Code Review for CyberSecurity in the Industry:
Insights from Gameplay Analytics

Andrei-Cristian Iosif =
Universitdt der Bundeswehr Miinchen, Germany
Siemens AG, Minchen, Germany

Ulrike Lechner &

Universitat der Bundeswehr Miinchen, Germany

Maria Pinto-Albuquerque &
Instituto Universitdrio de Lisboa (ISCTE-IUL), ISTAR, Portugal

Tiago Espinha Gasiba &

Siemens AG, Miinchen, Germany

—— Abstract

In pursuing a secure software development lifecycle, industrial developers employ a combination
of automated and manual techniques to mitigate vulnerabilities in source code. Among manual
techniques, code review is a promising approach, with growing interest within the industry around it.
However, the effectiveness of code reviews for security purposes relies on developers’ empowerment
and awareness, particularly in the domain-specific knowledge required for identifying security issues.
Our study explores the use of DuckDebugger, a serious game designed specifically to enhance industrial
practitioners’ security knowledge for code reviews. By exploring analytics data collected from game
interactions, we provide insights into player behavior and explore how the game influences their
approach to security-focused code reviews. Altogether, we explore data from 13 events conducted in
the industry together with 224 practitioners, and derive metrics such as the time it takes participants
spend to reviewing a line of code and the time required to compose a comment. We offer empirical
indicators on how serious games may effectively be utilized to empower developers, propose potential
design improvements for educational tools, and discuss broader implications for the use of Serious
Games in industrial settings. Furthermore, our discussion extends to include a discussion outlining
the next steps for our work, together with possible limitations.

2012 ACM Subject Classification Security and privacy — Software and application security; Applied
computing — Collaborative learning; Applied computing — E-learning; Security and privacy —
Software security engineering

Keywords and phrases Cybersecurity, Code Review, Developer Empowerment

Digital Object Identifier 10.4230/0ASIcs.ICPEC.2024.14

Funding This work is partially financed by Portuguese national funds through FCT — Fundacdo para
a Ciéncia e Tecnologia, I.P., under the projects FCT UIDB/04466,/2020 and FCT UIDP/04466,/2020.
Furthermore, the third author thanks the Instituto Universitario de Lisboa and ISTAR, for their
support. We acknowledge funding for project LIONS by dtec.bw. Andrei-Cristian Iosif and Tiago
Gasiba acknowledge the funding provided by the Bundesministerium fiir Bildung und Forschung
(BMBF) for the project CONTAIN (FKZ 13N16585).

1 Introduction

In recent years, the cybersecurity community has witnessed how purposefully introduced
software vulnerabilities can be weaponized into sophisticated supply chain attacks. One such
example of this is the Lazarus group [10] Advanced Persistent Threats (APT). Such attacks
abuse trust relationships and result in malicious code being injected into legitimate software.

© Andrei-Cristian Iosif, Ulrike Lechner, Maria Pinto-Albuquerque, and Tiago Espinha Gasiba;
37 licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).

Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 14; pp. 14:1-14:11

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:andrei-cristian.iosif@siemens.com
https://orcid.org/0000-0003-1867-1542
mailto:ulrike.lechner@unibw.de
https://orcid.org/0000-0002-4286-3184
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
https://doi.org/10.4230/OASIcs.ICPEC.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2

Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

One way to combat this is through rigorous code review processes. Reviews can serve as an
additional security measure against targeted breaches, and also catch less malignant security
issues from legitimate developers, that might otherwise be accidentally overlooked.

Industrial software systems, particularly those that manage critical infrastructure, are an
area of special concern when accounting for cybersecurity - with stakes including economic
concerns and public safety. Consequently, such systems must adhere to stringent standards
and compliance regulations, such as the IEC 62433 [7].

One way to achieve security and compliance in an industrial environment is a bottom-up
approach that begins with empowering developers. Training programs focused on security
can significantly enhance developers’ ability to detect and mitigate vulnerabilities earlier in
the development process.

One innovative tool in this effort is DuckDebugger, a serious game (SG) designed specific-
ally to teach software developers to perform code reviews with a focus on cybersecurity. We
use SGs as a medium for information delivery, as the authors possess extensive knowledge
in this area. The proposed game offers an environment where developers are asked to
review snippets of vulnerable code, and are able to consult the output from security tools.
Through engaging with our game, developers can hone their skills in a practical and realistic
environment.

