing the desired QoS levels in presence of fast
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dynamic changes in the QoS requirements or/and in the traffic characteristics [3]. However,
different approaches are more or less effective at redistributing the bandwidth unused by the
actors executing the QoS-constrained workload to the remaining (best-effort) actors. Our
experiments focus on analyzing the capability of each method of redistributing the unused
bandwidth, provided that they all are configured to always meet the QoS requirements.
Further, the experiments examine how the different architectural designs of the controllers and
their inherent operational granularities impact their performance and the level of interference
they generate in the system.

4.1 Experimental Setup
The experimental evaluation is conducted on an AMD/Xilinx Zynq Ultrascale+, XCZU9EG
HeSoC. The accelerator template for the SW-DMA and RBR mechanisms was modeled
after the setup described in [3] [4], using AMD/Xilinx IPs for the DMA, soft-core and
interconnects. To capture worst-case interference effects, we instantiate three accelerators
(one per DRAM controller port), each of which is configured to operate as a generator of
steady R/W traffic3 [12]. The resulting design was synthesized with a target frequency of
300 MHz using AMD/Xilinx Vivado 2020.2.

In our setup, the CPU is considered the actor with a QoS constraint, while the FPGA
accelerators are the best-effort actors. As it is often done in the literature [16, 17, 22], we
consider two fixed thresholds to the maximum tolerated QoS degradation: 10% and 20%
slowdown with respect to non-interfered execution. We measure the maximum amount
of memory bandwidth that FPGA accelerators can utilize without causing performance
degradation in software applications that surpass the aforementioned QoS thresholds. As
a target workload executing under the described QoS constraints, we execute 31 different
applications from the Polybench benchmark suite [18].

4.2 Exploitable Residual Bandwidth Evaluation
Figure 3 describes how the experimental evaluation is conducted. One such plot is derived
for every benchmark. The X-axis represents the overall throttling factor THR% applied to
the three FPGA accelerators. Note that the percentage shown on the X-axis refers to the
cumulative bandwidth used by the three accelerators. Thus, a THR% ← 100% implies that
the i-th accelerator is configured with one-third of the total THR% (i.e., ACTi = 33.3%
THR%). A THR% ← 100% corresponds to utilizing the entire memory bandwidth of the
FPGA, as denoted by a vertical dotted line. The red area depicts the bandwidth used by
the FPGA accelerators and refers to the left Y-axis of the plot. The horizontal black curves
mark the two tolerated CPU slowdowns (10% and 20%) and refer to the right Y axis of the
plot. Two black arrows originate at the points where the measured CPU slowdown curve (the
one with red markers) intersects the horizontal black curves and are projected up vertically
to the point where they intersect the red area. The latter intersection points indicate the
memory bandwidth used by the FPGA for the target regulation mechanism under both QoS
constraints (10% and 20%). Intuitively, a higher FPGA bandwidth means a better capability
of redistributing the unused bandwidth by the CPU to the FPGA accelerators.

These memory bandwidth values are plotted in Figure 4 for all the PolyBench benchmarks.
Subplots a) and b) refer to 10% and 20% max QoS degradation, respectively. The RBR
regulator generally allows for greater bandwidth usage compared to other regulators, both at

3 Note that this is without loss of generality, as well-designed accelerators overlap memory transactions
with computation.
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Figure 3 Application slowdown and FPGA memory bandwidth varying the THR% parameter.
The intersections between the slowdown curve and the two horizontal lines determine the maximum
tolerated FPGA bandwidth.

10% and 20% QoS thresholds. This is evident in Figure 5, where we summarize the average
memory bandwidth utilization of the 31 benchmark kernels, normalized to the memory
bandwidth achieved by the RBR mechanisms. Medium-grained bandwidth regulation (RBR)
allows the exploitation of +37.57% and +16.08% more of the memory bandwidth compared to
SW-DMA and QoS-400, respectively, for the 10% QoS requirement. A similar improvement
is also seen when relaxing the QoS to 20%. In that case, the RBR can allow +35.45% and
+8.54% higher memory bandwidth utilization.

