Adaptation of Automated Assessment System for
Large Programming Courses

Marek Horvath =

Department of Computers and Informatics, FEI TU of Kosice, Slovakia

Tomas Kormanik &
Department of Computers and Informatics, FEI TU of Kosice, Slovakia

Jaroslav Porubian &
Department of Computers and Informatics, FEI TU of Kosice, Slovakia

—— Abstract

This paper presents a new automated assessment system tailored for programming courses, addressing
the challenge of evaluating a large number of students in extensive courses at the Technical University
of KoSice. The primary issue with current systems is their inability to handle massive course loads
while ensuring objective evaluation and timely feedback. Our proposed system enhances the
scalability of the assessment process, allowing for the simultaneous handling of a greater volume of
assignments. It is designed to provide regular and systematic feedback to students, supporting their
continuous learning and improvement. To ensure the objectivity of evaluations, the system utilizes
a variety of unit test suites, selecting them randomly in each assessment to discourage students
from hardcoding solutions. This approach not only supports fair and precise assessments but also
significantly reduces the administrative burden on educators, enabling them to meet a wide range of
educational demands.

2012 ACM Subject Classification Applied computing — Interactive learning environments; Applied
computing — Computer-assisted instruction; Software and its engineering — Software creation and
management

Keywords and phrases Automated Assessment, Informatics Education, Programming Feedback
Systems, Continuous Integration in Education, Code Quality Analysis, Educational Technology,
Computer Science Education

Digital Object ldentifier 10.4230/0ASIcs.ICPEC.2024.4

Funding This work was supported by project VEGA No. 1/0630/22 “Lowering Programmers’
Cognitive Load Using Context-Dependent Dialogs”.

1 Introduction

The expansion of programming courses across educational institutions poses significant
challenges in managing the assessment of a broad spectrum of students. Traditional manual
grading methods are increasingly proving to be overwhelming due to their demanding nature
and potential for human error and bias.

In response, we have developed an automated assessment system tailored to manage the
complexities of modern programming education, which was heavily influenced by previous
findings from development of similar system [22]. This system is structured to provide
continuous, regular feedback, similar to the iterative processes seen in professional software
development environments where code is continuously tested and refined. This approach not
only helps in the gradual enhancement of coding skills but also meets the evolving standards
of industry practices.

Security and privacy in automated systems are critical, as they manage sensitive student
data and are exposed to potential breaches, including threats from malicious code submissions.
Therefore, our system implements essential security protocols and modules [2] to protect
against these risks while maintaining high operational standards.

© Marek Horvath, Tom4s Kormanik, and Jaroslav Porubén;

37 licensed under Creative Commons License CC-BY 4.0
5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 4; pp.4:1-4:11

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:marek.horvath@tuke.sk
https://orcid.org/0009-0005-4649-2308
mailto:tomas.kormanik@tuke.sk
https://orcid.org/0009-0002-6622-8027
mailto:jaroslav.poruban@tuke.sk
https://orcid.org/0000-0001-9706-2897
https://doi.org/10.4230/OASIcs.ICPEC.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2

Adaptation of Automated Assessment System for Large Programming Courses

This paper outlines the updates to our automated assessment system, now supporting
a broader spectrum of programming languages and course requirements — from basic C
programming to more advanced topics such as cybersecurity in Python, along with object-
oriented programming in Java. We discuss the system’s scalability and flexibility, which are
crucial for adapting to new testing methods and managing an increasing number of student
submissions efficiently.

By detailing the system’s architecture and functionality, we aim to provide insights into
how to build an automated assessment system that enhances educational practices, making
them more effective and responsive to the needs of both educators and students.

2 Related work

Automated assessment systems enable constant feedback for students, enhancing their learning
beyond traditional methods [29][23]. These systems provide iterative feedback that helps
students progressively refine their coding skills. However, the effectiveness of this feedback
depends on student engagement [18].

