
Improving Industrial Cybersecurity Training:
Insights into Code Reviews Using Eye-Tracking
Samuel Riegel Correia #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTA, Portugal

Maria Pinto-Albuquerque #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Tiago Espinha Gasiba #

Siemens AG, München, Germany

Andrei-Cristian Iosif #

Universität der Bundeswehr München, Germany
Siemens AG, München, Germany

Abstract
In industrial cybersecurity, effective mitigation of vulnerabilities is crucial. This study investigates
the importance of code reviews among cybersecurity professionals and analyses their performance in
identifying vulnerabilities using eye-tracking technology. With the insights gained from this study,
we aim to inform future tools and training in cybersecurity, particularly in the context of code
reviews. Through a survey of industry experts, we reveal what tasks industry professionals consider
the most important in mitigating cybersecurity vulnerabilities. A study was conducted to analyse
how industrial cybersecurity professionals look at code during code reviews. We determined the
types of issues our participants most easily discovered and linked our results with patterns and data
obtained from an eye-tracking device used during the study. Our findings underscore the pivotal
role of code reviews in cybersecurity and provide valuable insights for industrial professionals and
researchers alike.

2012 ACM Subject Classification Security and privacy → Software and application security; Software
and its engineering → Collaboration in software development; Information systems → Open source
software; Security and privacy → Vulnerability management

Keywords and phrases code review, cybersecurity, development lifecycle, eye-tracking

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.17

Funding This work is partially financed by Portuguese national funds through FCT – Fundação para
a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and FCT UIDP/04466/2020.
Furthermore, the first and second author thank the Instituto Universitário de Lisboa and ISTAR,
for their support. Tiago Gasiba and Andrei-Christian Iosif acknowledge the funding provided by the
Bundesministerium für Bildung und Forschung (BMBF) for the project CONTAIN with the number
13N16585.

1 Introduction

The security of software applications is crucial in today’s digital landscape, in which cyber-
security threats continue to evolve in their sophistication and frequency [1]. As developers
strive to create secure programs, analysing and understanding developers’ cognitive processes
when creating secure programs becomes crucial.

Code reviewing, a key task in the software development lifecycle, plays a pivotal role in
creating secure code. It serves as a crucial measure in detecting vulnerabilities and other
issues in code, making it an important task in the development of secure programs. The
task of conducting a code review primarily involves reading code, this makes the use of
eye-tracking technologies a fitting approach when studying developers’ cognitive processes.

© Samuel Riegel Correia, Maria Pinto-Albuquerque, Tiago Espinha Gasiba, and Andrei-Cristian Iosif;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 17; pp. 17:1–17:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:samuel0correia@gmail.com
https://orcid.org/0009-0005-3925-3421
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
mailto:andrei-cristian.iosif@siemens.com
https://orcid.org/0000-0003-1867-1542
https://doi.org/10.4230/OASIcs.ICPEC.2024.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


17:2 Improving Industrial Cybersecurity Training

Although eye-tracking has been used in several coding and code interpretation studies, very
few studies have focused on cybersecurity. This study aims to explore this underrepresented
yet crucial subcategory of eye-tracking studies.

We have two main research questions:
RQ1 What tasks in the software development life cycle do industrial cybersecurity profes-

sionals consider to be the most crucial in mitigating cybersecurity vulnerabilities?
RQ2 How do industrial cybersecurity professionals analyse code while attempting to find

cybersecurity vulnerabilities?
a How successful are industrial cybersecurity professionals at finding cybersecurity

vulnerabilities while performing code reviews?
b Is there a relation between the patterns revealed using eye-tracking technology and

the code reviewers’ success in spotting the vulnerabilities?

By gaining insight into the thought processes of industrial cybersecurity professionals
during code reviews, we seek to determine which practices are best suited to enhancing
software security. With this information, we can suggest how to improve training, resources,
and processes to enhance development practices and make them more secure.

2 Related Work

Related work in this field includes literature reviews of objectives and techniques important
to analysing software developers’ coding behaviour (e.g., [5]). Considering the current state
of the art, we determined the following tasks to be crucial in cybersecurity and, additionally,
be suitable candidates for analysis through an eye-tracking study:
a) Code reviewing
b) Analysis of code review tool outputs
c) Reading documentation
d) Researching online resources (e.g. Stack Overflow or other community-based resources)

From these, code reviews stood out as the most promising and interesting task to study.
Code reviews are essential in detecting vulnerabilities and other issues in code. They are
commonplace in development lifecycles and have been set as requirements in industrial
standards such as ISO/IEC 62443.

