
Kumon-Inspired Approach to Teaching
Programming Fundamentals
Ivone Amorim #

PORTIC – Porto Research, Technology & Innovation Center
Polytechnic of Porto (IPP), Portugal

Pedro Baltazar Vasconcelos #

LIACC & Department of Computer Science
Faculty of Sciences, University of Porto, Portugal

João Pedro Pedroso #

CMUP & Department of Computer Science
Faculty of Sciences, University of Porto, Portugal

Abstract
Integration of introductory programming into higher education programs beyond computer science
has lead to an increase in the failure and drop out rates of programming courses. In this context,
programming instructors have explored new methodologies by introducing dynamic elements in
the teaching-learning process, such as automatic code evaluation systems and gamification. Even
though these methods have shown to be successful in improving students’ engagement, they do not
address all the existing problems and new strategies should be explored. In this work, we propose
a new approach that combines the strengths of the Kumon method for personalized learning and
progressive skill acquisition with the ability of online judge systems to provide automated assessment
and immediate feedback. This approach has been used in teaching Programming I to students in
several bachelor degrees and led to a 10% increase in exam approval rates compared to the baseline
editions in which our Kumon-inspired methodology was not implemented.

2012 ACM Subject Classification Social and professional topics → Computer science education;
Applied computing → Interactive learning environments

Keywords and phrases Programming teaching, Programming education, Kumon method, Progressive
learning, Online judge system

Digital Object Identifier 10.4230/OASIcs.ICPEC.2024.5

Funding Ivone Amorim: Partially supported by CMUP, which is financed by national funds
through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2020.
Pedro Baltazar Vasconcelos: Partially supported by: Base Funding – UIDB/00027/2020 of the
Artificial Intelligence and Computer Science Laboratory – LIACC – funded by national funds through
the FCT/MCTES (PIDDAC).
João Pedro Pedroso: Partially supported by CMUP, which is financed by national funds through FCT
– Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020.

1 Introduction

Over the past decade, information technology has suffered a remarkable growth, with its
evolution and application having significant impacts on our society, namely in education.
Today, for graduates to easily integrate the labour market they need not only to acquire
specific skills, but also to develop the agility to rapidly acquire new knowledge and address
new challenges with creativity and critical thinking [12].

In the past, programming skills were associated mostly with computer science and
engineering fields. However, today, Programming is seen as a fundamental area for the
development of characteristics and skills such as creativity, problem-solving, persistence,

© Ivone Amorim, Pedro Baltazar Vasconcelos, and João Pedro Pedroso;
licensed under Creative Commons License CC-BY 4.0

5th International Computer Programming Education Conference (ICPEC 2024).
Editors: André L. Santos and Maria Pinto-Albuquerque; Article No. 5; pp. 5:1–5:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ivone.amorim@sc.ipp.pt
https://orcid.org/0000-0001-6102-6165
mailto:pbvascon@fc.up.pt
https://orcid.org/0000-0002-8387-9772
mailto:jpp@fc.up.pt
https://orcid.org/0000-0003-1298-7191
https://doi.org/10.4230/OASIcs.ICPEC.2024.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Kumon-Inspired Approach to Teaching Programming Fundamentals

logical and critical thinking [17, 7]. Additionally, professionals from different areas can benefit
from the ability to write codes for different applications. For instance, in biology or chemistry,
analysing large datasets is often necessary, and this task can be facilitated by programming
skills.

As a result, many diverse fields of knowledge now incorporate programming courses into
their curricula [7]. Therefore, several students with different backgrounds and characteristics
are involved in introductory programming [12]. For example, an instructor may have students
in the same class who have no prior knowledge about programming, as well as students
who have already learned different programming languages. This leads to difficulties in
aligning classes with the students’ interests and motivations. Other challenges include the
lack of resources, such as computational labs, for practical classes. On the students’ side,
the already well-known difficulties they face are exacerbated by the different backgrounds
students may have, which may lead them not to perceive programming as an important skill
or competence. According to Gomes and Mendes [8], some of the main difficulties students
may encounter while learning programming include inadequate teaching approaches, which
sometimes prioritize theoretical concepts over improving students’ problem-solving abilities;
a lack of problem-solving skills necessary to understand the logic behind programming; the
use of inappropriate self-learning methods to enhance academic programming success; and
psychological factors.