This advantage is particularly pronounced when stringent regulation is necessary, such as
when FPGA bandwidth falls below 10 GB/s. Looking at individual benchmarks, however,
it might come as a surprise that the SW-DMA sometimes offer better residual bandwidth
exploitation than QoS-400 or even RBR. This seem to happen in scenarios where the residual
bandwidth is low (below 6 GB/s), indicating that the CPU benchmark is very sensitive to
interference. It appears that a slower idleness insertion mechanism in these situations can
better exploit the residual bandwidth.

To confirm this intuition we conduct a new experiment, where we focus on a synthetic
benchmark, running on the CPU, which performs only DRAM read accesses with a 100% L2
cache miss rate (maximum DRAM bandwidth requirement).

Figure 6 illustrates the usable bandwidth for FPGA accelerators (colored area, left Y-axis)
and the respective slowdown experienced by the application under test (black line, right
Y-axis) for each regulator type: fine-grain QoS-400, medium-grain RBR, and coarse-grain
SW-DMA, as the THR varies (X-axis). Analyzing the FPGA bandwidths at different
THR levels, it is evident that the QoS-400 and RBR controllers can both precisely control
the amount of DRAM bandwidth used by the FPGA accelerators under identical THR
configurations, peaking at 8.6 GB/s. In contrast, the SW-DMA controller can only utilize
half of that bandwidth (4.2 GB/s) due to the overhead introduced by the software-based
monitoring and control loop between different data transactions.

If we now focus on the impact on the application under test, we can notice that given any
THR configuration, the CPU traffic suffers a significantly higher slowdown under QoS-400
regulation compared to RBR. Using RBR the FPGA can exploit up to 1.73 GB/s and 3.16
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(a) 10% slowdown increase.

(b) 20% slowdown increase.

Figure 4 FPGA memory bandwidth usage given a maximum tolerated slowdown (X% increase)
of each computational kernel of the PolyBench benchmarking suite.

GB/s of DRAM bandwidth at QoS levels of 10% and 20%, respectively. In contrast, the
more fine-grained QoS-400, only exploits residual bandwidth of 0.40 GB/s and 1.40 GB/s for
the same QoS settings (over 50% worse than RBR). Surprisingly, the coarse-grain controller
SW-DMA allows for a higher bandwidth exploitation than the other two controllers, meeting
the QoS requirements at 2.35GB/s and 3.81GB/s. This preliminary investigation thus
indicates that using the finest bandwidth regulation component (e.g., the QoS-400) is not
always beneficial for maximizing memory bandwidth utilization, especially when the CPU
has a strict slowdown requirement.

The intuition is that a very fine-grained memory bandwidth regulator imposes smaller
regulation intervals on the memory buses, resulting in reduced opportunities for the CPU to
interleave software-generated memory transactions on the memory controller. The intuition
seems to be confirmed by simply doubling the regulation period of the RBR mechanism and
observing that it can use higher residual bandwidth.
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Figure 5 Average FPGA memory bandwidth utilization while the PolyBench applications are
subject to 10 and 20% of slowdown increase.

(a) ARM QoS-400. (b) RBR. (c) SW-DMA.

Figure 6 Synthetic benchmark that executes 100% cache read-miss operations, while the FPGA
accelerators are regulated using the three different bandwidth regulators.

A coarser granularity has clearly the downside of making the approach slower to adapt to
dynamically varying QoS requirements or traffic characteristics [3], so the sweet spot changes
across different applications and hardware platforms. This insight opens the door to studying
novel, potentially dynamic solutions that exploit different regulation granulates optimized
for allowing the system to use the maximum performance from the HeSoC in all operational
scenarios (e.g., traffic patterns, QoS levels, etc.), which is the focus of our ongoing work.