This paper presents the results from analyzing gameplay data from events conducted
in industrial contexts. Our objective is to understand the interactions taking place in
the DuckDebugger. By exploring player behavior, our analysis takes a first step towards
measuring how players engage in code review, in order to gauge how the game sizes towards
empowering practitioners. The insights from our study show the potential for serious games
to improve security training in software development. Furthermore, we identify design
implications for our game and optimization of the game experience for the participants.

The paper is organized as follows: Section 2 will introduce related work relevant to our
study. In Section 3, we present our work’s context and showcase the game artifact’s relevant
aspects. Section 4 presents our findings, exploring their implications and discussing potential
limitations. Lastly, Section 5 lays out the conclusions of our work, together with discussing
further steps.

2 Related Work

This section introduces related work in the two main areas of interest under which our game
falls, namely cybersecurity training through serious games, and code review.

2.1 Serious Games for Cybersecurity Education

A serious game is defined by Susi et al. as “a game designed with a primary objective other
than pure entertainment” [18]. Furthermore, indicated they are effective in disseminating
takeaways to their users, as shown in an experience report of Namin et al [17] and through a
literature review conducted by Hendrix et al [4].

Roepke et al. provide a comprehensive overview of SGs focused on cybersecurity, and
explore how many games available for end-users without prior knowledge exist, as well as
whether they teach sustainable knowledge and skills [15]. Their findings show that although
there is a growing number of SGs for cybersecurity, the content they target is often lacking
relevance, focusing rather on factual knowledge without context.

A.-C. losif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba

Capture The Flag (CTF) competitions, a popular form of competitive serious games in
cybersecurity, have been extensively studied for their educational value. Research by Culliane
et al. [2] and Svébensky et al. [20] provide an overview of CTFs seen through the educational
angle.

Unlike traditional CTFs and challenges thereof, which often emphasize offensive practices,
the game discussed in this work focuses on defense and patching.

Previous work done by the authors on this topic explores the requirements of defensive
cybersecurity SGs [3], defining 15 challenge requirements suitable for industrial requirements.
The game is developed using an iterative design approach based on Design Science Research
(DSR) principles, as outlined by Sein [16]. In this second iteration, we have incorporated
feedback from participants, specific to DSR guidelines, and have successfully met 11 out of
the 15 requirements. We plan to address the remaining requirements, should the participants
deem it necessary.

Svabensky et al. [19] review how cybersecurity training data can improve educational
research. Their work offers an overview on how training data can to understand and support
cybersecurity learning. However, their approach notes that it only targets academic settings
and exercises with an offensive focus.

2.2 Industrial Code Review

Regarding standardization within the industry, Moyon et al. [13] delve into the practical
challenges related to integrating security into an agile software development and explore how
the requirement for industrial compliance shapes this process.

The IEC 62443 series of standards was developed to cover the security of industrial
automation and control systems throughout their lifecycle. Relevant to our work, the IEC
62443-4-1 [7] and IEC 62443-4-2 [8] standards underscore how code review in the development
lifecycle is important for cybersecurity, and the emphasize the need for reviewers to possess
specialized knowledge on performing secure code review.

Other standards of interest to our work are: ISO/IEC 20246 [6], which provides a generic
framework for work product reviews applicable across various organizational roles, and the
ISO/IEC TR 24772-1 standard [9], which offers programming-language agnostic guidance on
avoiding coding vulnerabilities.

We seek to address the most prevalent vulnerabilities encountered in software by intro-
ducing vulnerabilities. To this end, we draw from the the CWE Top25 [12] and OWASP
Topl0 [14], as these resources are well-known standards, with industry-wide acceptance.

MacLeod et al. show that code reviews often do not find critical bugs that would block a
code submission, instead highlighting issues related to long-term code maintainability [11].
They argue that effective code reviews require specific skills and that the social dynamics
within teams significantly influence the reviewing process. They suggest that the current
practices in code reviews are often inefficient and call for a more sophisticated approach to
integrating code reviews into software engineering workflows. Building on these findings,
our work seeks to address these deficiencies by employing the DuckDebugger as a means to
enhance practitioners’ skills necessary for effective code review.