Consequently, significant failure and dropout rates, as well as a lack of motivation, have
been observed in programming courses [4, 16]. This has raised concerns among programming
instructors, leading them to develop and utilize novel teaching and learning approaches to
enhance students’ learning experiences and ultimately increase success rates. The most
used strategies include the introduction of dynamic elements in leaning strategies such as
automatic code evaluation systems [18, 11], namely online judge systems, gamification [15, 14],
and systems that use visual representations of algorithms, such as Python Tutor1. These
strategies have shown to reduce some of the challenges instructors and students face when
teaching and learning programming, respectively. However, they still do not offer a complete
solution to address all the existing challenges.

In this work, we explore a new approach that combines the strengths of the Kumon
method [21] for personalized learning and progressive skill acquisition with the ability of
online judge systems to provide automated assessment and immediate feedback.

The rest of this paper is organized as follows. Section 2 provides an explanation on some
key concepts regarding online judge systems and the Kumon method, and discusses some
related work. Section 3 presents the course to which our methodology was designed, details
the online judge system used and explains our Kumon-inspired approach. Section 4 presents
the case study methodology employed to assess the effectiveness of our approach. Section 5
presents and discusses the results obtained. Finally, Section 6 presents the conclusions of our
work and proposes future directions to further explore and validate this approach.

2 Background and Related Work

2.1 Online judge systems
The assessment of students by instructors can be done for several reasons: to provide
feedback to students on their learning path, to assess previous knowledge in a specific subject,
to evaluate teaching methodologies, to identify at-risk students, among other reasons [5].

1 https://pythontutor.com/

https://pythontutor.com/

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:3

However, due to the increasing number of students with diverse backgrounds that instructors
have to assess and support in introductory programming courses, a wide range of assessments
is required. This demand may lead to instructors being overloaded with work and reduces the
time they have for other tasks. Online judges are automated assessment tools [2] designed
for the reliable evaluation of algorithm source code submitted by users. These tools may be
a crucial help for instructors in these assessment processes. Online judges are now popular
in various applications, including in programming contests and education. The use of online
judges in the classical educational system has advantages for both instructors and students.
For instructors, they allow the assessment of students’ assignments automatically, increasing
assessment accuracy and significantly reducing the time needed for evaluation. Consequently,
many more exercises can be prepared and assigned to students [24]. On the other hand,
students receive almost instant feedback on their answers, which motivates them to perform
more exercises, promotes active learning by helping them to easily understand the main
difficulties they should address, and fosters independence.

There are several factors that may limit the accessibility of existing online judges for
use in introductory programming courses. According to Asuncion et al. [2], one of the
problems is that most existing online judges were not designed for introductory programming
classes. Therefore, the exercises they provide may not align with the curricular units of these
courses. For example, the well-known online judge Codeforces2 was primarily designed for
programming contests. Consequently, some of their problems considered “easy” may not
be suitable for introductory programming courses, as they may require concepts typically
covered in a data structures and algorithms course rather than in introductory programming
classes. Additionally, the same authors claim that creating and uploading new exercises for
many online judges is not easy, if possible at all.

Fortunately, several reviews of existing online judge systems and their application in
education have been conducted over the years, helping instructors in finding the right tool
for their purpose [1, 9]. Recently, Wasik et al. [24] provided a comprehensive review of the
state of the art for these systems. They classified them according to their principal objectives
into categories which include “Development platforms.” This refers to systems that are often
provided as open source projects or binary archives that can be downloaded and installed
locally, providing full administrative privileges to the user. They can be used to host a
programming competition or a course using the user’s own infrastructure. Moreover, most
can be adapted to user needs and integrated with external services. Well known platforms to
prepare and perform programming contests are DOMjudge3, Mooshak4, and SIO25. There
are other development platforms which are dedicated to support the educational process,
such as CloudCoder [19], BOSS [10], and Web-CAT [6]. Unfortunately, some of these latter
systems are not open-source, and others have been updated for the last time more than 15
years ago. In this work, we use an online judge system named Codex that falls into the
category of “Development platform”. This system was developed at the Faculty of Sciences
of the University of Porto, and its source-code is publicly available through the GitHub
platform6. Further details on this system are presented in Section 3.2.

2 https://codeforces.com/
3 https://www.domjudge.org/
4 https://mooshak.dcc.fc.up.pt/
5 https://github.com/sio2project
6 https://github.com/pbv/codex

ICPEC 2024

https://codeforces.com/
https://www.domjudge.org/
https://mooshak.dcc.fc.up.pt/
https://github.com/sio2project
https://github.com/pbv/codex

5:4 Kumon-Inspired Approach to Teaching Programming Fundamentals

2.2 Kumon-inspired methods and potential benefits
The Kumon Method is a pedagogical method that emerged in 1954 in Osaka, Japan, by the
hand of Toru Kumon, a Mathematics teacher of a high school, who developed this to help
his son’s mathematical education. This method has been extended to other subjects, such as
“Reading” and “English as a foreign language”. Initially popularized in Japan and subsequently
in the United States of America [21], the method has gained global recognition and is now
implemented in learning centres all around the world, mainly for teaching Mathematics and
English7.