System Arena employs parallel evaluation using Docker containers, providing detailed,
data-driven insights and ensuring thorough assessments by stopping evaluations if errors are
detected [19].

Code quality is crucial, preparing students for professional settings. Academic assessments
often focus primarily on problem-solving rather than coding practices. Automated tools now
offer context-sensitive feedback to bridge this gap [17].

Automatic evaluation advantages include speed, fairness, and objectivity, significantly
improving reliability [23]. For example, JUnit tests provide specific feedback, aiding students
in identifying and correcting errors [11].

Grading techniques in automated systems use formulas like:

Final score = (0.4 x LOC) + (0.3 x WMC) + (0.3 x DIT)

to ensure fair evaluations [1]. Threshold-based methods set clear performance standards for
improvements. Automated assessments must be transparent and well-managed, ensuring
a reliable framework that can adapt to the demands of programming education [9] while
maintaining reasonable amount of safety [28].

Existing Tools and Technologies Used in Automated Assessment

Version control systems like Git, GitHub, and GitLab are crucial in modern programming edu-
cation, facilitating functions essential for collaborative learning [27]. GitHub’s management
capabilities notably enhance learning outcomes and classroom efficiency [29]. Additionally,
our system integrates GitLab to manage and retrieve student code submissions effectively.
This integration ensures seamless communication between the assessment system and Git-
Lab repositories, allowing for automatic synchronization and real-time feedback on student
assignments.

Assessment Tools for Immediate Feedback

Advanced tools facilitate prompt and precise feedback to students, which we extensively
tested during education in our department:
2TSW and PAAA, PCQL and DANTE: These tools utilize both static and dynamic
analysis to evaluate student submissions in real time [24, 26, 6, 7].

M. Horvath, T. Kormanik, and J. Poruban

JavaBrat and Web-CAT: Specifically designed to automate grading processes by
analyzing both the structure and the output of code [14, §].

JThreadSpy and BOSS: These tools not only provide execution traces but also enhance
the efficiency of online assignment submissions [10, 15].

These tools provide a solid foundation for effective programming education by offering
feedback that is both specific and timely, thus helping students improve their coding skills.
They also streamline the grading process, reducing the workload on instructors and allowing
them to focus more on teaching rather than administrative tasks. Each of these tools has
different approach in terms of evaluating results and similarities, which creates differences in
their accuracy, performance and reliability.

3 Assessment Techniques

This section discusses the main methods used in our assessment system, explaining how
static and dynamic analysis techniques help evaluate programming assignments. These
methods improve the accuracy of assessments and address the needs of various programming
environments.

Analysis Techniques

In programming assessment, Static Analysis and Dynamic Analysis are essential methods
that work together to effectively evaluate code submissions [27]. Figure 1 shows a flowchart
of these analysis techniques.

Dynamic Analysis

Dynamic analysis evaluates the actual running of programs to check their functionality
against different test cases. It includes:
Black-box testing — The internal structure of the program is unknown to the tester; the
focus is solely on the inputs and outputs [3, 25, 12, 20].
Grey-box testing — This method examines the results of each function within the program
and combines these findings to assess overall performance.

Dynamic analysis is user-friendly, allowing testers to evaluate programs by comparing
the actual outcomes with expected results. It can test applications without needing source
code access. However, it poses risks such as security vulnerabilities, including buffer over-
flows that can crash servers. Dynamic analysis also relies solely on feedback from output
matches and cannot assess non-compiling programs or verify compliance with specific coding
instructions [16].

Static Analysis

Static analysis looks at code without running it to find potential errors and check compliance
with coding standards. It includes:
Style analysis — Evaluates the readability of code using meaningful variable names,
appropriate comments, and correct indentation [1].
Error detection — Identifies errors that might not appear during compilation but could
cause runtime issues, such as infinite loops or divisions by zero.
Metric analysis — Assesses various aspects of the program to evaluate its complexity and
reliability.