Eye-tracking technology has been used in software engineering research to study various
tasks in the development lifecycle, such as code comprehension, debugging, and code reviews
[7]. This technology can record multiple aspects of participant behaviour, including visual
focus, attention, interactions, and reading patterns, making it highly useful for research
studies.

Generally, the articles related to eye-tracking use in cybersecurity are closely related to
education in some form or another. These articles are either directly related to how we can
create better pedagogical frameworks to educate individuals on cybersecurity (e.g., [4], [2]),
or how we could adapt provided learning materials such as API documentation to further
safe cybersecurity practices (e.g., [6]).

Most articles about programming are also relevant to cybersecurity, as analysing how
individuals look at code also provides insight into how they deal with specific cybersecurity
challenges.



S. Riegel Correia, M. Pinto-Albuquerque, T. Espinha Gasiba, and A.-C. Iosif 17:3

3 Methodology

To answer RQ1, we developed a survey in which participants were asked to evaluate the four
tasks mentioned previously: code reviewing, analysis of code review tool outputs, reading
the documentation, and researching online resources, in terms of their perceived importance
to cybersecurity using a five-point Likert scale. Besides obtaining the participants’ opinions
on the importance of these tasks, we also acquired some of their background information to
help us describe the respondents. All participants are industrial cybersecurity professionals
currently actively working in this field.

As for RQ2, we found that the best approach to answering this question lies in creating a
study in which participants are presented with several code snippets and, for each one, are
tasked with determining any vulnerabilities present in the code. The task we created was
designed to simulate a code review.

The survey and the eye-tracking experiments were conducted with the same individuals,
with the survey being conducted with participants before the code review experiment. These
two parts, on average, took ≈ 8 and ≈ 21 minutes respectively. Our study was conducted in
April 2024.

For this study, we used the Gazepoint GP3 Eye-tracking device in conjunction with the
Open Gaze and Mouse Analyzer (OGAMA)1 software which was used to create, record, and
analyse the experiments.

Participants were presented with code snippets in C++ representing the five most common
vulnerabilities according to the number of registered occurrences on CVEdetails.com2. These
vulnerabilities’ CWE IDs are CWE-79, CWE-119, CWE-89, CWE-20, and CWE-787. The
code snippets were ordered in terms of difficulty, from the least to the most complex to
analyse:
1. CWE-787 – Out-of-bounds Write
2. CWE-119 – Buffer Overflow
3. CWE-20 – Improper Input Validation
4. CWE-89 – SQL Injection
5. CWE-79 – Cross-site Scripting

4 Results

Participants

As mentioned previously, all participants in our study are industrial cybersecurity professionals
currently working in this field. Besides answering RQ1, the survey we created allowed us to
obtain some background information on the participants, which, in turn, would help us draw
some conclusions from the phenomena we observed during the experiments.

A total of 12 individuals participated in the study. All were above the age of 24, with
eight being between 25 and 34 years of age, and only one over 55. Two participants were
female, and the remaining nine were male.

Regarding education, the participants have varying degrees, including one bachelor’s
degree, four doctorates, and seven master’s degrees. Naturally, participants with higher
degrees of education also had, generally, more years of work experience in cybersecurity. The
participants with the least work experience in this field stated they had three years’ worth of
experience, and the most out of all participants was 25 years.

1 http://www.ogama.net/
2 https://www.cvedetails.com/

ICPEC 2024

http://www.ogama.net/
https://www.cvedetails.com/


17:4 Improving Industrial Cybersecurity Training

8% 33%

25%

33%

50%

50%

25%

33%

8%

50%

50%

33%

a)

b)

c)

d)

Importance of Tasks in Mitigating 

Cybersecurity Vulnerabilities (n=12)

1 (not important) 2 3 4 5 (crucially important)

Figure 1 Importance given by participants to tasks in mitigating cybersecurity vulnerabilities.

RQ1 – What tasks in the software development life cycle do industrial cybersecurity
professionals consider to be the most crucial in mitigating cybersecurity
vulnerabilities?

Participants were asked to evaluate the following tasks on a scale from one (not important)
to five (crucially important) regarding their assigned importance in mitigating cybersecurity
vulnerabilities.

a) Code reviewing
b) Analysis of code review tool outputs
c) Reading documentation
d) Researching online resources (e.g. Stack Overflow or other community-based resources)

From this question, we obtained the results in Figure 1.
Professionals consider task a), code reviews, among the most critical tasks when mitigating

cybersecurity vulnerabilities. In our survey, code reviewing was given an importance of
four or five out of five by all of our survey participants, and many considered it the most
important task.

