
Game Development: Enhancing Creativity and
Independent Creation in University Course
Lenka Bubenkova #

Department of Computers and Informatics, FEI TU of Košice, Slovakia

Emilia Pietrikova #

Department of Computers and Informatics, FEI TU of Košice, Slovakia

Abstract
In this study, we tested a novel method of teaching the Unity engine to computer game design
and development students. Our objective was to determine if a flexible assignment structure is
the most effective for students with minimal engine experience. The study demonstrated that
independent work significantly improves students’ comprehension and problem-solving skills. Key
findings include a 90% increase in students achieving more than the minimum required grade, a
significant improvement in self-reported confidence with Unity (with 66.3% of students moving
from no experience to higher skill levels), and diverse, innovative final projects that exceeded initial
expectations. These results suggest that the flexible assignment approach enhances creativity and
maintains high expectations for student work, ensuring their success in the game development
industry. The combination of student project grades, innovative project elements, and positive
feedback indicates that this method is highly beneficial and could be applied effectively in various
educational settings.

2012 ACM Subject Classification Social and professional topics → Student assessment

Keywords and phrases novice programmers, assessment, learning analytics, motivation, unity engine,
game development, problem-solving skills

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.12

Funding This work was supported by project Kega No. 015TUKE-4/2024 “Modern Methods and
Education Forms in the Cybersecurity Education”.

1 Introduction

In computer science and software engineering, it is essential to recognize the significance of
incorporating fun and creative elements alongside traditional programming and practical
tools. As computer games and other forms of digital entertainment continue to grow in
popularity, educators must integrate them into their teaching methods. To remain up-to-date
with the latest trends, universities must equip their students with the skills required for
game development. One of the aspects of supporting this tutorial is, for example, this case
study[24] of the concept of gamification used on a games development course. One practical
approach to combining education and creativity is teaching students how to craft their games
in the most imaginative way possible while leveraging gamification to deliver lessons through
gameplay. This can be used in various courses, as described in this publication [21], where
authors implemented the learning of object-oriented programming by playing computer
games. While teaching students the basics of game development and the usage of engines,
there is also a need to consider a theory that will help them create visually attractive and
exciting games. One of the ways to develop such a game is using patterns, as is written in
this publication [32], to keep players entertained and simulate and enhance reality.

Currently, there are many game engines available for creating games. Unity is a popular
choice because many job opportunities require knowledge of this engine, as written in this
article [17], and it is easy to use, even for students new to game development. Besides,

© Lenka Bubenkova and Emilia Pietrikova;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 12; pp. 12:1–12:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lenka.bubenkova@tuke.sk
mailto:emilia.pietrikova@tuke.sk
https://orcid.org/0000-0002-9790-6874
https://doi.org/10.4230/OASIcs.ICPEC.2024.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


12:2 Enhancing Creativity in University Course

Unity’s ability to create multiplatform [13] games and projects is important for today’s game
development world. In addition to these aspects, the use of Unity Engine for teaching is
also suitable from the point of view of the accessibility of various tutorials. As mentioned
in [31], from an educational perspective, it is appropriate for students to independently
find additional information about creation from professionals, programmers, and developers
dedicated to creating just such instructions. In this study [8], using Unity Engine and
Design-Based Research approach resulted in the high engagement of students, making an
introduction to this engine smoother and more attractive. To add, based on this study [9],
learning how to code by creating games promises high motivation. The aim is to teach
students how to develop Unity Engine and provide enough information to continue their
work even after this course.

Besides, not only game development uses Unity Engine, as we can see [19] or [34], but
Unity can be used for developing various types of projects. In this example, we can see
the usage of the Unity engine in the creation of the short movie “The Heretic” [10]. This
provides a strong justification for teaching Unity Engine.

However, the challenge lies in making the teaching of game development exciting and
engaging while encouraging students to be creative and imaginative. The traditional approach
to game development can be time-consuming and challenging because students need to develop
unique ideas to incorporate into their games. If students are given strict rules and guidelines
to follow, they might not develop a good understanding of the engine and how to create
games. As mentioned in [30], in addition to basic programming, advanced knowledge in
computer graphics, databases, artificial intelligence, or, for example, physics is also necessary.
Basic knowledge enables students to understand contexts better and work more effectively
on assignments within the subject. Today, it is also essential to know various techniques
and developments. Unity, for example, provides an excellent environment for developing
virtual reality and XR in general. According to [29], the focus on the interface and, thus,
the use of these XRs is extremely important for game development and projects. Each of
these approaches is usable and thus feasible in the Unity Engine. Using the Unity engine for
enhancing problem-solving skills and creativity for this course is also supported by outcomes
of this research [26]. This study provides insights that could be applied by educators across
various disciplines who wish to incorporate similar strategies to enhance engagement and
learning outcomes.