4:3

ICPEC 2024

4:4 Adaptation of Automated Assessment System for Large Programming Courses

Keyword analysis — Checks for the presence of specific keywords required by the assessment
criteria.

Structural analysis — Compares the structure of the assessed program against expected
solutions to judge its correctness.

Static analysis is thorough, considering all potential execution paths to identify issues.
It can evaluate code with compilation errors, enhancing the depth of assessment. However,
its application to complex programs is challenging due to the variety of possible solutions,
which can result in misjudgments, as is proven by previously conducted research [21].

[Analysis Techniques]

Lo

Dynamic
Analysis

Black-box Style
Testing Analysis
Grey-box Metric
Testing W/ | Analysis
Keyword
7 Analysis

Error
Detection

Figure 1 Flowchart illustrating analysis techniques in programming assessment.

4 Challenges and Enhancements in System Architecture for
Programming Education

In the foundational course on the “Fundamentals of Programming and Algorithmization”,
we currently serve approximately 1500 first-year students. Many of these students have no
prior experience in programming, emphasizing the need for a system capable of providing
regular feedback to facilitate learning. The course, which primarily teaches the basics of
the C language, requires students to complete seven assignments throughout the semester.
Given the volume of students and frequency of assignments, manually evaluating their work
repeatedly is not feasible.

M. Horvath, T. Kormanik, and J. Poruban

The complexity is further increased as these students are simultaneously enrolled in more
advanced courses, such as “Object-Oriented Programming in Java”, which not only involve
more complex assignments but also require significantly more system resources for evaluation.

Previously, our system relied on outdated and inflexible technologies such as SFTP for
assignment submissions, which slowed down performance and hindered our ability to further
improve this system. Multiple modules were affected by bad coding practices, and their
versions were incompatible with currently desired technologies. Additionally, the absence of
a user-friendly interface for instructors made it challenging to implement and manage new
tests effectively.

To overcome these challenges, our plan includes upgrading our system to increase perform-
ance and extend its capabilities to additional programming courses such as “Data Structures”,
“Operating Systems in C”, and “Cybersecurity in Python”. This enhancement will involve
moving away from dependency on older systems and introducing a more interactive and man-
ageable interface for teachers, enabling easier integration of new tests and better adaptation
to evolving educational needs. This strategic upgrade is aimed at creating a more dynamic
and responsive educational environment that supports both students and instructors more
effectively.

In order to facilitate the development of new versions of our system, we often create
either a closed group of student testers or we test results on all students while not interfering
with evaluation processes in a specified subject. When the effectiveness of our system is
proven and necessary issues and bugs are addressed, the system can be slowly pushed into
production.

The architecture of our assessment system has been updated to better handle the increasing
needs of educational environments today. This updated architecture includes high availability,
automatic scaling, continuous integration and continuous deployment. Figure 2 shows how
the different modules of the system interact. We’ve named each module with a callsign
inspired by Roman history to make communication within our development team clearer.
This distribution of systems into services is quite new since it allows us to distribute system
loads across multiple physical machines. Each node in our physical machine cluster will
be labeled with its specifications, and services will have their requirements defined in their
manifests. This allows us to distribute tasks that require more computing power to higher-end
devices or tasks that utilize CUDA to machines that are fitted with compatible GPUs.

Caesar

The Caesar module serves as the web application and is the primary interface for both
students and teachers. It displays test results and feedback designed to help students correct
their solutions. The feedback includes points awarded for various test types such as structure,
static code analysis checks, error handling, and edge cases. This detailed feedback illustrates
the differences between expected outputs and student submissions, aiding in identifying
specific mistakes (Figure 3). For teachers, Caesar also offers functionalities to create new
assignments and manage scoring, ensuring the system can handle peak access times efficiently.