Both b) and c) got similar results being considered, generally, less critical than a) but
also having a quite positive average rating of ≈ 4.09 and ≈ 4.01 respectively.

One observation we made was that task d), which involves researching online resources, was
considered relatively unimportant by our participants, with an average rating of approximately
2.4. Participants explained that community-based online resources are important for software
developers when solving programming issues, but not ideal for addressing cybersecurity
vulnerabilities.

An open-ended question was also included in the survey, asking the participants if there
were additional tasks they considered important in mitigating cybersecurity vulnerabilities.
Many chose to answer this question, with the most common answers including code testing,
penetration testing, and secure coding training/workshops, all significant activities and tasks
in cybersecurity.

RQ2 a) – How successful are industrial cybersecurity professionals at finding
cybersecurity vulnerabilities while performing code reviews?

For our analysis, we created an AOI, referred to as the target, around the lines of code in
these snippets which we considered to contain the main vulnerability to be discovered by the
participants.



S. Riegel Correia, M. Pinto-Albuquerque, T. Espinha Gasiba, and A.-C. Iosif 17:5

Table 1 Results on the analysis of code snippets with cybersecurity vulnerabilities.

Vulnerability CWE-787 CWE-119 CWE-20 CWE-89 CWE-79

Discovery Rate 17% 50% 42% 100% 83%
Avg. Time Analysed (s) 234 289 259 214 242

Avg. Time to Find Vuln. (s) 205 168 137 91 189
Avg. Time Analysing Target (s) 51 100 51 23 36

1

3

5

2

1

1 2 3 4 5

N
u

m
b

e
r 

o
f 

P
a
rt

ic
ip

a
n

ts

Number of Vulnerabilities Found

Number of Participants by 

Vulnerabilities Found (n=12)

Figure 2 Number of Participants by Vulnerabilities Found.

The accuracy of responses varied considerably between the code snippets. For instance,
in our first snippet of CWE-787, only two users identified the vulnerability in the code, while
all users identified the vulnerability in the CWE-89 code snippet. Table 1 shows an overview
of the results.

CWE-89 and CWE-79 stand out by being the most easily identified, by a considerable
margin. These two vulnerabilities correspond to SQL injection and cross-site scripting (XSS),
respectively, and are likely the most commonly discussed code vulnerabilities. This leads
to the conclusion that the fact that these vulnerabilities are so well-known by professionals
made them stand out and be easily identifiable.

CWE-89 was the fastest to be found by our participants, while CWE-79 was one of
the code snippets in which they took the longest to find vulnerabilities, even though these
programs were quite similar in size. By watching the recordings made with the eye-tracking
software, we see that our participants followed the code’s execution path, which, for the code
snippet on CWE-79, took fairly long before encountering the vulnerable code.

RQ2 b) – Is there a relation between the patterns revealed using eye-tracking
technology and the code reviewers’ success in spotting the vulnerabilities?

The average number of vulnerabilities found per participant is ≈ 3, Figure 2 shows the
distribution of the participants by the number of vulnerabilities they detected out of the five
considered.

When comparing the number of vulnerabilities found with the background information
provided by participants, we found no strong correlations. The years of experience and
educational degree showed correlation values of about 0.08 and 0.31, respectively.

Next, we compared the results of participants who discovered the vulnerability, with those
who did not, for each vulnerability. From this, we found that, on average, participants who
didn’t find the vulnerabilities looked at the code snippets and targets longer than those who

ICPEC 2024



17:6 Improving Industrial Cybersecurity Training

(a) CWE-89 Heatmap – Participants who dis-
covered the vulnerability.

(b) CWE-89 Heatmap – Participants who did not
discover the vulnerability.

Figure 3 Heatmaps for Code Snippet of CWE-89.

Table 2 Average fixation rates of participants (fixations per second).

Average Standard Deviation Minimum Maximum

3.86 1.43 1.73 5.96

did. We also found moderate correlations which indicate that participants who discovered
more vulnerabilities looked at the code and targets for less time with values ≈ −0.4 and
≈ −0.5, respectively.

Heatmaps were created which helped us compare the fixation times on different parts of
the code and targets, revealing potential differences between participants who discovered
vulnerabilities and those who did not; an example of this can be seen in Figure 3.

Between the various heatmaps we compared, we noticed that, for most code snippets,
participants who correctly identified vulnerabilities spent considerably more time looking at
the parts of the programs with vulnerable code. Furthermore, in some snippets, such as the
one seen in the images above, the high performers had a more focused approach to analysing
the code, concentrating on a few key program elements.