How can creative labs improve the GameDev course?

Up to this point, game development education in our courses has been implemented through
basic versions of preexisting games, where students complete brief tasks and gain an under-
standing of the environment.Teaching methods are straightforward, and there is no space for
considering one’s elements and improvements. The entire procedure consists of downloading
the game, launching it in the Unity editor, and playing it. After the game calculates their
scores, students submit their scores and receive their marks. A similar approach can be seen
in this [27] game made with the Unity engine.

The new method involves the entire project creation and setup process to develop a
functional game similar to a flying simulator. This approach consists of three tutorials and a
step-by-step guide, from creating a project to adding a user interface. The main difference
between the old and new approaches is that the old approach did not allow students to create
something independently. Instead, it strictly guided them through various tasks.

On the other hand, the new approach guides students through creating games, but it
always leaves their final work independent of the assignment form. This means that while
they must follow various steps and learn various parts, the final form is always in their



L. Bubenkova and E. Pietrikova 12:3

imagination. This ensures they create something unique, go through the tutorials, find more
exciting and engaging parts, and work on them more. Based on the experience outlined in
the article [5], the decision has been made to adopt GitLab as the submission platform for
student projects.

The remainder of this paper is organized as follows: Section 2 provides background and
related work. Section 3 describes our proposed approach and details the three iterations of the
tutorial. Section 4 outlines the experiment setup and conduction, including our conjectures.
Section 5 presents the results and discusses the findings. Finally, Section 6 concludes the
paper with interpretations of the results, challenges, limitations, and suggestions for future
work.

2 Background

With a similar course outline, this paper [14] describes the slow approach and exciting
engagement for students in creating games through the Unity engine. It encourages its
students to create 2D games, preparing them for future careers. We also considered the
importance of active learning, as seen in this example [25], where authors used active
learning based on scenarios using Unity 3D. Another engaging hands-on project experience,
as described in this article [7], is using step-by-step tutorials. This kind of tutorial provides
a compact way of learning and understanding problems to their core. Thinking about using
Blender, we also searched for existing implementations of this tool in teaching. One of the
most used approaches is the creation of educational games using Unity. This approach can
introduce students to development with the Unity engine in the form of a game. With this
form of teaching, as is written in this research [16] that discusses educational games in Unity,
we can effectively avoid limitations to traditional teaching methods and support students’
creativity.

Another approach for this tutorial is using a teacher-student model, which was optional
in the previous teaching method. With the availability of a teacher during the whole process,
we may support students’ innovative thinking and reasoning abilities. This idea of composing
into this course was supported with research [11], that analyses this Teacher-Student model.

While using the Unity engine, we were also aware of the risk of issues in students’ projects,
like bad smells. As was discussed in this article [6], bad smells are detectable and can
be divided into categories. The main target of this course was to prevent students from
developing this kind of issue. Similarly, this study [23] also discusses bad smells, and its aim
was directly onto this issue in game development. This article also discusses the negative
impact of bad smells and the risk that they are not always critical.

In conclusion, there is no need to push students back with their projects only because of
the avoidance of bad smells. Instead, the fact that the Unity engine is fully programmable in
C#, as is written in this article [33], there is a need to focus on correct and nonissue coding.
However, at all times, we should be careful to avoid strictly controlling students with sets of
rules to ensure creative and innovative thinking in their projects.

With the rise of immersive learning, we can also discuss the need for knowledge of the Unity
engine. For example, this work [3] demonstrates the usage of Unity for the implementation
of twin-screw, which is a process in the polymer. This work used Unity to implement the
simulation in an interactive educational environment. A similar approach is used in the paper
[35], where the problem of the informed purchase of toys is solved with the implementation
of augmented reality technology using Unity 3D. Immersive interaction can also be done in
full-body forms, as is described in this paper [15], where authors contributed to enabling this

ICPEC 2024



12:4 Enhancing Creativity in University Course

kind of interaction in the metaverse. To achieve this, the authors worked with Unity 3D and
other tools, successfully integrating the digital twins and immersive user experience. This
work may show that students need more than the Unity engine to prepare for the industry’s
challenges. The usage of this information and its successful implementation in the education
process is written in this article [20], where authors proved that this approach can be effective
in the student’s improvement in the learning process.