Oracle

The Oracle module employs Python to perform data analytics on the testing and evaluation
processes. It gathers statistics such as peak usage times, average success rates, code issues in
individual sub-tasks and most common programming malpractices across different parts of
assignments [5]. This data helps reevaluate assignment complexity and provides anonymized
advice to students on effective problem-solving strategies based on the performance of the
most successful peers.

4:5

ICPEC 2024

4:6

Adaptation of Automated Assessment System for Large Programming Courses

W wm mm o mm o mm W e R R e R R R M R e e R M R R R R R e e R e R R e R e e e e e o

Figure 2 A simplified diagram of the assessment evaluation system

STDOUT PRODUCED E

.

.

"CAESAR"
Frontend

Handles interaction with
users

oA 4

"ORACLE"
Feedback Manager

"ARENA"

Main APl & database
Provides feedback to users
based on results

@ B

POSTFIX

Provides all information and
stores it

@ 0

High availability

"SPARTAN"

Real-time evaluation
environment

Facilitates evaluation of live

&V

DIFF

Welcome to the game, Hangman!

"GLADIATOR"
‘Worker management API

Manages task runners and
their host system

Ok

High availability

“CENSOR™
Log collector

Collects and processes logs

and metrics from systems

I am thinking of a word that is 7 letters long.

You have 8 guesses left.
Available letters: abcdefghijklmnopgrstuvwxyz

Please guess a letter: Good guess: _e _ _ _ _ e

You have 8 guesses left.

Available letters: abcdfghijklmnopgrstuvwxyz

Please guess a letter: Oops! That letter is not in my word: _e _ _ _ _ e
a ~

Please guess a letter: Oops! That letter is not in my word: _ _ _ _ _ _ _
a ~

You have 7 guesses left.
Available letters: becdfghijklmnopgrstuvwxyz

Available letters: abcdefghijlmnopgrstuvwxyz
+ o+
Please guess a letter: Good guess: r e

e

Figure 3 Interface of Caesar showing detailed test feedback.

Runs tasks provided by
management AP|

"PRAETOR"

Plagiarism analyzer
Analyzes submitied tasks
and determines their

architecture.

EQUITES"
Worker

originality

A

M. Horvath, T. Kormanik, and J. Poruban

Spartan

Spartan is a complementary web application to Caesar but focuses on real-time evaluation.
It provides a web-based code editor where students can write and submit code snippets for
immediate feedback during class sessions. This module is particularly useful for simulating
pressure-filled exam conditions and monitoring for unethical practices utilizing IP address
detection and analysis of select, copy, and paste usage. We plan to further expand the
features of this module in the future.

Praetor

Praetor is dedicated to plagiarism detection, employing tools like JPlag, Moss, and Sherlock,

along with custom extensions for analyzing lines of code, regex patterns, and variable usage.

This module is critical for maintaining academic integrity and is being developed to include
a new web interface that allows teachers to actively monitor and review the plagiarism
evaluation process. Previously developed experimental versions of this tool [13] have proven
its effectiveness and usability while also providing valuable information for its development.

Additional Components

The Arena module acts as the central hub, using the Django framework and a Mongo
database to facilitate communication between all modules via a RESTful API. Gladiator
manages task distribution and system checks, utilizing FastAPI and RabbitMQ for efficient
operation. Equites, the worker module, runs on Debian Linux and handles Docker-contained
assessment processes, ensuring scalability and security. The Censor module, supported by
Elastic and Kibana, tracks metrics and system health, aiding in predictive maintenance and
machine learning applications.

This updated system architecture is designed as a robust, scalable, and secure assessment
environment that adapts to the needs of both students and educators, enhancing the
educational experience through technology.

5 Enhancements in Assessment Methodologies

Our recent changes and improvements have significantly enhanced the accuracy of evaluations,
accelerated the assessment processes and reduced the number of false positives in plagiarism
detection. On the contrary, these enhancements have led to increased consumption of system
resources.