The main objective of the Kumon Method is to maximize the learning potential of each
individual. To achieve this, a series of habits and abilities have to be acquired, namely:

Self-learning; the students learn how to learn by themselves, without depending on
another person.
Study habits; students are encouraged to divide the study effort into smaller, more regular
steps.
To foster concentration: if students are not able to focus on a specific task, it will be
difficult for them to learn effectively.
Self-confidence, that allows students to face any educational challenge.
Motivation to learn, to perceive learning as something enjoyable that will help them to
grow as persons.

Several research studies have assessed the effectiveness of this method, primarily focusing on
improving mathematical skills [13, 22]. However, there is no known study on the application
of this method in teaching programming. Although some works propose similar strategies,
such as intensive training [3], none have directly applied the principles of the Kumon method
to foster the development of the aforementioned habits and abilities in programming students.

3 Progressive Method for Teaching Programming

In this section, we begin by introducing the course for which our Kumon-inspired approach
was designed. Following that, we provide an overview of Codex, the online judge system
utilized in our methodology. Lastly, we present our novel progressive method for teaching
programming fundamentals.

3.1 The Course – Programming I
Programming I is a first year course for several bachelor degrees at the Faculty of Sciences
from the University of Porto. It is mandatory for the bachelor degrees of Agricultural
Engineering, Engineering Physics, Geospatial Engineering, Bioinformatics, and Physics.
Besides, it is an optional course for the bachelor degrees of Biology, Geology, and Chemistry.

The main objectives of this course are: Get acquainted with personal computers in the
GNU/Linux operating system and their usage; Learn how to write computer programs using
Python and execute them in a terminal; Acquire competence in the implementation of simple
algorithms; Acquire good code structuring and programming style; Learn some basic data
structures and algorithms; Get acquainted with program debugging and testing.

The main learning outcomes and competences expected from students who successfully
perform this course are: understanding the role of programming for solving problems in their
degree, acquaintance with the basic components of a recent programming language, ability

7 https://kao.kumonglobal.com/our-global-network/

https://kao.kumonglobal.com/our-global-network/

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:5

to write programs that allow accomplishing useful goals, and confidence in the usage of the
Python language and its standard library. The students have 2 hours per week of face-to-face
theoretical classes and 2 hours per week of laboratory classes, for 14 weeks, resulting in a
total of 56 contact hours.

3.2 The online judge system: Codex
Codex8 is a web system for setting up programming exercises with automatic assessment,
which is intended for leaning environments, similar to a judge system. It was developed and
is currently being used at the Faculty of Sciences of the University of Porto for introductory
courses on Python, Haskell and C programming [23]. Its main features are:
Simple exercise authoring. Exercise descriptions are written in a human-readable Markdown

format that can easily be copied, mailed, kept in a version repository, compared for
changes, etc.

Allows assessing program units. Exercises can assess single functions, classes or methods
as well as complete programs.

Provides automatic feedback. Rather than report just an accept/reject result, Codex can
report the failed examples to students.

Multiple types of exercises. Besides code testing, Codex also allows multiple-choice and
fill-in questionnaires.

In Codex, student’s submissions are classified as follows:
CompileError : rejected attempt due to a compile-time error or warning; for an interpreted
language such as Python, this is typically a syntax error;
RuntimeError , TimeLimitExceeded or MemoryLimitExceeded: the execution was aborted
due to a runtime error or resource exhaustion;
WrongAnswer : testing failed in at least one case;
Accepted: all tests passed.

For the Programming I course we used input-output and unit testing with the Doctest
Python library [20]. The Doctest files were generated semi-automatically and comprise
a large number of test cases (typically, about one thousand); this not only allows testing
the student’s attempts more thoroughly, but also prevents over-fitting solutions to a small
number test cases.

For beginner exercises that are typically not computationally intensive, the turn-around
for student feedback is quick (typically 2-4 seconds).

Another important advantage of Codex is that it allows instructors to get real-time
insights regarding the performance of students in laboratory assignments. Therefore, it helps
to identify students who are struggling early on, allowing for timely intervention and support.