3 Proposed approach

Tutorials are created in the areas of computer game design and development. There are three
tutorials. The goal of the first tutorial is to explain the engine and cover the fundamentals of
project and game background creation. The second tutorial covers creating game effects using
VFX Graph and explains the differences between different approaches in effect creations. The
second tutorial also covers the fundamentals of the Blender[12] engine and how to create 3D
models. The third tutorial served as an addition to help students add engaging components
to their projects.

Figure 1 The Unity Engine Learning Journey outlining the structured path from basic concepts
to the final project.

Before discussusion of the detailed structure of the tutorials, Figure 1 presents a com-
prehensive mind map of the Unity Engine Exploration course. This diagram encapsulates
the learning journey from initial familiarization with the Unity interface to the final project
assembly, containing advanced topics such as VFX and Blender integration.

3.1 First iteration
In the beginning, students are led through the installation process. Then, they are shown
how to create and run the project. This part is crucial because creating and starting with
work in Unity from the total basics is fundamental for students to develop a relationship with



L. Bubenkova and E. Pietrikova 12:5

the engine. It makes it easier for them to understand every part that will come next from the
basics. After the introduction of the engine, the first tutorial covers the creation of the game
world using terrain tools. Additionally, students are encouraged to use their assets, not just
those shown in the tutorial. The essential part is introducing the Asset Store and working
with assets in the editor. In the future, they must understand how to create and work with
assets. The next important step is adding a player. They are encouraged to pick their avatar
to play their game. The exciting part of this tutorial is adding a Timeline. A Timeline
is generally used to animate movements and create exciting game moments. Students are
shown the basics of work with a timeline and are not given the detailed needs of using a
timeline for their game; instead, they use it in their way. Using a timeline is beneficial not
only for game development but also for many other fields. Short movies and ads can be
created using a timeline, so this incorporation into the curriculum may widen their abilities
in the future in various fields. Students are also introduced to scripting in Unity, using C#.
We are teaching 3rd graders, so they must have various programming skills. Because of that,
this part is mainly informative and shows them good practices in scripting in Unity. At the
end of this tutorial, students have developed their game world and the basic movement of
players in this world. The crucial part is personification and uniqueness. This tutorial has
a role in developing interest in creations and incorporating their own elements, which may
benefit their careers and development.

3.1.1 First iteration outcome
In the first iteration, students learned the basics of Unity and created a simple game world.
For instance, one student created a terrain with mountains and a river, utilizing assets from
the Unity Asset Store. In contrast, another student designed a desert landscape with custom
textures.

3.2 Second iteration
The second tutorial was expecting better skills with unity and overall orientation of students
in the engine. Firstly, there is a comparison of the two most common tools for creating
visual effects in unity: VFX Graph and Particle System. Next, students moved to work with
VFXGraph, creating an elemental explosion made of more layers. In this article, we can
see the point of teaching students the basics of VFX [18], also with a similar approach in
this article [22], as this theme is not only valid with game development but also has broad
usage in many other fields. Students are asked to develop their solution in the VFX Graph
editor and, later in the tutorial, find their usage in their game. This tutorial also covers
the basics of working with Blender. Blender is used to create a simple target for students’
games. The main reason for incorporating Blender into this course is the need for 3D models
in today’s game. Teaching students the basics of working with Blender and coworking with
Unity may benefit project uniqueness and originality. As written in the article that discusses
modeling [4], Blender was the best choice. Later in the tutorial, students get a task to create
something useful with Blender and use it in their games.

3.2.1 Second iteration outcome
In the second iteration, students learned the differences between the Particle system and
VFX Graph in the Unity engine and worked on their unique solutions. They were led to
create the effect of an explosion. Students created effects that contributed to their games.

ICPEC 2024



12:6 Enhancing Creativity in University Course

Another aspect of this iteration was the usage of Blender. This engine helped students to be
more creative with assets and learn the essentials of the work in Blender. Students created
various 3D models, such as players, donuts, trees, and various equipment for their games.
Students also worked with VFX Graph, creating explosions and other effects, like shooting
and smoke.

3.3 Third iteration

The third tutorial is optional. Creating effects in Unity or modeling 3D objects in Blender is
only interesting for some students. Primarily, these parts are required, but the extra work
on their project can be done on other developing parts. The third tutorial covers the basics
of the particle system, which can be used in various ways, not only in game development,
for example, like [2] or [28], the creation of UI using Canvas, and its elements, like sliders
or buttons. Also, students can see the creation of levels using Scene Manager. A similar
approach can be seen in this article [1], where leveling is also based on scenes in a functional
3D Unity game. A combination of UI and scene manager can create an entry screen for
players to their game, and in the final project, the game will look more professional. The
last part of the third tutorial is bug fixing. Students are encouraged to fix issues in existing
projects to enhance their problem-solving skills and general knowledge of game development,
where fixing is common and vital.