The most notable improvement has been in the infrastructure of the system. Critical
updates can now be tested, organized, and deployed to production in an average of two
minutes (time until the pushed update is reflected on the side of users). Optimization of used
base images, elimination of unnecessary nested virtualization and cleanup of host systems
have reduced resource consumption by 21% (based on normalized average statistics collected
over a 30 day period).

Code quality of our system has also improved, making the code more readable and easier
to maintain. Implementation of multiple linting tools and coding standards has decreased the
amount of LOC by approximately 14%. We have adopted a policy for capturing all possible

data processed, which could be utilized to train language models or perform predictions.

During testing, we noted a visible reduction in system load (Fig. 4), particularly when
adjusting the compression algorithm at the beginning and end of tests. The reduction in
load during test runs is modest but could be more apparent in larger projects that use
asynchronous calls and multithreading more extensively than our test samples.

4:7

ICPEC 2024

4:8

Adaptation of Automated Assessment System for Large Programming Courses

®
98 19,71 22,56
©
©
()
L 6
o
S
4
S
©
T 2
Lo
€
g 0
@ DWW LWL LWL LWL LWL LWL LWLWLWYLWNLWGLWNLWNLWLW0LWLW0
A Ccr N Ot ONOBIT T NTSFOWONOBO®» S AN ™
™ v v AN AN NN

Duration [seconds]

= Before optimization = After optimization e==Containertermination

Figure 4 Comparison of container metrics based on an average of 20 runs.

We initially experimented with artificially generated scenarios for assignments. After
analysis of the results, we have chosen to move away from this approach as it often produced
scenarios that were too generic or oddly phrased. Qualified staff now handles the design and
evaluation of each test scenario. While this approach may not be groundbreaking, it preserves
the human element, addresses ethical considerations, and avoids the pitfalls associated with
fully automated systems. Previously created web services [4] were already tailored for such
use cases and were easily adapted to suit our needs.

The current architecture readily accommodates the evaluation of commonly used pro-
gramming languages. The standard method of testing via result value comparison proved
insufficiently detailed since, in some courses, not only the output of programs is considered
in evaluation. A multitude of courses with more specific topics, such as “Web Technologies”
or “Intelligent Systems” (a machine learning-oriented subject), require evaluation of the
usability, reliability, or performance of the provided solution.

Typically, we evaluate submissions in C, Java, Python, JavaScript, and Shell. Evaluating
other languages is possible but requires additional time to design appropriate tests. We plan
to standardize the evaluation of Assembly source code, particularly for courses specifically
focused on this language. Besides standard testing, we have also integrated basic semantic
analysis of source code and are looking to expand this analysis to more effectively determine
if the code was written by a human. Evaluation of non-programming assignments is possible,
however we are currently focusing mainly on mentioned programming languages.

6 Future Directions

As we continue to develop our automated assessment system for programming assignments, our
primary objectives include enhancing system scalability, improving usability, and expanding
the range of supported programming languages. We are also exploring the integration of
machine learning techniques to refine the feedback provided to students. These advancements
will include analyzing code quality, identifying common programming errors, and offering
customized feedback to help students enhance their coding proficiency. Major changes are also
considered, for example, a change in the programming language used for heavy computing
loads; Rust is a strong candidate due to its excellent performance.

M. Horvath, T. Kormanik, and J. Poruban

Another significant area of development is expanding the system’s capability to assess
assignments written in various programming languages. This will not only broaden the
system’s applicability but also ensure its adaptability to diverse educational requirements. To
further support this goal, we will incorporate advanced static analysis tools. These tools will
help provide clearer feedback on code quality, helping students grasp the details of efficient
coding practices. By analyzing the structural and syntactic elements of code submissions,

these tools will improve the learning experience by identifying specific areas for improvement.

Finally, we plan to test the system in a production environment to evaluate its stability
and performance under real-world conditions. This will include thorough usability tests
with educators to ensure that the system is not only robust but also user-friendly, allowing
teachers to modify assessments according to their pedagogical needs.