3.3 Our Kumon-based approach
Our approach for teaching and assessing programming fundamentals in Python is inspired in
the Kumon method that emphasizes self-learning through repetitive practice of progressively
challenging exercises. Instructors have developed three different types of assignments that
allow students to progressively develop their Python skills and which are fully aligned with
the course syllabus. The way these exercises are provided to students and the methodology

8 https://github.com/pbv/codex

ICPEC 2024

https://github.com/pbv/codex

5:6 Kumon-Inspired Approach to Teaching Programming Fundamentals

employed for course evaluation were designed to encourage self-learning, build the habit
of studying, increase self-confidence, and ultimately motivate students to learn. These are
all key objectives of the Kumon method. Additionally, our approach allows students to
have some control over their own progress through individualized learning, and immediate
feedback.

The three types of assignments developed are the following:
Theoretical assignments: Following every theoretical class, students were given theor-
etical assignments in the form of quizzes to encourage them to actively participate in those
classes and solidify their understanding of the presented concepts. These assignments were
intended to be completed outside the classroom within a limited time frame. Students
were allowed to consult any resources to help them in providing correct answers.
Worksheet assignment: These are weekly worksheet assignments with problems
provided to students approximately a week before the corresponding laboratory class.
Students are encouraged to attempt to solve these problems outside the classroom, and
any doubts can be clarified with instructors during laboratory sessions. Its main goal is
to encourage frequent study and self-learning among students.
Laboratory assignments: These assignments are sets of coding problems made available
to students through the Codex system and are fundamental elements of our approach. A
total of 10 assignments, each corresponding to a different level of difficulty, are provided
over a 14-week period. Students can only access these assignments in the classroom and
must successfully complete the current level to unlock the next one. The success in one
level means that the student was able to submit a correct answer to all questions in one
of the three possible attempts. If a student is not able to submit a correct answer in
any of the three attempts, he or she has to attempt another problem set of the same
level in the following label class. Hence, in a given lab class, different students may be
attempting problems at distinct levels according to their own progress. This strategy
was designed to ensure that students only proceed a new level when the knowledge from
the previous one has been assimilated. Additionally, students must complete at least the
first five levels to qualify for the final exam. The number of questions in these weekly
assignments varies between 6 and 8 depending on the topics assessed.

The assessment strategy for determining students’ final grades was also designed to
align with the principles of Kumon’s method. This involved considering grades obtained
from both the Theoretical and Laboratory assignments as key components contributing to
the final grade. Additionally, a final exam covering all the course topics is conducted in a
codex-based environment under the same conditions of laboratory assignments: maximum of
three attempts per exercise and no access to external resources.

The final grade is determined using the following formula:

Final Grade = 0.2t + 0.2l + 0.6e, (1)

where t represents the grade obtained from theoretical assignments, l denotes the grade from
laboratory assignments, and e denotes the grade from the final exam.

4 Case Study Methodology

To evaluate the effectiveness of our novel methodology, we compared the learning results
of students enrolled in the Programming I course, as outlined in Section 3.1, over a period
of four school years. Our Kumon-inspired approach was implemented in two of these years,
while in the other two years, we did not utilize this method. Below, we outline the teaching
methodology employed in each school year considered in our study.

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:7

2019: In this school year, the students’s had three different types of assignments: weakly
laboratory assignments (different from the ones described in Section 3.3), intermediate
test and final exam. The final grade was computed using

Final Grade = 0.2l + 0.2i + 0.6e,

where l, i, e denote the grade from laboratory, intermediate test, and final exam assign-
ments, respectively. Students were considered eligible to take the final exam only if at
least one of the following conditions was met: having a non-null grade in the intermediate
test or correctly answering at least 50% of the laboratory assignments. For a student
to be approved, they needed to achieve a grade of at least 40% on the final exam. The
laboratory assignments were provided through Codex, with each assignment consisting of
only one question and without including levels and progressive learning. The intermediate
test and the final exam were also conducted through Codex.
2020: This was the first school year in which our Kumon-inspired approach was im-
plemented, and the final grade was determined using Equation (1). The students were
eligible to go to the final exam only if they had answered correctly to at least 50% of the
laboratory assignments. For a student to be approved, it had to have a grade on the final
exam not less than 45%. It is important to note that in this year our Kumon-inspired
approach was still being adjusted.
2021: In this year, our Kumon-inspired approach was also utilized, albeit with more
stringent conditions for a student to qualify for the final exam. More specifically, a
student was eligible for the final examination only if they had successfully completed at
least 50% of both theoretical and laboratory assignments. To be approved, a student
needed to achieve a grade of at least 50% on the final exam.
2023: In the school year 2023, technical issues resulting from renovation works in the
Computer Science building caused difficulties with the network infrastructure. Despite
being provided with worksheets and laboratory assignments through Codex, as described
in Section 3.3, the students did not have the appropriate conditions to ensure fair
assessment process using our Kumon-inspired approach. As a result, we decided to assess
students only though a final examination, which was conducted in Codex. For a student
to be approved, they had to have an exam grade of at least 50%.