3.3.1 Third iteration outcome

In the third iteration, students explored advanced features like the particle system and UI
creation. For example, one student created a particle effect to simulate a magical spell,
adding dynamic visual flair to their game. Another student designed a custom health bar
and interactive menu, significantly improving the user experience. Additionally, one student
developed a multi-level game with a main menu, level selection screen, and in-game HUD,
demonstrating their ability to integrate UI elements with scene management.

3.4 Outcomes and Project Example

The existing project that students get to fix is available on the course page. In this project,
all three tutorials are implemented, adding some unique elements and implementations
to make students more curious and inspired. Students can create their own game in this
project but are encouraged to create their own to solve issues that may be fixed in existing
implementation and prepare them better for their future in this challenging field.

These tutorials should enhance students’ independent work and support them in developing
their games. Even if there are some mandatory steps for final grading, students still have
the chance to add their elements and additions to their games and get the desired grade on
the project. The reason is simple: game development is not a detailed, structured plan but
more of an idea-adding process.

Following the detailed description of the tutorial structure, the following section clarifies
the methodology utilized to evaluate its effectiveness. This analysis primarily focuses on
assessing student feedback and project outcomes, which serve as critical metrics for measuring
the educational impact of the implemented interventions.



L. Bubenkova and E. Pietrikova 12:7

4 Experiment setup and conduction

This study focuses on innovative and adaptable methods for teaching the fundamentals of
using the Unity engine. Students’ self-grading and individual development as project creators
are crucial to a conclusion. This study employs a combination of self-reported data collection,
enrolled students’ grades, and final projects. Data from students’ answers to questions were
valid, and students were informed of the usage of their responses.

Questionnaire – After grading, participants self-reported data to provide their perspectives
and comments on the methodology.
Evaluation – Using the results of final projects and their assignment grades; and also
monitoring the quantity of work that exceeded the assignment’s minimum.

4.1 Course Characteristics
This study was conducted during the 2023-2024 academic year. One hundred four third-year
undergraduate students enrolled in a game development class during these academic year
across both winter and summer semesters. The class included Slovak students as well as
international students, and it was conducted in English and Slovak. Students had varying
levels of prior experience with the Unity engine.

4.2 Conjectures
This paper posits several conjectures to evaluate the efficacy of a novel instructional approach
in Unity engine development. These conjectures are implanted in the conviction that
structured yet flexible learning environments can significantly enhance students’ educational
experience and outcomes, irrespective of their prior technical experience.

The research process involved three main iterations, each designed to build students’
skills and creativity progressively. The first iteration focused on fundamental Unity skills, the
second on advanced features like VFX and Blender, and the third on optional enhancements
such as UI and bug fixing.

The following hypotheses are formulated to rigorously test the effectiveness of these
educational methodologies through empirical evidence and data-driven analysis:

▶ Conjecture 1. Students do not have to have prior skills and an introduction to Unity
engine development to complete this course.

▶ Conjecture 2. If students are given more freedom in their assignments, they will be more
creative and driven to work on their projects, which will ultimately result in better grades.

▶ Conjecture 3. After working more independently, students feel secure in their knowledge.

▶ Conjecture 4. Students will include unique elements and interesting strategies of their
own.

To verify these conjectures, employmend of the various methods was used: Conjectures 1
and 2 were assessed using a structured questionnaire that studied student engagement and
learning outcomes. For Conjecture 3, an analysis of existing student performance data was
conducted to determine the impact of independence on learning security. Conjecture 4 was
evaluated through project reviews that assessed the creativity and uniqueness of student
submissions.

ICPEC 2024



12:8 Enhancing Creativity in University Course

5 Results

The examination of students’ results, final projects, and self-reported information from
questionnaires was essential to analyze the effectiveness of the teaching method. This section
presents the findings of these analyses, which help validate the conjectures proposed in this
paper. An overview of the analyzed data and a summary of the findings related to the
hypotheses are provided below.

5.1 Conjecture 1
In the following Figure Figure 5.1, it is visible that the number of students with some
experience before attending this course was much smaller than those that had not previously
worked with the Unity engine. Percentualy, only 26% worked with the engine. This section
aims to determine if these students will experience any resulting disadvantages.

Figure 2 Student’s experience with Unity Engine before tutorials.