5 Conclusion

Bandwidth regulation mechanisms based on integrated monitoring and throttling are being
increasingly used both in commercial products and in research, as they allow to mitigate
the unpredictable behavior of HeSoCs where several CPUs and accelerators share the
main memory. Although previous work has already highlighted that fine-grained bandwidth
regulation allows for very precise QoS control and fast adaptation to varying QoS requirements
and traffic characteristics, our preliminary investigation indicates that using the finest
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bandwidth regulation is not always beneficial for maximizing residual memory bandwidth
utilization, especially when the CPU has a strict slowdown requirement. Configurable-
granularity approaches like RBR can be exploited to devise software policies to exploit the
sweet spot between fast control and maximal residual bandwidth exploitation, dynamically
adapting at runtime to the characteristics of the workload and target hardware.
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Abstract
The problem of estimating worst-case execution times of programs on processors has appeared within
the context of critical industries like avionics or space. Rapidly adopted by the real-time scheduling
community, worst-case execution time estimates of programs or tasks are mandatory to understand
the time behaviour of a real-time system. Analyzing such time behaviour is done, often, with an
important pessimism due to the consideration of worst-case scenarios. A decreased pessimism has
been obtained by understanding that large execution times of a program have low probability of
appearance. Probabilistic (worst-case) execution time notion has been proposed. Nevertheless,
independence hypotheses makes difficult today to calculate the probabilistic worst-case execution
time of a program and current approaches are built, often, on statistical estimators based on the use
of Extreme Value Theory or concentration inequalities. Thus, future probabilistic time analyses are
expected to consider worst-case execution times estimates obtained by using statistical estimators on
measured execution times instead of probabilistic (worst-case) execution times estimations. Within
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1 Introduction and motivation

Originally introduced to answer DO-178B certification requirements, the problem of estimat-
ing worst-case execution time (WCET) of programs or tasks has received increased attention
from the real-time community. Static methods for the WCET estimation of a program
on a processor, analyzing the program without any execution of the program, has been
intensively proposed for different processor architectures [12] and dynamic methods requiring
execution of programs have received a recent interest due to the arrival of more complex
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Figure 1 A possible view for a program τ1.

be safe, but pessimistic, dynamic methods have the reputation of being unsafe since their
estimation is based, only, on what it has been observed or measured. Probabilistic worst-case
execution time has been proposed within this context by Bernat and Petters [1] in order to
underline that based on some probabilistic reasoning, the observed execution times obtained
by dynamic methods are enriched in order to achieve safeness. As such, this definition
generalizes the static WCET definition but it comes with a strong hypothesis: probability
distributions at some granularity level of programs, e.g., basic blocks, should be independent
or any combinations of them should include a safe description of possible dependence between
those basic blocks. We understand here by basic blocks, linear sequences of instructions,
without any branch. One may note that this is different from the problem of dependence
between probability distributions describing probabilistic execution times of two instances of
the same program or instances of different programs as described in [2], even if a relation
does exist between them (see Section 3). Indeed, probabilistic worst-case execution definition
has appeared as the result of probabilistic operations which are done in order to obtain the
probabilistic distribution of a (worst-case) execution time for a program. For instance, if
one considers a program τ1 with its basic blocks A1, A2, A3, · · · , A7 as described in Figure 1,
then probabilistic operations (convolutions, dominance relation for instance) between the
probability distributions of those basic blocks could be done to propose a probabilistic
(worst-case) execution time estimation for the program τ1. Another alternative is building or
calculating a dominance relation between two probability distributions, which is possible
in absence of any particular mathematical properties, while the convolution between the
probability distribution of A1 and the max(A2, A3) requires to understand the dependence
that may exist between them. Such understanding may be built on input variables the two
basic blocks share but also on states at which the execution of A1 leaves processor features
after its execution. Within this paper and for the sack of simplicity, we focus on the variation
of input variables and/or the existence of several cores.

Our main contributions are the following:
we provide discussions on the fact that probabilistic (worst-case) execution times and
statistical (worst-case) execution times should co-exist. Moreover, we discuss the oppor-
tunity of using the identically distributed hypothesis within the context of probabilistic
(worst-case) schedulability analyses:
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we underline the misleading relation between dependence hypothesis at basic block level
and at the instances of a program and conclude on the possibility that new execution
time models are needed to include both types of dependence;
we propose a first discussion on how statistical WCET estimators may bring time
composability to the multicore problem.

Organization of the paper. We provide in Section 2 main definitions and notations used to
introduce our contribution. In Section 3 we compare probabilistic (worst-case) execution
time and statistical (worst-case) execution time definitions as well as the place of identically
distributed and independent hypotheses. In Section 4, we provide hints on how statistical
WCET estimators are good candidates for the multicore problem.

2 Notations and related work

Within this paper, we consider a set n programs (or tasks) τi executed on a processor π1.
A program or task τi, ∀i ∈ {1, 2, .., n} is defined by Ci its execution time defined by a
cumulative distribution function FCi (see Equation (1)), where Ω0 = Q × I is the product
space between Q is the set of possible states of the processor π and I is the set of all possible
input values of tasks τi [13].