Bosu et al. analyze the effectiveness of code review comments in Microsoft projects and
find that useful feedback improves both code quality and developers’ skills [1]. They show
that the usefulness of comments tends to increase with the reviewer’s experience but is
negatively correlated with the size of the review. The study provides recommendations for
increasing the effectiveness of code reviews, such as optimizing the number of files in a review
and enhancing reviewer experience through targeted training. We integrate their findings in
the design of the game, which we use for training industrial developers.

14:3

ICPEC 2024

14:4

Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

3 Methodology

In this section, we describe the methodology behind the collected data. First, we present the
industrial context in which the DuckDebugger is deployed. We proceed by introducing the
game artifact itself, highlighting the important elements of our data.

3.1 Context

Practitioners are invited to try out our serious game as part of a workshop on developer
empowerment on the topic of cybersecurity. Such workshops consist of two parts: first, a
classroom-style presentation of common attacks and mitigations (1-2 days, depending on
the event), followed by a full-day CTF-style event. On the last day, participants organize
themselves in teams, where they compete against each-other by solving various types of
security-related challenges. One of the types are the code review challenges discussed in this
work. Although we integrate the delivery of our game in a CTF setting for our events, this
is not strictly necessary, as the game is designed to be a self-standing application.

— CTFd Duck
Debugger

Figure 1 Architecture.

Figure 1 presents an overview of the infrastructure behind the hands-on part of the event.
Participants only require a laptop, with which they can connect to a fully provisioned virtual
machine for all the available challenges. Upon solving a challenge, players redeem points for
their team in a dashboard (CTFd). We utilize the dashboard mechanic of the CTF genre to
foster competitiveness among participants.

When the event concludes, the winning team is announced and congratulated. This is
followed by a gathering feedback from the participants (through surveys and semi-structured
interviews), and a wrap-up session which discusses challenges which the players found difficult.

At the time of writing, the DuckDebugger has been trialed across 13 industrial events,
with a total of 224 participants. An overview of these events is presented in Table 1.

Table 1 Events Overview.

Event

1 2 3 4 5 6 7 8 9 10 11 12 13
Number
Date | 05.2023 | 05.2023 06.2023 11.2023 11.2023 11.2023 | 12.2023 | 12.2023 | 01.2024 01.2024 02.2024 02.2024 02.2024
Place | Online Online K?:;g:n ((ﬁi';:;}lzﬁ Germany | China Online China Online | Germany | Germany | Online ((}(I‘;'lr)‘ 1813;,
Number of
Participants 14 7 16 9 20 24 30 20 16 15 24 17 12
(Total: 224)

3.2 Game Artifact

The focus of this work, the DuckDebugger platform, is a self-standing web application and
is hosted as a separate server in the same cloud environment as the participants’ virtual
machines, in an AWS Virtual Private Cloud. This design choice was taken to ensure that
the game can offer flexibility in how it can be delivered.

A.-C. losif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba

List of Challenges T P Cha”enge 1
N Instructions i1, <code> [+
Acknowledge || <code > [+]

= N. <code> [+]
— Database < [Consult Tool Findings]
“ | Submit Review

Figure 2 Artifact Overview.

Figure 2 introduces an interaction diagram for the game: The user starts by viewing
a welcome screen with platform instructions. After this, they choose from various code
review challenges categorized by programming language and application type, such as web
or embedded programming. They then receive a source code snippet with vulnerabilities and
poor practices, which they are asked to annotate with comments about security findings.

At the time of writing, participants can choose from 28 exercises that cover 4 programming
languages: Java, C#, Python, and JavaScript. The vulnerabilities in our game’s snippets
include common security malpractices, from the CWE Top25 [12] and OWASP Top10 [14].

Figure 3 shows the main game interface, organized in tabular form, with columns for
user comments, the code under review, and the intended solution (to be displayed after a
user successfully solves a challenge). Users input their comments and can reference SAST
tool findings alongside the code. The integration of SAST aims to enhance users’ skills with
real-world tools and educate them on recognizing false positives/negatives.

Click the duck to submit your answer.

Comment # Code Solution

« 1 import sqglite3, random
2 from flask import Flask, abort, request, jsonify
3 from flask_cors import CORS
£ 4
5 app = Flask(__name__) [‘i’] ’ SAST TOO|S
[} 6 CORs(app) X
~ 7 database = './login.db’ OUtPUt
8
9 def create_response(messag
10 response = jsonify({'m semgrep bandit

11 response.headers.add ("’

Figure 3 Interface.