The Pearson correlation coefficient was used to examine whether prior experience with
the Unity Engine statistically impacts the grading scores. The test yielded a coefficient of
0.12, considered a low degree of correlation. This result suggests no statistically significant
score difference between individuals with and without previous experience using the Unity
Engine. Consequently, previous knowledge of Unity only significantly influences the observed
grading outcomes.

This proved Conjecture 1, where was supposed that students do not have to have prior
knowledge to perform outstanding results in this course.

5.2 Conjecture 2
Immediately after the personal defense, students were awarded points for the developed
projects based on a predetermined evaluation on the subject page at the end of each tutorial.
The attached table Table 1 shows that the highest rating was 10 points, representing the
maximum of the possible points obtained. Completing all the necessary steps in the tutorial
could obtain the minimum number of points, which was 6. The result, which was 10 points,
means that students did extra work on this project and added many particular tasks from
all the tutorials. This point evaluation was obtained by more than half of all students. The
second highest rating belongs to students with the same score, 14 for both 8 and 9 points. At
the same time, a low assessment of the assignment occurred in only one case, in the form of
one point. Therefore, completing the instructions by the students is exceptionally successful.



L. Bubenkova and E. Pietrikova 12:9

In the questionnaire, students had to answer the question, “Do you think that your point
evaluation corresponds to the time you devoted to the assignment?” where the answer “Yes”
reached the value of 94.2%, and the answer “No, I devoted a lot of time to this assignment”
had a value of 3.5%, which can be considered as the result of a fair assessment and student
satisfaction with this aspect of the university courses as well.

Table 1 Table for students grades.

points 0p 1p 2p 3p 4p 5p 6p 7p 8p 9p 10p
students 0 1 0 0 3 3 3 7 14 14 55

This proved Conjecture 2, where was supposed that students would be motivated to work
harder on their assignments if they were given some space for their creations. This also
proved that 90% of students did more than the required work, graded with 6 points.

5.3 Conjecture 3

Students also had the opportunity to answer questions about their skills with Unity Engine
before and after completing tutorials. As can be seen on the attached chart Figure 5.3,
self-rating skills in Unity Engine, from rating to scale from 1 to 5, where 1 represents zero
experience and five the highest level of ability properties, all students managed to move
to a higher rating. In particular, the drop in the change from 66.3% to 0% in experience
indicates excessive success. On the second side, self-assessment in the highest degree rose by
7%, assessment in the form of 4 out of 5 increased by 24.4%, and the rating on the 3 out of 5
scale increased by 37.2%.

Figure 3 Self-reported skills in Unity Engine before and after finishing tutorials.

This proved Conjecture 3, where was supposed that students would feel more secure in
their knowledge if they worked independently.

ICPEC 2024



12:10 Enhancing Creativity in University Course

5.4 Conjecture 4
The students were instructed to create and add their elements independently. After collecting
and evaluating the projects, it was evident that the students demonstrated fascinating
diversity and creativity in their work. Each student’s individuality was visible in the creation
of their assignments. One exciting element was the use of Timeline in the form of game
animation, which was used effectively in several projects. For example, a cinematic animation
of a military plane flying over the sea and observing various elements such as ships, houses,
and the sea. The manual mainly covers movement in the form of flying, but the resulting
student projects brought many new solutions, such as walking. This means that encouraging
the students to create and experiment on their own was enough, and when they were left to
their own will, various game projects were created.

This proved Conjecture 4, where was expected that students would create unique and
personal projects with various elements over the course outline.

6 Conclusion

The tutorial outcomes demonstrate considerable advancements in students’ capabilities
to produce creative outputs and solve complex problems. This section will analyze the
implications of these results, contrasting them with traditional educational methodologies in
game design and examining their potential transformative impacts on the curriculum.

6.1 Interpretation of Results
A notable aspect of the student projects was their diversity in game design approaches.
While the core tutorials were designed around constructing simulations for flight simulators
and first-person shooters, many students ventured beyond these confines. They crafted
unique game environments, where characters navigated through complex worlds or diverged
completely to create cinematic short animations. These projects not only stuck to the
foundational elements of the tutorials but also incorporated innovative modifications and
additions. For instance, Figure 6.1 illustrates a project featuring an interactive walking
character, demonstrating the practical application of the skills acquired through the course.
Positive feedback regarding the final projects was on the availability of project flying-hero,
where were implemented all three tutorials with added addins and unique elements. As
was said in the student feedback, the ability to see the existing games and their parts was
beneficial, not only for students to see how the parts of the tutorial are implemented but
also as an inspiration for their projects.