FCi
(c) = PCi

((−∞, c)) = P (ω0 ∈ Ω0 : Ci(ω0) ≤ c) (1)

One may underline that FCi(c) defines the probability for the execution time Ci to be
smaller than c. Indeed, within the real-time community, one is interested in the exceedance
function 1 − FCi

which defines the probability for the execution time Ci to be larger than
c. Such exceedance function is, often, addressed as the probabilistic (worst-case) execution
time of a task or program. One may consider the obtention of such function by two main
classes of methods:

probabilistic approaches - they combine information at some granularity level, e.g., basic
blocks. For instance, for the program τ1 introduced in Section 1 (see Figure 1), one may
calculate this distribution using the distributions of all basic blocks under appropriate
mathematical hypotheses;
statistical approaches - they use statistical estimators on measured execution time at
some granularity level, e.g., between the beginning and the end of the program τ1.

Few results [4] are proposed for the first class of approaches as they require an important
understanding on how the probability distribution of a basic block has an impact on the
probability distributions of another basic block. This first method has been proposed within
the literature together with a definition for the probabilistic worst-case execution time [1]
and this definition has been, often, used when execution times are described by exceedance
functions. Nevertheless, in [1], no independence, nor identically distributed hypothesis is
discussed. The second class of approaches [6] has been proposed in parallel with [1], but the
authors do not introduce a definition for the freshly proposed notion of probability for the
execution time to exceed a given value. They do provide theoretical bases for an important
existing observation from [11], the distribution of execution times is heavily tailed, i.e., the
probability of appearance of large values for the execution times are low and large values

1 For the sake of the simplicity, we consider a simple processor as more complex architectures do not
modify the conclusions of our paper
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are much larger than average ones. In parallel, a schedulability analysis proposed for a set
of tasks with independent and identically distributed (i.i.d) random variables describing
execution times is proposed [5]. Its strong i.i.d. hypothesis is required to prove a stationarity
property allowing to conclude on the schedulability of the system. This full i.i.d hypothesis
is, often, used within schedulability analyses by more recent authors, without necessarily
being used entirely. Indeed, while the independence hypothesis is required to operate a
convolution, there is no need for two distributions to be identically distributed for such
convolution to be operated [3]. Usually the identically distributed hypothesis is required
to prove or to use convergence results mainly in statistics or stochastic processes. More
precisely, one important and correct use of the identically distributed hypothesis is done
within the application of statistical estimators on ordered sequences of measured execution
times obtained by following some measurement protocols. Within this context, we resume
below latest results on statistical approaches as proposed in [7]. The WCET of a program or
task τi is defined as its largest execution time for any valid execution scenario S. During each
scenario Sj , execution times are collected as ordered sequences of execution times. Statistical
estimators are applied on these sequences and i.i.d properties are checked. In [7], an Extreme
Value Theory estimator2 is applied to sub-sequences where a sub-sequence contains i.i.d.
execution times. Finally, the WCET estimation is obtained by building an envelop on
all sub-sequences WCET estimations. Such mathematical operation introduces a time
composability between sWCET estimations of different sub-sequences of execution
times. One may notice that these sub-sequences correspond to different execution modes.

When dealing with dynamic approaches for WCET estimation of a program on a processor,
one may be interested in identifying the paths within the program that produces an execution
time. Following the definition proposed in [7], a path Pj of a program τi is critical with respect
to a pWCET estimation of A if, at least, one measurement of the execution of that path
appears within the sub-sequence contributing to the pWCET estimate of A. Always in [7],
the authors define a domination relation that formally underlines that a path within one
execution scenario may produce execution times that participate to the WCET estimation,
while within another execution scenario, this is not the case. For instance, in Figure 2, we
consider an ordered sequence (from the left to the right of the figure) measured during a
simulated flight for the Sensors program (KDBench programs, more details in [9]). Execution
times obtained by exercising the same paths are colored with the same color while execution
times within two consecutive vertical lines constitute a sub-sequence on which the statistical
estimator is applied.

In this paper and in order to distinguish between WCET estimations obtained by using
probabilistic approaches and WCET estimations obtained by using statistical approaches,
we call the second ones as the statistical worst-case execution time (sWCET) estimates. In
Figure 3, we illustrate the sWCET estimation obtained as an envelop built on top of sWCET
estimations obtained for each sub-sequence given in Figure 2.