Upon submitting their review comments, the DuckDebugger evaluates how many vulner-
abilities a player has found, and records the interactions with the platform into a database
for later analysis. If a player identifies at least 50% of the vulnerabilities, they are presented
the full solution as feedback. This benchmark is based on prior research from the authors [5],
where it was found that trainees identify , on average, about half of the vulnerabilities
detected by experts.

4 Results and Discussion

To help understand the player behavior analysis, we consider the following: Players have the
autonomy to engage with, resolve, or abandon any challenge at will, in any preferred order.

14:5

ICPEC 2024

14:6

Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

(solved)
start submit iz instructions
N M c: comment
starty instry ¢; instry Cx cy submity.y [. . startnyr

f - 1 time
time to solve challenge

Figure 4 Timeline of interactions for a (user,challenge) pair.

An example timeline of interactions is presented in Figure 4, illustrating a single user’s
interaction sequence for a single challenge. Possible interactions for a user are: starting the
challenge (start), consulting the instructions (i), writing a comment (c), and submitting
their solution attempt (submit).

The figure has been simplified for clarity — the collected data covers the multiple users’ in-
teractions, for multiple challenges, where all entries of users and challenges are chronologically
interlaced.

The time it took a given user to solve a specific challenge is computed as the timestamp
difference between the first occurrence of a submit interaction marked as solved by the
platform, and the first start interaction which precedes it.

4.1 Player Behavior Model

Figure 5 Platform Interactions: Player behavior.

Based on the collected players’ interactions, we can construct a transition matrix between
possible actions in the game. Figure 5 models the player behavior and highlights the transition
probabilities between actions. Most notably in this figure, we can observe that:

66,1% of players re-check the instructions. This could likely be due to habitual interactions

with similar interface elements, suggesting a conditioned response to dismiss such overlays

without thorough engagement. Empirical surveys, however, indicate that the majority
find the instructions clear. Additionally, the absence of a submit — instructions
transition indicates that the task is well understood.

A.-C. losif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba

Similarly, the start — instructions transition occurs because users are accustomed to
dismissing pop-ups quickly. This would suggest a need for different UI choices, such as
waiting for a timer to expire before being able to click away the instructions pop-up.

18.19% of users press the submit button repeatedly (submit — submit). This would

indicate a need for a visual cue to confirm that the button has been activated successfully.

start — start interactions account for 0.58% of interactions, possibly stemming from
accidental page refreshes.

One in five comments is immediately followed by a submission attempt — 20.82% on the
comment — submit transition. If this percentage were lower, it would suggest that
users are overthinking their submissions. Conversely, a higher percentage might indicate
players trying to exploit the system for a competitive edge by rapidly resubmitting their
comments.

4.2 Solved Challenges Counts and Percentages

Another perspective on player behavior involves examining the number of challenges each

player successfully completes. It is useful to observe whether players abandon challenges
before finishing them.

5

3
w
S

g
N IN]
o a

N
s

Frequency (%)
=
G

—
o

Percentage of Players (%)
s

o}

0 NI o P s

0 5 25 30 0 10 20 30 40 50 60 70 80 90 100
Percent Solved

10 15 20
Solved Challenges Count
(a) Count Solved. (b) Percent Solved.

Figure 6 Metrics: Solving Challenges.

Figure 6a illustrates that the majority of participants solve fewer than 10 challenges,
with a noticeable peak at just one challenge. This trend may be attributed to the specific
conditions of the event, such as time constraints and the diversity of available challenges.

Figure 6b shows that more than 30% of players solve all challenges they start, and more
than 50% solve half or more. This demonstrates a commendable level of persistence among
the players, indicating that they generally complete the challenges they begin.

4.3 Time to solve a challenge

Based on the time it takes players to solve a challenge, we derive and examine the duration
participants spend reviewing a line of code (LoC) and the time required to compose a
comment. As challenges have code snippets of varying length, the times are normalized to
each challenge’s LoC. We group our data by programming language, average it, and present
our findings in Table 2.

14:7

ICPEC 2024

14:8

Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

Table 2 Times.