These enhancements are aimed at creating a more effective and responsive educational
tool that supports the continuous development of both students and educators in the field of
programming.

7 Conclusion

In this paper, we have presented updates to an automated assessment system designed to
support programming education effectively. The system has been adjusted to manage a
broader array of courses, including basics of programming, object-oriented programming,
and more complex areas like cybersecurity.

Our discussions highlighted the practical applications of static and dynamic analysis in
improving the accuracy of student assessments and simplifying the grading process. We
have also outlined how enhancements to the system’s architecture help it handle increasing
student numbers and a diversity of programming courses more efficiently.

As we continue to refine this system, we are focused on making incremental improvements
that support the day-to-day needs of educators and students. By sharing our experiences and
the specific updates we have made, we hope to provide useful insights that can assist others
in developing or enhancing their own automated assessment systems [5]. This straightforward
approach aims to ensure that the system not only meets current educational demands but is
also prepared to adapt to future changes in the programming education landscape.

—— References

1 Burcu Alper, Selma Nazlioglu, and Hurevren Kilic. Ace-pe: An automated code evaluation
software tool for programming education. In 2023 11th International Symposium on Digital
Forensics and Security (ISDFS), pages 1-5, 2023. doi:10.1109/ISDFS58141.2023.10131776.

2 Anton Balaz, Norbert Adam, Emilia Pietrikova, and Branislav Mados. Modsecurity idmef
module. In 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics
(SAMI 2018): Dedicated to the Memory of Pioneer of Robotics Antal (Tony) K. Bejczy, pages
43-48. IEEE, 2018. IEEE 16th World Symposium on Applied Machine Intelligence and
Informatics (SAMI) Dedicated to the Memory of Pioneer of Robotics Antal (Tony) K. Bejczy,
Kosice, SLOVAKIA, FEB 07-10, 2018.

3 S. Benford, E. Burke, E. Foxley, N. Gutteridge, and A. M. Zin. Experiences with the ceilidh
system. In Proceedings of the International Conference in Computer Based Learning in Science,
1993.

4 M. Binas. Identifying web services for automatic assessments of programming assignments. In
12th IEEE International Conference on emerging E-learning Technologies and Applications
(ICETA 2014), pages 45-50. IEEE, 2014. 12th IEEE International Conference on Emerging
eLearning Technologies and Applications (ICETA), Slovakia, Dec 04-05, 2014.

4:9

ICPEC 2024

https://doi.org/10.1109/ISDFS58141.2023.10131776

4:10

Adaptation of Automated Assessment System for Large Programming Courses

10

11

12

13

14

15

16

17

18

19

20

Miroslav Binas and Emilia Pietrikova. Impact of virtual assistant on programming novices’
performance, behavior and motivation. Acta Electrotechnica et Informatica, 22(1):30-36, 2022.
d0i:10.2478/aei-2022-0005.

Skanda V. C, S. S. Prasad, and G. R. Dheemanth. Assessment of quality of program
based on static analysis. In IEEE Transactions on Learning Technologies, 2019. 2019 IEEE.
doi:10.1109/T4E.2019.00072.

P. Duch and T. Jowrki. Dante, automated assessment of programming assignments. In I[EFEE
Transactions on Learning Technologies, 2018. 2018 IEEE.

S. H. Edwards and M. A. Perez-Quinones. Web-cat: automatically grading programming
assignments. In Proc. Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE), pages 328-328, 2008.

M. Fabijanic, G. Dambic, B. Skracic, and M. Kolaric. Automatic evaluation of student software
solutions in a virtualized environment. In 2023 /6th MIPRO ICT and Electronics Convention
(MIPRO), pages 642-647, 2023. doi:10.23919/MIPR057284.2023.10159927.