The school years 2019 and 2023 serve as the baseline against which we compare the
effectiveness of our Kumon-inspired approach in the other years (2020 and 2021). In the
school year 2022, the team of professors in charge of teaching Programming I was different,
as well as the methodological approach applied. Therefore, this year was not considered in
our study.

It is important to add that in the 2021 and 2023 school years, students were allowed to
seek help from their more advanced peers in laboratory classes. However, students assisting
their colleagues were prohibited from writing code for them. In 2019 and 2020, students were
not incentivized to seek help from other students.

A total of 937 students from different bachelor’s degrees were part of our study, with
most of them coming from Physics, Engineering Physics, and Geospatial Engineering.

5 Results and Discussion

To analyse the potential impact of our Kumon-inspired approach on teaching and learning
Programming fundamentals, we began by calculating statistics on the number of approved
students. More specifically, we computed the percentage of students who obtained approval

ICPEC 2024

5:8 Kumon-Inspired Approach to Teaching Programming Fundamentals

among both those enrolled and those effectively assessed. Table 1 provides an overview of the
number of students enrolled in the course, the number of students assessed, and the grade
statistics by school year.

Table 1 Overview of student enrolment, assessment, and grades statistics by school year.

Baseline Kumon approach
2019 2023 2020 2021

Nº of enrolled students 223 207 259 248
Nº of students assessed 159 173 210 201
Nº of approved students 92 110 134 143
Grades mean 62.52 51.45 52.95 59.95
% approved/enrolled 41.26 53.14 51.74 57.67
% approved/assessed 57.86 63.58 63.81 71.14

In Table 1, we can observe that 2021 was the school year with the highest percentage of
approved students among those assessed, with an approval rate of around 71%. Moreover,
this year was the one with the highest percentage of approved students among the enrolled
ones, reaching approximately 58%. When comparing the results of the school year 2021 with
the baseline years, it becomes clear that the percentage of approved students is significantly
higher when the Kumon-inspired approach is applied. Furthermore, when comparing this
year with 2020, a much higher approval rate is observed. These results suggest a positive
correlation between the grades obtained and the level of engagement required from students.
For instance, in 2021, students had to complete at least half of both their theoretical and
laboratory assignments, which led to better final grades compared to 2020, where they only
needed to complete half of their laboratory assignments. It is important noting that these
results may also have been affected by the fact that in 2021, struggling students were allowed
to get assistance from more advanced peers, as detailed in Section 4. Interestingly, comparing
the results between 2020 and 2023, we notice a slight overall improvement in the latter year.
This suggests that allowing students to request help from their peers has a positive impact
on their learning achievements. Another interesting point to observe in Table 1 is that years
in which the Kumon-inspired approach was (even partially) applied had a higher rate of
assessed students among those enrolled.

To evaluate the potential impact of our Kumon-inspired methodology on students’
performance, we conducted an additional analysis. We divided the grades into four intervals:
[0, 50[(indicating insufficient performance), [50, 70[(indicating satisfactory performance),
[70, 90[(indicating good performance), and [90, 100] (indicating excellent performance), and
calculated the percentage of students falling within each interval. Figure 1 displays the
results obtained by school year. The grading system in 2019 was different from the rest of
the years, so we could not include it in this analysis.

As can be observed from Figure 1, the 2021 school year was the one that has the highest
percentage of students with an excellent performance. More specifically, 25% of students
scored within the interval [90, 100], compared to 14% in 2020 and 16% in 2023. In terms of
students with insufficient performance, 2021 recorded the lowest percentage (29%), further
suggesting a significant improvement in overall student performance due to our approach.
When comparing 2020 and 2023, both school years showed the same percentage of students
with insufficient performance. However, in 2023, a higher percentage of students demonstrated
performance above the level of sufficiency. This strengthens the hypothesis that the peer
assistance provided during lab classes positively impacts students’ performance.

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:9

Figure 1 Percentage of students with final grades within each grade interval and grouped by
school year.