Programming | Avg. time to review Avg. time to write
Language one Line of Code (s.) | one comment (s.)
csharp 12.56 4.87

go 3.44 1.94

java 1.57 1.67

javascript 3.47 1.95

python 12.57 9.32

In the case of Java, the lower numbers can be attributed to the language’s syntactic noise
(boilerplate code), which may result in a lower time per LoC. Additional influencing factors
include the diverse backgrounds of the participants (i.e. few proficient Python programmers
across all events), which could also play a significant role in the observed results.

The correlation coefficient between the two metrics presented in Table 2 is 0,873. This
indicates that the time participants take to comment is relatively consistent across different
programming languages. Such strong correlation could indicate that the measured times are
an indicator of the players’ proficiency levels with the programming languages, rather than
an indicator of review times being dependent on the programming language. Nonetheless,
further studies would be required to establish a definitive conclusion in this direction.

Furthermore, we can explore how the participants’ solving times evolve between consec-
utive challenges. Table 3 presents the median time it takes a player to solve a challenge. We
truncate our findings at 7 challenges, as Figure 6a shows that few players only solve more
than 7 challenges, which would challenge the statistical relevance of these findings. Although
our data is truncated, preliminary findings indicate a non-linear improvement pattern.

Table 3 Time to solve a challenge.

Number of Solved Challenges 1 2 3 4 6 7
Median Time To Solve (s.)
(normalized to challenge LoC)

7.72 | 1887 | 3.29 | 7.55 | 6.48 | 3.14

We can observe that there is no steady increase or decrease in solving time, between
the number of challenges a players solves. Based on our experience in designing serious
games, this non-linear time pattern could point to multiple insights and/or reflect our design
choices: the challenges have variable difficulty, and participants have diverse problem solving
approaches as they learn and adapt to the platform. Had there been a steady increase,
this would indicate that the challenges result in tiredness or a plateau in learning efficiency.
Conversely, the lack of a steady decrease in the solve time indicates that the DuckDebugger
has a varied repertoire of code review challenges, where players cannot game the system
through recalling the solutions to the challenges they previously encountered and solved.

4.4 Knowledge Exchange

The nature of the event has players organized in teams which compete for points across
multiple challenge categories, some of which are code review challenges delivered through
the DuckDebugger. We observed during the events that most, if not all teams competitively
optimize their strategy by splitting up across challenge types. With proper intra-team
coordination, this would translate into one player per team solving the DuckDebugger
challenges at any given time.

A.-C. losif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba

Nonetheless, while conducting the events, we observed players of the same teams often
pause to share newfound knowledge from the challenges. We back this statement through an
observation in our aggregated data: 28.2% of players revisit a challenge after having solved it.
This indicates to us that more than a quarter of the participants likely exchange the gained
knowledge with their team-mates, to share newly gained information.

Since the dashboard interface indicates to the other players of a team that a challenge
is already solved, this would rule out most accidental revisits of a challenge. Furthermore,
there is no competitive advantage in solving a challenge again.

This finding about players’ knowledge exchange underlines the relevance of code review
as an industrial practice fostering developer empowerment, as it shows an organic tendency
towards knowledge sharing even under a competitive setting. We thus reinforce the importance
of collaborative learning and the dissemination of best practices across the workforce, and
show that code review is a good vector towards achieving this. This observation reinforces
the value of code review not only as a skill but also as a catalyst for fostering developer
empowerment and the spread of best practices across the industry.

The competitive yet collaborative environment created by the DuckDebugger game
illustrates how serious games can bridge the gap between individual learning and team-
based knowledge dissemination. This aspect is crucial in real-world applications where
cybersecurity is a collective responsibility. By integrating these insights into future game
iterations, DuckDebugger can further enhance its impact on cybersecurity training.

4.5 Discussion on Validity and Limitations

The study on the use of DuckDebugger for code review training in cybersecurity presents
potential threats to validity, particularly in the context of generalization and external validity.

First, the events are conducted in a controlled setting, which may not accurately reflect
developers’ typical working environment. This difference might influence the behavior and
performance of participants, as developers in a competitive, time-constrained event might
interact with the game differently compared to a regular work setting.

The analysis of gameplay data might overlook deeper cognitive and learning processes
involved in vulnerability identification and mitigation, focusing primarily on observable
metrics such as time spent and challenge completion rates. Furthermore, addressing the
long-term impact of the game is unfeasible in an industrial setting, as developer teams and
individual responsibilities shift with time. Learning trends, solving efficiency and proficiency
can thus only be observed within the scope of individual events. Nevertheless, preliminary
findings show neither a learning plateau nor a saturation of gained knowledge.