Xiang Fu, Kai Qian, Lixin Tao, and J. Liu. Apogee — automated project grading and instant
feedback system for web based computing. In SIGCSE’08, March 12-15, 2008, Portland,
Oregon, USA, 2008. Copyright 2008 ACM.

Sebastian Geiss, Tim Jentzsch, Nils Wild, and Christian Plewnia. Automatic programming
assessment system for a computer science bridge course - an experience report. In 2022
29th Asia-Pacific Software Engineering Conference (APSEC), pages 527-536, 2022. doi:
10.1109/APSEC57359.2022.00074.

J. B. Hext and J. W. Winings. An automatic grading scheme for simple programming exercises.
Commun. ACM, 12(5):272-275, May 1969.

Marek Horvdath and Emilia Pietrikovd. An experimental comparison of three code similarity
tools on over 1,000 student projects. In 202/ IEEE 22nd World Symposium on Applied Machine
Intelligence and Informatics (SAMI), pages 000423-000428, 2024. doi:10.1109/SAMI60510.
2024.10432863.

S. Imam and V. Sarkar. Habanero-java library: a java 8 framework for multicore programming.
In Proceedings of the 2014 International Conference on Principles and Practices of Programming
on the Java Platform Virtual Machines, Languages, and Tools, pages 75-86, 2014. ACM DL.
Mike Joy, Nathan Griffiths, and Russell Boyatt. The boss online submission and assessment
system. J. Educ. Resour. Comput., 5(3):Article 2, September 2005.

Jan Juhar and Liberios Vokorokos. Separation of concerns and concern granularity in source
code. In V Novitzka, S Korecko, and A Szakal, editors, 2015 IEEFE 13th International Scientific
Conference on Informatics, pages 139-144. i’15; SSAKI KPI; KPI; Technicka University —
Vkosiciach; ISVTS; IEEE, 2015. IEEE 13th International Scientific Conference on Informatics,
Poprad, Slovakia, Nov 18-20, 2015.

Oscar Karnalim and Simon. Promoting code quality via automated feedback on student
submissions. In 2021 IEEE Frontiers in Education Conference (FIE), pages 1-5, 2021.
doi:10.1109/FIE49875.2021.9637193.

Christian Kaufmann, Joao Pavao, and Harald Wahl. Is there a need for automated code review
to be used in teaching? : From the perspective of students. In 2022 17th Iberian Conference on
Information Systems and Technologies (CISTI), pages 1-6, 2022. doi:10.23919/CISTI54924.
2022.9820030.

Matej Madeja, Miroslav Binas, and Lukas Prokein. Continuous analysis of assignment
evaluation results from automated testing platform in iterative-style programming courses.
In 2019 17th International Conference on Emerging eLearning Technologies and Applications
(ICETA), pages 486-492, 2019. doi:10.1109/ICETA48886.2019.9040122.

Urs Von Matt. Kassandra: the automatic grading system. SIGCUE Outlook, 22(1):26—40,
January 1994.

https://doi.org/10.2478/aei-2022-0005
https://doi.org/10.1109/T4E.2019.00072
https://doi.org/10.23919/MIPRO57284.2023.10159927
https://doi.org/10.1109/APSEC57359.2022.00074
https://doi.org/10.1109/APSEC57359.2022.00074
https://doi.org/10.1109/SAMI60510.2024.10432863
https://doi.org/10.1109/SAMI60510.2024.10432863
https://doi.org/10.1109/FIE49875.2021.9637193
https://doi.org/10.23919/CISTI54924.2022.9820030
https://doi.org/10.23919/CISTI54924.2022.9820030
https://doi.org/10.1109/ICETA48886.2019.9040122