Figure 4 Example of a student-developed game showcasing an interactive character.



L. Bubenkova and E. Pietrikova 12:11

6.2 Challenges and Limitations
One primary challenge was guiding students through managing extensive projects and
utilizing comprehensive file systems within their version control repositories. Furthermore,
the affiliate’s familiarity with Unity Engine was initially low, posing a significant learning curve.
However, most issues were swiftly addressed through online resources or direct interventions
during lectures, enhancing the learning experience and problem-solving efficiency.

6.3 Future work
Future work on this course should contain more detailed explanations for problematic parts
written in student responses. Also, students asked for additional content, such as AI in the
form of enemies, more scripting in the course, or video tutorials, as they thought they would
benefit more from them while working at home without the lecturer’s presence. Detailed
explanations of problematic topics may help them better adapt to future needs. Besides this,
this course is up to date and should be sustainable for more years in the future, but after
some time, some additions and work would be needed as the game development world moves
further.

The study explores the integration of game design and development courses at the
university, highlighting the inclusion of subjects like Unity Engine and Blender, which are
popular among students and offer practical skills demanded in the industry. These courses
introduce students to complex tools like effects, animations, interfaces, and advanced features
like Timeline and VFX Graph.

The curriculum is designed not merely to engage students during lectures but to inspire
independent work and creativity in their projects. This approach has proven effective, with
students delivering highly successful projects that incorporate their unique solutions. The
addition of Blender enriches the creative potential and deepens students’ interest in game
development and game design.

Student feedback regarding satisfaction with the course and the instructions’ clarity
has been overwhelmingly positive. The results met and exceeded initial expectations, with
students developing innovative solutions promptly. Future enhancements include AI enemies,
expanded scripting options, and multimedia instructional materials, reflecting the students’
desire for more comprehensive and prolonged engagement with game development tools.

It can be considered, that using this approach in various courses can help to enhance
students’ learning and adaptability across different disciplines. This method may be integrated
into other areas to foster technical skills, critical thinking, problem-solving, and creative
design thinking. By implementing these techniques widely, educational institutions can better
prepare students for the complexities of modern professional environments while equipping
them with the necessary tools to excel in their chosen fields.

References
1 Shanmuk Srinivas Amiripalli, Mukkamala SNV Jitendra, Surendra Talari, Sannith Akkireddi,

and D Sateesh Kumar. Design and implement an artificial intelligence based zombie’s applica-
tion using unity3d, 2020.

2 Natalia Ampilova, Igor Soloviev, and Michail Syasko. Computer modeling the effect of
weak electromagnetic field on charged particles by unity engine. In 2020 International
Conference and Exposition on Electrical And Power Engineering (EPE), pages 082–086, 2020.
doi:10.1109/EPE50722.2020.9305579.

ICPEC 2024

https://doi.org/10.1109/EPE50722.2020.9305579


12:12 Enhancing Creativity in University Course

3 Pedro Santos Bartolomé, Daniel Just, Ariana Bampouli, Simon Kemmerling, Aleksandra
Buczko, and Tom Van Gerven. Immersive learning through simulation: implementing twin
screw extrusion in unity. In Antonios C. Kokossis, Michael C. Georgiadis, and Efstratios
Pistikopoulos, editors, 33rd European Symposium on Computer Aided Process Engineering,
volume 52 of Computer Aided Chemical Engineering, pages 3489–3494. Elsevier, 2023.

4 Ilsiyar Bikmullina and Enzhe Garaeva. The development of 3d object modeling techniques for
use in the unity environmen. In 2020 International Multi-Conference on Industrial Engineering
and Modern Technologies (FarEastCon), pages 1–6, 2020. doi:10.1109/FarEastCon50210.
2020.9271568.

5 Miroslav Binas. Version control system in cs1 course: Practical experience. In 2013 IEEE
11th International Conference on Emerging eLearning Technologies and Applications (ICETA),
October 2013. doi:10.1109/ICETA.2013.6674398.

6 Antonio Borrelli, Vittoria Nardone, Giuseppe A. Di Lucca, Gerardo Canfora, and Massimiliano
Di Penta. Detecting video game-specific bad smells in unity projects. In Proceedings of the
17th International Conference on Mining Software Repositories, MSR ’20, pages 198–208, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3379597.3387454.

7 Simon Bouvier-Zappa, Olivier Dionne, and David Hunt. Advanced use cases for animation
rigging in unity. In ACM SIGGRAPH 2019 Studio, SIGGRAPH ’19, New York, NY, USA,
2019. Association for Computing Machinery. doi:10.1145/3306306.3328748.