Furthermore, the event’s structure, which organizes individual players into teams, likely
impacted data collection in terms of sample size. We observed during our the moderation of
our event that users within the same team tend to split between challenge types, to gain
more points in total. Due to how data is anonymized, we cannot present a percentage of
players and teams that choose to follow this strategy. As we observed players dividing their
efforts across different challenge types to optimize team points, this typically resulted in not
all people from a team addressing the review challenges. Nonetheless, as the data is collected
at an individual level, and not aggregated by teams, individual performance metrics are
accurately represented, independent of team dynamics.

As a general note, although our game has been embedded in a CTF setting, though
this is not strictly necessary. The implementation of the game makes it independent of a
CTF setting. We believe our findings to be similar, had the game been introduced under a
different structure.

14:9

ICPEC 2024

14:10

Code Review for CyberSecurity in the Industry: Insights from Gameplay Analytics

Nonetheless, our conclusions align with previous industrial research around serious games.
This, coupled with the typical limitations inherent to design science studies carried out in
the industry, leads us to consider that our findings should not significantly diverge, had the
event been restructured to optimize for data collection instead of learning outcome.

5 Conclusions

This study explores the DuckDebugger game as a tool for training developers in cybersecurity-
focused code review through gameplay analytics. Our results extrapolate a player behavior
model which can be used by practitioners to design similar games, and explore metrics related
to players solving challenges. Notably, the game design, which incorporates elements of
competition and immediate feedback, fosters engagement and learning among participants.

Notably, the finding that over a quarter of participants revisit challenges even after solving
them highlights an organic tendency towards knowledge sharing within teams, emphasizing
the collaborative nature of learning, even in competitive settings.

Our findings suggest that serious games like DuckDebugger can enhance cybersecurity
education among industrial developers. This aligns with the results of previous related work,
reinforcing the importance of tailored training tools in improving cybersecurity skills (i.e.
code review) and fostering collaborative learning environments. The interactive and practical
nature of our game provides a hands-on learning environment.

Our game contributes to academic research by exploring the use of use of SGs in
an industrial setting, specifically centered around empowering developers through code
review for cybersecurity. We follow DSR principles and focus on a defensive approach to
disseminating cybersecurity knowledge, by targeting mitigation techniques in our game,
instead of exploitation of vulnerabilities.

Future work aims to address the identified refinement needs, including game’s design based
on the collected feedback and interaction analytics. Additionally, we plan to test additional
scenarios and further evaluate the utility of the game as perceived by the participants.

—— References

1 Amiangshu Bosu, Michaela Greiler, and Christian Bird. Characteristics of Useful Code Reviews:
An Empirical Study at Microsoft. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, pages 146-156, Florence, Italy, 2015. IEEE. doi:10.1109/MSR.2015.21.

2 Tan Cullinane, Catherine Huang, Thomas Sharkey, and Shamsi Moussavi. Cyber security
education through gaming cybersecurity games can be interactive, fun, educational and
engaging. J. Comput. Sci. Coll., 30(6):75-81, June 2015.

3 Tiago Espinha Gasiba, Kristian Beckers, Santiago Suppan, and Filip Rezabek. On the
requirements for serious games geared towards software developers in the industry. In 2019
IEEE 27th International Requirements Engineering Conference (RE), pages 286-296, 2019.
doi:10.1109/RE.2019.00038.

4 Maurice Hendrix, Ali Al-Sherbaz, and Victoria Bloom. Game based cyber security training:
are serious games suitable for cyber security training? International Journal of Serious Games,
3(1), March 2016. doi:10.17083/ijsg.v3il.107.

5 Andrei-Cristian Iosif, Tiago Espinha Gasiba, Ulrike Lechner, and Maria-Pinto Albuquerque.
Raising awareness in the industry on secure code review practices. In CYBER 2023: The
Eighth International Conference on Cyber-Technologies and Cyber-Systems, pages 62—68.
IARIA, September 2023.