Finally, to assess the impact of our progressive learning methodology on the knowledge
acquired by students during the course, we analysed their exam grades. Since the exam covers
all taught subjects and is conducted at the end of the course, the grades obtained provide a
good indicator of the knowledge acquired and skills developed. As such, we computed the
average exam grades among students with a lab level of 5 or higher during the 2020 and 2021
school years. We also calculated the percentage of those students that scored 50% or higher
on their exams. The results obtained are shown in Figure 2. For the school year 2023, the
exam grade corresponds to the course grade, since no theoretical or laboratory assignments
were requested.

(a) Exam grade average. (b) Percentage of students with an exam grade ≥ 50.

Figure 2 Overview of exam grade statistics for students which achieved level of 5 or higher in
the 2020 and 2021 school years, and for all assessed students in 2023.

The statistics presented in Figure 2 demonstrate the impact of implementing the Kumon-
inspired progressive learning approach on exam grades, particularly among students with a
lab level of 5 or higher during the 2020 and 2021 school years. Those who had access to this
approach showed notably higher exam grades compared to those who did not. Moreover,
among these students, those who were requested to complete at least 50% of the theoretical
assignments saw even more significant improvements, as evidenced by the data from the 2021
school year. More specifically, in 2021, students with a lab level of 5 or higher achieved an
average exam grade of 61. Approximately 75% of these students attained an exam grade
of 50% or higher, indicating a high success rate for those who followed this approach. In

ICPEC 2024

5:10 Kumon-Inspired Approach to Teaching Programming Fundamentals

contrast, when the progressive learning approach was not applied, students achieved an
average exam grade of 51%, with 64% of them reaching an exam grade of 50% or higher. This
translates to an increase of more than 10% in exam approval rates between the school year
when the Kumon-inspired methodology was employed and the theoretical assignments were
required, and the year when students did not have access to the progressive learning method.
These findings strongly suggest that our new methodology enhances the teaching-learning
process and improves students performance in final examinations. When comparing the exam
grades between the 2020 and 2023 school years, it becomes evident how the implementation of
progressive learning positively influenced student performance in final examinations. Notably,
in 2020, students were required to complete the first five laboratory assignments successfully,
whereas no such prerequisite was imposed in 2023. This observation substantiates the positive
impact of the progressive learning approach on students’ achievement.

5.1 Threats to validity

Testing and validating new teaching methodologies in a school environment has its own
challenges, due mainly to ethical considerations, since all students should be given the same
opportunities and conditions to learn but also because of all external factors which can not
be controlled and may impact the students’ success (e.g. socio-economic context).

Considering this, we have identified the following main factors that may have had an
impact in the results obtained:

COVID-19 pandemic: During the school years in which the Kumon-inspired approach
was applied (2020 and 2021), some lockdowns were imposed in Portugal. However,
Programming I is a course taught in the first semester, which was not directly affected by
those lockdowns. Moreover, in those schools years, the theoretical classes of Programming
I were delivered online synchronously, and the laboratory classes were conducted face-to-
face. This allowed to fully implement our Kumon-based approach despite the imposed
restrictions. Therefore, the results obtained are considered robust, and we believe they
were not significantly affected by external pandemic-related factors.
Socio-economic context: It is well known that the socio-economic background can signi-
ficantly impact students’ success. In the specific case of our Kumon-inspired approach,
students are required to actively participate in their learning process by practising labor-
atory assignments outside of classrooms and completing theoretical assignments outside of
class as well. Students from different socio-economic backgrounds may have varying levels
of access to resources such as computers and internet connectivity, which can negatively
impact their learning outcomes. However, at our faculty, students have 24-hour access
to computer laboratories and can also work anywhere within the faculty premises using
their personal computers with free internet connection. Although this does not guarantee
equal conditions for all students, it does help to minimize disparities. Additionally, our
study benefited from the participation of a total of 937 students, which enhances its
validity and reliability.
Variability in exams difficulty levels: The difference in the levels of difficulty among exams
across different school years may have influenced the outcomes observed in our study.
Specifically, we acknowledge that exams administered after 2020 were generally more
challenging compared to those in 2019. However, this reinforces the advantages of our
Kumon-inspired approach, as students were able to achieve better overall results despite
having more difficult exams.

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:11

6 Conclusion

This study demonstrates the potential of combining the strengths of the Kumon method with
the automatic assessment abilities of online judge systems. Our approach encompasses three
different types of assignments aligned with the principles of Kumon. Theoretical assignments
encourage active participation in theoretical classes and solidify newly acquired knowledge.
Worksheet assignments promote frequent study and foster self-learning skills. Finally,
laboratory assignments provide progressive learning opportunities to increase self-confidence.
An online judge system facilitates the implementation of our strategy, providing automated
assessment and immediate feedback. Together, these strategies enable the achievement of
most of the objectives of the Kumon method, fostering a successful teaching-learning process.