8 Oswald Comber, Renate Motschnig, Hubert Mayer, and David Haselberger. Engaging students
in computer science education through game development with unity. In 2019 IEEE Global
Engineering Education Conference (EDUCON), pages 199–205, 2019. doi:10.1109/EDUCON.
2019.8725135.

9 Oswald Comber, Renate Motschnig, Hubert Mayer, and David Haselberger. Engaging students
in computer science education through game development with unity. In 2019 ieee global
engineering education conference (educon), pages 199–205. IEEE, 2019.

10 Veselin Efremov and Adrian Lazar. Real-time procedural vfx characters in unity’s real-time
short film "the heretic". In ACM SIGGRAPH 2019 Real-Time Live!, SIGGRAPH ’19, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3306305.3332363.

11 Hui Fang, Hongmei Shi, Jiuzhou Zhang, and Marimuthu Karuppiah. Effective college english
teaching based on teacher-student interactive model. ACM Trans. Asian Low-Resour. Lang.
Inf. Process., 22(3), March 2023. doi:10.1145/3486676.

12 Lance Flavell. Beginning Blender: Open Source 3D Modeling, Animation, and Game Design.
Apress, USA, 1st edition, 2010.

13 Maxwell Foxman. United we stand: Platforms, tools and innovation with the unity game
engine. Social Media+ Society, 5(4):2056305119880177, 2019.

14 Christopher L. Hideg and Debatosh Debnath. A programming course using video game
design with platform projects. In 2018 IEEE International Conference on Electro/Information
Technology (EIT), pages 0030–0034, 2018. doi:10.1109/EIT.2018.8500103.

15 Shimasadat Hosseini, Ali Abbasi, Luis G. Magalhaes, Jaime C. Fonseca, Nuno M.C. da Costa,
António H.J. Moreira, and João Borges. Immersive interaction in digital factory: Metaverse in
manufacturing. Procedia Computer Science, 232:2310–2320, 2024. 5th International Conference
on Industry 4.0 and Smart Manufacturing (ISM 2023). doi:10.1016/j.procs.2024.02.050.

16 Zhiyong Hu, Qing Xu, and Guang Huang. Discussion on educational games based on unity.
In Proceedings of the 2022 6th International Conference on Education and E-Learning, ICEEL
’22, pages 67–74, New York, NY, USA, 2023. Association for Computing Machinery. doi:
10.1145/3578837.3578847.

17 Afzal Hussain, Haad Shakeel, Faizan Hussain, Nasir Uddin, and Turab Latif Ghouri. Unity
game development engine: A technical survey. Univ. Sindh J. Inf. Commun. Technol, 4(2):73–
81, 2020.

https://doi.org/10.1109/FarEastCon50210.2020.9271568
https://doi.org/10.1109/FarEastCon50210.2020.9271568
https://doi.org/10.1109/ICETA.2013.6674398
https://doi.org/10.1145/3379597.3387454
https://doi.org/10.1145/3306306.3328748
https://doi.org/10.1109/EDUCON.2019.8725135
https://doi.org/10.1109/EDUCON.2019.8725135
https://doi.org/10.1145/3306305.3332363
https://doi.org/10.1145/3486676
https://doi.org/10.1109/EIT.2018.8500103
https://doi.org/10.1016/j.procs.2024.02.050
https://doi.org/10.1145/3578837.3578847
https://doi.org/10.1145/3578837.3578847


L. Bubenkova and E. Pietrikova 12:13

18 Manolya Kavakli and Cinzia Cremona. The virtual production studio concept – an emerging
game changer in filmmaking. In 2022 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pages 29–37, 2022. doi:10.1109/VR51125.2022.00020.

19 Liuxian Li and Zhiyang Fang. Earthquake escape simulator: A system for disaster knowledge
popularization. In Journal of Physics: Conference Series, volume 2333, page 012002. IOP
Publishing, 2022.

20 Xiaoxiao Liu, Yiming Shen, Yukari Nagai, and Hirokazu Kato. Use of a mixed-reality creative
environment in design education. Computers & Education: X Reality, 4:100055, 2024.

21 Jakub Livovský and Jaroslav Porubän. Learning object-oriented paradigm by playing
computer games: Concepts first approach. Open Computer Science, 2014. doi:10.2478/
s13537-014-0209-2.

22 Jonathan Mortimer. How universities can better engage with the animation/vfx sector in
scotland. Animation Practice, Process & Production, 7(1):157–173, 2018.