6 ISO/IEC 20246:2017. Software and systems engineering — Work product reviews. Standard,
International Organization for Standardization, Geneva, CH, 2017.

https://doi.org/10.1109/MSR.2015.21
https://doi.org/10.1109/RE.2019.00038
https://doi.org/10.17083/ijsg.v3i1.107

A.-C. losif, U. Lechner, M. Pinto-Albuquerque, and T. Espinha Gasiba

10

11

12

13

14

15

16

17

18

19

20

ISO/IEC 64223-4-1:2018-1. ISO/IEC 62443-4-1:2018 Security for industrial automation and
control systems — Part 4-1: Secure product development lifecycle requirements. Standard,
International Organization for Standardization, Geneva, CH, January 2018.

ISO/IEC 64223-4-2:2019-12. Security for Industrial Automation and Control Systems — Part
4-2: Technical Security Requirements for TACS Components. Standard, International Elec-
trical Commission, Geneva, CH, January 2019. ISBN 978-2-8322-6597-0.

ISO/IEC TR 24772-1:2019. Programming languages — Guidance to avoiding vulnerabilities in
programming languages — Part 1: Language-independent guidance. Standard, International
Organization for Standardization, Geneva, CH, 2019.

Peter Kalnai. Lazarus campaigns and backdoors in 2022-2023. In Proceedings of the Virus
Bulletin International Conference, London, United Kingdom, October 2023.

Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and Jacek Czerwonka.
Code reviewing in the trenches: Challenges & best practices. IEEE Software, 35(4):34-42,
2017.

MITRE Corporation. CWE Top 25 Most Dangerous Software Weaknesses. http://bit.1ly/
mitre25, 2023. Online, accessed 2023.07.24.

Fabiola Moyon, Daniel Mendez, Kristian Beckers, and Sebastian Klepper. How to integrate
security compliance requirements with agile software engineering at scale? In Maurizio
Morisio, Marco Torchiano, and Andreas Jedlitschka, editors, Product-Focused Software Process
Improvement, pages 69-87, Cham, 2020. Springer International Publishing.

OWASP Foundation. OWASP Top10:2021. https://owasp.org/Top10, 2021. Online, accessed
2023.07.24.

Rene Roepke and Ulrik Schroeder. The problem with teaching defence against the dark arts:
A review of game-based learning applications and serious games for cyber security educa-
tion. In Proceedings of the 11th International Conference on Computer Supported Education.
SCITEPRESS - Science and Technology Publications, 2019. doi:10.5220/0007706100580066.
Maung K. Sein, Ola Henfridsson, Sandeep Purao, Matti Rossi, and Rikard Lindgren. Action
Design Research. MIS Quarterly, 35:37-56, 2011.

Akbar Siami Namin, Zenaida Aguirre-Munoz, and Keith Jones. Teaching cyber security
through competition an experience report about a participatory training workshop. In 7th
Annual International Conference on Computer Science Education: Innovation & Technology
(CSEIT 2016), CSEIT. Global Science & Technology Forum (GSTF), October 2016. doi:
10.5176/2251-2195_cseit16.39.

Tarja Susi, Mikael Johannesson, and Per Backlund. Serious games: An overview. Technical
report, IKI Technical Reports, 2007.

Valdemar Svébensky, Jan Vykopal, Pavel Celeda, and Lydia Kraus. Applications of educational
data mining and learning analytics on data from cybersecurity training. Fducation and
Information Technologies, 27(9):12179-12212, May 2022. doi:10.1007/s10639-022-11093-6.
Valdemar Svébensky, Pavel Celeda, Jan Vykopal, and Silvia Brigdkova. Cybersecurity know-
ledge and skills taught in capture the flag challenges. Computers and Security, 102:102154,
2021. doi:10.1016/j.cose.2020.102154.

14:11

ICPEC 2024

http://bit.ly/mitre25
http://bit.ly/mitre25
https://owasp.org/Top10
https://doi.org/10.5220/0007706100580066
https://doi.org/10.5176/2251-2195_cseit16.39
https://doi.org/10.5176/2251-2195_cseit16.39
https://doi.org/10.1007/s10639-022-11093-6
https://doi.org/10.1016/j.cose.2020.102154

	1 Introduction
	2 Related Work
	2.1 Serious Games for Cybersecurity Education
	2.2 Industrial Code Review

	3 Methodology
	3.1 Context
	3.2 Game Artifact

	4 Results and Discussion
	4.1 Player Behavior Model
	4.2 Solved Challenges Counts and Percentages
	4.3 Time to solve a challenge
	4.4 Knowledge Exchange
	4.5 Discussion on Validity and Limitations

	5 Conclusions