3 Two definitions and one identically distributed and independent
hypothesis within the context of estimating (worst-case) execution
times and probabilistic schedulability analyses

In this section, we propose a deeper discussion on hypotheses of independent and identically
distributed and their relation with pWCET and sWCET notions as well as their impact on a
schedulability analysis.

2 An interested reader may find more details on such estimators in [4].
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Figure 2 An ordered sequence of execution times for the Sensors program (KDBench programs [8]).

Figure 3 sWCET illustration obtained as an envelope (KDBench programs, see [9]).

Probabilistic approaches do not require any identically distributed hypothesis among
basic blocks (or other parts of the program) to produce the pWCET of that program,
but they require probability distributions of those basic blocks to be independent, or if
not, one has to describe the dependence between these blocks. If we move at a higher
level, then a schedulability analysis requires to understand the dependence relation between
pWCET of different tasks or their instances. Is a probabilistic approach able to provide such
understanding? With our current understanding of the literature, the answer is negative.
Indeed, probabilistic approaches are static analysis-based and they do not provide information
on different instances of a program, e.g., what path is executed at some time instant. Let us
consider the set of tasks τ = {τ1, τ2, τ3}, where the internal structure of τ1 is illustrated in
Figure 1, of τ2 in Figure 4 and of τ3 in Figure 5.

We consider now a possible schedule illustrated in Figure 6, where exercised paths are
colored in green. A pWCET estimation does not distinguish between different paths, neither
of different execution contexts. Actually, if one looks at path level, then it does not exist any
current probabilistic schedulability analysis considering paths to be associated with some
program instances (or jobs). Indeed, considering dependence relations between consecutive
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Figure 4 A possible view for a program τ2.

execution times requires, also, to understand if exercising B1 − B3 − B4 in τ2 increases the
probability for τ3 to exercise C1 − C2 − C4 − C5, for instance. pWCET estimations as defined
today within the literature do not include such information. Moreover, the independence
hypothesis at basic block level does not help to advance towards estimating inter-programs
or inter-instances dependence.

Coming back to the identically distributed hypothesis, its utilization for integrating
pWCET estimations within a schedulability analysis is not necessary to provide correct results.
As underlined within the introduction, the convolution between probability distributions does
not need this mathematical property. Looking at realistic executions, while different paths do
indicate the existence of multimodal distributions [14]3, the static analysis-based reasoning of
pWCET estimators do not allow to differentiate among these paths and consecutive instances
of the same program may have different distributions if they exercise different paths.

Statistical approaches may require the i.i.d. hypothesis for sequences of measured
execution times in order to obtain a sWCET estimated. For instance, in Figure 2 i.i.d
sub-sequences of execution times are considered in order to apply statistical estimators only
to the execution times within the same sub-sequence. Finally, the sWCET may be obtained
by building a probability distribution upper-bounding all sWCET estimations obtained per
sub-sequence. Thus, a dominance relation is built within the final sWCET estimation. To
the best of our knowledge, using such sWCET within a schedulability analysis has never been
considered in the literature. Even if pWCET and sWCET provide a probability distribution
to the schedulability analysis, their estimations require different level of information on the
variation of execution times. Since sWCET estimation is expected to consider as input,
execution times obtained in real execution conditions, then the sequences of execution times
are measured with respect to a given scheduling algorithm. The evolution of execution times
do capture dependence relations introduced by the scheduling algorithm. While the paths
exercised by a program during its execution are, mainly, imposed by the variation of input
variables of that program, the variation of execution times per path may be impacted by the
choice of the order in which programs are executed.

3 We introduce intuitively the notion of multimodal distribution as a distribution with several peaks
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Figure 5 A possible view for a program τ3.

If one wants to capture this evolution and introduce it within a schedulability analysis,
stochastic processes are an alternative - existing results as [10] (to cite the latest, to the
best of our knowledge) are promising and one may consider what is a stochastic (worst-case)
execution and its relation to pWCET and sWCET definitions. Moreover, a formal pWCET
definition provided in [2] indicates that stochastic processes fulfill hypotheses allowing to
built correct schedulability analysis.