23 Vittoria Nardone, Biruk Muse, Mouna Abidi, Foutse Khomh, and Massimiliano Di Penta.
Video game bad smells: What they are and how developers perceive them. ACM Trans. Softw.
Eng. Methodol., 32(4), May 2023. doi:10.1145/3563214.

24 Siobhan O’Donovan, James Gain, and Patrick Marais. A case study in the gamification of a
university-level games development course. In Proceedings of the South African Institute for
Computer Scientists and Information Technologists Conference, SAICSIT ’13, pages 242–251,
New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2513456.
2513469.

25 Hyesung Park, Sean Yang, and Hongsik Choi. Scenario based active learning programming
with unity 3d. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, SIGCSE ’20, page 1283, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3328778.3372582.

26 Banyapon Poolsawas and Winyu Niranatlamphong. Using a game development platform to
improve advanced programming skills. Journal of Reviews on Global Economics, 6:328–334,
2017.

27 Vincent Schiller. Enc#ypted: An educational game for programming in the unity engine. In
Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems,
CHI EA ’21, New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/
3411763.3451852.

28 Jasmine Y. Shih, Kalina Borkiewicz, AJ Christensen, and Donna Cox. Interactive cinematic
scientific visualization in unity. In ACM SIGGRAPH 2019 Posters, SIGGRAPH ’19, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3306214.3338588.

29 Branislav Sobota. Computer Game Development. IntechOpen, Rijeka, August 2022. doi:
10.5772/intechopen.97983.

30 Branislav Sobota and Emília Pietriková. Computer Science for Game Development and Game
Development for Computer Science. IntechOpen, Rijeka, November 2023. doi:10.5772/
intechopen.1000364.

31 Branislav Sobota and Emília Pietriková. The role of game engines in game development and
teaching. In Branislav Sobota and Emília Pietriková, editors, Computer Science for Game
Development and Game Development for Computer Science, chapter 5. IntechOpen, Rijeka,
2023. doi:10.5772/intechopen.1002257.

32 Branislava Vranić and Valentino Vranić. Patterns of recreating reality in games. In Proceedings
of 29th Conference on Pattern Languages of Programs, PLoP, 2022.

33 Ursula Wolz, Gail Carmichael, and Chris Dunne. Learning to code in the unity 3d development
platform. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education,
SIGCSE ’20, page 1387, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3328778.3367010.

34 Haolong Yang, Chunqiang Hu, Guwei Li, and Jingchun Fan. A fire escape simulation system
based on the dijkstra algorithm. Comput. Syst. Sci. Eng., 39(3):365–372, 2021.

35 Lingxin Yu, Jiacheng Zhang, Xinyue Wang, Siru Chen, Xuehao Qin, Zhifei Ding, and Jiahao
Han. Constructing immersive toy trial experience in mobile augmented reality. Internet of
Things and Cyber-Physical Systems, 4:250–257, 2024. doi:10.1016/j.iotcps.2024.02.001.

ICPEC 2024

https://doi.org/10.1109/VR51125.2022.00020
https://doi.org/10.2478/s13537-014-0209-2
https://doi.org/10.2478/s13537-014-0209-2
https://doi.org/10.1145/3563214
https://doi.org/10.1145/2513456.2513469
https://doi.org/10.1145/2513456.2513469
https://doi.org/10.1145/3328778.3372582
https://doi.org/10.1145/3411763.3451852
https://doi.org/10.1145/3411763.3451852
https://doi.org/10.1145/3306214.3338588
https://doi.org/10.5772/intechopen.97983
https://doi.org/10.5772/intechopen.97983
https://doi.org/10.5772/intechopen.1000364
https://doi.org/10.5772/intechopen.1000364
https://doi.org/10.5772/intechopen.1002257
https://doi.org/10.1145/3328778.3367010
https://doi.org/10.1016/j.iotcps.2024.02.001

	1 Introduction
	2 Background
	3 Proposed approach
	3.1 First iteration
	3.1.1 First iteration outcome

	3.2 Second iteration
	3.2.1 Second iteration outcome

	3.3 Third iteration
	3.3.1 Third iteration outcome

	3.4 Outcomes and Project Example

	4 Experiment setup and conduction
	4.1 Course Characteristics
	4.2 Conjectures

	5 Results
	5.1 Conjecture 1
	5.2 Conjecture 2
	5.3 Conjecture 3
	5.4 Conjecture 4

	6 Conclusion
	6.1 Interpretation of Results
	6.2 Challenges and Limitations
	6.3 Future work