In addition to outlining the methodology, results from school years with our approach
implemented showed significant improvements in student performance and engagement. More
specifically, the 2021 school year stands out as the most successful, with the highest percentage
of approved students among the ones assessed and enrolled. This success can be attributed to
our progressive approach and the requirements set forth by our methodology, including the
completion of theoretical and laboratory assignments, which encouraged active participation
and self-learning. Furthermore, analysis of students’ performances revealed a notable increase
in the percentage of students achieving excellent grades in the 2021 school year compared to
other years. Conversely, the percentage of students with insufficient performance decreased
significantly, indicating an overall improvement in student outcomes. Moreover, our analysis
of exam grades suggests a significant impact of our progressive learning methodology on
students’ performance. Students who participated in the Kumon-inspired approach exhibited
higher exam grades.

In the future, it would be interesting to investigate students’ perceptions of this new
methodology, for example, through interviews. Students who have experienced more tra-
ditional programming approaches would provide valuable insights in this context. Their
feedback may help to further understand the effectiveness of our methodology and guide
the design of new approaches. It would also be important to assess the developed skills,
habits, and abilities, particularly in the areas of self-learning, self-regulation, study habits,
self-confidence, and motivation levels. Additionally, studying the impact of peer-assisted
learning could help to understand collaborative learning dynamics and their influence on
academic achievement. Conducting such research could help to refine educational practices
and promote effective learning environments for programming fundamentals courses.

References

1 Kirsti M Ala-Mutka. A survey of automated assessment approaches for programming assign-
ments. Computer Science Education, 15(2):83–102, 2005. doi:10.1080/08993400500150747.

2 Aldrich Ellis Asuncion, Brian Christopher Guadalupe, and Gerard Francis Ortega. The abc
workbook: Adapting online judge systems for introductory programming classes. In Proceedings
of the 30th International Conference on Computers in Education, volume 2, pages 395–400.
IEEE, 2022. URL: https://icce2022.apsce.net/uploads/P2_W05_052.pdf.

3 Yorah Bosse, David Redmiles, and Marco A. Gerosa. Pedagogical content for professors of
introductory programming courses. In Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’19, pages 429–435, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3304221.3319776.

4 Chin-Soon Cheah. Factors contributing to the difficulties in teaching and learning of computer
programming: A literature review. Contemporary Educational Technology, 2020.

ICPEC 2024

https://doi.org/10.1080/08993400500150747
https://icce2022.apsce.net/uploads/P2_W05_052.pdf
https://doi.org/10.1145/3304221.3319776

5:12 Kumon-Inspired Approach to Teaching Programming Fundamentals

5 Rodrigo Duran, Jan-Mikael Rybicki, Juha Sorva, and Arto Hellas. Exploring the value
of student self-evaluation in introductory programming. In Proceedings of the 2019 ACM
Conference on International Computing Education Research, ICER ’19, pages 121–130, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3291279.3339407.

6 Stephen H. Edwards and Manuel A. Perez-Quinones. Web-cat: automatically grading pro-
gramming assignments. In Proceedings of the 13th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’08, page 328, New York, NY, USA, 2008.
Association for Computing Machinery. doi:10.1145/1384271.1384371.

7 José Figueiredo and Francisco José García-Peñalvo. Strategies to increase success in learning
programming. 2022 International Symposium on Computers in Education (SIIE), pages 1–6,
2022. URL: https://api.semanticscholar.org/CorpusID:254911096.

8 Anabela Gomes and Antonio Mendes. Learning to program - difficulties and solutions. In
Proceedings of the International Conference on Engineering Education – ICEE 2007, pages
283–287, January 2007.

9 Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Review of recent systems
for automatic assessment of programming assignments. In Proceedings of the 10th Koli Calling
International Conference on Computing Education Research, Koli Calling ’10, pages 86–93, New
York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1930464.1930480.

10 Mike Joy, Nathan Griffiths, and Russell Boyatt. The boss online submission and assessment sys-
tem. J. Educ. Resour. Comput., 5(3):2–es, September 2005. doi:10.1145/1163405.1163407.

11 Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. Towards a systematic review of automated
feedback generation for programming exercises. In Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’16, pages 41–46, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2899415.2899422.