4 From single to multicore processors

While the probabilistic WCET estimation has received important attention in the case of
programs executed on one core processor, the statistical WCET estimation is, in our opinion,
a more promising candidate for programs executed on multicore processors or in presence of
operating systems. The main limitation is the strong pWCET hypothesis of independence
between probability distributions describing the execution time of basic blocks. By adding
new interference sources, the multicore case increases the complexity of describing such
dependence relations. In the case of sWCET estimators, dependence relations between
consecutive executions of a program does help to detect different sub-sequences of execution.
These sub-sequences identify different execution modes that could be provoked either by
the execution of different paths, but also by the evolution of hardware states like multicore
interferences. In Figure 7, the execution times of a program are obtained on a 4 cores
processor with a variation of the execution time dependent on an input variable. Each core
has local cache (data and instruction) memories and there is one global cache data memory
that is shared by all cores. The execution times are presented from the left to the right in
the order of their measurement, while on the vertical axis, the values of execution times are
provided in cycles.

We underline the existence of 4 groups of execution times - the lower group is obtained
when only the core executing the program is active, the second from the bottom is obtained
when a second core is active, etc. Within the same group, execution times are obtained
respectively, without active cache memory, with active cache instruction memory and with
active cache data memory. The highest value is obtained in presence of cache memory shared
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Figure 6 A schedule from t1 to t2 of programs τ1, τ2 and τ3 and their paths. The exercised paths
are illustrated in green.

Figure 7 The evolution of execution times for a program executed 100 times with the same
sequence of input variables and the execution time is dependent of the variation of one input variable
illustrated in blue.

by all cores. Since the processor does not include pipelines, nor branch predictors, the
execution times are ordered in layers and a statistical estimator provides sWCET estimations
with a nice dominance property. In reality, these layers of execution times may cross each
other and the sWCET estimations per core could be visualized as in Figure 8. Comparing
the envelop built per core is a possible way to estimate the penalty of a core but the
most important is that building a global envelop ensures a time composability between
sWCET estimated for a program executed in the presence of several cores.
Considering stochastic WCET estimation for programs executed on several cores is an open
problem, but its common hypotheses with the sWCET estimation is promising. Including
such estimations (stochastic or statistical) within multicore schedulability analysis is an open
problem.
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Figure 8 SWCETs cross each other and the envelop per core allows to calculate the penalty for
each new core.

5 Conclusions

In this paper, we propose a discussion on how three definitions for describing the probability
that the execution time is larger than a given value have been introduced within the real-time
community. Understanding their estimation is an important step towards their correct
integration within higher-level time analysis and their hypotheses may prevent some of
them from such integration. We conclude the paper by presenting hints on how sWCET
estimations may provide a time composability answer to the WCET multicore estimation
problem.
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Abstract
The microarchitecture of processors is becoming increasingly complex and less documented, making
the design of timing models for WCET calculation increasingly complicated, if not impossible. We
have recently experimented with the use of machine learning techniques (ML) to predict the WCET
of basic blocks [3, 1, 2, 4, 5]. Predicted WCETs can then be integrated into static WCET calculation
tools, resulting in a hybrid WCET calculation.

In this keynote, we present our experience using ML for WCET calculation, across a range of
architectures, from very simple ones (MSP430, Cortex M4) to more complex architectures. Rather
than presenting only what worked, we also discuss in this keynote the bad, and even very bad,
surprises encountered during the process, and how we overcame (most of) them.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Computer systems organization → Real-time systems; Computing methodologies → Machine
learning

Keywords and phrases Worst-Case Execution Time (WCET) estimation, Machine Learning, Ex-
plainable ML models

Digital Object Identifier 10.4230/OASIcs.WCET.2024.7

Category Invited Talk

References

1 Abderaouf N. Amalou, Élisa Fromont, and Isabelle Puaut. CATREEN: context-aware code
timing estimation with stacked recurrent networks. In Marek Z. Reformat, Du Zhang, and
Nikolaos G. Bourbakis, editors, 34th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2022, Macao, China, October 31 – November 2, 2022, pages 571–576.
IEEE, 2022.

2 Abderaouf N Amalou, Elisa Fromont, and Isabelle Puaut. Cawet: Context-aware worst-case
execution time estimation using transformers. In 35th Euromicro Conference on Real-Time
Systems (ECRTS 2023). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

3 Abderaouf N Amalou, Isabelle Puaut, and Gilles Muller. We-hml: hybrid wcet estimation using
machine learning for architectures with caches. In 2021 IEEE 27th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 31–40.
IEEE, 2021.

4 Abderaouf Nassim Amalou. Machine learning for timing estimation. (apprentissage automa-
tique pour l’estimation du temps d’exécution). PhD thesis, University of Rennes 1, France,
2023. URL: https://tel.archives-ouvertes.fr/tel-04406029.

5 Abderaouf Nassim Amalou, Elisa Fromont, and Isabelle Puaut. Fast and accurate context-
aware basic block timing prediction using transformers. In Gabriel Rodríguez, P. Sadayappan,
and Aravind Sukumaran-Rajam, editors, Proceedings of the 33rd ACM SIGPLAN International
Conference on Compiler Construction, CC 2024, Edinburgh, United Kingdom, March 2-3,
2024, pages 227–237. ACM, 2024.

© Isabelle Puaut;
licensed under Creative Commons License CC-BY 4.0

22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024).
Editor: Thomas Carle; Article No. 7; pp. 7:1–7:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:isabelle.puaut@irisa.fr
https://orcid.org/0000-0001-9310-9651
https://doi.org/10.4230/OASIcs.WCET.2024.7
https://tel.archives-ouvertes.fr/tel-04406029
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de



	p000-Frontmatter
	Preface
	Committees

	p001-Reymond
	1 Introduction
	2 Related work
	3 Overview of WORTEX
	3.1 Dataset generation
	3.2 Energy and time measurement
	3.3 Model creation

	4 Specifics of WORTEX on MSP430
	4.1 The MSP430FR5969 microcontroller
	4.2 Dataset generation
	4.3 Energy and timing measurement

	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Analysis of WCET and WCEC predictions at BB level
	5.3 Analysis of WCET and WCEC predictions at program level
	5.4 Inference time

	6 Discussion on explainable AI
	7 Conclusion
	A Appendix
	A.1 Computing the energy consumption from the current consumption
	A.2 Detailed results on BB prediction


	p002-Maroun
	1 Introduction
	2 Overview of the PLATIN Analysis Tool
	2.1 Analysis-Aware Compilation with Clang
	2.2 PLATIN's Supporting Tools

	3 PLATIN's Support for Multiple Architectures
	4 PLATIN's Path-Analysis & Annotation Extensions
	4.1 SysWCET: Whole-System Response-Time Analysis
	4.2 SysWCEC: Whole-System Energy-Consumption Analysis
	4.3 System-Wide Annotation Support

	5 Evaluation
	6 Related Work
	7 Conclusion

	p003-Cazanove
	1 Introduction
	2 Certification
	3 Mastering COTS platforms
	4 Jetson AGX Xavier Platform
	4.1 Volta Execution Model
	4.2 DCache factors

	5 Evidence means
	5.1 Experimental setup
	5.2 Benchmark
	5.3 Simulation

	6 Evaluation
	6.1 Assessing the DCache size
	6.2 Assessing of the DCache Associativity

	7 Related work
	8 Conclusion and future work

	p004-Schoeberl
	1 Introduction
	2 Background
	2.1 Lingua Franca
	2.2 Patmos
	2.3 The Compiler and the WCET Analyzer

	3 Analysis-Friendly Applications with Lingua Franca
	3.1 Analyzable Code
	3.2 Benefits of LF for WCET Analysis
	3.3 Challenges with Dynamic Scheduling
	3.4 Quasi-Static Scheduling of LF Applications
	3.5 Analyzing the Runtime System

	4 Evaluation
	4.1 A Simple Example Application
	4.2 Medium-sized Application
	4.3 Automated Solution

	5 Related Work
	6 Conclusion

	p005-Brilli
	1 Introduction
	2 Related Work
	3 Target Architecture and Bandwidth Regulation Schemes
	3.1 Bandwidth Regulation Schemes
	3.1.1 SW-DMA
	3.1.2 Runtime Bandwidth Regulator

	3.2 ARM QoS-400 regulator

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Exploitable Residual Bandwidth Evaluation

	5 Conclusion

	p006-Cucu-Grosjean
	1 Introduction and motivation
	2 Notations and related work
	3 Two definitions and one identically distributed and independent hypothesis within the context of estimating (worst-case) execution times and probabilistic schedulability analyses 
	4 From single to multicore processors
	5 Conclusions

	p007-Puaut