We also examined our participants’ gaze paths to determine if their code-reading strategies
somehow impacted their performance. However, we are not able to draw any definitive
conclusions on this since all types of participants followed some recognisable patterns, such
as following the instructions from the main method and stepping into the functions that are
called.

We then looked at the fixation rates of our participants, finding a meaningful correlation
of ≈ −0.59 between the time spent analysing the snippets and their fixations per second or
fixation rate. This correlation indicates that, on average, users with a higher fixation rate
spent less time reading the code. We also found that the fixation rates were fairly consistent
for each individual but varied quite significantly between the participants. Statistics on the
fixation rates of our participants can be seen in Table 2.

When comparing the number of vulnerabilities found to each participant’s average
fixation rate, we see that a moderate correlation of ≈ −0.36 exists between the number of
vulnerabilities discovered and the fixation rate of participants. This value indicates that
participants who discovered more vulnerabilities had, on average, a lower average fixation
rate.



S. Riegel Correia, M. Pinto-Albuquerque, T. Espinha Gasiba, and A.-C. Iosif 17:7

5 Discussion

From the survey we created, our participants indicated that, out of the four tasks they
were presented with, code reviewing was the most important in mitigating cybersecurity
vulnerabilities. This demonstrates this task’s significance in industrial cybersecurity and
underscores the need for robust and effective code review practices.

Researching online resources was seen as the least important task from the list we
presented. Participants indicated that they gave this task low importance despite being
commonplace in program development because, specifically from the perspective of mitigating
cybersecurity vulnerabilities, community resources can be unreliable and industry-followed
resources such as standards and official documentation are preferable. Additionally, multiple
participants referenced tasks such as penetration testing and secure coding training as being
very important.

Our code review experiments revealed some interesting results. Firstly, SQL Injection
and XSS vulnerabilities were detected at a much higher rate than the other vulnerabilities
related to issues with memory allocation and buffer over/underflows. We believe, participants
identified these issues quickly because the patterns for SQL Injection and XSS were very
well-known. This indicates a need for increased awareness and training on other cybersecurity
vulnerabilities, particularly those related to memory management and buffer handling, which
may not be as widely recognised or understood.

As for the time it took participants to discover each of the vulnerabilities, the code
snippets we selected are not ideal for this comparison, as several factors have to be considered
to compare the vulnerability detection time, other than the vulnerabilities themselves. To
determine what kinds of vulnerabilities take longer to be found, an experiment must be
created which addresses the following two problems: first, different types of vulnerabilities
require different program structures giving context to the vulnerable code which may vary
in their ease of interpretation. Second, the participants’ code scan path must be carefully
considered as, ideally, the time it takes a user to read any code snippet before reaching the
vulnerable code should be the same; this point has been discussed in other publications
(e.g., [3]).

Through heatmaps, we determined that participants who correctly identified vulnerab-
ilities had a seemingly more focused approach in looking at the code, usually focusing on
the parts of the code snippets containing the vulnerabilities. This leads us to believe that
individuals with more knowledge of the vulnerabilities are quicker to find them as they look
at the program more efficiently. These results warrant further investigation as we can use
the insight into how successful code reviews are conducted to teach people how to replicate
this success.

The scan paths of our participants were also analysed; this was accomplished by reviewing
the eye-tracking recordings of our participants. Some publications have found patterns in
the code analysis process of experts when compared to that of novices[3], however, at this
time we are not able to determine any specific strategies which led to better results during
the experiment.

The eye-tracking data we obtained also included information on the fixation rates of our
participants. Some authors have linked higher fixation rates with increased effort, interest,
and exploration, while lower fixation rates may indicate a lower efficiency in tasks such as
finding vulnerabilities in code [7][8]. In our experiment, participants who had spent less time
looking at the code snippets were found to have higher fixation rates possibly indicating
higher involvement in reading the code. However, we also found that participants who
discovered fewer vulnerabilities had higher average fixation rates, which may indicate an
increased effort in interpreting these code snippets, possibly leading to worse performance.

ICPEC 2024



17:8 Improving Industrial Cybersecurity Training

A limitation of our survey and study was the small sample size, this was mostly a
product of the selection criteria we applied when choosing our participants. This restricts
our confidence in the results and the analysis we can conduct with the data.

As for the future direction of this work, a more in-depth data analysis will be conducted,
additional AOI will be created to enhance our analysis, and other code snippets, besides
those analysed here, will be considered.