12 Alain Kabo Mbiada, Bassey Isong, Francis Lugayizi, and Adnan Abu-Mahfouz. Introductory
computer programming teaching and learning approaches: Review. In 2022 International
Conference on Electrical, Computer and Energy Technologies (ICECET), pages 1–8, 2022.
doi:10.1109/ICECET55527.2022.9873427.

13 L. Orcos, R. M. Hernández-Carrera, M. J. Espigares, and Á. Alberto Magreñán. The kumon
method: Its importance in the improvement on the teaching and learning of mathematics
from the first levels of early childhood and primary education. Mathematics, 7(1), 2019.
doi:10.3390/math7010109.

14 José Carlos Paiva, José Paulo Leal, and Ricardo Queirós. Authoring game-based programming
challenges to improve students’ motivation. In Michael E. Auer and Thrasyvoulos Tsiatsos,
editors, The Challenges of the Digital Transformation in Education, pages 602–613, Cham,
2020. Springer International Publishing.

15 Mário Pinto and Teresa Terroso. Learning Computer Programming: A Gamified Approach.
In Alberto Simões and João Carlos Silva, editors, Third International Computer Programming
Education Conference (ICPEC 2022), volume 102 of Open Access Series in Informatics
(OASIcs), pages 11:1–11:8, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/OASIcs.ICPEC.2022.11.

16 Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Trans. Comput. Educ., 18(1), October 2017. doi:
10.1145/3077618.

17 Atajan Rovshenov and Fırat Sarsar. Research trends in programming education: A systematic
review of the articles published between 2012-2020. Journal of Educational Technology and
Online Learning, 6(1):48–81, 2023. doi:10.31681/jetol.1201010.

18 Ján Skalka, Martin Drlík, and Juraj Obonya. Automated assessment in learning and teaching
programming languages using virtual learning environment. In 2019 IEEE Global Engineering
Education Conference (EDUCON), pages 689–697, 2019. doi:10.1109/EDUCON.2019.8725127.

https://doi.org/10.1145/3291279.3339407
https://doi.org/10.1145/1384271.1384371
https://api.semanticscholar.org/CorpusID:254911096
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1163405.1163407
https://doi.org/10.1145/2899415.2899422
https://doi.org/10.1109/ICECET55527.2022.9873427
https://doi.org/10.3390/math7010109
https://doi.org/10.4230/OASIcs.ICPEC.2022.11
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.31681/jetol.1201010
https://doi.org/10.1109/EDUCON.2019.8725127

I. Amorim, P. B. Vasconcelos, and J. P. Pedroso 5:13

19 Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer, James Moscola,
and Robert Duvall. Analyzing student work patterns using programming exercise data.
In Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
SIGCSE ’15, pages 18–23, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2676723.2677297.

20 Python standard library. Doctest library documentation. URL: https://docs.python.org/
3/library/doctest.html.

21 Nancy Ukai. The kumon approach to teaching and learning. Journal of Japanese Studies,
20:87, 1994. URL: https://api.semanticscholar.org/CorpusID:150129343.

22 Usmadi, Amelia Agita, and Ergusni. The effect of application kumon learning method in
learning mathematics of ability troubleshooting mathematics of students. Journal of Physics:
Conference Series, 1429(1):012005, 2020. doi:10.1088/1742-6596/1429/1/012005.

23 Pedro Vasconcelos and Rita P. Ribeiro. Using Property-Based Testing to Generate Feedback
for C Programming Exercises. In Ricardo Queirós, Filipe Portela, Mário Pinto, and Alberto
Simões, editors, First International Computer Programming Education Conference (ICPEC
2020), volume 81 of Open Access Series in Informatics (OASIcs), pages 28:1–28:10, Dagstuhl,
Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.
ICPEC.2020.28.

24 Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. A survey
on online judge systems and their applications. ACM Comput. Surv., 51(1), January 2018.
doi:10.1145/3143560.

ICPEC 2024

https://doi.org/10.1145/2676723.2677297
https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/doctest.html
https://api.semanticscholar.org/CorpusID:150129343
https://doi.org/10.1088/1742-6596/1429/1/012005
https://doi.org/10.4230/OASIcs.ICPEC.2020.28
https://doi.org/10.4230/OASIcs.ICPEC.2020.28
https://doi.org/10.1145/3143560

	1 Introduction
	2 Background and Related Work
	2.1 Online judge systems
	2.2 Kumon-inspired methods and potential benefits

	3 Progressive Method for Teaching Programming
	3.1 The Course – Programming I
	3.2 The online judge system: Codex
	3.3 Our Kumon-based approach

	4 Case Study Methodology
	5 Results and Discussion
	5.1 Threats to validity

	6 Conclusion