M. Horvath, T. Kormanik, and J. Poruban

21

22

23

24

25

26

27

28

29

Emilia Pietrikova and Sergej Chodarev. Profile-driven source code exploration. In M Ganzha,
L Maciaszek, and M Paprzycki, editors, Proceedings of the 2015 Federated Conference on
Computer Science and Information Systems, volume 5 of ACSIS-Annals of Computer Science
and Information Systems, pages 929-934. IEEE Comp Soc; Polish Informat Proc Soc; IEEE
Reg 8; IEEE Poland Sect Comp Soc Chapter; IEEE Poland Gdansk Sect Comp Soc Chapter;
IEEE CIS Poland Sect Chapter; ACM Special Interest Grp Applied Comp; ACM Lodz Chapter;
European Alliance Innovat; Polish Acad Sci, Comm Comp Sci; Polish Operat & Syst Res Soc;
Eastern Cluster ICT Poland; Mazovia Cluster ICT, 2015. 3rd International Conference on
Innovative Network Systems and Applications (iNetSApp) held in conjunction with Federated
Conference on Computer Science and Information Systems (FedCSIS), Technical Univ Lodz,
Lodz, Poland, SEP 13-16, 2015. doi:10.15439/2015F238.

Emilia Pietrikova, Jan Juhar, and Jana Stastna. Towards automated assessment in game-
creative programming courses. In 2015 13th International Conference on emerging E-learning
Technologies and Applications (ICETA), pages 307-312. The Amer Chamber of Commerce in
the Slovak Republic; Elfa; TU; IEEE; Stu Fiit; Sanet; CTF atm; PPP; It Asociacia Slovenska;
It News; EurActiv; PC revue; Education.sk; Infoware, 2015. 13th International Conference on
Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, Slovakia, NOV
26-27, 2015.

Adam Pinter and Sandor Szenasi. Automatic analysis and evaluation of student source codes.
In 2020 IEEE 20th International Symposium on Computational Intelligence and Informatics
(CINT[), pages 000161-000166, 2020. doi:10.1109/CINTI51262.2020.9305819.

G. Polito and M. Temperini. 2tsw: Automated assessment of computer programming assign-
ments, in a gamified web-based system. In IEEE Transactions on Learning Technologies, 2019.
2019 IEEE.

Kenneth A. Reek. The TRY system — or how to avoid testing student programs. In Proceedings
of the twentieth SIGCSE technical symposium on Computer science education, SIGCSE ’89,
pages 112-116, New York, NY, USA, 1989. ACM.

Shao Tianyi, Kuang Yulin, Huang Yihong, and Quan Yujuan. Paaa: An implementation of
programming assignments automatic assessing system. In ICDEL 2019, May 24-27, 2019,
Shanghai, China, 2019. 2019 Association for Computing Machinery.

Erika Baksane Varga and Antal Kristof Fekete. Applications for automatic ¢ code assessment.
In 2023 24th International Carpathian Control Conference (ICCC), pages 21-26, 2023. doi:
10.1109/ICCC57093.2023.10178987.

Liberios Vokorokos, Anton Balaz, and Branislav Mados. Application security through sandbox
virtualization. Acta Polytechnica Hungarica, 12(1):83-101, 2015.

Soundous Zougari, Mariam Tanana, and Abdelouahid Lyhyaoui. Towards an automatic
assessment system in introductory programming courses. In 2016 International Conference on

Electrical and Information Technologies (ICEIT), pages 496-499, 2016. doi:10.1109/EITech.

2016.7519649.

4:11

ICPEC 2024

https://doi.org/10.15439/2015F238
https://doi.org/10.1109/CINTI51262.2020.9305819
https://doi.org/10.1109/ICCC57093.2023.10178987
https://doi.org/10.1109/ICCC57093.2023.10178987
https://doi.org/10.1109/EITech.2016.7519649
https://doi.org/10.1109/EITech.2016.7519649

	1 Introduction
	2 Related work
	3 Assessment Techniques
	4 Challenges and Enhancements in System Architecture for Programming Education
	5 Enhancements in Assessment Methodologies
	6 Future Directions
	7 Conclusion