6 Conclusions

We conducted a survey and study on code reviews with industrial cybersecurity professionals.
Our main objectives included determining how important these experts consider code reviews,
determining how well they perform during code reviews, and analysing their performance
with the help of eye-tracking technologies.

We conclude that industry professionals consider code reviews critical in mitigating
cybersecurity vulnerabilities. Tasks such as the consultation of community-based resources
(e.g., Stack Overflow), are considered less than ideal for cybersecurity as the information
may be unreliable, and better sources, such as industry standards and official documentation,
are more appropriate in this field.

By a considerable margin, SQL Injections and Cross-site Scripting (XSS) vulnerabilities
were the most commonly detected vulnerabilities. This result can be explained by the fact
that these two vulnerabilities are some of the most well-known and frequently discussed
cybersecurity vulnerabilities.

When comparing the performances of those who discovered vulnerabilities and those who
did not, we found that those who correctly identified vulnerabilities had a more focused
approach to analysing the code and a slightly lower fixation rate, previously linked to lower
efficiency in tasks such as code reviews. This insight into how successful code reviews are
conducted warrants further investigation as it may help us teach people how to replicate this
success.

In our future work, we plan to analyse data with different methods and explore other code
snippets included in the study which weren’t discussed here. This will allow us to provide
further insights into how cybersecurity education should be adapted to improve performance
during code reviews.

In summary, our study emphasises the crucial role of code reviews in cybersecurity. We
also saw the importance of following certain code analysis patterns, and that exposure to
different vulnerabilities is invaluable for code reviewers as commonly discussed issues were
easily recognised.

References
1 Federal Cyber Security Authority. The state of it security in germany in 2023. Federal Office

for Information Security, 2023.
2 Leon Bernard, Sagar Raina, Blair Taylor, and Siddharth Kaza. Minimizing cognitive load

in cyber learning materials -– an eye tracking study. In ACM Symposium on Eye Tracking
Research and Applications, volume PartF169257. Association for Computing Machinery, May
2021. doi:10.1145/3448018.3458617.

3 Teresa Busjahn, Simon, and James H. Paterson. Looking at the main method - an educator’s
perspective. In Otto Seppälä and Andrew Petersen, editors, Koli Calling ’21: 21st Koli Calling
International Conference on Computing Education Research, Joensuu, Finland, November 18
- 21, 2021. Association for Computing Machinery, November 2021. doi:10.1145/3488042.
3488068.

https://doi.org/10.1145/3448018.3458617
https://doi.org/10.1145/3488042.3488068
https://doi.org/10.1145/3488042.3488068


S. Riegel Correia, M. Pinto-Albuquerque, T. Espinha Gasiba, and A.-C. Iosif 17:9

4 Daniel Kyle Davis and Feng Zhu. Understanding and improving secure coding behavior with
eye tracking methodologies. In J. Morris Chang, Dan Lo, and Eric Gamess, editors, Proceedings
of the 2020 ACM Southeast Conference, ACM SE ’20, Tampa, FL, USA, April 2-4, 2020, ACM
SE ’20, pages 107–114, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3374135.3385293.

5 Daniel Kyle Davis and Feng Zhu. Analysis of software developers’ coding behavior: A survey
of visualization analysis techniques using eye trackers. Computers in Human Behavior Reports,
7, August 2022. doi:10.1016/j.chbr.2022.100213.

6 Peter Leo Gorski, Sebastian Möller, Stephan Wiefling, and Luigi Lo Iacono. ’i just looked for
the solution!’on integrating security-relevant information in non-security api documentation to
support secure coding practices. IEEE Transactions on Software Engineering, 48:3467–3484,
September 2022. doi:10.1109/TSE.2021.3094171.

7 Zohreh Sharafi, Yu Huang, Kevin Leach, and Westley Weimer. Toward an objective measure of
developers’ cognitive activities. ACM Transactions on Software Engineering and Methodology,
30, May 2021. doi:10.1145/3434643.

8 Zohreh Sharafi, Bonita Sharif, Yann Gaël Guéhéneuc, Andrew Begel, Roman Bednarik,
and Martha Crosby. A practical guide on conducting eye tracking studies in software en-
gineering. Empirical Software Engineering, 25:3128–3174, September 2020. doi:10.1007/
s10664-020-09829-4.

ICPEC 2024

https://doi.org/10.1145/3374135.3385293
https://doi.org/10.1016/j.chbr.2022.100213
https://doi.org/10.1109/TSE.2021.3094171
https://doi.org/10.1145/3434643
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1007/s10664-020-09829-4

	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusions

